
On the Communication Complexity of
Approximate Pa�ern Matching∗

Tomasz Kociumaka
tomasz.kociumaka@mpi-inf.mpg.de
Max Planck Institute for Informatics,

Saarland Informatics Campus
Saarbrücken, Germany

Jakob Nogler
jakob.nogler@inf.ethz.ch

ETH Zurich
Zürich, Switzerland

Philip Wellnitz
wellnitz@mpi-inf.mpg.de

Max Planck Institute for Informatics,
Saarland Informatics Campus

Saarbrücken, Germany

ABSTRACT

The decades-old Pattern Matching with Edits problem, given a
length-= string) (the text), a length-< string % (the pattern), and a
positive integer : (the threshold), asks to list all fragments of) that
are at edit distance at most : from % . The one-way communication
complexity of this problem is the minimum amount of space needed
to encode the answer so that it can be retrieved without accessing
the input strings % and) .

The closely related Pattern Matching with Mismatches prob-
lem (de�ned in terms of the Hamming distance instead of the
edit distance) is already well understood from the communication
complexity perspective: Cli�ord, Kociumaka, and Porat [SODA
2019] proved that Ω(=/< · : log(</:)) bits are necessary and
O(=/< · : log(< |Σ|/:)) bits are su�cient; the upper bound allows
encoding not only the occurrences of % in) with at most : mis-
matches but also the substitutions needed to make each :-mismatch
occurrence exact.

Despite recent improvements in the running time [Charalam-
popoulos, Kociumaka, and Wellnitz; FOCS 2020 and 2022], the com-
munication complexity of Pattern Matching with Edits remained
unexplored, with a lower bound of Ω(=/< ·: log(</:)) bits and an
upper bound of O(=/< · :3 log<) bits stemming from previous re-
search. In this work, we prove an upper bound of O(=/< ·: log2<)
bits, thus establishing the optimal communication complexity up to
logarithmic factors. We also show that O(=/< · : log< log(< |Σ|))
bits allow encoding, for each :-error occurrence of % in) , the short-
est sequence of edits needed to make the occurrence exact. Our
result further emphasizes the close relationship between Pattern
Matching with Mismatches and Pattern Matching with Edits.

We leverage the techniques behind our new result on the com-
munication complexity to obtain quantum algorithms for Pattern
Matching with Edits: we demonstrate a quantum algorithm that

uses O(=1+> (1)/< ·
√
:<) queries and O(=1+> (1)/< · (

√
:< +:3.5))

quantum time. Moreover, when determining the existence of at

least one occurrence, the algorithm uses O(
√

=1+> (1)/< ·
√
:<)

queries and O(
√

=1+> (1)/< · (
√
:< + :3.5)) time. For both cases,

∗The full version of the paper is available at https://arxiv.org/abs/2403.18812.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649604

we establish corresponding lower bounds to demonstrate that the
query complexity is optimal up to sub-polynomial factors.

CCS CONCEPTS

• Theory of computation → Design and analysis of algo-

rithms;Communication complexity; Patternmatching;Quan-
tum complexity theory.

KEYWORDS

Pattern Matching with Edits, Communication Complexity, Quan-
tum Algorithms

ACM Reference Format:

Tomasz Kociumaka, Jakob Nogler, and Philip Wellnitz. 2024. On the Com-
munication Complexity of Approximate Pattern Matching. In Proceedings of

the 56th Annual ACM Symposium on Theory of Computing (STOC ’24), June

24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3618260.3649604

1 INTRODUCTION

While a string is perhaps the most basic way to represent data,
this fact makes algorithms working on strings more applicable and
powerful. Arguably, the very �rst thing to do with any kind of data
is to �nd patterns in it. The Pattern Matching problem for strings
and its variations are thus perhaps among the most fundamental
problems that Theoretical Computer Science has to o�er.

In this paper, we study the practically relevant Pattern Matching

with Edits variation [33]. Given a text string) of length =, a pattern
string % of length <, and a threshold : , the aim is to calculate
the set Occ�

:
(%,)) consisting of (the starting positions of) all the

fragments of) that are at most : edits away from the pattern % . In
other words, we compute the set of :-error occurrences of % in) ,
more formally de�ned as

Occ�
:
(%,)) := {8 ∈ [0 . .=] : ∃9∈ [8 . .=]X� (%,) [8 . . 9) ≤ :)},

where we utilize the classical edit distance X� (also referred to as
the Levenshtein distance) [32] as the distance measure. Here, an
edit is either an insertion, a deletion, or a substitution of a single
character.

Pattern Matching with Edits

Input: a pattern % of length<, a text) of length =, and an integer
threshold : > 0.
Output: the set Occ�

:
(%,)).

Even though the Pattern Matching with Edits problem is al-
most as classical as it can get, with key algorithmic advances (from
O(<=) time down to O(:=) time) dating back to the early and late

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1758

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2403.18812
https://doi.org/10.1145/3618260.3649604
https://doi.org/10.1145/3618260.3649604
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649604&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Tomasz Kociumaka, Jakob Nogler, and Philip Wellnitz

1980s [30, 31, 33], major progress has been made even very recently,
when Charalampopoulos, Kociumaka, and Wellnitz [16] obtained
an Õ(= + :3.5=/<)-time1 solution and thereby broke through the
20-years-old barrier of the O(= + :4=/<)-time algorithm by Cole
and Hariharan [20]. And the journey is far from over yet: the cele-
brated Orthogonal-Vectors-based lower bound for edit distance [5]
rules out only O(= + :2−Ω (1)=/<)-time algorithms (also consult
[16] for details), leaving open a wide area of uncharted algorithmic
territory. In this paper, we provide tools and structural insights
that—we believe—will aid the exploration of the said territory.

We add to the picture a powerful new �nding that sheds new
light on the solution structure of the Pattern Matching with Edits
problem—similar structural results [11, 15] form the backbone of
the aforementioned breakthrough [16]. Speci�cally, we investigate
how much space is needed to store all :-error occurrences of %
in) . We know from [15] that O(=/< · :3 log<) bits su�ce since
one may report the occurrences as O(:3) arithmetic progressions
if = = O(<). However, such complexity is likely incompatible with
algorithms running faster than Õ(= + :3=/<). In this paper, we
show that, indeed, O(=/< · : log2<) bits su�ce to represent the
set Occ�

:
(%,)).

Formally, the communication complexity of Pattern Matching
with Edits measures the space needed to encode the output so that
it can be retrieved without accessing the input. We may interpret
this setting as a two-party game: Alice is given an instance of the
problem and constructs a message for Bob, who must be able to
produce the output of the problem given Alice’s message. Since
Bob does not have any input, it su�ces to consider one-way single-
round communication protocols.

Main Theorem 1. The Pattern Matching with Edits problem ad-

mits a one-way deterministic communication protocol that sends

O(=/< · : log2<) bits. Within the same communication complexity,

one can also encode the family of all fragments of) [8 . . 9) that satisfy

X� (%,) [8 . . 9)) ≤ : , as well as all optimal alignments %) [8 . . 9)

for each of these fragments. Further, increasing the communication

complexity to O(=/< ·: log< log(< |Σ|)), where Σ denotes the input

alphabet, one can also retrieve the edit information for each optimal

alignment.

Observe that our encoding scheme su�ces to retrieve not only
the set Occ�

:
(%,)) (which contains only starting positions of the

:-error occurrences) but also the fragments of) with edit distance
at most : from % . In other words, it allows retrieving all pairs
0 ≤ 8 ≤ 9 ≤ = such that X� (%,) [8 . . 9)) ≤ : .

We complement Main Theorem 1 with a simple lower bound
that shows that our result is tight (essentially up to one logarithmic
factor).

Main Theorem 2. Fix integers =,<, : such that=/2 ≥ < > : > 0.

Every communication protocol for the Pattern Matching with Edits

problem uses Ω(=/< · : log(</:)) bits for % = 0
< and some) ∈

{0, 1}= .

Observe that our lower bound holds for the very simple case
that the pattern is the all-zeros string and only the text contains

1The Õ (·) and Ô (·) notations suppress factors poly-logarithmic and sub-polynomial
in the input size = +<, respectively.

nonzero characters. In this case, the edit distance of the pattern
and another string depends only on the length and the number
of nonzero characters in the other string, and we can thus easily
compute the edit distance in linear time.

