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Anomalous fluctuations in a droplet of chemically active colloids or enzymes
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Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response
to collectively generated chemical gradients. Employing Brownian dynamics simulation techniques,
our study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and
dynamical properties, including the full range of fluid-like to solid-like behaviour, and non-Gaussian
positional fluctuations. Our work sheds light on the complex dynamics of the active constituents of
metabolic clusters, which are the main drivers of non-equilibrium activity in living systems.

Introduction.—The non-equilibrium physical rules that
determine the behaviour of active matter [1] can nat-
urally be expected to provide clues towards unraveling
the spatio-temporal self-organization observed in living
systems. In particular, bio-chemical reactions facilitated
by enzyme molecules and metabolic activity make the
interior of a cell a non-equilibrium environment with
persistent chemical gradients and fluxes [2, 3]. Theo-
ries of active phase separation, describing the phase be-
haviour of motile or living units, incorporate in addi-
tion to thermodynamic fluxes, particle currents stem-
ming from non-equilibrium interactions, some examples
of which are chemical interactions [4-12], quorum sens-
ing [13, 14], non-reciprocity [15-17], and catalysis [18].

Inside living cells, the structural compartmentalization
of bio-molecules in the form of droplets are thought to
help their function, such as regulating biochemical pro-
cesses [19, 20]. These condensates are typically in a dy-
namic liquid-like state, although they can also exhibit
solid-like properties when associated with pathological
conditions [21, 22]. Due to the metastable nature of the
liquid-like assemblies, they also exist in glassy or gel-
like states that do not have the properties of a classical
liquid [23]. For instance, in vitro tracer diffusion mea-
surements within phase-separated droplets have shown
caging and other signatures of glassy behaviour [24],
while metabolic activity of bacteria has been shown to
affect the diffusivity of the proteins within the cell cyto-
plasm [25, 26].

Despite an overwhelming wealth of empirical observa-
tions, the interplay between enzymatic activity in the
cytosol and the fluidity of protein condensates is still not
understood from a mechanistic perspective. The non-
equilibrium phoretic interactions, which naturally arise
from chemical activity [27], have the potential to play a
major role in such a regulation mechanism, in the same
vein as the recently proposed mechanisms that may have
led to the self-organization of metabolic cycles during the
early stages of life formation [28-30].

Here, we explore the complex dynamics within a

droplet formed by long-ranged phoretic interaction be-
tween chemically active colloids or enzymes. Tracking
the motion of a tagged bio-molecule provides information
about the dynamics and structure inside a droplet [see
Figs. 1 (a~c)]. The series of structural changes, which oc-
cur as the dimensionless coupling strength vy is increased,
is accompanied by dramatic changes in the dynamics of
a single particle (see Figs. 2 and 3). The chemotactic
collapse is cut off by steric repulsion, and the cluster un-
dergoes a gradual transition from a fluid-like state (see
Supplemental Movie SM3 [31]) to a solid-like state (see
Supplemental Movie SM7 [31]) as v is increased. At in-
termediate values of vy (see Supplemental Movies SM4-6
[31]), the cluster develops a solid core surrounded by a
relatively mobile region that we call the corona, which in
turn is followed by an interface consisting of chemically
active colloids that are nearly free [see Fig. 1(a)]. Using
the distribution of the positional fluctuations calculated
as a function of the step size and initial location of the
colloid as our main tool, we probe the glassy dynamics in
this mesoscopic droplet and provide several experimen-
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FIG. 1. (a) A schematic showing different regions—core,
corona, interface—in a cross section of a cluster. (b) Trajec-
tories of tagged colloids in a fluid-like cluster (weak phoretic
interaction) are superimposed on transparent particles. A
tagged particle travels freely throughout the entire cluster,
see Supplemental Movie SM1 [31]. (c) In an arrested clus-
ter (strong phoretic interaction), particle tracks vary qualita-
tively depending on their initial location in the cluster. Com-
pletely trapped colloids (green track), and those that exhibit
several cage breaking events (red and blue tracks) are seen in
the same time window; see Supplemental Movie SM2 [31].



tally testable results.

