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Cultural evolution applies evolutionary concepts and tools to explain the change
of culture over time. Despite advances in both theoretical and empirical methods,
the connections between cultural evolutionary theory and evidence are often vague,
limiting progress. Theoretical models influence empirical research but rarely guide data
collection and analysis in logical and transparent ways. Theoretical models themselves
are often too abstract to apply to specific empirical contexts and guide statistical
inference. To help bridge this gap, we outline a quality-assurance computational
workflow that starts from generative models of empirical phenomena and logically
connects statistical estimates to both theory and real-world explanatory goals. We
emphasize and demonstrate validation of the workflow using synthetic data. Using
the interplay between conformity, migration, and cultural diversity as a case study,
we present coded and repeatable examples of directed acyclic graphs, tailored agent-
based simulations, a probabilistic transmission model for longitudinal data, and an
approximate Bayesian computation model for cross-sectional data. We discuss the
assumptions, opportunities, and pitfalls of different approaches to generative modeling
and show how each can be used to improve data analysis depending on the structure of
available data and the depth of theoretical understanding. Throughout, we highlight
the significance of ethnography and of collecting basic cultural and demographic
information about study populations and call for more emphasis on logical and theory-
driven workflows as part of science reform.

cultural evolution | workflows | causal inference | anthropology | computational modeling

Half a century ago, the study of cultural evolution was reinvigorated with formal
theory, adapting concepts and tools from population biology to describe the mechanisms
governing cultural change (1–4). As a consequence of its history, the field of cultural
evolution is characterized by a shared and growing body of quantitative theory. Using
formal models, researchers have uncovered the conditions favoring the evolution of social
learning and of specific social learning strategies (or “transmission biases”), and have
identified how individual-level cognitive and demographic processes generate cultural
change at the population level (see refs. 5 and 6 for reviews). The field’s theoretical origins
fostered a rapidly growing empirical literature. Controlled experiments and observation
of cultural transmission in natural populations have become integral parts of cultural
evolution research, highlighting both the pervasive role that culture plays for humans
and other animals as well as the breadth of the field of cultural evolution.

For all this success, the links between theory and empirical data analysis are often
weak, hindering further progress and integration. Empirical research is often inspired
by modeling work but does not directly use this theory to design data collection or to
analyze the obtained data. Theoretical models, in turn, are often motivated by empirical
case studies, but are typically constructed at a level of abstraction that makes them
impossible to apply directly to any particular real-world system. To give an example,
theory addresses the drivers of cumulative culture over orders of magnitude of population
size and intergenerational timescales (7–10). Experiments claiming to test the theories of
cumulative culture describe instead convenient and noisy measures of task improvement
in small groups over few rounds of transmission (11, 12). Observational studies sometimes
have the same problems, but without any experimental control. Big claims of theoretical
relevance, without any formal predictions nor logic connecting theory to measurements,
are easy to find in highly cited cultural evolution papers (13–16). These studies do
not use cultural transmission models to analyze the data, relying instead on linear
models, group comparisons, and prediction, without a clear logic of causal identification.
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When the links between theory, measurement, and analysis are
metaphorical and rhetorical, there can be little scientific progress.
Of course, other fields have similar problems with bridging theory
and empiricism, but this article is not about those fields.

In the rest of this article, we outline a computational workflow
for bridging theory and data in cultural evolution research.
We describe how generative cultural evolutionary models allow
researchers to logically connect abstract theory to the real world
and inform data-analytic procedures. Generative models embody
causal assumptions about the phenomena of interest and are,
thus, capable of simulating predictions. We describe different
forms such models can take, ranging from directed acyclic
graphs (DAGs) to agent-based simulation models (ABMs). We
compare their respective assumptions and fields of application
and outline how each approach can be used to improve data
analysis. Similar workflows involving model validation with
synthetic experimental data and posterior simulations are already
rather commonplace in the fields of cognitive modeling and
computational psychology (17–20). Generative computational
workflows have also been employed by cultural evolution
researchers, mostly analyzing behavior within social learning
experiments (21–25); but such workflows still need to become
more routinely used and also better connected to abstract
theory for both experimental and observational scenarios. To
facilitate the adoption of this generative approach, we illustrate a
complete workflow using the interplay between (anti)conformist
transmission, migration, and cultural diversity as a case study
(3, 26, 27). We showcase how to move between theory and data
providing 1) high-level generative models, 2) tailored agent-based
models, 3) probabilistic transmission models for time-series data,
and 4) approximate Bayesian computation (ABC) models for
cross-sectional data, all including annotated code in our online
repository (28). In real projects, these components scaffold and
constrain one another, with insights moving in all directions.

Toward a Principled and Validated Workflow

Cultural evolution is arguably in a privileged position among
the social sciences in that it has an extensive catalog of formal
modeling to build upon (29, 30). But operationalizing this
work in the analysis of real-world data is not trivial. We posit
that connecting theory to data requires a made-to-measure
computational workflow (31), starting from generative models
of the phenomenon at hand and ending with statistical estimates
that are logically connected to our inferential goal and target
scenario. Fig. 1 shows an illustration of the workflow; we first
describe the components in abstract terms before turning to a
concrete example.