From Structural Insights to Better Algorithms: A Success Story. Let
us take a step back and review how structural results aided the
development of approximate-pattern-matching algorithms in the
recent past.

First, let us review the key insight of [15] that led to the break-
through of [16]. Crucially, the authors use that, for any pair of
strings % and) with |) | ≤ 3/2 · |% | and threshold : ≥ 1, either (a)
% has at most O(:2) occurrences with at most : edits in) , or (b)
% and the relevant part of) are at edit distance O(:) to periodic
strings with the same period. This insight helps as follows: First,
one may derive that, indeed, all :-error occurrences of % in) form
O(:3) arithmetic progressions. Second, it gives a blueprint for an
algorithm: one has to tackle just two important cases: an easy non-

periodic case, where % and) are highly unstructured and :-error
occurrences are rare, and a not-so-easy periodic case, where % and
) are highly repetitive and occurrences are frequent but appear in
a structured manner.

The structural insights of [15] have found widespread other
applications. For example, they readily yielded algorithms for dif-
ferentially private approximate pattern matching [35], approximate
circular pattern matching problems [13, 14, 17], and they even
played a key role in obtaining small-space algorithms for (online)
language distance problems [6], among others.

Interestingly, an insight similar to the one of [15] was �rst ob-
tained in [11] for the much easier problem of Pattern Matching
with Mismatches (where we allow neither insertions nor deletions)
before being tightened and ported to Pattern Matching with Edits
in [15]. Similarly, in this paper, we port a known communication
complexity bound from Pattern Matching with Mismatches to Pat-
tern Matching with Edits; albeit with a much more involved proof.
As proved in [19], Pattern Matching with Mismatches problem ad-
mits a one-way deterministic O(: log(< |Σ|/:))-bit communication
protocol. While we discuss later (in the Technical Overview) the
result of [19] as well as the challenges in porting it to Pattern Match-
ing with Edits, let us highlight here that their result was crucial for
obtaining an essentially optimal streaming algorithm for Pattern
Matching with Mismatches.

Finally, let us discuss the future potential of our new structural
results. First, as a natural generalization of [19], Ô(:)-space algo-
rithms for Pattern Matching with Edits should be plausible in the
semi-streaming and (more ambitiously) streaming models, because
Ô(:)-size edit distance sketches have been developed in parallel
to this work [29]. Nevertheless, such results would also require
Ô(:)-space algorithms constructing sketches and recovering the
edit distance from the two sketches, and [29] does not provide such
space-e�cient algorithms. Second, our result sheds more light on
the structure of the non-periodic case of [15]: as it turns out, when
relaxing the notion of periodicity even further, we obtain a periodic
structure also for patterns with just a (su�ciently large) constant
number of :-error occurrences. This opens up a perspective for
classical PatternMatching with Edits algorithms that are even faster
than Õ(=/< + :3).

1759

On the Communication Complexity of Approximate Pa�ern Matching STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Application of our Main Result: Quantum Pattern Matching with

Edits. As a fundamental problem, Pattern Matching with Edits has
been studied in a plethora of settings, including the compressed set-
ting [9, 15, 23, 36], the dynamic setting [15], and the streaming set-
ting [8, 28, 34], among others. However, so far, the quantum setting

remains vastly unexplored. While quantum algorithms have been
developed for Exact Pattern Matching [26], Pattern Matching with
Mismatches [27], Longest Common Factor (Substring) [2, 22, 27],
Lempel–Ziv factorization [24], as well as other fundamental string
problems [1, 4, 10, 18, 37], no quantum algorithm for Pattern Match-
ing with Edits has been known so far. The challenge posed by
Pattern Matching with Edits, in comparison to Pattern Matching
with Mismatches, arises already from the fact that, while the com-
putation of Hamming distance between two strings can be easily
accelerated in the quantum setting, the same is not straightforward
for the edit distance case. Only very recently, Gibney, Jin, Kociu-
maka, and Thankachan [24] demonstrated a quantum edit-distance

algorithm with the optimal query complexity of Õ(
√
:=) and the

time complexity of Õ(
√
:= + :2).

We follow the long line of research on quantum algorithms
on strings and employ our new structural results (combined with
the structural results from [15]) to obtain the following quantum
algorithms for the Pattern Matching with Edits problem.

Main Theorem 3. Let % denote a pattern of length<, let) denote

a text of length =, and let : > 0 denote an integer threshold.

(1) There is a quantum algorithm that solves the Pattern Matching

with Edits problem. The algorithm uses Ô(=/< ·
√
:<) queries

and Ô(=/< · (
√
:< + :3.5)) time.

(2) There is a quantum algorithm deciding whether Occ�
:
(%,)) ≠

∅. The algorithm uses Ô(
√

=/< ·
√
:<) queries and Ô(

√

=/< ·
(
√
:< + :3.5)) time.

Surprisingly, for = = O(<), we achieve the same query com-
plexity as quantum algorithms for computing the (bounded) edit
distance [24] and even the bounded Hamming distance of strings (a

simple application of Grover search yields an Õ(
√
:=) upper bound;

a matching Ω(
√
:=) lower bound is also known [7]). While we did

not optimize the time complexity of our algorithms (reasonably,

one could expect a time complexity of Õ(=/< · (
√
:< +:3.5)) based

on our structural insights and [16]), we show that our query com-
plexity is essentially optimal by proving a matching lower bound.

Main Theorem 4. Let us �x integers = ≥ < > : > 0.

(1) Every quantum algorithm that solves the Pattern Matching

with Edits problem uses Ω(=/< ·
√

: (< − :)) queries for % =

0
< and some) ∈ {0, 1}= .

(2) Every quantum algorithm that decides whether Occ�
:
(%,)) ≠

∅ uses Ω(
√

=/< ·
√

: (< − :)) queries for % = 0
< and some

) ∈ {0, 1}= .
Again, our lower bounds hold already for the case when the

pattern is the all-zeroes string and just the text contains nonzero
entries.

2 TECHNICAL OVERVIEW

In this section, we describe the technical contributions behind our
positive results: Main Theorems 1 and 3. We assume that = ≤ 3/2<

(if the text is longer, one may split the text into O(=/<) overlapping
pieces of length O(<) each) and that : = > (<) (for : = Θ(<), our
results trivialize). Due to space constraints, we defer the proofs and
the technical details to the full version.

2.1 Communication Complexity of Pattern
Matching with Mismatches

Before we tackle Main Theorem 1, it is instructive to learn how to
prove an analogous result for Pattern Matching with Mismatches.
Compared to the original approach of Cli�ord, Kociumaka, and
Porat [19], we neither optimize logarithmic factors nor provide an
e�cient decoding algorithm; this enables signi�cant simpli�cations.
Recall that our goal is to encode the set Occ�

:
(%,)), which is the

Hamming-distance analog of the set Occ�
:
(%,)). Formally, we set

Occ�
:
(%,)) := {8 ∈ [0 . .= −<] : X� (%,) [8 . . 8 +<)) ≤ :}.

Without loss of generality, we assume that {0, =−<} ⊆ Occ�
:
(%,)),

that is, % has :-mismatch occurrences both as a pre�x and as a
su�x of) . Otherwise, either we have Occ�

:
(%,)) = ∅ (which can

be encoded trivially), or we can crop) by removing the characters
to the left of the leftmost :-mismatch occurrence and to the right
of the rightmost :-mismatch occurrence.

Encoding All :-Mismatch Occurrences. First, if : = 0, as a famous
consequence of the Periodicity Lemma [21], the set

Occ�0 (%,)) = Occ(%,))
is guaranteed to form a single arithmetic progression (recall that
= ≤ 3/2<), and thus it can be encoded using O(log<) bits. Consult
Figure 1 for a visualization of an example.

If : > 0, the set Occ�
:
(%,)) does not necessarily form an arith-

metic progression. Still, we may consider the smallest arithmetic
progression that contains Occ�

:
(%,)) as a subset. Since we have

0 ∈ Occ�
:
(%,)), the di�erence of this progression can be expressed

as 6 := gcd(Occ�
:
(%,))).