Theoretical model. —We consider N colloids of radius o
within a spherical container of radius R, with the stochas-
tic trajectory of the ith particle (i = 1,..., N) denoted
as r;(t). Each active colloid catalyzes a chemical reac-
tion converting a reactant, assumed to be abundantly
available, into a product at a rate a. They generate a
chemical field ¢(r,t) at position r that evolves following
the diffusion equation with sources at r;, namely,

orc — D .N?c = aZé(r—ri), (1)

where D, is the diffusion coefficient of the chemicals.
Imposing the boundary condition ¢(|r| = R,t) = 0 en-
sures that the chemicals are continuously generated in
the container and extracted at the boundary, hence cre-
ating a non-equilibrium steady-state. Variation of ¢ on
the colloid surface establishes a diffusiophoretic slip ve-
locity and thus net drift with a velocity —uV e, where p is
the diffusiophoretic mobility (that is negative for attrac-
tive phoretic interactions) [27]. The equation of motion
of the ith colloid is given as

P = —pVe(ri,t) + > v(ri)fy + G, (2)
1#]

where Tij = Ty — T4, Ty = ‘Tij| and f'ij = rij/rij~
vu(rij) = 24e[2(20)"2r;; " — (20)67";.7] is a derivative of
the Weeks-Chandler-Anderson potential [32]. It imposes
steric repulsion between the colloids and vanishes for
> 21/6(2¢). The parameter € combines the strength of
repulsion and the viscous damping and is kept constant
at unity. The random fluctuations are included through
the white noise term, ¢, with zero mean and intensity

2D, where D is the thermal diffusivity of the colloids.
Assuming a separation of scale between the sizes of
the chemicals and the colloids, we can use the quasi-
stationary solution of Eq. (1) since D <« D.. Moreover,
we use the far-field approximation [11, 33] and ignore
corrections due to the proximity of colloids. This ap-
proximation is justified since exact solutions have shown
that near-field effects are unimportant for exactly simi-
lar active colloids [34]. With these approximations, the
chemical gradient V¢ can be determined explicitly as a

function of colloid positions r; as follows

Sa-n

(R/ 7'3

Ve(r;, t) 47rD (3)

Where r}; = r; — R2 rj, ri; = |ri;| and rj = |r;]. Scaling

position by ¢ and tlme by 02D, we identify a dimen-
sionless constant vy = |p|a/(DD.o) which determines
the strength of the interactions with respect to the fluc-
tuations.

Particle trajectories are obtained by the Euler inte-
gration of (2) with a time step At = 0.001. The data

presented in this paper is for N = 1000 unless otherwise
specified. The value of vy varies between 0.5 and 5.0.
The colloids assemble to form a single spherical droplet
of size equal to a few colloidal radii (~ 100) at the centre
of the confining sphere due to the long-range interaction
between them.

Self-part of the Van Hove functions.—The central re-
sult of our work is the analysis of anomalous fluctua-
tions to illustrate several aspects of the dynamics that
follow from the chemically mediated long-range interac-
tions. We do so by calculating the self-part of the Van-
Hove functions (SVH) [35]. In a fluid with no internal
structure [36], the SVH is Gaussian, while in a super-
cooled fluid it is Gaussian with exponential tails [37, 38].
We calculate the SVH by distinguishing the initial posi-
tion of the colloid in the droplet. As a result the dis-
tribution depends on whether the colloids were located
initially in the frozen core or the corona. The self part of
the Van-Hove function G(z, 7) is defined as follows

Gz, 7) = %Z@[w— (@i(7 + 1) — zi(D)])- (4)

i=1

G(z, 7) is the probability distribution function that a col-
loid traverses a displacement x in an interval of time .
Variation of G(z, ) with the waiting time 7 provides in-
formation about the changing neighbourhood of a colloid.
The 7 dependent step-size is thus simply the distance
x;(t+7) — x;(t), where the time ¢ is chosen large enough
such that the cluster has reached a steady-state. In the
definition (4), the index i is used to average over a total
of n number of colloids which are at time ¢ located in
a particular shell from the centre of mass of the cluster
(as shown schematically in Fig. 2). Since G is identi-
cal for fluctuations in the three orthogonal directions, we
present an average over all three directions.

We find that G reveals a wealth of information about
the spatial dependence of structural rearrangements
within the cluster when it is calculated for those located
in the core, the corona, or the interface. For small v,
G is well approximated by a Gaussian irrespective of the
initial location of the colloids, and its width increases as
~ /7 for all 7. For a value of vy for which the cluster
is close to the solid state, G begins to show signatures of
trapping at small 7, and cage-breaking dynamics at larger
values of 7. Calculated for colloids in the core with ini-
tial positions within 3 —6¢ from the centre of the cluster,
G shows a sharp peak at = 0 as seen in Figs. 2(a-c).
The uni-modal graph falls sharply within x ~ o showing
that the colloids in the interior of the cluster for vg = 1.7
are caged by their neighbours [see Figs. 2(b-c)]. For col-
loids initially located in the corona within 6 — 90 from
the centre, the distribution clearly develops a tail - which
broadens with increasing 7 [see Figs. 2(d-f)]. For colloids
with initial locations in the interface within 9 — 120, G
shows tails whose widths increase with increasing 7 [Figs.
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FIG. 2. Self-part of the Van Hove function (probability distribution of colloidal displacements). G(z,7) in a partly arrested
droplet is shown for a different values of vg (as indicated), increasing from left to right. G for colloids initially located within
a distance of 3 — 60 (core), 6 — 90 (corona) and 9 — 120 (interface) of the centre, are plotted in the three rows (from top
to bottom) as indicated with illustrations. The colour-maps, which indicate the waiting time 7, are chosen to be the same
for colloids belonging to the same region in the cluster. A peak at z = 0, indicative of a colloid trapped in a cage, is always
present for colloids that are initially located in the core, as seen in panels (a-c). Such a peak is absent in fluids, and reveals
slow relaxation. The peak is less pronounced for colloids originating in the corona, (see in panels d-f) and vanishes completely
for those that start in the interface, (see g-i). Those in panels (d-i) show pronounced tails extending until ~ 100. At vo = 3.0
fluctuations with magnitude of the order a few o show secondary peaks mirroring the structure formation, as seen in panels (f)

