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Thermodynamics of local causal horizons have been shown to encode the information necessary
to derive the equations governing the gravitational dynamics. We have previously shown that, in
the presence of matter, this derivation further implies quantum phenomenological corrections to
gravitational dynamics. Herein, we study whether similar corrections also occur in vacuum. We
show that, under the assumptions of locality and local Lorentz invariance of physics, the vacuum
dynamics is prescribed by the Einstein equations. We also discuss an alternative paradigm which
assumes the existence of a preferred direction of time (much like in Einstein-aether or Hořava-Lifshitz
gravity). Then, we find an modified gravitational dynamics in which Ricci curvature is sourced by
Bel-Robinson super-energy.

I. INTRODUCTION

Gravitational dynamics shares a strong connection with thermodynamics [1–5]. This relation becomes especially
clear in the way the heat term appears in the first law of black hole thermodynamics. This term can be derived directly
from the gravitational Lagrangian as a conserved charge associated with the time translational Killing symmetry [3, 6–
10], without imposing any further assumptions. Then, quantum field theory in curved backgrounds shows that black
holes emit thermal radiation, assigning a physical temperature to the black hole [11] (the Hawking temperature).
With these two ingredients, the ratio of the heat term in the first law of black hole thermodynamics and the Hawking
temperature yields the expression for the black hole entropy. Notably, no similarly straightforward link between the
dynamics and the entropy appears in other physical theories, making gravity unique in this regard.

The black hole entropy not only follows directly from the gravitational Lagrangian, but actually contains enough
information to reconstruct the gravitational dynamics [4, 12–25]. More precisely, the dynamics can be derived by
first requiring that gravitational entropy is not specific for black holes, but instead a universal property of any causal
horizon. This assumption is supported by a number of results obtained for thermodynamics of various horizons, see
e.g. [25–32]. Then, one can construct a local, observer-dependent causal horizon in every regular spacetime point and
study the changes in its entropy. It turns out that the thermodynamic equilibrium conditions imposed on such local
horizons encode (locally) the equations governing the gravitational dynamics. If the equivalence principle1 holds,
these equations are valid throughout the spacetime. This approach not only recovers Einstein equations [4, 15, 19],
but also the equations of motion of any gravitational theory whose Lagrangian is an arbitrary function of the metric
and the Riemann tensor [16, 20–22], using the corresponding gravitational Wald entropy expression [6]. Moreover,
these local equilibrium conditions phrased instead in terms of quantum von Neumann entropy have been shown to
encode the semiclassical Einstein equations in which the quantum expectation value of the energy-momentum tensor
serves as the source term for the classical spacetime curvature [17–20].

Herein, inspired by this success of thermodynamic methods in recovering the classical and semiclassical gravitational
dynamics, we, following a research program we started some years ago, employ them to peer one step further, to low
energy quantum gravitational effects. To this end, we consider the leading order quantum gravitational correction
to entropy of causal horizon, a term proportional to the logarithm of the horizon area. Remarkably, a leading order

∗ ana.alonso.serrano@aei.mpg.de
† liskama4@stp.dias.ie
1 More precisely, one in general needs the Einstein equivalence principle. Specifically, to recover the Einstein equations a more stringent
formulation, the strong equivalence principle (valid for gravitational test physics) is required [15]. For detailed discussion of the various
formulations of the equivalence principle and their relations, see [33].
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correction term of this form is nearly universally predicted by various approaches to quantum gravity [34–39] and also
by some theory-independent considerations [40–48]. This generality of the logarithmic term in horizon entropy makes
its influence on gravity robust and independent of any specific approach to quantum gravity. We have previously
studied the effect of this term on the linearised gravitational dynamics, finding a result equivalent to the linearised
equations of motion of quadratic gravity. We have also shown that beyond the linearised regime, it leads to correction
terms quadratic in the Ricci tensor which do not appear in quadratic gravity, marking a clear departure from it.
However, in both special cases we studied so far the corrections to gravitational dynamics that only occur in the
presence of matter. In the present work, we ask whether the Einstein equations are modified even in vacuum. We
show that imposing the local Lorentz invariance prohibits any such modifications. Nevertheless, if one chooses to
introduce a preferred local direction of time, the thermodynamic derivation yields a scalar equation resembling the
Hamiltonian constraint of general relativity with a source term proportional to the Bel-Robinson tensor contracted
with the local direction of time in all indices [49, 50] (such a scalar is known as the Bel-Robinson super-energy density).
The Bel-Robinson tensor is quadratic in the Weyl tensor and satisfies an analogy of the dominant energy condition
valid for the energy-momentum tensor. It has been suggested that the Bel-Robinson super-energy density can be
interpreted as a quasilocal gravitational energy density per unit surface area [50, 51]. This interpretation appears to
be consistent with the role the Bel-Robinson super-energy density plays in the geometry of small spheres [52, 53].
Therefore, its appearance as a source term for the Hamiltonian constraint is somewhat intuitive, since in general
relativity the source term is the matter-energy density.

In this work, we realise the local causal horizons as causal diamonds. The changes of the area of the horizon of causal
diamonds in vacuum and their relation to the Bel-Robinson tensor have been explored in previous works [54, 55]. We
build on the results of these references, connecting them with the derivation of the equations governing the gravitational
dynamics. This connection is made possible by two innovations we introduce compared to the previous works. First,
we work with the light-cone cut construction of the local causal diamonds, slightly modifying its original version [55],
to make it suitable for deriving the gravitational equations. Second, as we discuss in section III, considering the
logarithmic correction to entropy allows us to obtain nontrivial local corrections to the traceless Einstein equations.

The paper is organised as follows. In section II, we briefly recall the derivation of the traceless Einstein equations
from thermodynamics of local causal diamonds. Section III derives the corrections in vacuum, finding them to be
proportional to the Bel-Robinson tensor in four spacetime dimensions. We discuss a possible interpretation of these
corrections in terms of a gravitational theory violating the local Lorentz invariance in section IV. Lastly, section V
focuses on possible physical interpretation of our results and outlines the future developments.

II. EINSTEIN EQUATIONS FROM THERMODYNAMICS

We briefly recall how the equilibrium conditions for locally constructed causal diamonds encode the traceless Einstein
equations, before introducing higher order corrections. Although we are going to restrict ourselves to the vacuum case
in the next section, here we take into account the presence of matter to show how it enters into the equations.