A crucial property of the gcd(·) function is that, as we add el-
ements to a set maintaining its greatest common divisor 6, each
insertion either does not change 6 (if the inserted element is al-
ready a multiple of 6) or results in the value 6 decreasing by a
factor of at least 2 (otherwise). Consequently, there is a set {0, = −
<} ⊆ (⊆ Occ�

:
(%,)) of size |(| = O(log<) such that gcd(() =

gcd(Occ�
:
(%,))) = 6.

The encoding that Alice produces consists of the set (with
each :-mismatch occurrences 8 ∈ (augmented with the mismatch

information for % and) [8 . . 8 +<), that is, a set

{(9, % [9],) [8 + 9]) : 9 ∈ [0 . .<) such that % [9] ≠) [8 + 9]}.
For a single :-mismatch occurrence, the mismatch information
can be encoded in O(: log(< |Σ|)) bits, where Σ is the alphabet
of % and) . Due to |(| = O(log<), the overall encoding size is
O(: log< log(< |Σ|)).

Recovering the :-Mismatch Occurrences. It remains to argue that
the encoding is su�cient for Bob to recover Occ�

:
(%,)). To that

end, consider a graph G(whose vertices correspond to characters
in % and) . For every 8 ∈ (and 9 ∈ [0 . .<), the graph G(contains
an edge between % [9] and) [8 + 9]. If % [9] =) [8 + 9], then the edge

1760

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Tomasz Kociumaka, Jakob Nogler, and Philip Wellnitz

) · · ·

0

G

1G

G

2G

% · · ·

% · · ·

% · · ·

)

0

G

1G

G

2G

G

3G

G

4G

· · ·

% · · ·

% · · ·

% · · ·

% · · ·

% · · ·

) · · ·

0

~

G

G~

% · · ·

% · · ·

% · · ·

% · · ·

(a) The pattern % occurs in) starting at the

positions 0, G , and 2G ; these starting positions

form the arithmetic progression (8G)0≤8≤2.

(b) Suppose that we were to identify an ad-

ditional occurrence of % in) starting at po-

sition 4G . Now, since occurrences start at

0, 2G , and 4G (which in particular implies that

) [0 . . 2G + |% |) =) [2G . . 4G + |% |)), as well as

at position G , we directly obtain that there is

also an occurrence that starts at position 3G in

) ; which means that the arithmetic progres-

sion from Figure 1a is extended to (8G)0≤8≤4.
More generally, one may prove that any addi-

tional occurrence at a position 8G extends the

existing arithmetic progression in a similar

fashion.

(c) Suppose that we were to identify an ad-

ditional occurrence of % in) starting at po-

sition 0 < ~ < G . Now, similarly to Fig-

ure 1b, we can argue that there is also an

occurrence that starts at every position of

the form 8gcd(G, ~) (this is a consequence of

the famous Periodicity Lemma due to [21])—

again an arithmetic progression.

Crucially, the di�erence of the arithmetic

progression obtained in this fashion de-

creased by a factor of at least two compared

to the initial arithmetic progression.

Figure 1: The structure of occurrences of exact patternmatching is easy: either all exact occurrences of % in) form an arithmetic

progression or there is just one such occurrence (which we may also view as a degenerate arithmetic progression).

Depicted is a text) and exact occurrences starting at the positions denoted above the text; we may assume that there is an

occurrence that starts at position 0 and that there is an occurrence that ends at position |) | − 1.

is black; otherwise, the edge is red and annotated with the values
% [9] ≠) [8 + 9]. Observe that Bob can reconstruct G(using the set
(and the mismatch information for the :-mismatch occurrences
at positions 8 ∈ (.

Next, we focus on the connected components of the graphG(.We
say that a component is black if all of its edges are black and red if it
contains at least one red edge. Observe that Bob can reconstruct the
values of all characters in red components: the annotations already
provide this information for vertices incident to red edges, and
since black edges connect matching characters, the values can be
propagated along black edges, ultimately covering all vertices in red
components. The values of characters in black components remain
unknown, but each black component is guaranteed to be uniform,
meaning that every two characters in a single black component
match.

The last crucial observation is that the connected components
of G(are very structured: for every remainder 2 ∈ [0 . .6) modulo
6, there is a connected component consisting of all vertices % [8]
and) [8] with 8 ≡6 2 . This can be seen as a consequence of the
Periodicity Lemma [21] applied to strings obtained from % and) by
replacing each character with a unique identi�er of its connected
component. Consult Figure 2 for an illustration of an example for
the special case if there are no mismatches and consult Figure 3 for
a visualization of an example with mismatches.

Testing if an Occurrences Starts at a Given Position. With these
ingredients, we are now ready to explain how Bob tests whether
a given position 8 ∈ [0 . .= −<] belongs to Occ�

:
(%,)). If 8 is not

divisible by 6, then for sure 8 ∉ Occ�
:
(%,)). Otherwise, for every

9 ∈ [0 . .<), the characters % [9] and) [8 + 9] belong to the same
connected component. If this component is red, then Bob knows the
values of % [9] and) [8 + 9], so he can simply check if the characters
match. Otherwise, the component is black, meaning that % [9] and
) [8 + 9] are guaranteed to match. As a result, Bob can compute
the Hamming distance X� (%,) [8 . . 8 +<)) and check if it does not
exceed : . In either case (as long as 8 is divisible by 6), he can even
retrieve the underlying mismatch information.

A convenient way of capturing Bob’s knowledge about % and
) is to construct auxiliary strings %# and) # obtained from % and
) , respectively, by replacing all characters in each black compo-
nent with a sentinel character (unique for the component). Then,
Occ�

:
(%,)) = Occ�

:
(%#,) #) and the mismatch information is pre-

served for the :-mismatch occurrences.

1761

On the Communication Complexity of Approximate Pa�ern Matching STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

)

0 1G 2G

%

%

%

)

%

(a) Compare Figure 1a. So far, we identi�ed three occurrences of % in

) ; each occurrence is an exact occurrence. Correspondingly, we have

(= { (0,∅), (G,∅), (2G,∅) }.
With this set (, we obtain three di�erent black components, which

we depict with a circle, a diamond, or a star.

(b) The graph G(that corresponds to Figure 2a: observe how we

collapsed the di�erent patterns from Figure 2a into a single pattern

% .

In the example, we have three black components, that is, bc(G() = 3.

)

~
0 1G 2G

%

%

%

%

)

%

(c) Suppose that we were to identify an additional occurrence of %

in) starting at position 0 < ~ < G (highlighted in purple). From

Figure 1c, we know how the set of all occurrences changes, but—and

this is the crucial point— we do not add all of these implicitly found

occurrences to (, but just ~.

In our example, we observe that the black components collapse into

a single black component, which we depict with a cloud.

(d) The graph G(that corresponds to Figure 2c: observe how we

collapsed the di�erent patterns from Figure 2c into a single pattern

% . Highlighted in purple are some of the edges that we added due to

the new occurrence that we added to (.

In the example, we have one black components, that is, bc(G() = 1.

)

%

(e) Recovering an occurrence in G(from Figure 2d that starts at position gcd(G, ~) , illustrated for the �rst character of the pattern.

Figure 2: Compare Figure 1: we fully understand the easy structure of exact pattern matching. In this �gure, we reinterpret our

knowledge in terms of the encoding scheme of Alice for Pattern Matching with Mismatches (in particular we show just the

occurrences included in the set () and showcase how the corresponding graph G(and its black components evolve.

We connect the same positions in % , as well as pairs of positions that are aligned by an occurrence of % in) . As there are no

mismatches, every such line implies that the connected characters are equal.

For each connected component of the resulting graph (a black component), we know that all involved positions in % and) must

have the same symbol. For illustrative purposes, we assume that G = 3 and we replace each character of a black component with

a sentinel character (unique to that component), that is, we depict the strings %# and) #.

2.2 Communication Complexity of Pattern
Matching with Edits

On a very high level, our encoding for Pattern Matching with Edits
builds upon the approach for Pattern Matching with Mismatches
presented above:

• Alice still constructs an appropriate size-O(log<) set (of
:-error occurrences of % in) , including a pre�x and a su�x
of) .