and (i).

2(g-1)]. Thus the dynamics varies greatly from the centre
to the surface - the innermost colloids vibrate in nearly
permanent cages (over the time-scale of the simulations),
the ones which are in the corona are trapped for variable
duration of time and released before they are trapped
again. Colloids at the interface typically make long ex-
cursions [Figs. 2(g-i)]. In the fully arrested state, G
shows a single peak at = 0 of nearly constant width for
all 7 [Figs. 2(c), (f) and (i)]. Deep into the solid state
fluctuations close to z = 0 develop additional features
such as secondary peaks that reflect the underlying po-
sitional order [Figs. 2(f) and 2(i)]. Such side-peaks have
been reported in other active matter systems due to the
action of molecular motors in a gel [39].

To elucidate the non-Gaussian nature of the fluctua-
tions, we fit the inner dome and the outer tail of G to a
family of curves called the g-Gaussian [40, 41], which pro-
vides a framework to describe systems with long-range in-
teractions [42] (see SM for details [31]). The ¢-Gaussian
of a length z scaled by ¢ is [1— (1 — q)(x/@)z]th In
general, the range of the exponent ¢ is —oo < ¢ < 3, ap-

proaching the Gaussian as ¢ — 1. For ¢ < 1, the domain
of the function is bounded, i.e. —1 < z/¢ < 1, while
for ¢ > 1, /¢ is unbounded. G calculated for colloids
in the core is well fitted by the ¢ = 1.45, corresponding
to strong correlations [43]. For G calculated for those
in the corona, the tail is fitted by 0 < ¢ < 1. A fitted
value of ¢ smaller than unity suggests that fluctuations
smaller than a length scale are suppressed. We also calcu-
late the distribution of time intervals between successive
cage-breaking events. The distribution changes from be-
ing exponential in the fluid state to a power law in the
solid (see SM for details [31]).

Mean square displacement.—We discuss fluctuations
in colloid position as captured by calculating the mean
square displacement (MSD) for all colloids in the droplet
(see SM for MSD calculated by distinguishing the ini-
tial location of the colloids [31]). The centre of mass of
the mesoscopic cluster diffuses while it also rotates as a
whole. To measure relative displacements of particles, we
transform to a body-fixed frame of reference located at
the centre of the cluster using methods described in [44].
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FIG. 3. Mean square displacement (MSD) for different values
of vg. A plateau develops in the arrested states as colloids are
repeatedly trapped into, and released from temporary cages.
The reduction in the MSD upon increasing vg is due to the
increase in the attractive interaction between colloids, and
saturation corresponds to the cluster size.

The MSD is calculated by avera%rvng over trajectories of
all particles as MSD(t) = N 1 (ri(t)—r;(0)]?), and
shown in Fig. 3, for vy in the range 0.5 — 3.0. A plateau,
defined as a flattening of the MSD curve after an ini-
tial diffusive regime is visible at sufficiently large val-
ues of vy, and is particularly prominent in the arrested
state. It emerges as the colloids get trapped or caged
by their neighbours and spend a long time inside those
cages. Such a sub-diffusive plateau is a signature of the
motion of active particles in complex and crowded envi-
ronment [45], in contrast to a freely moving active parti-
cle. The trapped colloids escape from their cages after a
time scale that increases with increasing vy, as apparent
in Fig. 3. Note that the trapping occurs at a comparable
time scales (~ 7) in all vps but in contrast, escape from a
cage is a collective manoeuvre and the related timescale,
increases over three orders of magnitude from the fluid
to the solid phase.