Generative Models. Generative models represent causal assump-
tions about the (latent) processes generating the observed data or,
more formally, joint probability distributions over all parameters
and data [note that the distinction between generative and
nongenerative models is not binary (31)]. Generative models
are concrete instantiations of theory, varying in their explanatory
detail. And they provide synthetic data that can be used to validate
later statistical and computational choices.

DAGs can be considered the simplest form of generative
models. They are static representations of dynamic systems at
equilibrium and abstractly describe how variables change as a
function of other variables (32–36). This lack of specificity
can be a strength, because the implications we deduce from
DAGs consequently do not depend on detailed assumptions,

and communication of important structural assumptions is easy
with details omitted.

Still, cultural evolutionary theory is inherently dynamic and
to make data speak to such theory, more dynamic generative
models are needed that explicitly link individual-level processes
to cultural dynamics over time. Dynamic models can either
explicitly model individuals, like agent-based simulations (30),
or they can describe aggregated population-level quantities, like
classic population genetic-type cultural evolution models (1–3);
they can unfold in discrete or continuous time, and they can
follow deterministic or stochastic algorithms (30, 37). In general,
more mechanistic models provide a richer understanding of a
specific phenomenon but may also come at a cost of lower
generality and greater potential for misspecification.

No one-size-fits-all solution exists and the appropriate detail of
a generative model depends on the explanatory goal and the state
of our theoretical understanding. Studying the same phenomena
at different levels of abstraction provides its own benefits.
Working at different scales, generative models give researchers
the space to explore the consequences of information they have
on the phenomena under study and, thereby, help translating
between abstract theories and real-world study systems.

From Estimand to Estimate. Many papers connect theory and
data by means of story-telling; story-telling does not formally
define a target of inference (i.e., an estimand) and bases its
conclusions on statistical estimators that are only metaphorically
related to theoretical constructs. The starting point for any
empirical analysis that aims to logically connect theory and data is
to define the estimand within the context of the generative model.
The estimand is the specific object of inference, representing the
goal of our analysis and the quantity we aim to estimate (see ref.
38, for an introduction). For example, the estimand might be
the effect of migration on cultural diversity for a given level
of conformity in our study population, with formal definitions
of diversity and conformity in a specific demographic context.
Once determined, we can select appropriate control variables
for inferential (statistical) models and determine identifiability,
i.e., whether the effect of interest can be estimated at all with
the data at hand (33, 39). The estimand creates a direct, logical
connection between the generative and inferential models and
typically also includes the target population, providing a link
back to the real world. Being specific about the estimand tells
us which variables are necessary, and which must be ignored, for
proper identification.

Using the generative model to simulate synthetic data is
essential to understanding the inferential limits of a potential
dataset. A nightmare scenario is to invest considerable effort and
funds into collecting data that have no hope of answering the
research question, as data can often be too sparse and noisy. When
studying evolutionary processes, equifinality is also a primary
concern. Equifinality means that, even in the absence of classical
confounding, many competing processes can be compatible with
the same empirical pattern, raising questions about inferential
power (40, 41). Finally, the huge diversity in human lifeways
means that cultural evolutionary processes are never isolated in
empirical systems and this makes generalization and comparison
dependent upon generative assumptions (42, 43). For example,
in a population with limited migration, conformity might be a
strong driving force, while in another population, high levels of
migration might wipe out the effect. Simulation methods can
help us “stress-test” analytic procedures, allowing us to conduct
in silico experiments to explore whether the cultural evolutionary
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Fig. 1. Illustration of a computational workflow for cultural evolution that connects abstract theory to real-world data. The arrows indicate logical and
computational dependencies among theoretical, statistical, and scientific elements of a project. For example, an effective inferential model depends upon
generative models, a question about those models (estimand), and the structure of the available evidence (sample).

dynamic can be studied in our population of interest and whether
our analysis is sensitive enough to capture differences in parameter
values.

Once the empirical sample is collected, we can set up an
inferential model and use one or more statistical estimators (e.g., a
Bayesian network) and algorithms (optimization, MCMC, ABC)
to derive estimates for our target of analysis. Much has been
written about the derivation and construction of estimators and
target estimates. This is a general topic in scientific computation
that work in cultural evolution can benefit from (see, e.g., refs. 36,
44, and 45 for popular advanced textbooks on Bayesian inference
that take the generative perspective).

Causal Effects, Predictions, and Counterfactuals. Statistical
estimators provide us with model coefficients, but reporting and
interpreting raw statistical estimates including their associated
uncertainty intervals, P-values, or Bayes factors is only an
intermediate step in empirical analyses. Parameter estimates
themselves are hard to interpret (especially in non-Gaussian
models and models with interaction terms) and sizable differences
on the parameter (e.g., logit) scale may correspond to negligible
changes on the outcome (e.g., probability) scale. Therefore,
answering research questions in the context of the target
population often requires additional postprocessing of model
estimates. First, to compute causal effects, we need to project
our estimates to the outcome scale and to the relevant target
population and potentially average (or “marginalize”) over other
relevant variables jointly causing the outcome (46, 47). Second,
using the assumptions embodied in the generative model in
combination with data from a separate target population, we
can compute predictions or generalizations beyond the study
sample (43). As comparisons between populations are implicit
exercises in generalization as well, this procedure also allows
researchers to compare societies on an equal footing. Third,
using the generative model, researchers can make principled
counterfactual inferences about “what would have been” under
different cultural or demographic circumstances. For example,
we could estimate how cultural diversity in a specific population
would change if the level of conformity would have been slightly
higher than it is in reality.