• Bob uses the edit information for the occurrences in (to
construct a graph G(and strings %# and) #, obtained from
% and) by replacing characters in some components with
sentinel characters so that Occ�

:
(%,)) = Occ�

:
(%#,) #).

At the same time, the edit distance brings new challenges, so we
also deviate from the original strategy:

• Connected components of G(do not have a simple periodic
structure, so 6 = gcd(() loses its meaning. Nevertheless, we

1762

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Tomasz Kociumaka, Jakob Nogler, and Philip Wellnitz

)

0 1G 2G

%

%

%

a c c

c

)

%

a c c

c

(a) Compare Figure 2a. We depict mismatched characters in an align-

ment of % to) by placing a cross over the corresponding character

in % .

If we allow at most 3mismatches, we now do not have an occurrence

starting at position G anymore; hence we obtain six black compo-

nents.

(b) The graphG(that correspond to Figure 3a. Wemake explicit char-

acters that are di�erent from the “default” character of a component;

the corresponding red edges (that are highlighted) are exactly the

mismatch information that is stored in (. For the remaining edges,

the color depicts the color of the connected component that they

belong to.

In the example, we have four black components, that is, bc(G() = 4.

(Observe that contrary to what the image might make you believe,

not every “non-default” character needs to end in a highlighted red

edge.)

)

0 ~ 2G

%

%

%

a c c

c

c

)

%

a c c

c

(c) Compare Figure 2c. We are still able to identify an additional

occurrence of % in) starting at position 0 < ~ < G (highlighted in

purple). Now, as before, connected components of G(merge; this

time, this also means that some characters that were previously part

of a black component now become part of a red component (but

crucially never vice-versa).

In the example, this means that we now have just a single black

component, that is, bc(G() = 1.

(d) The graph G(for the situation in Figure 3c. Again, we make ex-

plicit characters that are di�erent from the “default” character of a

component; the corresponding red edges (that are highlighted) are

exactly the mismatch information that is stored in (. For the remain-

ing edges, the color depicts the color of the connected component

that they belong to (where purple highlights some of the black edges

added due to the new occurrence).

)

%

a c c

c

(e) Checking for an occurrence at position 2gcd(G, ~) (which would be an occurrence were it not for mismatched characters). We check

two things, �rst that the black component aligns; and second, for the red component where we know all characters, we compute exactly

the Hamming distance (which is 4 in the example, meaning that there is no occurrence at the position in question).

Figure 3: Compared to Figure 2, we now have characters in % and) that mismatch. Again, we showcase how the corresponding

graph G(and its black components evolve; in the example, we allow for up to : = 3mismatches.

Again, for illustrative purposes, we assume that G = 3 and we replace each character of a black component with a sentinel

character (unique to that component), that is, we depict the strings %# and) #.

prove that black components still behave in a structured way,
and thus the number of black components, denoted bc(G(),
can be used instead.

• The value bc(G() is not as easy to compute as gcd((), so we
grow the set (⊆ Occ�

:
(%,)) iteratively. In each step, either

we add a single :-error occurrence so that bc(G() decreases
by a factor of at least 2, or we realize that the information

related to the alignments already included in (su�ces to
retrieve all :-error occurrences of % in) .

• Once this process terminates, there may unfortunately re-
main :-error occurrences whose addition to (would de-
crease bc(G()—yet, only very slightly. In other words, such
:-error occurrences generally obey the structure of black
components, but may occasionally violate it. We need to

1763

On the Communication Complexity of Approximate Pa�ern Matching STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

understand where the latter may happen and learn the char-
acters behind the black components involved so that they are
not masked out in %# and) #. This is the most involved part
of our construction, where we use recent insights relating
edit distance to compressibility [12, 24] and store compressed
representations of certain fragments of) .

2.2.1 General Setup. Technically, the set (that Alice constructs
contains, instead of :-error occurrences) [C . . C ′), speci�c align-
ments %) [C . . C ′) of cost at most : . Every such alignment
describes a sequence of (at most :) edits that transform % onto
) [C . . C ′); see the full version for details. In the message that Al-
ice constructs, each alignment is augmented with edit information,
which speci�es the positions and values of the edited characters;
again, see the full version for details. For a single alignment of
cost : , this information takes O(: log(< |Σ|)) bits, where Σ is the
alphabet of % and) .

Just like for Pattern Matching with Mismatches, we can assume
without loss of generality that % has :-error occurrences both as a
pre�x or as a su�x of) . Consequently, we always assume that (
contains an alignment Xpref that aligns % with a pre�x of) and an
alignment Xsuf that aligns % with a su�x of) .

The graph G(is constructed similarly as for mismatches: the
vertices are characters of % and) , whereas the edges correspond to
pairs of characters aligned by any alignment in (. Matched pairs of
characters correspond to black edges, whereas substitutions corre-
spond to red edges, annotated with the values of the mismatching
characters. Insertions and deletions are also captured by red edges;
see the full version for details.

Again, we classify connected components of G(into black (with
black edges only) and red (with at least one red edge). Observe that
Bob can reconstruct the graphG(and the values of all characters in
red components and that black components remain uniform, that is,
every two characters in a single black component match. Consult
Figure 4 for a visualization of an example.

Finally, we de�ne bc(G() to be the number of black components
in G(. If bc(G() = 0, then Bob can reconstruct the whole strings %
and) , so we henceforth assume bc(G() > 0.

First Insights into G(. Our �rst notable insight is that black com-
ponents exhibit periodic structure. To that end, write % |(for the
subsequence of % that contains all characters of % that are contained
in a black component in G(and write)|(for the subsequence of
) that contains all characters of) that are contained in a black
component in G(. Then, for every 2 ∈ [0 . . bc(G()), there is a
component consisting of all characters % |([8] and)|([8] such that
8 ≡bc(G() 2; for a formal statement and proof, consult the full
version. Also consult Figure 4c for an illustration of an example.

Next, we denote the positions in % and) of the subsequent
characters of % |(and)|(belonging to a speci�c component 2 ∈
[0 . . bc(G()) as c20 , c

2
1 , . . . and g

2
0 , g

2
1 , . . ., respectively. The charac-

terization of the black components presented above implies that
c29 < c2

′
9 ′ if and only if either 9 < 9 ′ or 9 = 9 ′ and 2 < 2′ (analogously

for g29 < g
2′
9 ′). We assume that the 2th black component contains<2

characters of % and =2 characters in) ; note that<2 ∈ {<0,<0 − 1}
and =2 ∈ {=0, =0 − 1}.

2.2.2 Extra Information to Capture Close Alignments. By de�ni-
tion of the graph G(, the alignments in (obey the structure of
the black components. Speci�cally, for every X ∈ (, there is a
shift 8 ∈ [0 . .=0 −<0] such that X matches % [c29] with) [g

2
8+9]

for every 2 ∈ [0 . . bc(G()) and 9 ∈ [0 . .<2). The quasi-periodic
structure of % and) suggests that we should expect further shifts
8 ∈ [0 . .=0 −<0] with low-cost alignments matching % [c29] with
) [g28+9] for every 2 ∈ [0 . . bc(G()) and 9 ∈ [0 . .<2). Unfortu-

nately, even if an optimum alignment X : %) [C . . C ′) matches
% [c29] with) [g28+9], there is no guarantee that it also matches

% [c2′9 ′] with) [g
2′
8+9 ′] for other values 2

′ ∈ [0 . . bc(G()) and 9 ′ ∈
[0 . .<2′). Even worse, it is possible that no optimal alignment
%[c2−19 . . c2+19)) [g2−18+9 . . g2+18+9) matches % [c29] with) [g

2
8+9].

The reason behind this phenomenon is that the composition of
optimal edit-distance alignments is not necessarily optimal (more
generally, the edit information of optimal alignments - . and
. / is insu�cient to recover X� (-,/)).