A. Light-cone cut local causal diamonds

We start by introducing the specific realisation of local, observer-dependent causal horizons we work with in this
paper: the causal diamonds. In flat spacetime a causal diamond can be simply defined as the domain of dependence
of a spacelike co-dimension 1 ball. In a generic curved spacetime only small causal diamonds can be meaningfully
defined. More specifically, one requires that the geodesic radius of the co-dimension 1 ball forming the base of the
causal diamond is much smaller than the local curvature length scale (i.e. the inverse of the square root of the largest
eigenvalue of the Riemann tensor). Then, the spacetime curvature effects on the geometry of the causal diamonds
can be treated as small corrections. However, even in this case, there exist several inequivalent generalisations of a
causal diamond [55]. While we could in principle consider any of them, the one best suited for our purposes is the
light-cone cut local causal diamond due to the way it is defined, as we explain in the following.

The construction of a light-cone cut local causal diamond starts at an arbitrary regular spacetime point Ap, the
past apex of the eventual causal diamond. At this point, we choose a unit timelike vector nµ to represent a local
direction of time. We then consider a class of future directed null vectors kµ at Ap normalised so that nµk

µ = −1, and
define the past boundary of the light-cone cut local causal diamond as the congruence of null wordlines tangent to kµ.
Any spacelike cross-section of this congruence is an approximate 2-sphere (up to curvature-dependent corrections)
and its interior an approximate 3-dimensional spacelike ball. The base of the causal diamond corresponds to its
spatial slice Σ0 at the affine geodesic parameter length l. To construct the future (contracting) part of the light-cone
cut local causal diamond, we introduce a future-directed null vector field lµ defined on the boundary of Σ0, so that
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FIG. 1. A sketch of a light-cone cut causal diamond starting in the past apex Af. We suppress the θ coordinate. The unit,
future-directed timelike vector nµ defines the local direction of time. The past null boundary of the causal diamond is a
congruence of null geodesics tangent to the future-pointing null vector kµ. Likewise, the future null boundary is a congruence
tangent to the future-pointing null vector lµ. Several sample null geodesics forming the boundary are shown.

nµl
µ = −1. Furthermore, denoting the projection of kµ on the surface orthogonal to nµ by mµ (this vector is simply

a unit, outward-pointing radial vector), we choose lµ to have this projection equal to −mµ. Then, the contracting
congruence of the null geodesics tangent to lµ makes up the future boundary of the causal diamond. We show a sketch
of the light-cone cut local causal diamond in figure 1.

Since the size parameter l of the light-cone cut local causal diamond is taken to be much smaller than the local cur-
vature length scale, we can conveniently expand the metric inside the diamond using the Riemann normal coordinates,
keeping track only of the lowest order terms. We obtain

gµν(x) = ηµν − 1

3
Rµανβ (Ap)x

αxβ +O
(
x3

)
, (1)

where the Riemann tensor is evaluated at the past apex Ap and ηµν denotes the flat spacetime metric. A light-cone
cut local causal diamond is constructed as an intersection of light cones, whose shape is invariant under conformal
rescaling of the metric. Consequently, there exists an approximate conformal isometry (up to O

(
l3
)
curvature-

dependent corrections) of the diamond, generated by a conformal Killing vector which reads

ζµ = C
[(
l2 − t2 − r2

)
nµ − 2rtmµ

]
, (2)

where r is the radial geodesic distance, t the affine time parameter measured along vector nµ, and C stands for an
arbitrary constant determining the normalisation of ζµ with the dimensions of inverse length squared. The conformal
Killing vector ζµ is timelike inside the causal diamond and becomes null on its boundary. Thence, the boundary is a
conformal Killing horizon.

The geometry of causal diamonds makes their thermodynamics particularly simple in several regards. First, a
spatial (orthogonal to nµ) cross-section of the horizon of a causal diamond is closed, spherically symmetric and has a
finite area. Therefore, it possesses a clearly defined interior region and, furthermore, there are no edges that might
contribute to the horizon entropy. Second, the conformal Killing isometry of the causal diamonds allows for a very
straightforward application of the covariant phase space methods [20, 56] (although we do not follow this route in the
present work).

The light-cone cut local causal diamonds then offer the additional advantage of fully specifying the null boundary
of the causal diamond (up to some residual freedom [22, 25], we discuss in the following), while keeping the geometry
of its spatial cross-sections somewhat ambiguous [55]. Then, it becomes very simple to track the physical matter
entropy flux across the boundary and the corresponding changes in its area. Since, as we review in the following, the
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equilibrium conditions imposed on these two processes encode the equations governing the gravitational dynamics,
light-cone cut local causal diamonds are ideally suited for deriving them in this way.

B. Gravitational dynamics from thermodynamics

We have seen that the null boundary of a light-cone cut causal diamond represents a conformal Killing horizon.
Therefore, it can be argued that it possesses entropy proportional to the area A of its spatial cross-section, i.e.,
S = ηA, where η denotes the proportionality constant (see [25] and references therein for a detailed justification of
this assumption). For the purposes of the present work, we do not care about the microscopic origin of this entropy,
we simply take it as our assumption. The entropy, of course, changes with the expansion of the horizon. At the
same time, matter flux crossing the horizon also carries entropy with it. It has been shown that if the expansion of
the causal diamond corresponds to a reversible thermodynamic process, the balance between both entropies encodes
the gravitational dynamics [22, 25]. In the following, we review the main points of this argument, first recalling the
expressions for the changes of both relevant entropies.

To compute the matter entropy flux, we employ the Clausius equilibrium relation ∆SC = ∆Q/TU, where ∆Q
denotes the heat flux across the horizon and TU the Unruh temperature measured by accelerating observers moving
inside the causal diamond. The total flux of this Clausius entropy over the past boundary of the causal diamond
equals (for details on its definition and computation, see [57])

∆SC =
2π

h̄

4πl4

9
Tµν

(
nµnν +

1

4
gµν

)
+O

(
l6
)
, (3)

where O
(
ϵ2lD

)
accounts for the subleading corrections appearing due to the spacetime curvature and to the approx-

imation of the energy-momentum tensor by its value at the diamond’s past apex Af.
We mentioned that the entropy of the horizon is proportional to its area. Its changes are then encoded in the

expansion θ = ∇µk
µ of the congruence of its geodesic generators, i.e.,

∆S = η∆A = η

∫
θd3Σ, (4)

where, in our case, we integrate over the entire past boundary of the causal diamond. The expansion evolves according
to the Raychaudhuri equation [58]