Finally, researchers can now loop back to theory and iteratively
update the generative model based on comparisons between
computed effects, model predictions, and posterior simulations.
Insights about inferential limits and potentials can inform future
research design and data collection and, following many iterations
of this process, improve our understanding of the processes
generating the observed cultural dynamics.

An Example Workflow: Migration and
Conformity

To substantiate our argument and provide resources for others
to adopt this generative approach, we now work through a com-
prehensive example, analyzing how conformity and migration
jointly shape cultural diversity. We demonstrate how to formalize
generative models through DAGs and agent-based simulations,
how to define estimands and translate them into statistical models
and how to directly fit a dynamical generative model to longi-
tudinal and cross-sectional data. The specific techniques in this
example are broadly useful, but the core requirement is to adopt
a formal workflow that makes transparent and computational
justifications for each step. While we focus on an observational
case study, the general computational workflow is equally suited
for experiments. Indeed, the greater control of experimental
situations typically makes the formulation, fitting, and testing
of precise generative models more straightforward (18, 20).
Likewise, we do not outline a strictly linear workflow. Rather, we
provide different flavors of generative and inferential models that
researchers may consider depending on the assumptions they are
willing to make and the data they have available.

Real-World Phenomenon. Many groups grapple with the ques-
tion: what will come of their cultural traditions amid the influence
of migration? Migration brings new people and diverse cultures
and, thus, has the potential to change a group’s cultural fabric.
On one end of the spectrum, migrants may face substantial
pressure to assimilate into local practices, preserving the existing
cultural landscape. On the opposite end, they might retain
their original cultures, successfully disseminating the beliefs and
values of their homelands, thereby creating a novel cultural
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mosaic. Given varying migration rates and social pressures to
conform to majority behavior, how would we expect these
cultural evolutionary dynamics to play out?

Theory. Understanding such processes has been a key goal of
theory in cultural evolution, but the study of how culture
changes has much deeper origins. To give just one example,
applying his theory of “cultural ecology,” anthropologist Julian
Steward described cultural change in the Great Basin as a result
of environmental adaptations, migration, and social interactions
(48, 49), paving the way for formalization in a cultural evo-
lutionary framework. In their original modeling work, Boyd
and Richerson have shown that spatially varying environments
can favor the evolution of “conformist” transmission, i.e., social
learning where frequent variants are disproportionately more
likely to be copied; they further showed that such conformity
can maintain similarities within and differences between cultural
groups in the face of migration that would otherwise erode group
differences (3). Henrich and Boyd (26) and Nakahashi (50)
extended this work to temporally as well as spatially varying
environments and revealed that conformity is adaptive across
a much wider range of conditions, suggesting that it might
be widespread in natural populations. Finally, bringing those
abstract models closer to the real world, Mesoudi (27) linked
conformity and realistic migration rates to cultural FST , a
quantitative measure of between-group cultural structure that
has frequently been used in the empirical literature (51–54). The
aforementioned studies show the advance in theory, providing
a cumulative corpus that would benefit from an empirical test.
How would one go about testing this theory with empirical data
from a contemporary population?

Directed Acyclic Graphs (DAGs). A widespread way of logically
and formally connecting theory to data is through DAGs.
Multiple comprehensive yet accessible introductions to DAGs
are available (32–36, 55), and reading one or more is necessary
to appreciate and understand the approach. DAGs represent
abstract generative models. In DAGs nodes represent variables
and arrows represent causal effects. Using DAGs we can express
assumptions about which variables change if we intervene on
a set of other variables. And this allows us in turn to logically
derive statistical procedures from specific questions about causal
effects. Using DAGs we can 1) identify testable implications,
2) deduce adjustment sets, 3) compute generalizations, and 4)
simulate empirical expectations. Models in cultural evolution
can often be expressed at different levels of organization, from
individual to population (below we show how dynamical models
can explicitly link multiple levels over time). Here, our DAGs
represent population-level models where populations comprise
multiple subgroups with migration occurring between them.

The DAG in Fig. 2A says that the structuring of cultural
diversity (D) in a population changes as a function of conformity
(C ) and migration (M ), which, in turn, depends on age (A;
e.g., young people might be more likely to migrate leading to
more migration among subgroups in populations with a younger
age structure). But the diagram does not assume any form
(e.g., linear) for these relationships nor the interactions between
variables (e.g., how do C and M interact in causing D). In
Fig. 2A, both migration and conformity affect cultural diversity
through distinct paths. From this, we learn that to assess the
impact of conformity on cultural diversity, researchers need not
“control” for any other variable [there are no open “backdoor
paths” (33, 36)]. However, we can see that the model makes a

A B

C D
Fig. 2. DAGs representing assumptions about the causal effects between
age A, conformity C , migration rate M, and cultural diversity D (panels A–D
represent different sets of assumptions; see text for detailed explanations).
Dashed circles denote unobserved variables and selection nodes S indicate
mechanisms by which populations might differ.

key assumption, that migration and conformity rates are causally
independent. Below, we discuss how such “testable implications”
can be used to assess the compatibility of DAGs with empirical
evidence.