In these circumstances, our workaround is to identify a set
�(⊆ [0 . . bc(G()) such that the underlying characters can be
encoded in Õ(: |(|) space and every alignment X : %) [C . . C ′)
that we need to capture matches % [c29] with) [g28+9] for every

2 ∈ [0 . . bc(G()) \�(and 9 ∈ [0 . .<2). For this, we investigate
how an optimal alignment X : %) [C . . C ′) may di�er from
a canonical alignment A : %) [C . . C ′) that matches % [c29]
with) [g28+9] for all 2 ∈ [0 . . bc(G()) and 9 ∈ [0 . .<2). Fol-

lowing recent insights from [12, 24], we observe that the frag-
ments of % on which A and X are disjoint can be compressed into
O(XA

�
(%,) [C . . C ′))) space (using Lempel–Ziv factorization [38],

for example). Moreover, the compressed size of each of these frag-
ments is at most proportional to the cost of A on the fragment.
Consequently, our goal is to understand where A makes edits and
learn all the fragments of % (and)) with a su�ciently high density
of edits compared to the compressed size. Due to the quasi-periodic
nature of % and) , for each 2 ∈ [0 . . bc(G()), all characters in
the 2th black component are equal to) [g20], so we can focus on

learning fragments of) [g00 . . g
bc(G()−1
0].

The bulk of the alignment A can be decomposed into pieces
that align %[c29 . . c

2+1
9) onto) [g28+9 . . g

2+1
8+9). In the full version,

we prove that X� (%[c29 . . c
2+1
9),) [g28+9 . . g

2+1
8+9)) ≤ w((2), where

w((2) is the total cost incurred by alignments in (on all fragments
%[c29 ′ . . c

2+1
9 ′) for 9 ′ ∈ [0 . .<2). Intuitively, this is because the

path from % [c29] to) [g
2
8+9] in G(allows us to obtain an alignment

%[c29 . . c
2+1
9)) [g28+9 . . g

2+1
8+9)

as a composition of pieces of alignments in (and their inverses.
Every component 2 ∈ [0 . . bc(G()) uses distinct pieces, so the
total weightF :=

∑

2 w((2) does not exceed : · |(|.
The weight function w((2) governs which characters of

) [g00 . . g
bc(G()−1
0]

we need to learn. In the full version, we formalize this with a no-
tion of a period cover �(⊆ [0 . . bc(G()). Most importantly, we
require that [0 . .1] ⊆ �(holds whenever the compressed size of
) [g00 . . g10] is smaller than the total weight

∑1
2=0−1w((2) (scaled

1764

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Tomasz Kociumaka, Jakob Nogler, and Philip Wellnitz

)

0 2G−1

%

%

a c c

c

)

%

a c c

c

⊥

(a) Compare Figure 3a. In addition to mismatched characters, we now

also have missing characters in % and) (depicted by a white space).

Further, as alignments for occurrences are no longer unique, we have

to choose an alignment for each occurrence in the set ((which can

fortunately be stored e�ciently).

(b) The graph G(that corresponds to the situation in Figure 3a. Ob-

serve that now, we also have a sentinel vertex ⊥ to represent that an

insertion or deletion happened. Observe further that due to inser-

tions and deletions, the last empty star character of) now belongs

to the component of �lled diamonds.

In the example, we have two black components, that is, bc(G() = 2.

)|(

% |(

g
0

0
g
0

1
g
0

2
g
0

3
g
0

4

c
0

0
c
0

1
c
0

2
c
0

3

g
1

0
g
1

1
g
1

2
g
1

3
g
1

4

c
1

0
c
1

1
c
1

2
c
1

3

(c) An illustration of the additional notation that we use to analyze G(. Removing every character involved in a red component, we obtain

the strings)|(and % |(. For each black component, we number the corresponding characters in % and) from left to right.

Figure 4: Compare Figures 2 and 3. In addition to mismatches, we now also allow character insertions or deletions. In the

example, we depict occurrence with at most : = 4 edits.

up by an appropriate constant factor). Additionally, to handle cor-
ner cases, we also learn the longest pre�x and the longest su�x

of) [g00 . . g
bc(G()−1
0] of compressed size O(F + :). As we prove

in the full version, the set {(2,) [g20]) : 2 ∈ �(} can be encoded
in O((F + :) log(< |Σ|)) = O(: |(| log(< |Σ|)) bits on top of the
graph G((which can be recovered from the edit information for
alignments in ().

Following the aforementioned strategy of comparing the regions
where X : %) [C . . C ′) is disjoint with the canonical alignment
A : %) [C . . C ′), we prove the following result. Due to corner
cases arising at the endpoints of) [C . . C ′) and between subse-

quent fragments) [g08+9 . . g
bc(G()−1
8+9] and) [g08+9+1 . . g

bc(G()−1
8+9+1],

the proof is rather complicated.

Proposition 2.1. Let X : %) [C . . C ′) be an optimal align-

ment of % onto a fragment) [C . . C ′) such that X� (%,) [C . . C ′)) ≤ : .
If there exists 8 ∈ [0 . .=0 −<0] such that |g08 − C − c00 | ≤ F + 3: ,

then the following holds for every 2 ∈ [0 . . bc(G()) \�(:
(1) X aligns % [c29] to) [g

2
8+9] for every 9 ∈ [0 . .<2), and

(2) g28′ ∉ [C . . C ′) for every 8′ ∈ [0 . .=2) \ [8 . . 8 +<2).
2.2.3 Extending (with Uncaptured Alignments. Proposition 2.1
indicates that (captures all :-error occurrences) [C . . C ′) such that
|g08 − C − c00 | ≤ F + 3: holds for some 8 ∈ [0 . .=0 −<0]. As long
as (does not capture some :-error occurrence) [C . . C ′), we add
an underlying optimal alignment X : %) [C . . C ′) to the set (.
In the full version, we prove that bc(G(∪{X}) ≤ bc(G()/2 holds
for such an alignment X. For this, we �rst eliminate the possibility
of C + c00 ≫ g0=0−<0

(using Xsuf ∈ (, which matches % [c00] with
) [g0=0−<0

]). If |g08 −C −c
0
0 | > F +3: holds for every 8 ∈ [0 . .=0), on

the other hand, then there is no 2 ∈ [0 . . bc(G()) such that % [c20]

can be matched with any character in the 2th connected component.
Consequently, each black component becomes red or gets merged
with another black component, resulting in the claimed inequality
bc(G(∪{X}) ≤ bc(G()/2.

From bc(G(∪{X}) ≤ bc(G()/2 and since bc(G() ≤ < holds
when we begin with |(| = 2, the total size |(| does not exceed
O(log<) before we either arrive at bc(G() = 0, in which case
the whole input can be encoded in O(: |(| log(< |Σ|)) bits, or (
captures all :-error occurrences. In the latter case, the encoding
consists of the edit information for all alignments in (, as well as
the set {(2,) [g20]) : 2 ∈ �(} which we know how to encode in
O(: |(| log(<Σ)) bits on top of the graph G((as we prove in the
full version).

Based on this encoding, we can construct strings %# and) # ob-
tained from % and) , respectively, by replacing with #2 every charac-
ter in the 2th connected component for every 2 ∈ [0 . . bc(G())\�(.
As a relatively straightforward consequence of Proposition 2.1, we
then prove that Occ�

:
(%,)) = Occ�

:
(%#,) #) and that the edit infor-

mation is preserved for every optimal alignment %) [C . . C ′) of
cost at most : .

2.3 Quantum Query Complexity of Pattern
Matching with Edits

As an illustration of the applicability of the combinatorial insights
behind our communication complexity result (Main Theorem 1), we
study quantum algorithms for Pattern Matching with Edits. As indi-
cated in Main Theorems 3 and 4, the query complexity we achieve
is only a sub-polynomial factor away from the unconditional lower
bounds, both for the decision version of the problem (where we

1765

On the Communication Complexity of Approximate Pa�ern Matching STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

only need to decide whether Occ�
:
(%,)) is empty or not) and for

the standard version asking to report Occ�
:
(%,)).

Our lower bounds (in Main Theorem 4) are relatively direct
applications of the adversary method of Ambainins [3], so this
overview is solely dedicated to the much more challenging upper
bounds. Just like for the communication complexity above, we
assume that = ≤ 3/2< and : = > (<). In this case, our goal is to

achieve the query complexity of Ô(
√
:<).

Our solution incorporates four main tools:

• the approximate pattern matching algorithm of [15],
• the recent quantum algorithm for computing (bounded) edit
distance [24],

• the novel combinatorial insights behind Main Theorem 1,
• a new quantum => (1) -factor approximation algorithm for
edit distance that uses Ô(

√
=) queries and is an adaptation

of a classic sublinear-time algorithm of [25].

