Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Picocavity-enhanced Raman spectroscopy of physisorbed H2 and D2 molecules

MPG-Autoren
/persons/resource/persons298518

Trenins,  G.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.       
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2411.10994.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shiotari, A., Liu, S., Trenins, G., Sugimoto, T., Wolf, M., Rossi, M., et al. (2024). Picocavity-enhanced Raman spectroscopy of physisorbed H2 and D2 molecules.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-3421-E
Zusammenfassung
We report on tip-enhanced Raman scattering (TERS) of H2 and D2 molecules physisorbed within a plasmonic picocavity at a cryogenic temperature (10 K). The intense Raman peaks resulting from the rotational and vibrational transitions are observed at sub-nanometer gap distances of the junction formed by a Ag tip and Ag(111) surface. We clarify that the predominant contribution of the electromagnetic field enhancement of the picocavity to the detection of a single hydrogen molecule. The gap-distance dependent TERS reveals not only the evolution of the picocavity field, but also the interaction between the molecule and tip/surface, which exhibit nontrivial isotope effects. A significant red-shift and peak broadening of the H-H stretching as the gap distance decreases, while the D-D stretching mode is unaffected. A combination of density functional theory and reduced-dimension models reveals that a distinct anharmonicity in the mode potential of H2 is one cause of the anomalous red-shift, whereas D2 has less anharmonicity due to the geometric isotope effect.