θ̇ = −1

2
θ2 − σ2 −Rµνk

µkν , (5)

where we introduced the simplified notation θ̇ = dθ/dλ = kµ∇µθ, with λ being the affine parameter along the geodesic
null generators of the horizon. For computational convenience, we shift λ by a constant, so that λ = 0 at the base
Σ0 of the causal diamond. The second term on the right hand side of the Raychaudhuri equation (5) is given by the
shear tensor σ2 = σµνσ

µν , which reads

σµν = h λ
µ h ρ

ν ∇(λkρ) −
1

2
∇ρk

ρhµν , (6)

where hµν denotes the induced metric on the null boundary (the shear is independent of its precise choice). The
evolution of the shear tensor obeys the following equation [58]

σ̇µν = −θσµν − σµλσ
λ

ν +
1

2
σ2hµν − Cλρστk

λkσhρ
µh

τ
ν +

1

2

(
hµλhνρ −

1

2
hµνhλρ

)
Rλρ, (7)

where Cλρστ is the Weyl curvature tensor.
To solve the coupled equations for the expansion (5) and the shear (7), we expand them in powers of λ. Since, on

the past null horizon, λ ∈ [−l, 0], and we chose l to be much smaller than the local curvature length scale, we can
neglect the terms with high enough powers of λ, simplifying the calculations. We first have to determine the situation
in flat spacetime. While the shear vanishes there, the horizon of a flat spacetime causal diamond expands at a rate

θflat =
2

l + λ
. (8)
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Therefore, in a curved spacetime, we can take the following ansatze for the expansion and the shear

θ = θflat + θ(0) + λθ(1) +O
(
λ2

)
, (9)

σµν = σ(0)µν + λσ(1)µν +O
(
λ2

)
. (10)

For simplicity, we set the expansion and the shear to vanish at the base of the light-cone cut causal diamond2, i.e.,
θ0 = σ0µν = 0. Then, it is easy to see that the shear contributions to the expansion are not relevant and we obtain
the following solution

θ = θflat − λRµνk
µkν +O

(
λ2

)
. (11)

Expansion (11) plugged into equation (4) directly determines the change of entropy along the past boundary of the
causal diamond. We obtain

∆S = η

∫
θflatd

3Σ− η

∫
λRµνk

µkνd3Σ+O
(
l5
)
. (12)

The first term is dependent on the flat spacetime expansion of the causal diamond. Therefore, the corresponding
change in entropy remains non-zero even in the absence of any matter Clausius entropy flux compensating it. Such a
term then cannot describe a reversible thermodynamic process. It has been proposed that the flat spacetime expansion
of the horizon corresponds to an irreversible process, akin to a free expansion of gas released from a container [21].
Therefore, we discard the entire contribution proportional to θflat as non-equilibrium, irreversible entropy production,
keeping only the reversible part

∆Srev = −η

∫
λRµνk

µkνd3Σ+O
(
l5
)
. (13)

Integrating, we finally obtain

∆Srev =
4πl4

9
Rµν

(
nµnν +

1

4
gµν

)
+O

(
l5
)
. (14)

The thermodynamic equilibrium condition for the light-cone cut local causal diamond then implies that the reversible
change of the horizon entropy ∆Srev is exactly compensated by the matter Clausius entropy flux ∆SC, i.e., ∆Srev +
∆SC = 0. This condition yields the following requirement(

Rµν − 2π

h̄η
Tµν

)(
nµnν +

1

4
gµν

)
= 0. (15)

Any unit, future-pointing timelike vector nµ defined in Ap can be used as the local direction of time in a construction
of a light-cone cut local causal diamond. For any such diamond, we can derive equation (15), just with a different
timelike vector. Therefore, equation (15) holds for an arbitrary unit, future-pointing timelike vector nµ. Then, it
implies

Rµν − 1

4
Rgµν =

2π

h̄η

(
Tµν − 1

4
Tgµν

)
. (16)

We provide a short proof of a this claim (actually of its more general version) in A.
Equations (16) closely resemble the traceless Einstein equations. By taking their Newtonian limit, we can further

define the Newton gravitational constant G in terms of the Planck constant h̄ and the entropy proportionality constant
η, i.e., G = 1/ (4h̄η). Then, we indeed recover the traceless Einstein equations

Rµν − 1

4
Rgµν = 8πG

(
Tµν − 1

4
Tgµν

)
. (17)

By virtue of the strong equivalence principle, these equations are valid throughout the spacetime [4, 15, 25]. As an

aside, the relation between G, h̄ and η we derived implies η = 1/
(
4l2P

)
, with lP =

√
h̄G being the Planck length.

Thence, entropy of a local causal horizon has the same form as Bekenstein entropy of a black hole, S = A/
(
4l2P

)
.

2 In principle, one should also be able to carry out the derivation with a generic σ0,µν , which should correspond to non-equilibrium
entropy production [15]. We expect to address this generalisation in a future work.
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Let us conclude with two short remarks regarding the interpretation of equations (17). First, they are traceless, with
the cosmological constant appearing only as an on-shell integration constant. Moreover, the geometry of the light-
cone cut local causal diamonds is insensitive to the overall conformal factor of the metric. We have previously shown
that these features imply that the gravitational dynamics we recover from thermodynamics (without any additional
assumptions) does not correspond to general relativity, but rather to Weyl transverse (unimodular) gravity [23–25].
Therefore, the corrections to gravitational dynamics we discuss in the following should also be seen as modifying Weyl
transverse gravity rather than general relativity.

Second, the fact that thermodynamics of local causal horizons, together with the equivalence principle, suffices to
recover the equations governing gravitational dynamics is often interpreted as suggesting that gravity is emergent.
In other words, the Einstein equations would be essentially equations of state describing the behaviour of some
unknown quantum degrees of freedom of the spacetime in the classical limit [4, 14, 15, 59]. While we find this
viewpoint worthwhile and thought provoking, we believe it is simply unnecessary to embrace it. We have shown that
thermodynamics leads to novel insights regarding gravitational dynamics without any relation to its emergence [23–
25, 60]. All we need to assume is that the local equilibrium conditions encode all the information necessary to
reconstruct the gravitational dynamics. We maintain this viewpoint in the rest of the paper.