2.3.1 Baseline Algorithm. We set the stage by describing a rel-
atively simple algorithm that relies only on the �rst two of the

aforementioned four tools. This algorithm makes Õ(
√
:3<) quan-

tum queries to decide whether Occ�
:
(%,)) = ∅.

The �ndings of [15] outline two distinct scenarios: either there
are few :-error occurrences of % in) or the pattern is approximately

periodic. In the former case, the set Occ�
:
(%,)) is of size O(:2),

and it is contained in a union of O(:) intervals of length O(:)
each. In the latter case, a primitive approximate period & of small
length |& | = O(</:) exists such that % and the relevant portion
of) (excluding the characters to the left of the leftmost :-error
occurrence and to the right of the rightmost :-error occurrence)
are at edit distance O(:) to substrings of&∞. It is solely the pattern
that determines which of these two cases holds: the initial two
options in the following lemma correspond to the non-periodic

case, where there are few :-error occurrences of % in) , whereas
the third option indicates the (approximately) periodic case, where
the pattern admits a short approximate period & . Here, X� ((, ∗&∗)
denotes the minimum edit distance between (and any substring
of &∞.

Lemma 2.2 ([15, Lemma 5.19]). Let % denote a string of length

< and let : ≤ < denote a positive integer. Then, at least one of the

following holds:

(a) The string % contains 2: disjoint fragments �1, . . . , �2: (called

breaks) each having period per(�8) > </128: and length |�8 | =
⌊</8:⌋.

(b) The string % contains disjoint repetitive regions '1, . . . , 'A of

total length
∑A
8=1 |'8 | ≥ 3/8 ·< such that each region '8 satis�es

|'8 | ≥ </8: and has a primitive approximate period &8 with
|&8 | ≤ </128: and X� ('8 , ∗&∗

8) = ⌈8:/< · |'8 |⌉.
(c) The string % has a primitive approximate period & with |& | ≤

</128: and X� (%, ∗&∗) < 8: .

The proof of Lemma 2.2 is constructive, providing a classical
algorithm that performs the necessary decomposition and identi�es
the speci�c case. The analogous procedure for Pattern Matching
with Mismatches also admits an e�cient quantum implementa-

tion [27] using Õ(
√
:<) queries and time. As our �rst technical

contribution, we adapt the decomposition algorithm for the edit

case to the quantum setting so that it uses Õ(
√
:<) queries and

Õ(
√
:< + :2) time.

Compared to the classic implementation in [15] and the mis-
match version in [27], it is not so easy to e�ciently construct
repetitive regions. In this context, we are given a length-⌊</8:⌋
fragment with exact period &8 and the task is to extend it to '8 so
that :8 := X� ('8 , ∗&∗

8) reaches ⌈8:/< · |'8 |⌉. Previous algorithms
use Longest Common Extension queries and gradually grow '8 ,
increasing :8 by one unit each time; this can be seen as an online
implementation of the Landau–Vishkin algorithm for the bounded
edit distance problem [30]. Unfortunately, the near-optimal quan-
tum algorithm for bounded edit distance [24] is much more in-
volved and does not seem amenable to an online implementation.
To circumvent this issue, we apply exponential search (just like
in Newton’s root-�nding method, this is possible even though the
sign of ⌈8:/< · |'8 |⌉ −X� ('8 , ∗&∗

8) may change many times). At each
step, we apply a slightly extended version of the algorithm of [24]
that allows simultaneously computing the edit distance between
'8 and multiple substrings of &∞

8 ; see the full version for details.
Once the decomposition has been computed, the next step is

to apply the structure of the pattern in various cases to �nd the
:-error occurrences. The fundamental building block needed here
is a subroutine that veri�es an interval � of O(:) positive integers,
that is, computes Occ�

:
(%,)) ∩ � . The aforementioned extension of

the bounded edit distance algorithm of [24] allows implementing

this operation using Õ(
√
:<) quantum queries and Õ(

√
:< + :2)

time.
By directly following the approach of [15], computingOcc�

:
(%,))

can be reduced to veri�cation of O(:2) intervals (the periodic case
constitutes the bottleneck for the number of intervals), which yields

total a query complexity of Õ(
√
:5<). If we only aim to decide

whether Occ�
:
(%,)), we can apply Grover’s search on top of the

veri�cation algorithm, reducing the query complexity to Õ(
√
:3<).

One can also hope for further speed-ups based on the more recent
results of [16], where the number of intervals is e�ectively reduced
to Õ(:1.5). Nevertheless, already in the non-periodic case, where
the number of intervals is O(:), this approach does not provide

any hope of reaching query complexity beyond Õ(
√
:2<) for the

decision version and Õ(
√
:3<) for the reporting version of Pattern

Matching with Edits.

2.3.2 How to E�iciently Verify O(k) Candidate Intervals? As in-
dicated above, the main bottleneck that we need to overcome to
achieve the near-optimal query complexity is to verify O(:) in-
tervals using Ô(

√
:<) queries. Notably, an unconditional lower

bound for bounded edit distance indicates that Ω(
√
:<) queries are

already needed to verify a length-1 interval.
A ray of hope stemming from our insights behind Main Theo-

rem 1 is that, as described in Section 2.2, already a careful selec-
tion of just O(log<) among the :-error occurrences reveals a lot
of structure that can be ultimately used to recover the whole set
Occ�

:
(%,)). To illustrate how to use this observation, let us initially

make an unrealistic assumption that every candidate interval � con-
tains a -error occurrence for some = Ô(:). Such occurrences
can be detected using the existing veri�cation procedure using

Õ(
√
 <) = Ô(

√
:<) queries.

1766

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Tomasz Kociumaka, Jakob Nogler, and Philip Wellnitz

First, we verify the leftmost and the rightmost intervals. This
allows �nding the leftmost and the rightmost -error occurrences
of % in) . We henceforth assume that text) is cropped so that
these two -error occurrences constitute a pre�x and a su�x of) ,
respectively. The underlying alignments are the initial elements of
the set (that we maintain using the insights of Section 2.2. Even
though these two alignments have cost at most , for technical
reasons, we subsequently allow adding to (alignments of cost up
to ′

= + O(:). Using the edit information for alignments X ∈ (,
we build the graph G(, calculate its connected components, and
classify them as red and black components.

If there are no black components, that is, bc(G() = 0, then the
edit information for the alignments X ∈ (allows recovering the
whole input strings % and) . Thus, no further quantum queries
are needed, and we complete the computation using a classical
veri�cation algorithm in O(< + :3) time.

If there are black components, we retrieve the positions

c00 , . . . , c
0
<0−1 and g00 , . . . , g

0
=0−1

contained in the 0-th black component. Based on these positions,
we can classify ′-error occurrences) [C . . C ′) into those that are
captured by ((for which |g08 −c

0
0 −C | is small for some 8 ∈ [0 . .=0−

<0]) and those which are not captured by (. Although we do not
know ′-error occurrences other than those contained in (, the
test of comparing |g08 − c00 − C | against a given threshold (which
is O(′ |(|)) can be performed for any position C , and thus we
can classify arbitrary positions C ∈ [0 . . |) |] into those that are
captured by (and those that are not.

If any of the candidate intervals � contains a position C ∈ � that
is not captured by (, we verify that interval and, based on our
assumption, obtain a -error occurrence of % in) that starts some-
where within � . Furthermore, we can derive an optimal alignment
X : %) [C . . C ′) whose cost does not exceed + |� | ≤ ′ be-
cause |� | = O(:). This ′-error occurrence is not captured by (, so
we can addX to (and, as a result, the number of black components
decreases at least twofold.