Fig. 2B introduces a single modification. Here, age not
only influences migration but also conformity. In such cases,
conditioning on [stratifying by (56)] M is necessary for an
accurate estimate of C −→ D. A key virtue of deriving statistical
procedures from generative models, DAGs or otherwise, is that
some variables can actually damage inference. It is not harmless
to just add everything and let statistical diagnostics sort it out.
Fig. 2C depicts a scenario where controlling for a variable may
be detrimental (39). Migration rate (M ) here is influenced
by age (A), diversity (D), and unobserved cultural variables
(U ; e.g., family, ingroup-orientated norms). “Controlling for”
migration rate by including M in a multiple regression biases the
estimate of conformity’s causal effect on diversity via the path
C ← U → M ← D. Whether it is good or bad to control
for any given variable in a regression model, depends on causal
assumptions that cannot be found in the data alone. Therefore,
all control variables require causal justification (39, 55).

Finally, Fig. 2D illustrates how DAGs can be used to represent
assumptions about population differences and measurement
processes. The selection node S pointing into A suggests
that populations have different age distributions. Additionally,
as DAGs are nonparametric, any time two arrows enter the
same node, such as C → D and M → D, either of the two
causal pathways might modify (“moderate” or “interact with”)
the effect of the other, jointly producing the outcome. This
example shows the case where M moderates the effect of C
on D; this could mean that conformity has a higher influence
on diversity if migration rates are high. Here, researchers need
to account for differences in the age structure if they want to
generalize or compare findings between populations (see ref.
43 for an introduction to DAGs and poststratification in the
context of cross-cultural generalizability). Moreover, until now,
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we have assumed that we can readily observe all relevant variables.
However, researchers are typically not interested in the effects of
measured variables per se (e.g., responses in a questionnaire)
but in the underlying constructs (e.g., “conformity”) that are
assumed to generate the observed choices. Fig. 2D illustrates
how DAGs can represent measurement processes. Here, three
observed measures of conformity (C1–C3) are influenced by
the underlying latent variable C and by unique unobserved
error sources (E1–E3). Latent quantities obtained from factor
or item-response-theory models (such as the estimated level of
conformity here) are only comparable across populations if—
as indicated by the absence of selection nodes here—the same
measurement model holds for all populations (see ref. 57 for a
guide on DAGs and the comparability of latent constructs in
the context of structural equation modeling). To statistically link
C1–C3 to D, propagating the uncertainty stemming from the
measurement process, researchers could simultaneously estimate
the latent variable C based on observed measures and use that
latent score as a predictor of cultural diversity.

At this point, readers might ask how to determine the most
appropriate model. Fig. 2 provides a set of credible options, yet
numerous alternative model specifications may appear equally
plausible, including additional variables such as, for instance,
socioeconomic status or education. There are no universal rules
for the construction of generative models and the appropriate
level of granularity depends on the state of the theory and the
specific explanatory goals at hand (see ref. 58 for an argument
in favor of simple models). Deriving adjustment sets from
all candidate models and comparing linear regressions using
AIC, WAIC, or cross-validation might seem intuitive for causal
model selection (59). However, these model fit statistics only
assess predictive performance, not causal validity, so confounded
models may outperform properly specified models (36). A
way forward involves assessing models based on their testable
implications—statements about relationships that must hold true
given the model’s assumptions. Formally, a testable implication
asserts either independence between two variables (e.g., M |HC
in Fig. 2A) or independence conditional on a set of covariates
(M |HC | A in Fig. 2B). A valid model requires the independence
condition for all testable implications to be true, so researchers
can score all potential candidate models and reject models that
fail this critical test. However, there will always be important
causal assumptions that cannot be tested with data and many
DAGs typically remain empirically consistent with any sample.
Theory construction cannot be reduced to empiricism.

Moving from DAGs to Data. After selecting an appropriate model
(here we assume Fig. 2B is the best), we have the basic architecture
necessary to formally link theory to data. In our particular case
study, we imagine the researcher uses an existing cross-sectional
dataset that contains a snapshot of 30 countries from around
the world in a single year. For each country, the data have the
average age (A), a migration rate (M ), a measure of conformity
(C ), and a measure of cultural diversity (D). The researcher
can now define the estimand, in this case, the causal effect of
migration on cultural diversity or, formally, the difference in the
distributions of diversity for a given age structure and level of
conformity when migration is set to different values m0 and m1:
P(D|do(M = m1), C, A)− P(D|do(M = m0), C, A) (33).