III. HIGHER ORDER CORRECTIONS IN VACUUM: THE BEL-ROBINSON TENSOR

In the previous section, we have reviewed the derivation of the traceless Einstein equations from thermodynamics.
The derivation neglected the subleading contributions to the curved spacetime changes of the area of the spatial cross-
section of the horizon, and, hence, to its entropy. It is natural to ask whether these terms encode some corrections to
Einstein equations. In some special cases, we have previously shown that this is indeed the case, although such correc-
tions only occur if we also take into account the subleading quantum contribution to the horizon entropy proportional
to the logarithm of its area [60, 61]. Specifically, we have shown that the derivation generically leads to corrections to
the traceless Einstein equations quadratic in the Ricci tensor [61, 62]. We have also derived the linearised modified
dynamics, finding a result equivalent to a special case of linearised quadratic gravity [60]. Due to various technical
and conceptual challenges, we are for the time being unable to derive the modified equations in the fully general case.
Here, we instead study another simplified setting, the vacuum case. On the one hand, we use this setting to develop
tools that should allow us to derive the completely general equations in a subsequent work. On the other hand, any
possible modifications to vacuum gravitational dynamics are of great interest by themselves, being the only kind of
corrections relevant to the standard black hole solutions, in particular, to the Kerr metric (see [63, 64] for examples
of such corrections). They are also important for the behaviour of the spacetime in the vicinity of generic spacelike
singularities, as described by the Belinskii-Khalatnikov-Lifshitz conjecture [65]. Finally, such corrections generically
modify the propagation of gravitational waves, which might make them experimentally falsifiable by the current or
future gravitational waves detectors [66]. To study possible vacuum corrections to gravitational dynamics implied by
the thermodynamic derivation, we can follow the same basic strategy we employed to derive the traceless Einstein
equations. However, we need to introduce some conceptual changes, both on the level of the initial assumptions and
in the process of the derivation. Therefore, we start by reviewing the requirements we impose.

In the semiclassical setup, we have relied on the Einstein equivalence principle to construct the local Minkowski
vacuum necessary for invoking the Unruh effect. However, the status of any formulation of the equivalence principle in
a regime in which quantum gravitational corrections become relevant remains an open issue. Therefore, we now instead
impose two more modest requirements, which do not rely on the general formulation of the equivalence principle but
still allow for a thermodynamics description of local causal horizons. Our first requirement is that a detector which
moves with an approximately constant acceleration a for a sufficient time to thermalise, sees the local Minkowski
vacuum as a thermal bath of particles at the Unruh temperature TU = a/ (2π), provided that the spacetime curvature
effects on the detector can be neglected. While the fate of the Unruh effect in quantum gravity remains an open
questions, there exist indications that it remains viable [67].

As an aside, in the context of the generalised uncertainty principle phenomenology [68], it has been proposed that
the Unruh temperature might develop corrections due to the interplay of quantum and gravitational physics [69]. It
remains an open question whether such corrections can really occur. In any case, in a previous work, we have shown
that their presence in any case cannot affect the gravitational dynamics [61]. Therefore, we can safely proceed with
the standard Unruh temperature, as any potential subleading corrections to it are irrelevant.

The second requirement we impose is that entropy of a spherically symmetric local causal horizon in four spacetime
dimensions has a generic form

S =
A
4l2P

+ C ln
A
A0

+O

(
A0

A

)
, (18)
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where A0 is a constant with the dimensions of area and C a real number. The first two terms remain in the limit
lP → 0 (and the leading one diverges), whereas the O (A0/A) contributions vanish. Then, restricting our attention
to the area term and the logarithm is equivalent to keeping the only two contributions to entropy relevant for large
horizons, such that A ≫ l2P.

Equation (18) arises independently in a number of different contexts. It appears, e.g. in loop quantum gravity [34,
35], string theory [36–38], AdS/CFT correspondence [39], entanglement entropy calculations [30, 41], phenomenological
approaches based on the existence of a minimal length [42, 43], in an analysis of statistical fluctuations [44–46] and
from quantisation of the horizon area [47, 48]. In other words, the logarithmic correction to entropy associated with
causal horizons is present in most of the approaches to quantum gravity, where the specific approach is characterised
just by the sign and value of the parameter C. Thence, the modifications of gravitational dynamics implied by the
logarithmic term are in principle relevant for any approach to quantum gravity and are only parametrised by a single
unknown number, C, which is of the order of unity for most approaches.
Upon introducing the initial assumptions, we move on to the derivation of the equations governing gravitational

dynamics. Since we work in vacuum, there is no matter Clausius entropy flux present. Therefore, our task is simply
to compute the total change in the area of the horizon. It will consist of two components, one, ∆Airr proportional to
θflat and, thence, corresponding to an irreversible thermodynamic process, and the remaining reversible part ∆Arev. If
the horizon is in equilibrium, the reversible change in its entropy must vanish. As we saw in the previous section, this
condition then encodes the equations governing gravitational dynamics, in this case including the potential vacuum
corrections.

We now need to solve the Raychaudhuri equation (5) and equation (10) for the evolution of the shear tensor to the
order O

(
λ3

)
(recall that the affine null geodesic parameter λ lies in the interval from −l to 0 on the past boundary),

which becomes relevant once we take into account the logarithmic corrections to entropy. We obtain (keeping in place
the condition θ0 = σ0µν = 0)

θ (x) =θflat

[
1 +

λ2

1 + λθflat
Rµνk

µkν +
1

6

λ5θflat

(1 + λθflat)
2λ

3 (Rµνk
µkν)

2

]
− λRµνk

µkν − 1

6
λ3 (Rµνk

µkν)
2 − 1

3
λσ2 +O

(
λ4

)
, (19)

σµν (x) =λ

[
Cλρστk

λkσhρ
µh

τ
ν −+

1

2

(
hµλhνρ −

1

2
hµνhλρ

)
Rλρ

](
−1 +

λθflat
1 + λθflat

)
+O

(
λ2

)
, (20)

where we evaluate all the quantities at an arbitrary point at the past horizon of the causal diamond, given by
coordinates xµ = (l + λ) kµ. While we can compute the shear tensor up to O

(
λ3

)
as well, the subleading terms only

affect the evolution of the expansion at the order O
(
λ4

)
, which we neglect.