The remaining possibility is that (captures all positions C con-
tained in the candidate intervals � . In this case, our goal is to con-
struct strings %# and) #, which are guaranteed to satisfy

Occ�
:
(%,)) ∩ � = Occ�

:
(%#,) #) ∩ �

for each candidate interval � because : ≤ ′. For this, we need to
build a period cover �((that has the aforementioned properties;
again see the full version for details), which requires retrieving
certain compressible substrings of) . The minimum period cover
�(utilized in our encoding does not seem to admit an e�cient
quantum construction procedure, so we build a slightly larger pe-
riod cover whose encoding incurs a logarithmic-factor overhead.
The key subroutine that we repeatedly use while constructing this
period cover asks to compute the longest fragment of) (or of the
reverse text)) that starts at a given position and admits a Lempel–
Ziv factorization [38] of size bounded by a given threshold. For this,
we use exponential search combined with the recent quantum LZ
factorization algorithm [24]. Based on the computed period cover,
we can construct the strings %# and) # and resort to a classic veri�-
cation algorithm (that performs no quantum queries) to process all
O(:) intervals � in time O(< + :3).

The next step is to drop the unrealistic assumption that every
candidate interval � contains a -error occurrence of % . The natural
approach is to test each of the candidate intervals using an approx-
imation algorithm that either reports that Occ: (%,)) ∩ � = ∅ (in
which case we can drop the interval since we are ultimately look-
ing for :-error occurrences) or that Occ (%,)) ∩ � ≠ ∅ (in which
case the interval satis�es our assumption). Given that |� | is much
smaller than , it is enough to approximate X� (%,) [C . . C +<)) for
an arbitrary single position C ∈ � (distinguishing between distances
at most O(:) and at least − O(:)). Although the quantum com-
plexity of approximating edit distance has not been studied yet, we
observe that the recent sublinear-time algorithm of Goldenberg,
Kociumaka, Krauthgamer, and Saha [25] is easy to adapt to the
quantum setting, resulting in a query complexity of Ô(

√
=) and an

approximation ratio of => (1) = Ô(1); see the full version for details.
Unfortunately, we cannot a�ord to run this approximation al-

gorithm for every candidate interval: that would require Ô(:
√
<)

queries. Our �nal trick is to use Grover’s search on top: given a

subset of the O(:) candidate intervals, using just Ô(
√
:<) queries,

we can either learn that none of them contains any :-error occur-
rence (in this case, we can discard all of them) or identify one that
contains a -error occurrence. Combined with binary search, this
approach allows discarding some candidate intervals so that the
leftmost and the rightmost among the remaining ones contain -
error occurrences. The underlying alignments (constructed using
the exact quantum bounded edit distance algorithm of [24]) are
used to initialize the set (. At each step of growing (, on the other
hand, we apply our approximation algorithm to the set of all candi-
date intervals that are not yet (fully) captured by (. Either none of
these intervals contain :-error occurrences (and the construction
of (may stop), or we get one that is guaranteed to contain a -
error occurrence. In this case, we construct an appropriate low-cost
alignment X using the exact algorithm and extend the set (with
X. Thus, the unrealistic assumption is not needed to construct the

set (and the strings %# and) # using Ô(
√
:<) queries.

2.3.3 Handling the Approximately Periodic Case. Verifying O(:)
candidate intervals was the only bottleneck of the non-periodic
case of Pattern Matching with Edits. In the approximately periodic
case, on the other hand, we may have O(:2) candidate intervals,
so a direct application of the approach presented above only yields

an Ô(
√
:2<)-query algorithm.

Fortunately, a closer inspection of the candidate intervals con-
structed in [15] reveals that they satisfy the unrealistic assumption
that we made above: each of them contains an O(:)-error occur-
rence of % . This is because both % and the relevant part of) are at
edit distance O(:) from substrings of &∞ and each of the intervals
contains a position that allows aligning % into) via the substrings
of &∞ (so that perfect copies of & are matched with no edits). Con-
sequently, the set (of O(log<) alignments covering all candidate

intervals can be constructed using Õ(
√
:<) queries. Moreover, once

we construct the strings %# and) #, instead of verifying all O(:2)
candidate intervals, which takes O(< + :4) time, we can use the
classic Õ(< + :3.5)-time algorithm of [16] to construct the entire
set Occ�

:
(%#,) #) = Occ�

:
(%,)).

1767

On the Communication Complexity of Approximate Pa�ern Matching STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

ACKNOWLEDGEMENTS

The work of Jakob Nogler has been mostly carried out during a
summer internship at the Max Planck Institute for Informatics.

REFERENCES
[1] Scott Aaronson, Daniel Grier, and Luke Schae�er. 2019. A Quantum Query

Complexity Trichotomy for Regular Languages. In 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019. IEEE Computer Society, 942–965.
https://doi.org/10.1109/FOCS.2019.00061

[2] Shyan Akmal and Ce Jin. 2023. Near-Optimal Quantum Algorithms for String
Problems. Algorithmica 85, 8 (2023), 2260–2317. https://doi.org/10.1007/S00453-
022-01092-X

[3] Andris Ambainis. 2002. Quantum Lower Bounds by Quantum Arguments. J.
Comput. System Sci. 64, 4 (2002), 750–767. https://doi.org/10.1006/JCSS.2002.1826

[4] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Kamil Khadiev, Vladislavs
Kl,evickis, Krišjānis Prūsis, Yixin Shen, Juris Smotrovs, and Jevgēnijs Vihrovs.
2020. Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language. In
45th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2020 (LIPIcs, Vol. 170). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
8:1–8:14. https://doi.org/10.4230/LIPIcs.MFCS.2020.8

[5] Arturs Backurs and Piotr Indyk. 2018. Edit distance cannot be computed in
strongly subquadratic time (unless SETH is false). SIAM J. Comput. 47, 3 (2018),
1087–1097. https://doi.org/10.1137/15M1053128

[6] Gabriel Bathie, Tomasz Kociumaka, and Tatiana Starikovskaya. 2023. Small-
Space Algorithms for the Online Language Distance Problem for Palindromes
and Squares. In 34th International Symposium on Algorithms and Computation,
ISAAC 2023 (LIPIcs, Vol. 283). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
10:1–10:17. https://doi.org/10.4230/LIPIcs.ISAAC.2023.10

[7] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de
Wolf. 2001. Quantum lower bounds by polynomials. J. ACM 48, 4 (2001), 778–797.
https://doi.org/10.1145/502090.502097

[8] Sudatta Bhattacharya and Michal Koucký. 2023. Streaming :-edit approximate
pattern matching via string decomposition. In 50th International Colloquium on
Automata, Languages, and Programming, ICALP 2023 (LIPIcs, Vol. 261). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 22:1–22:14. https://doi.org/10.4230/
LIPIcs.ICALP.2023.22

[9] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao
Satti, and OrenWeimann. 2015. Random Access to Grammar-Compressed Strings
and Trees. SIAM J. Comput. 44, 3 (2015), 513–539. https://doi.org/10.1137/
130936889

[10] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Haji-
aghayi, and Saeed Seddighin. 2021. Approximating edit distance in truly sub-
quadratic time: Quantum and MapReduce. J. ACM 68, 3 (2021), 19:1–19:41.
https://doi.org/10.1145/3456807

[11] Karl Bringmann, Marvin Künnemann, and Philip Wellnitz. 2019. Few Matches or
Almost Periodicity: Faster Pattern Matching with Mismatches in Compressed
Texts. In 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019.
SIAM, 1126–1145. https://doi.org/10.1137/1.9781611975482.69

[12] Alejandro Cassis, Tomasz Kociumaka, and Philip Wellnitz. 2023. Optimal Al-
gorithms for Bounded Weighted Edit Distance. In 64th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2023. IEEE, 2177–2187. https:
//doi.org/10.1109/FOCS57990.2023.00135

[13] Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub Ra-
doszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor
Zuba. 2021. Circular pattern matching with : mismatches. J. Comput. System
Sci. 115 (2021), 73–85. https://doi.org/10.1016/J.JCSS.2020.07.003

[14] Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, Jakub Ra-
doszewski, Wojciech Rytter, TomaszWaleń, andWiktor Zuba. 2022. Approximate
Circular Pattern Matching. In 30th Annual European Symposium on Algorithms,
ESA 2022 (LIPIcs, Vol. 244). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
35:1–35:19. https://doi.org/10.4230/LIPIcs.ESA.2022.35

[15] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. 2020.
Faster Approximate Pattern Matching: A Uni�ed Approach. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020. IEEE, 978–989. https:
//doi.org/10.1109/FOCS46700.2020.00095