Using the DAG and the estimand, we can now generate
synthetic data. This step is essential for validating the causal
identification strategy, and conducting a power analysis. Mov-
ing beyond the DAGs to synthetic data requires additional

assumptions. Specifically, we need to define the functional
relationships between variables, including interactions, and make
distributional assumptions about the variables themselves. In
Fig. 2B, D is jointly caused by the migration rate (M ) and
conformity (C ), but the DAG does not say how they are related
to D. The researcher must use their ethnographic and scientific
knowledge, thinking about interactions and nonlinearity where
appropriate. In our case, we consider a simple additive linear
relationship and further assume that all variables are standardized.
We can now randomly generate 30 data points per variable
representing observed values for each country in our dataset (see
code repository for details) (28):

A ∼ Normal(0, 1), [1]
M ∼ Normal(A�AM , �M ), [2]
C ∼ Normal(A�AC , �C ), [3]
D ∼ Normal(C�CD + M�MD, �D), [4]

where the � weights are parameters that scale the influence of
each predictor and the �s controls the amount of unexplained
variance due to unmeasured causes. With the ability to generate
synthetic data, we can now define a statistical model, which, in
this case, is a simple linear regression including M and C as
predictors, closing the confounding path M ← A→ C → D.
Note that the DAG in Fig. 2B makes the strong assumption that
there is no unmeasured confounding; in reality, populations will
often be nonindependent due to spatial proximity and shared
cultural ancestry, requiring additional statistical control (43, 60).
At this point, we can perform model validation by simulating
data with fixed parameter values and ensuring that the statistical
model can recover those data-generating values. Additionally, by
sweeping across parameters of varying magnitudes and adjusting
the amount of unexplained variance, we can learn when our
statistical model will begin to fail (see code repository for an
example) (28). To infer the implications of potentially important
variables we do not know, we could also conduct sensitivity
analyses and determine, for example, how strong an unobserved
confound would need to be to change a discovered effect (61).
Moreover, when different generative models appear plausible,
“confusion matrices” can be used to assess how robust our
inferences are for alternative model specifications (19).

With a fully validated statistical model, we can compute how
adjusting the migration rate will affect the level of cultural
diversity for a country with a particular age structure and level of
conformity, i.e., a causal effect: in the code repository (28), we
simulate and plot the difference in D between two levels of M
(±1SD) marginalizing over different levels of C on the outcome
scale. In more complex scenarios, the necessary estimator may
also be more complex, but it can still be logically derived from a
generative model.

Agent-based Models (ABMs). DAGs can be extended to represent
dynamics in space and time. But when those dynamics as
well as the interplay between different levels of analysis (e.g.,
individual- vs. population-level) are the focus of research,
explicitly dynamic generative models with detailed mechanisms
complement abstract structural models. Cultural evolutionary
research makes frequent use of dynamic population models, and
explicitly connecting these to evidence is crucial. For example,
the strength of particular demographic forces and the rates of
cultural change they create can provide important tests of cultural
evolutionary hypotheses (62–68).

Here, we construct an agent-based model that simulates
microlevel processes of birth and death, migration, innovation,
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A Model Illustration
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Fig. 3. Agent-based model. (A) Illustration of one model timestep (see text for detailed description). (B) 100 time trajectories of the cultural fixation index
(CFST ) for unbiased transmission (� = 1), relatively weak (� = 1.4), and stronger (� = 2) conformity; results are shown for simulations without migration (m = 0)
and with migration (m = 0.2). (C) Average CFST values for different parameter combinations of conformity exponent � and annual migration rate m. Darker
colors indicate higher values. Results are averaged over the last 200 time steps of 100 independent simulations per parameter combination. (D) Causal effect
of migration rate (contrast between m = 0.1 and m = 0.2) on CFST for three different levels of conformity exponent �.

and social learning (see Fig. 3A for a schematic illustration).
This allows us to explore how these forces influence macrolevel
patterns of diversity and change. In line with the DAG in Fig. 2B,
age may influence both migration and learning; implementing
these age dependencies in the ABM requires specific functional
assumptions that we explain below. Now we model diversity as
an emergent property of population dynamics instead of as a
direct measurement influenced by named causes. We simulate
the evolution of a cultural trait that is characterized by distinct
variants (e.g., different languages, beliefs, food preferences, or
foraging techniques; represented by different shovels in Fig. 3A).
These variants produce patterns that can be studied in simulation
to understand complex causation in the cultural evolutionary
dynamics. The basic causal relationships are the same as before,
but now we let the causal implications emerge rather than
assuming distributional responses. Agent-based modeling is a
major topic of its own (see ref. 30, for a thorough introduc-
tion focused on cultural evolution).
Model description. We consider an age-structured population of
3,000 individuals that is divided into 30 equal-sized groups,
connected by migration (Fig. 3A). Each simulation “year,”
individuals survive until next year with an age-dependent survival
probability that declines exponentially (at rate rS). Keeping group
sizes constant, all adult members of a group have the same
probability of producing offspring. Each time step, individuals
may migrate to another group either with a fixed probability
m or with empirically derived age-dependent migration rates
(69). Individuals are born naive and must acquire their cultural
trait through learning, either individually or socially. Older
individuals can also learn but their probability to do so declines
(at rate rL) as they age. Learners innovate with probability �,
introducing a new variant into the population. With probability
1−�, they acquire a variant through frequency-dependent social
learning. Each social learner randomly selects 30 interaction
partners in their local group and adopts variant i (of L cultural
variants held by the interaction partners) with probability
proportional to n�i , where ni is the frequency of variant i among
interaction partners and � controls the direction and strength of
frequency-dependent bias (23, 50, 70). When � = 1, cultural
transmission is unbiased; as � becomes larger than 1, individuals
become increasingly likely to adopt high-frequency variants (i.e.,
conformist). When 0 < � < 1, individuals disproportionately
adopt low-frequency variants (i.e., anticonformist).