Not all the terms contributing to θ are relevant in vacuum, if we are interested in analysing perturbative corrections
to gravitational dynamics. From the form of entropy with the logarithmic term (18), it is easy to realise that the
corrections are going to be suppressed by l2P and that we neglect any O

(
l4P
)
corrections. To the order O

(
l0P
)
the

traceless Einstein equations imply that the Ricci tensor is given by an integration constant, Rµν = Λgµν and the
combination Rµνk

µkν therefore vanishes, since kµ is a null vector. Consequently, the value of Rµνk
µkν must be

O
(
l2P
)
, as it can only be sourced by the vacuum corrections to the traceless Einstein equations. This observation

allows us to neglect the terms quadratic in the Ricci tensor as it must be O
(
l4P
)
. By the same reasoning, we can also

drop the terms containing a product of the Ricci and the Weyl tensors.
The irreversible change in the area is given by the integral of the part of θ proportional to the flat spacetime

expansion θflat, i.e. (we drop the aforementioned irrelevant contributions),

∆Airr =

∫
θflat

[
1 +

λ2

1 + λθflat
Rµνk

µkν +
1

3

λ5θflat

(1 + λθflat)
2

(
Cλρστk

λkσhρ
µh

τ
ν

)2]
d3Σ. (21)

The remainder of the expansion then corresponds to the reversible change in the area, which reads

∆Arev = −
∫ [

λRµνk
µkν +

1

3
λ3

(
Cλρστk

λkσhρ
µh

τ
ν

)2]
d3Σ. (22)

To carry out the integrations, we need to expand the tensors around their value at the past apex Af. The derivative
terms in such expansion of the term quadratic in the Weyl tensor contribute to the integrand at the order O

(
λ4

)
and can be neglected. Nevertheless, the contributions of the derivatives of the Ricci tensor are in principle relevant.
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However, any such term would eventually end up in the modified Einstein equations as a source term for the Ricci
tensor suppressed by a factor l2P. Since the value of the Ricci tensor in vacuum is already of the order O

(
l2P
)
, any

terms with the derivatives of the Ricci tensor contribute to the equations governing the gravitational dynamics only at
the order O

(
l4P
)
. Therefore, in vacuum, we can safely neglect any such terms and approximate the curvature tensors

in the integrands just by their value at Af.
Plugging ∆Airr and ∆Arev into equation (18) for the entropy with a logarithmic correction, allows us to find the

expression for the reversible change of entropy

∆Srev =∆Stotal −∆Sirr

=
∆Airr +∆Arev

4l2P
+ C ln

∆Airr +∆Arev

A0
− ∆Airr

4l2P
− C ln

∆Airr

A0

=
∆Arev

4l2P
+ C ln

(
1 +

∆Arev

∆Airr

)
. (23)

The logarithmic term can be expanded, yielding

∆Srev =
∆Arev

4l2P
+ C∆Arev

∆Airr
+O

(
l6
)
, (24)

using that the quadratic term contributes only at the order O
(
l6
)
in vacuum (but not in the presence of matter [61]).

Let us now explicitly compute ∆Airr and ∆Arev. For ∆Airr it is easy to realise that any terms proportional to
the Ricci tensor lead to contributions to ∆Srev quadratic in the Ricci tensor which affect the gravitational dynamics
only at the order O (lP)

4
and can be safely discarded. It is easy to check that the leading order correction to the

volume element on the horizon in the Riemann normal coordinates also goes with the Ricci tensor. Therefore, the
only relevant contribution to ∆Airr is the flat spacetime one and we obtain

∆Airr = 4πl2. (25)

For ∆Arev the Ricci tensor correction to the integration elements also leads to terms quadratic in the Ricci tensor.
Therefore, we can integrate with the flat spacetime volume element

∆Arev = −
∫ 0

−l

dλ

∫
dΩ2 (l + λ)

2

[
λRµνk

µkν +
1

3
λ3

(
Cλρστk

λkσhρ
µh

τ
ν

)2]
. (26)

We may decompose the vector field kµ into kµ = nµ +mµ, with nµ being the local direction of time and mµ the unit
radial spacelike vector. For the angular integral of the radial vectors mµ over a sphere, we have [54]∫

mµdΩ2 =0, (27)∫
mµmνdΩ2 =

4π

3
γµν , (28)∫

mµmνmλdΩ2 =0, (29)∫
mµmνmλmρdΩ2 =

4π

15

(
γµνγλρ + γµλγνρ + γµργνλ

)
, (30)

where we introduced the spatial metric γµν = gµν +nµnν . The integration in the null parameter λ is straightforward.
In the end, we arrive at the following expression for ∆Arev

∆Arev = −4πl4

9

[(
Rµν − 1

4
Rgµν

)
nµnν +

2

25
l2Tµνλρn

µnνnλnρ

]
, (31)

where

Tµνλρ =CµσλτC
σ τ

ν ρ + CµσρτC
σ τ

ν λ − 1

2
gµνCλσαβC

σαβ
ρ − 1

2
gλρCµσαβC

σαβ
ν

+
1

8
gµνgλρCσαβγC

σαβγ , (32)



9

denotes the Bel-Robinson tensor [49, 50].
The reversible change of entropy then equals

∆Srev =− 4πl4

36l2P

(
Rµν − 1

4
Rgµν

)
nµnν − C l

2

9

[(
Rµν − 1

4
Rgµν

)
nµnν

+
2

25
l2Tµνλρn

µnνnλnρ

]
+O

(
l6
)
. (33)

Thus, the local equilibrium condition reads ∆Srev = 0, i.e.,(
Rµν − 1

4
Rgµν

)
nµnν +

Cl2P
πl2

(
Rµν − 1

4
Rgµν

)
nµnν +

2Cl2P
25π

Tµνλρn
µnνnλnρ = 0, (34)

where we discarded the O
(
l6
)
terms3. Since the Ricci tensor is O

(
l2P
)
, the second term only contributes at O

(
l4P
)

and we can also discard it, leaving the following equation(
Rµν − 1

4
Rgµν

)
nµnν = −2Cl2P

25π
Tµνλρn

µnνnλnρ. (35)

To obtain this result, we only imposed the form of entropy with the logarithmic corrections (18), the survival of the
Unruh effect in the regime we discuss, and locality of the equations governing the gravitational dynamics. However,
the physical interpretation of equation (35) depends on additional assumptions, which we discuss in the next section.