[16] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. 2022.
Faster Pattern Matching under Edit Distance: A Reduction to Dynamic Puzzle
Matching and the Seaweed Monoid of Permutation Matrices. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022. IEEE, 698–707. https:
//doi.org/10.1109/FOCS54457.2022.00072

[17] Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech
Rytter, Tomasz Waleń, and Wiktor Zuba. 2024. Approximate Circular Pattern
Matching under Edit Distance. In 41st International Symposium on Theoretical
Aspects of Computer Science, STACS 2024 (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. arXiv:2402.14550

[18] Andrew M. Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and
Daochen Wang. 2022. Quantum divide and conquer. arXiv:2210.06419

[19] Raphaël Cli�ord, Tomasz Kociumaka, and Ely Porat. 2019. The streaming :-
mismatch problem. In 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019. SIAM, 1106–1125. https://doi.org/10.1137/1.9781611975482.68

[20] Richard Cole and Ramesh Hariharan. 2002. Approximate String Matching: A
Simpler Faster Algorithm. SIAM J. Comput. 31, 6 (2002), 1761–1782. https:
//doi.org/10.1137/S0097539700370527

[21] Nathan J. Fine and Herbert S. Wilf. 1965. Uniqueness Theorems for Periodic
Functions. Proc. Amer. Math. Soc. 16, 1 (1965), 109–114. https://doi.org/10.1090/
S0002-9939-1965-0174934-9

[22] François Le Gall and Saeed Seddighin. 2023. Quantum Meets Fine-Grained Com-
plexity: Sublinear Time Quantum Algorithms for String Problems. Algorithmica
85, 5 (2023), 1251–1286. https://doi.org/10.1007/S00453-022-01066-Z

[23] Paweł Gawrychowski and Damian Straszak. 2013. Beating O(=<) in Approxi-
mate LZW-Compressed Pattern Matching. In 24th International Symposium on
Algorithms and Computation, ISAAC 2013 (LNCS, Vol. 8283). Springer, 78–88.
https://doi.org/10.1007/978-3-642-45030-3_8

[24] Daniel Gibney, Ce Jin, Tomasz Kociumaka, and Sharma V. Thankachan. 2024.
Near-Optimal Quantum Algorithms for Bounded Edit Distance and Lempel-Ziv
Factorization. In 35th ACM-SIAM Symposium on Discrete Algorithms, SODA 2023.
SIAM, 3302–3332. https://doi.org/10.1137/1.9781611977912.11

[25] Elazar Goldenberg, Tomasz Kociumaka, Robert Krauthgamer, and Barna Saha.
2022. Gap Edit Distance via Non-Adaptive Queries: Simple and Optimal. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022. IEEE,
674–685. https://doi.org/10.1109/FOCS54457.2022.00070

[26] Ramesh Hariharan and V. Vinay. 2003. String matching in $̃ (
√
=+

√
<) quantum

time. Journal of Discrete Algorithms 1, 1 (2003), 103–110. https://doi.org/10.1016/
S1570-8667(03)00010-8

[27] Ce Jin and Jakob Nogler. 2023. Quantum Speed-ups for String Synchronizing
Sets, Longest Common Substring, and :-mismatch Matching. In 34th ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023. SIAM, 5090–5121. https:
//doi.org/10.1137/1.9781611977554.CH186

[28] Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. 2021. Small-space and
streaming pattern matching with : edits. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021. IEEE, 885–896. https://doi.org/10.
1109/FOCS52979.2021.00090

[29] Michal Koucký and Michael Saks. 2024. Almost Linear Size Edit Distance Sketch.
In 56th Annual ACM Symposium on the Theory of Computing; STOC 2024.

[30] Gad M. Landau and Uzi Vishkin. 1988. Fast String Matching with : Di�erences.
J. Comput. System Sci. 37, 1 (1988), 63–78. https://doi.org/10.1016/0022-0000(88)
90045-1

[31] Gad M. Landau and Uzi Vishkin. 1989. Fast Parallel and Serial Approximate
String Matching. Journal of Algorithms 10, 2 (1989), 157–169. https://doi.org/10.
1016/0196-6774(89)90010-2

[32] Vladimir Iosifovich Levenshtein. 1965. Binary codes capable of correcting dele-
tions, insertions and reversals. Doklady Akademii Nauk SSSR 163, 4 (1965),
845–848. http://mi.mathnet.ru/eng/dan31411

[33] Peter H. Sellers. 1980. The Theory and Computation of Evolutionary Distances:
Pattern Recognition. Journal of Algorithms 1, 4 (1980), 359–373. https://doi.org/
10.1016/0196-6774(80)90016-4

[34] Tatiana Starikovskaya. 2017. Communication and Streaming Complexity of
Approximate Pattern Matching. In 28th Annual Symposium on Combinatorial
Pattern Matching, CPM 2017 (LIPIcs, Vol. 78). Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 13:1–13:11. https://doi.org/10.4230/LIPIcs.CPM.2017.13

[35] Teresa Anna Steiner. 2024. Di�erentially Private Approximate Pattern Matching.
In 15th Innovations in Theoretical Computer Science Conference, ITCS 2024 (LIPIcs,
Vol. 287). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 94:1–94:18. https:
//doi.org/doi.org/10.4230/LIPIcs.ITCS.2024.94

[36] Alexander Tiskin. 2014. Threshold Approximate Matching in Grammar-
Compressed Strings. In Prague Stringology Conference, PSC 2014, Jan Holub and
Jan Žďárek (Eds.). 124–138. http://www.stringology.org/event/2014/p12.html

[37] Qisheng Wang and Mingsheng Ying. 2024. Quantum Algorithm for Lexicograph-
ically Minimal String Rotation. Theory of Computing Systems 68, 1 (2024), 29–74.
https://doi.org/10.1007/S00224-023-10146-8

[38] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (1977), 337–343.
https://doi.org/10.1109/TIT.1977.1055714

1768

https://doi.org/10.1109/FOCS.2019.00061
https://doi.org/10.1007/S00453-022-01092-X
https://doi.org/10.1007/S00453-022-01092-X
https://doi.org/10.1006/JCSS.2002.1826
https://doi.org/10.4230/LIPIcs.MFCS.2020.8
https://doi.org/10.1137/15M1053128
https://doi.org/10.4230/LIPIcs.ISAAC.2023.10
https://doi.org/10.1145/502090.502097
https://doi.org/10.4230/LIPIcs.ICALP.2023.22
https://doi.org/10.4230/LIPIcs.ICALP.2023.22
https://doi.org/10.1137/130936889
https://doi.org/10.1137/130936889
https://doi.org/10.1145/3456807
https://doi.org/10.1137/1.9781611975482.69
https://doi.org/10.1109/FOCS57990.2023.00135
https://doi.org/10.1109/FOCS57990.2023.00135
https://doi.org/10.1016/J.JCSS.2020.07.003
https://doi.org/10.4230/LIPIcs.ESA.2022.35
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS54457.2022.00072
https://doi.org/10.1109/FOCS54457.2022.00072
https://arxiv.org/abs/2402.14550
https://arxiv.org/abs/2210.06419
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1137/S0097539700370527
https://doi.org/10.1137/S0097539700370527
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1007/S00453-022-01066-Z
https://doi.org/10.1007/978-3-642-45030-3_8
https://doi.org/10.1137/1.9781611977912.11
https://doi.org/10.1109/FOCS54457.2022.00070
https://doi.org/10.1016/S1570-8667(03)00010-8
https://doi.org/10.1016/S1570-8667(03)00010-8
https://doi.org/10.1137/1.9781611977554.CH186
https://doi.org/10.1137/1.9781611977554.CH186
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1016/0196-6774(89)90010-2
https://doi.org/10.1016/0196-6774(89)90010-2
http://mi.mathnet.ru/eng/dan31411
https://doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.4230/LIPIcs.CPM.2017.13
https://doi.org/doi.org/10.4230/LIPIcs.ITCS.2024.94
https://doi.org/doi.org/10.4230/LIPIcs.ITCS.2024.94
http://www.stringology.org/event/2014/p12.html
https://doi.org/10.1007/S00224-023-10146-8
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Communication Complexity of Pattern Matching with Mismatches
	2.2 Communication Complexity of Pattern Matching with Edits
	2.3 Quantum Query Complexity of Pattern Matching with Edits

	References