At the end of each timestep, we record the cultural fixation
index (CFST ), following the procedure used in ref. 27. Wright’s
FST describes the proportion of the total variation in (genetic
or cultural) variants in a population that occurs between
subpopulations rather than within them. When CFST = 0,
all cultural variation is due to differences within groups; when
CFST = 1, all variation is due to differences between groups.
After reaching the demographic equilibrium, we assign unique
cultural variants for each group and track how cultural FST
changes over time (27).
Model results. Starting from maximum between-group diversity,
Fig. 3B shows how, without conformity, diversity decays even
in the absence of migration. While relatively small degrees of
conformity (� = 1.4) suffice to maintain diversity between
groups if individuals do not migrate, stronger conformity (� = 2)
is required to counteract the effect of migration. Fig. 3C
shows average CFST values for a broader range of parameter
combinations. In general, between-group diversity is higher if
conformity is strong and the migration rate is low. Fig. 3C also
shows that different combinations of migration and conformity
can produce equivalent values of CFST . For example, unbiased
and anticonformist transmission lead to similarly low values of
CFST . Finally, our estimand does not concern cultural diversity
per se, but the causal effect of migration on diversity; Fig. 3D
plots the effect of an increase in migration rate on CFST for
different levels of conformity. As per the DAG in Fig. 2B, these
effects are also implicitly conditioning on age, because age is a
structural component of the generative model. Overall, increasing
the migration rate from m = 0.1 to m = 0.2 reduces between-
group cultural diversity, but it does so at different rates; migration
has the strongest effect on CFST for an intermediate strength of
conformity, a weaker effect for relatively strong conformity, and
only negligible effects for unbiased transmission.
Longitudinal transmission analysis. The agent-based simulation
tells us how conformity and migration jointly influence between-
group diversity in a population with particular demographic and
social characteristics. Now suppose we have empirical data on a
population. How can we now use data to infer the underlying
transmission mechanisms as specified in the model? Our primary
estimates are the parameters themselves, i.e., the innovation rate
�, conformity exponent �, and the migration rate m. These
can be used to compute the target estimand, the influence of
migration on diversity in the target population. But there is no
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single parameter for this influence, because diversity emerges
from multiple forces at different time scales.

We first consider an enviable research case: researchers have
collected individual-level data on a cultural trait over a 30-y
period (Fig. 4A). Longitudinal research that tracks the same
individuals over time is most useful. But when the data are
less than optimal—the usual situation—the generative model
logically constrains which inferences we can justify. In a later
section, we expand on this point. Our simulated researchers not
only recorded the cultural variant of each individual in a given
year as well as their group membership but also each individual’s
most important social contacts as well as the variants of those
contacts. In the first wave of data collection, 500 individuals
were included in the dataset and 179 remained in the population
until the final year. This dataset is generated under known
parameter values, and thus the analytic procedure outlined here
also constitutes a basic validation test that should be an ordinary
part of a computational workflow.

With fine-grained time-series data on individuals’ cultural
variants as well as their social networks, we can directly use our
generative agent-based model as a statistical model (36). For each
year t, we first model whether individual j innovates a new variant,
Ij,t ∼ Bernoulli(�j), and whether they migrate to another group,
Mj,t ∼ Bernoulli(ma[j,t]), where Ij,t and Mj,t represent 0/1
variables (hence, the Bernoulli likelihoods) and the subscript a
indicates that we assumed different migration rates for different
ages. In case individual j did not innovate, we further model
their probability to adopt a given variant (held by themselves or
their L contact in year t), Cj,t ∼ Categorical(pj,t), where pi,j,t for

variant i is—identically to the ABM—proportional to n
�j
i,j,t . We

use a categorical likelihood function because the cultural variant
an individual adopts is a discrete variable with more than two
possible outcomes.

Using the Stan probabilistic programming language (71), we
sample from the joint posterior distribution of �, � (Fig. 4B)
and age-specific migration rates m (Fig. 4C ). Once we have
estimates, we can use the agent-based model again and simulate
cultural dynamics for the whole population and at longer
timescales, exploring a variety of counterfactual scenarios and
generalizations. As an example, Fig. 4D shows the causal effect of
increasing or decreasing age-dependent migration rates by 5%,

marginalizing over the uncertainty in both � and �. This change
in migration causes symmetrical shifts in CFST in the direction
expected from Fig. 3C.
Approximate Bayesian computation (ABC). Long-term individual-
level data are ideal for inferring cultural evolutionary processes.
But in many observational and also experimental scenarios, we
do not have access to detailed time-series of transmission events,
preventing the use of fully likelihood-based inference. In such
scenarios, likelihood-free approaches like ABC can be used to
sample from the joint posterior distribution of parameters (40).
ABC depends on a detailed generative model which acts as the
inferential model, as it is directly used to produce data which
is compared to data collected in a real-world population. This
allows us to see which inferences can be justified when the time
and spatial scales of our generative theory differ from those of the
available evidence. ABC has seen successful application in cultural
evolution settings and is most widespread in archaeological
applications where the data nearly always lack the resolution
of the generative model (40, 72–76). ABC is increasingly used in
other areas of cultural evolutionary research (77–80).