IV. INTERPRETATION OF THE BEL-ROBINSON TENSOR CONTRIBUTION

We start by briefly reviewing the properties of the Bel-Robinson tensor Tµνλρ, which appears as the source term in
equation (35). The Bel-Robinson tensor in 4 spacetime dimensions (the only case we consider) is given by equation (32).
It is symmetric in all of its indices and traceless (these properties are specific to 4 dimensions). In any spacetime
dimension, it obeys an analogue of the dominant energy condition, i.e., for any four timelike, future-pointing vector
vµi , i ∈ [1, 4], it holds Tµνλρv

µ
1 v

ν
2v

λ
3 v

ρ
4 ≥ 0 and the vector −Tµνλρv

ν
1v

λ
1 v

ρ
1 is future-pointing. The Bel-Robinson tensor

is non-degenerate, in the sense that it vanishes if and only if the Weyl tensor is equal to zero. Moreover, its divergence
is identically zero in the Einstein spacetimes (i.e., the spacetimes with constant Ricci curvature). The Bel-Robinson
tensor is in fact the unique tensor quadratic in the Weyl tensor with these properties [50, 70, 71].

The contraction of the Bel-Robinson tensor with a unit, future pointing, timelike vector in all indices (such as
the term Tµνλρn

µnνnλnρ we obtained in the previous section) is known as the Bel-Robinson super-energy density.
This object appears in various different settings in the role corresponding to a quasilocal measure of the gravitational
energy [50, 72]. In particular, the Bel-Robinson super-energy density determines the leading order vacuum deformation
of the spatial volume of a small geodesic ball [52, 53]. In the presence of matter fields, this role is played by the energy
density Tµνn

µnν . Thence, it has been proposed that the Bel-Robinson super-energy density corresponds to the
quasilocal gravitational energy density per unit area [50, 51] (for dimensional reasons).

A suggestive way to write the Bel-Robinson super-energy density comes from the so-called electric-magnetic de-
composition of the Weyl tensor, which is named for being analogous to the decomposition of the Faraday tensor of
the electromagnetic field [73]. In 4 dimensions, the “electric” part of the Weyl tensor reads

Eµν = Cλαρβu
λuργα

µγ
β
ν , (36)

and the magnetic part is

Bµν =
1

2
nλελµαβC

αβ
ρσ nργσ

ν , (37)

3 Justifying the removal of these terms is in fact rather subtle. To treat the spacetime as a differentiable manifold, we must keep the size
parameter of the causal diamond much larger than the Planck scale. Then, O

(
l6
)
contribution can actually be larger than the O

(
l4l2P

)
ones. However, the size parameter l is only restricted to be much larger than the Planck length and at the same time much smaller
than the local curvature length scale. Within this range, the value of l is completely arbitrary. Therefore, at any regular spacetime
point, we can construct a sequence of causal diamonds with different size parameters. For any such diamond, we can derive a version of
equation (33), differing only in the value of l. Consequently, equation (33) is only satisfied if the terms proportional to different powers
of l vanish separately. This observation allows us to focus on the leading order O

(
l4
)
part of this equation and disregard all the higher

order contributions.
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with ελµαβ being the Levi-Civita tensor. Written as a function of these tensors, the Bel-Robinson super-energy density
becomes

Tµνλρn
µnνnλnρ = EµνE

µν +BµνB
µν = E2 +B2. (38)

This expression is similar to the energy density of the electromagnetic field, although the analogy is of course purely
formal.

In our case, the Bel-Robinson super-energy density multiplied by a Planck scale constant with the dimensions of area
−2Cl2P/ (25π) appears as a source for the equations governing the gravitational dynamics. Therefore, it is tempting
to interpret our result as the modified Einstein equations in which the Ricci curvature is sourced by the quasilocal
gravitational energy density integrated over some Planck-scale unit of area. However, as we show in the following,
embracing this interpretation requires that we surrender the local Lorentz invariance of physics at the Planck scale.

A. Locally Lorentz invariant interpretation

Let us first take the assumption of standard physics that the local Lorentz invariance is not violated by the
corrections we introduce. This assumption is very natural, since the entire framework of the thermodynamics spacetime
implicitly relies on it, especially in introducing the local causal horizons and the Unruh effect. It follows that no
preferred direction of time can exist and the unit, timelike, future-pointing vector field nµ present in equation (35) is
completely arbitrary (we discuss this arbitrariness in more detail in section II). We can easily rewrite equation (35)
as a rank 4 tensor contracted in all its indices with nµ being equal to zero, i.e.,[(

Rµν − 1

4
Rgµν

)
gλρ +

2Cl2P
25π

Tµνλρ

]
nµnνnλnρ = 0. (39)

In A we show that this equation implies that the fully completely symmetrised part of the tensor vanishes(
R(µν| −

1

4
Rg(µν|

)
g|λρ) +

2Cl2P
25π

Tµνλρ = 0. (40)

A rank 4 fully symmetric tensor in principle contains 35 independent components. However, all the terms in equa-
tion (40) are of course constructed only from the auxiliary (since we work with a WTDiff-invariant theory) metric
tensor and its derivatives, which only has 9 independent components. To recover the 9 relevant equations, we can
simply take the trace of equation (40), obtaining

8

(
Rµν − 1

4
Rgµν

)
+ 6

2Cl2P
25π

T λ
µνλ = 0. (41)

Since the Bel-Robinson tensor in 4 spacetime dimensions is fully traceless, the correction term vanishes and we recover
the traceless Einstein equations

Rµν − 1

4
Rgµν = 0. (42)

In other words, thermodynamic reasoning leads to no local vacuum corrections to gravitational dynamics at the order
O
(
l2P
)
if the local Lorentz invariance is preserved. This is consistent with the non-existence of any local, purely metric,

diffeomorphism-invariant (or WTDiff-invariant) theory in 4 spacetime dimensions whose action is at most quadratic
in the Riemann tensor whose equations of motion are not solved by the vacuum solutions of general relativity [74] (or
Weyl transverse gravity [75]).

B. Vector-tensor interpretation

An alternative interpretation of equation (35) exists, which allows nontrivial corrections proportional to the Bel-
Robinson tensor to survive. The price to be paid is losing the standard assumption of the local Lorentz invariance
of physics and dealing with the challenges it poses for the self-consistency of our approach and its experimental and
observational viability. Herein, we only briefly outline this alternative interpretation, leaving for a future analysis the
conceptual questions it necessarily raises.
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The key point is that the unit, timelike, future-pointing vector field nµ is not arbitrary, but actually corresponds
to some privileged direction of time. Such a preferred measure of time is introduced by some alternative theories
of gravity, e.g. by Einstein-aether theory [76] or by Hořava-Lifshitz gravity [77]. Of course, giving nµ a privileged
status necessarily breaks the local Lorentz invariance, whose potential violations are very strongly bounded by exper-
iments [78]. Therefore, any model violating this invariance faces the challenge of showing its compliance with these
bounds. Nevertheless, the breaking of the local Lorentz invariance by introducing a preferred direction of time has
been analysed, e.g. in the context of Hořava-Lifshitz gravity and found in principle experimentally viable [79].