We formulate a simple ABC analysis, to address the same
goals as in the longitudinal time-series, but without access to
longitudinal data. We use the agent-based model to generate
a cross-sectional dataset that represents data that would be
collected in a more typical research context. We then compare
this single dataset, as if it were actual data, to simulated datasets
generated from the ABM, varying the generative parameters
(m = [0, 0.4], � = 0.5, 1, 2, 3) across the parameter space
explored in this manuscript. The ABC algorithm calculates the
difference between the reference and simulated data, based on
the CFST value, using a rejection algorithm to quantify the
combinations of parameter values that can generate datasets
similar to the reference data (40). We take 1,000 samples from the
joint posterior, which denote parameter combinations, that when
input into the ABM, produced the smallest difference between
the generated CFST and the reference CFST that stood in for
real-world data.

We present an ABC analysis conducted with two reference
datasets: d_unbiased, generated with unbiased transmission (� =
1) and a migration rate of m = 0.3, and d_conformist, generated
with conformist transmission, (� = 2), and a migration rate
of m = 0.1. In each case, the reference dataset is compared
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Fig. 4. Longitudinal transmission analysis. (A) 100 example “participants” (ID on the y axis) included in 30 y of simulated data collection; each dot represents
data from one participant in 1 y and colors indicate current group membership. (B) Full posterior distributions (transparent curves) and 90% highest posterior
density intervals (darker curves) for the innovation rate � and the conformity exponent �; the black dashed lines represent the “true” data-generating values. (C)
Full posterior distributions (transparent areas) and 90% highest posterior density intervals (darker areas) for age-dependent migration rates; the black dashed
line represents the underlying age trajectory taken from ref. 69. (D) Causal effect of migration rate on CFST (±5% migration in each age class compared to
“observed” rates).
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to 100,000 datasets simulated from the generative model under
varying parameter values.

For d_unbiased (Fig. 5, top row), the joint posterior indicates
the reference data were most likely produced with values of
� = 0.5 and m = 0.2 (66.3% of posterior), with 33.7% of the
posterior accounting for the true values � = 1 and m = 0.3. The
model is certain the data were not generated under conformist
transmission, but cannot reliably distinguish anticonformity and
unbiased transmission. Fig. 3C shows that the CFST values
associated with unbiased and anticonformist transmission as well
as with migration rates of m = 0.2 and m = 0.3 are broadly
the same. Further illustrating this equifinality, the CFST values
generated from the posterior map well onto the reference CFST
from d_unbiased (Fig. 5B). Thus, the model can predict CFST
values accurately but cannot recover the true parameters that
generated them.

For d_conformist (Fig. 5, bottom row), a similar pattern
emerges: while the posterior strongly indicates conformist trans-
mission (no posterior samples for � ≤ 1), and correctly identifies
the migration rate (m = 0.1), it misses the true value of �. This
uncertainty stems from the fact that CFST values generated by
m = 0.1 and � = 2 cannot be reliably distinguished from values
generated by m = 0.1 and � = 3 (Fig. 3C ). Again, while the
model cannot identify the true generative values, the posterior

prediction accurately captures theCFST value from d_conformist
(Fig. 5E). One major advantage of generative inference is that
the equivalence between the generative and statistical model
allows us to better understand uncertainty in the posterior, and
sources of equifinality. Under this particular generative model, a
cross-sectional dataset would not be enough to correctly estimate
the conformity exponent, and depending on the exact nature
of the reference data, could also struggle with the migration
rate. However, qualitatively, the model is able to identify the
transmission process.

As before, once we have estimates, we can infer effects or
make predictions for a target population, by drawing from the
joint posterior and pushing parameter estimates through the
generative model. This step is the same as in the ideal-data
case, the longitudinal analysis, but the additional uncertainty in
estimates will project through to uncertainty in causal effects. As
an example, we calculate the effect of increasing and decreasing
migration rate by 10%. For both datasets, increasing migration
rate by 10% decreases between-group cultural diversity, and vice
versa for decreasing migration rate. Echoing the results in Fig. 3D,
the effect of migration is stronger with conformist compared
to unbiased transmission. These results highlight the value of
being able to interpret statistical analyses with theoretical model
predictions in hand.

A B C

D E F

Fig. 5. ABC results. The first row shows the results of an ABC analysis conducted for a reference dataset generated with input values � = 1 for the conformity
exponent, and m = 0.3 for the migration rate (d_unbiased). Panel (A) shows the joint posterior of the conformity exponent � and migration rate m. The intensity
of red indicates higher frequencies of particular parameter combinations in the joint posterior, i.e., how many of the 1,000 samples represent a particular
combination of migration rate and conformity exponent values. The black circle indicates true values used to generate the reference data. Panel (B) shows the
posterior prediction of CFST for 100 datasets generated from the joint posterior. The black dashed line represents the reference value. Panel (C) shows the
effect of a ±10% change in migration rate on CFST , as implied by the joint posterior. The second row presents the results of an ABC analysis for reference_data
with input values � = 2, and m = 0.1 (d_conformist). Panel (D) presents the joint posterior of conformity exponent � and migration rate m. Panel (E) shows the
posterior prediction of CFST for 100 datasets generated from the joint posterior, while Panel (F ) demonstrates the effect of a ±10% change in migration rate
on CFST .
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ABC is an active area of statistical research. We present a
simple rejection algorithm, but ABC is a growing field and
researchers should familiarize themselves with the expanding
possibilities (81, 82). Moreover, there are now also similar
likelihood-free inference approaches based on artificial neural
networks (83). Generative inference opens the doors to concrete
mechanistic modeling with imperfect data, but it also requires
a refocus of analytic methodologies, toward greater engagement
with generative models, and a strong commitment to analysis
pipeline validation.