Another challenge to this interpretation comes from the importance the local Lorentz invariance plays in the
definition of causal horizons and, consequently, in their thermodynamic interpretation. However, it has been argued
that black hole entropy survives in Einstein-aether and Hořava-Lifshitz gravity gravity [80, 81]. Likewise, entanglement
entropy associated with causal horizons has been studied in certain Lorentz invariance violating theories and found to
obey the area law to the leading order [30]. Furthermore, it has been recently proposed that the Unruh effect occurs
even if the local Lorentz invariance is broken [82] (and the same has been suggested for the Hawking effect [81]). In
total, there appears to be a number of works arguing that the connection between gravity and thermodynamics survives
beyond the local Lorentz invariance, perhaps allowing its use to derive the equations governing the gravitational
dynamics even in that case (as already discussed in the context of momentum-dependent geometry [83]).

Taking nµ as the preferred direction of time, the local equilibrium conditions lead to a single equation(
Rµν − 1

4
Rgµν

)
nµnν = −2Cl2P

25π

(
E2 +B2

)
, (43)

where we used equation (38) for the electric-magnetic decomposition of the Bel-Robinson super-energy density. The
approach we employ cannot straightforwardly recover any additional information. Therefore, to fully determine the
gravitational dynamics in this way would require non-trivial modifications to our thermodynamic approach, which we
leave for a future study.

For any spacetime with vanishing scalar curvature, R = 0, the left hand side of equation (35) can be written as

Gµνn
µnν = −2Cl2P

25π

(
E2 +B2

)
, (44)

This equation has the form of the Hamiltonian constraint of general relativity with a non-trivial right hand side
given by the Bel-Robinson super-energy density multiplied by a Planck scale area, which has the correct dimensions
to be the quasilocal energy density of the gravitational field. Unfortunately, while suggestive, this interpretation of
equation (43) cannot be directly applied due to the WTDiff-invariant nature of the gravitational dynamics implied by
thermodynamics. The problem of the Hamiltonian constraint in Weyl transverse gravity (or any unimodular theory)
is subtle [84–86], since it cannot simply correspond to the time-time component of the traceless equations of motion
which contains second time derivatives. Instead, equation (43) represents simply a generalisation of the time-time
equation of motion of Weyl transverse gravity. Its interpretation in the Hamiltonian description of the theory requires
a more careful analysis.

C. Conceptual reflections on the possible Lorentz invariance violations

The gravitational dynamics with the preferred direction of time we proposed in the previous subsection of course
raises a number of possible objections. Herein, we provide a brief summary of these objections, as well as of the
reasons to study this interpretation further.

The most notable objections are

• The local equilibrium conditions we studied directly imply only a single scalar equation. Clearly, determining
the full dynamics of both the metric and the unit, timelike vector field nµ, requires additional equations. We
are presently not aware of any straightforward way to derive them.

• Both the local causal horizons and the Unruh effect implicitly rely on the local Lorentz invariance. Nevertheless,
both concepts have been studied in the literature in some local Lorentz invariance violating settings and found
to be robust even in that case [80–82]. One would just need to carefully check their validity in the specific
scenario we consider.

• The experimental bounds on the violations of the Lorentz invariance are very stringent. Nevertheless, Hořava-
Lifshitz gravity which violates the local Lorentz invariance in a way analogous to our proposal has been found
to be in principle experimentally viable. It suggest that the approach we consider might be compatible with the
experimental bounds as well.
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To sum up, the local Lorentz invariance violating interpretation of our result remains highly speculative. Nevertheless,
we find it interesting for several reasons

• The equation we find has a very natural form of the Ricci curvature being source by a candidate expression for
a quasilocal energy of the gravitational field.

• The Bel-Robinson term implies perturbative corrections to dynamics of vacuum black holes as well as to the
gravitational wave propagation. Such corrections are phenomenologically interesting and might in principle
make the theory experimentally falsifiable in the relatively near future (especially if they imply any changes to
the speed of the gravitational waves [66]).

• Depending on the sign of the correction term (essentially determined by the sign of the logarithmic correction
to entropy), the Bel-Robinson term could allow the construction of various exotic solutions, such as wormholes,
in vacuum.

• Further analysis of the local Lorentz invariance interpretation of the local equilibrium conditions (especially
going to the sixth order in the derivatives of the metric) might lead to a result more similar to Hořava-Lifshitz
gravity, possibly even corresponding to some specific version of that theory. Given the status of Hořava-Lifshitz
gravity as a possible UV completion of general relativity, obtaining it from thermodynamics of local causal
horizons would be quite interesting.

To conclude, we find the potential benefits of the introduction of a preferred direction of time in the context of
thermodynamics of local causal horizons sufficient to warrant its further study, despite the issues it raises.

V. DISCUSSION

In this work, we examine whether local equilibrium conditions encode corrections to the traceless Einstein equations
in vacuum. In previous works, we have shown that perturbative corrections of this kind do occur in the presence of
matter fields [60–62]. However, these works focused on extracting specific types of correction terms and neglected
the possible contributions quadratic in Weyl tensor on which we focus here. Our main message is that, under
the assumptions of locality and local Lorentz invariance, local equilibrium conditions imply no modifications to the
equations governing gravitational dynamics that are perturbatively relevant in the vacuum at the order O

(
l2P
)
. In

other words, the vacuum solutions to the Einstein equations acquire no corrections in this regime (although there
might exist novel non-perturbative vacuum solutions).

The previous works have already shown how the area (and, hence, entropy) of local causal diamonds in vacuum
changes under a small variation of geometry away from the flat spacetime one [54, 55]. It has been established that
the area variation is given by an expression quadratic in Weyl tensor. However, only for the light-cone cut local causal
diamond and there only in 4 spacetime dimensions, is the variation proportional to the Bel-Robinson super-energy
density [55] (at least without introducing additional rules for comparing the flat and the perturbed geometry [54]).
Even in that case, the variation of the area did not correctly encode the (traceless) Einstein equations in the presence
of the matter fields [55], making it impossible to employ it to study corrections to gravitational dynamics.

Herein, we also applied the light-cone cut local causal diamond construction, but with three key differences compared
to the previous analysis [55].

• We track the change of the area along the null geodesic generators of the horizon in a generic spacetime rather
than considering its change due to a small variation of the geometry away from flat spacetime. This choice
allows us to sidestep fixing the (generalised) volume of the spatial slices of the causal diamonds [54, 55].