Conclusion

Widespread nonreproducibility (84, 85), publication bias (86),
and the failure of prominent findings in biology and the
behavioral sciences to replicate (87), show that powerful statistical
methods are not enough to produce reliable research. The way
that statistical analysis is incorporated into research is too often
tangled and unjustified. Modeling decisions are poorly justified,
and connections to scientific goals are too often metaphorical
rather than logical. There has been important emphasis on
initiatives like preregistration (88) and registered reports (89). But
there has been much less on the knowledge and tools needed to
develop and justify analysis plans and their contingencies. It is too
easy for false results to replicate and appear superficially reliable
(90). Statistical methods should be integrated into research in
a way that allows them to reliably and transparently address
scientific goals.

In pursuit of this integration, we have illustrated a scientific
workflow for cultural evolution (and beyond) that allows re-
searchers to bridge between theory and data in a principled
and transparent way. Based on generative models of empirical
phenomena that can take various forms depending on the
knowledge we have and the assumptions we are willing to make,
our workflow outlines how to clearly define an inferential target
and how to construct inferential models to estimate it.

While highlighting the central role of theory and compu-
tational methods, the approach also invites ethnography and
empirical domain knowledge to bear on analytic procedures.
Ethnographic context should inform every aspect of a scientific
project—from conception, operationalization, methodology, to
analysis—to ground cultural evolution in the specific sociode-
mographic processes of the past and present peoples we seek
to understand (91). Generative inference is only as good as
the generative models underlying it. These models depend
on unambiguous and well-asserted assumptions that build on
both theoretical and ethnographic insights, allowing for greater
integration with the detailed knowledge researchers often have
about the populations they work with. For example, the inference
of learning mechanisms in our example workflow crucially
depends on assumptions about the number of social interaction
partners relevant to the transmission of the cultural trait under
study. Some traits might only be adopted from close kin,
whereas others might potentially be learned from any person
people interact with. These assumptions can only reliably be
made based on detailed observations in the community as well
as people’s own reports about possible transmission pathways
(92, 93). Likewise, we have detailed various ways to use posterior
estimates for further inference about causal effects, (out-of-
sample) predictions, and counterfactuals, all dependent on well-
defined real-world explanatory goals and target populations.
Therefore, to understand cultural evolution in situ, we call for
the development of more tailored “mid-level” theory and bespoke

computational workflows, that translate between abstract theory,
on the one hand, and situated ethnographic knowledge on the
other. This also facilitates entering into a dialog with study
participants, collaboratively investigating which assumptions
and processes might best capture cultural transmission in their
community.

For the purposes of clear demonstration, we have chosen a
straightforward example, perhaps deceptively so. For researchers
who have clear theoretical expectations and collect data which
matches the structure required by their generative model, the
workflow presented here is comprehensive. Beyond such desirable
situations, generative models can be extended to deal with various
imperfections of the real world, such as measurement issues,
uncertainty in the state or observation process, missingness, or
imbalanced sampling (36). The core strategy is always to build
probabilistic models of the processes that produced the data
at hand—be they scientifically meaningful or accidental. That
is, data missingness and selection effects can, and should be,
explicitly modeled, so that we may understand their effects on
inference and better account for them. Moreover, utilizing a
generative framework can help clarify exactly what sort of data
are required for reliable inference and which assumptions need
further testing, facilitating research design and sample collection.
For example, certain areas of the parameter space of the generative
model may produce maximally distinctive patterns, suggesting
data from these areas to be most productive.

Fieldwork can also be combined with controlled experiments
to explicitly test and refine key assumptions of the generative
model. By investigating the effect of certain variables while
keeping others constant, experiments may also serve as an
important bridge between abstract models and the real world.
Importantly, even randomized experiments need careful rea-
soning about the inferential workflow and causal assumptions
(94). Conditioning on posttreatment variables by, for example,
dropping participants based on failed manipulation or attention
checks or including downstream mediators in a model, can bias
estimates of treatment effects (95). Moreover, without a logically
derived estimand, differences in within-group comparisons (e.g.,
changes over time) are often falsely interpreted as evidence for
treatment effects; different effects do not imply an effect on the
differences (96).

We end by re-emphasizing the iterative nature of the proposed
workflow. Rare is the research project that starts with enough
information to execute each of the proposed steps perfectly.
Instead, looping through the workflow should be seen as a process
of iterative learning, about the generative process, the people we
work with, and the data limits and potentials.

Data, Materials, and Software Availability. Annotatedscripts forallworkflow
examples have been deposited on GitHub (https://github.com/DominikDeffner/
CulturalEvolutionWorkflow) (28).
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