• We set the initial conditions for the evolution of expansion and shear so that both vanish at the bifurcate surface
of the horizon (at λ = 0), rather than at the past apex (λ = −l) as in the previous work. While the precise
initial condition for the shear could probably be left unfixed [15] (we plan to address this issue in a future work),
the one for expansion has important consequences. It is easy to check that setting expansion to zero in the past
apex leads to an infinite jump of its value at λ = −l, which vanishing expansion at the bifurcate surface avoids.
Furthermore, our choice causes the expansion to change its sign at the bifurcate surface as required (since,
by definition, the diamond stops expanding and starts contracting there). Consequently, our initial conditions
allow us to derive the traceless Einstein equations in the presence of matter, which the previously adapted choice
made impossible.

• We consider the logarithmic term in entropy of local causal horizons. The leading order term proportional to
area is O

(
1/l2P

)
, whereas the logarithmic correction is O

(
l0P
)
. Thence, including this term bring a new length
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scale in the form of the Planck length, which makes the presence of local corrections to the Einstein equations
possible (since such corrections have necessarily different dimension than the Ricci tensor).

As we stressed, this procedure leads to no locally Lorentz invariant modifications to gravitational dynamics in vacuum.
However, we have previously shown, albeit in a slightly different geometric setup, that it implies nontrivial corrections
to the traceless Einstein equations in the presence of matter [61]. The techniques developed in this paper should allow
us to eventually address this case in full generality and derive all the relevant correction terms at the order O

(
l2P
)
.

We also proposed an alternative, local Lorentz invariance violating, interpretation, which does imply modified
gravitational dynamics. The result has the form of the Bel-Robinson super-energy density multiplied by a Planck
scale area acting as a source for the time-time component of the traceless Ricci tensor. This outcome agrees remarkably
well with the interpretation of the Bel-Robinson super-energy density as the quasilocal gravitational energy density
per unit area.
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Appendix A: Removing contractions with an arbitrary timelike vector

In this appendix, we show that if a rank k tensor Qα1...αk
obeys Qα1...αk

nα1 . . . nαk = 0 for an arbitrary unit, time-
like, future-pointing vector nµ, its fully symmetric part must vanish. For this purpose, we introduce an orthonormal
basis e0, e1,. . . ,eD−1. In this basis, any unit, timelike, future-pointing vector nµ can be decomposed as

nµ =

√√√√1 +

D−1∑
i=1

p2i +

D−1∑
i=1

pie
i, (A1)

where pi are real numbers. Condition Qα1...αk
nα1 . . . nαk = 0 must then hold for arbitrary values of pi. Any component

of Qα1...αk
, up to permutations of indices, is then multiplied by a unique combination of powers of various pi’s and of

the factor
√

1 +
∑D−1

i=1 p2i . Therefore, every component of the totally symmetrised tensor Q(α1...αk) must be separately

equal to zero and Q(α1...αk) indeed vanishes.

Appendix B: Non-local results for general spacetime dimensions

In the main text, we strictly assumed the equations governing gravitational dynamics to be local. Then, these
equations cannot depend on an arbitrary diamond size parameter l. At this point, we cannot physically motivate
any scenario where l does affect the gravitational dynamics. Nevertheless, the l-dependent results are easy to obtain
and rather interesting in their own right. Hence, we briefly discuss them in this appendix. Let us then assume that
l either takes a preferred value (corresponding to some non-locality scale), or that our choice of l somehow affects
the gravitational dynamics. We still require the condition l ≫ lP to view the spacetime as a smooth manifold.
Consequently, the l-dependent corrections to the equations become much larger than the corrections coming from the
logarithmic contribution to entropy, which are suppressed by l2P, and we can work with a simple vacuum equilibrium
condition ∆Arev = 0. Since we do not rely on the logarithmic term which is the leading order correction to entropy
only in 4 spacetime dimensions, we can carry out the derivation in an arbitrary dimension D. In this case, we find
for ∆Arev

∆Arev = − ΩD−2l
D

(D − 1)
2

(
Rµν − 1

D
Rgµν

)
nµnν − 6ΩD−2l

D+2nµnνnλnρ

(D − 1)
2
D (D + 1)

2
(D + 2)[

(D + 2) (D + 4)C(µ|σ|ν|τC
σ τ

|λ ρ) − 3 (D + 2)C(µ|σαβC
σαβ

|ν gλρ) +
3

2
gµνgλρCσαβγC

σαβγ

]
. (B1)
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The symmetric tensor on the second line is completely traceless. As noted in an earlier work [55], it only coincides with
the Bel-Robinson tensor in 4 dimensions. Otherwise, it might be thought of as the traceless part of the Bel-Robinson
tensor. This result makes sense if we look at it as a generalisation of Weyl transverse gravity, whose source term is
likewise just the traceless part of the energy-momentum tensor.

Mathematically, the tracelessness of the expression is a simple consequence of evaluating the change in area between
two cuts of a null surface (as opposed to a variation of a spacelike geodesic ball [54]). Indeed, the integral of the
expression kµkνkλkρ over a unit sphere yields∫

kµkνkλkρdΩD−2 =
(D + 2) (D + 4)

(D − 1) (D + 1)
nµnνnλnρ +

24 (D + 2)

(D − 1) (D + 1)
g(µνnλnρ)

+
24

(D − 1) (D + 1)
g(µνgλρ), (B2)

which is a completely traceless expression.
Assuming the local Lorentz invariance, we again recover the traceless Einstein equations without any corrections

(due to tracelessness). Allowing for a preferred direction of time, we obtain the following scalar equation(
Rµν − 1

D
Rgµν

)
nµnν = −6 (D + 2) (D + 4) l2nµnνnλnρ

D (D + 1)
2
(D + 2)[

(D + 2) (D + 4)C(µ|σ|ν|τC
σ τ

|λ ρ) − 3 (D + 2)C(µ|σαβC
σαβ

|ν gλρ) +
3

2
gµνgλρCσαβγC

σαβγ

]
. (B3)

As in 4 dimensions, this equation breaks the local Lorentz invariance. However, now it also contains a non-local
parameter l.
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[77] P. Hořava, Quantum gravity at a lifshitz point, Phys. Rev. D 79, 084008 (2009).
[78] S. Liberati, Tests of Lorentz invariance: a 2013 update, Class. Quant. Grav. 30, 133001 (2013).
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