State diagram.—We construct a state diagram by vary-
ing both vy and the total number of particles. Using cues
from both the arrangement of colloids within the droplet
and their dynamics, we identify two stages in between
the fluid-like and the solid-like droplet which are called
‘lamellar’ and ‘lamellar with core’ (see Fig. 4). Periodic
deviations around the smooth radial density profile, cal-
culated from the centre of mass of the droplet, serves
as the metric to distinguish a lamellar droplet that has
developed shells like an onion from a fluid-like droplet
without spatial ordering (see SM for details [31]). The
dynamics in a lamellar droplet is still fluid-like (Supple-
mental Movie SM4 [31]). Development of structural in-
homogeneities in a similar density of the positions of col-
loids within a spherical shell at an even higher vy signals
the transformation of a lamellar droplet into a lamellar
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FIG. 4. State diagram in N —vg plane, showing fluid, lamellar,
lamellar with core and arrested states. Note that the phase
boundaries shift towards smaller values of vg with increasing
system size. The dashed black line is the power law scaling
expected using a dimensional analysis described in the text.
Snapshots from simulations illustrating typical structure of
the droplet in each state are shown at the top.

droplet with a core. In the state ‘lamellar with core’, the
droplet develops an inner core within which colloids are
immobile due to the surrounding dynamic layer that we
call the corona (see Supplemental Movies SM5 and SM6
[31]). Irregular sharp peaks in densities reveal that the
solid structure formed is not isotropic due to the finite
size of the cluster (see SM for details and Supplemen-
tal Movie SM7 [31]). Figure 4 displays a state diagram
in the N — vg plane and shows that the state bound-
aries shift to lower values of vy with increasing N; we
argue that this is a feature of the long-range interactions
mediated by the chemical field. Ignoring fluctuations of
colloids at the interface, it is reasonable to assume that at
the boundary of the fluid-solid transition, the cluster size
scales with N as L3 ~ ¢3N; using this length scale we
find that gradients of ¢ scale as aN/(D.L?). Balancing
the chemotactic drift —uVeP with the diffusive current
—DV P in the Fokker-Planck equation for the probability
P, we find vy ~ (0/L)* ~ N=2/3 [4].

Concluding remarks.—The strength of the effective in-
teraction mediated by the collective response of the col-
loids to the chemical field determines whether the clus-
ter resembles a fluid or is rather in a hybrid state with
a central core resembling a solid and an outer corona
of relatively freely moving colloids. We observe strik-
ingly different dynamics in the two cases: in the first
case, the colloids are free to span the full cluster while
the motion of the caged ones is restricted to a fraction
of the colloids in the second case. We observed narrow
Gaussian peaks and extended tails in the distributions



of particle displacements, similar to what is ubiquitously
observed in glassy systems [37, 38, 46], where the dom-
inant dynamics of the particles is random hopping and
trapping, also including solid-liquid interfaces [47]. The
crucial difference between the system at hand and the
classically studied systems is that in our system both
the inner dome and the tail are fitted by the g-Gaussian.
Our analysis of the fluctuations by using the g-Gaussian
distribution thus elucidates experimentally testable dif-
ferences between jammed or super-cooled passive matter
and those in chemically active matter.

We show that non-equilibrium interactions driven by
the phoretic response of chemically active enzymes or
colloids to collectively generated gradients can lead to
an effective mechanism of regulation for the structural
and mechanical properties of metabolically active protein
condensates. The regulation is achieved in a seemingly
counter-intuitive sense, as stronger catalytic fluxes lead
to solidification of the core of the cluster while allowing
the particles at the interface to move more efficiently.
This can be understood as being due to the balance be-
tween the short-range repulsion that arises from equilib-
rium interactions and long-range attraction that arises
from the non-equilibrium chemical activity. We note that
the opposite sense of regulation can also be envisaged if
we implemented attractive equilibrium interactions and
repulsive non-equilibrium interactions. Our results thus
provide a mechanistic understanding of how such nat-
urally occurring non-equilibrium interactions can con-
tribute to the active regulation of the structural and dy-
namical properties of intra-cellular condensates.
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Anomalous fluctuations in a droplet of chemically active colloids or enzymes
Supplemental Material

In this supplement we discuss the details of the simulations used to study a system of phoretic colloids. We discuss
the various measures used in the main paper to quantify the different phases. We also present further results on the
dynamics such as the local slope of the MSD showing the clear existence of a plateau, the MSD for colloids originating
in different layers, and finally the distributions for the time periods that the colloids remains trapped in a cage (the
waiting time distribution).

SIMULATION DETAILS

We place colloids randomly inside a spherical container of radius 50c0. We do an initial run with repulsive interactions
alone for further homogeneous mixing of colloids. We employ an additional reflective boundary condition to restrict
the movement of colloids outside the container during this process. This homegenous configuration is used as initial
conifiguration for the study of phoretically interacting colloids. Each of these colloids produce a spherically symmetric
chemical field. Then we allow the system to relax for 10*7 followed by a data production run of 107. We choose the
sign of u (Eqn. (2) in the main article) such that phoretic interaction is attractive and the colloids assemble to form
a single spherical droplet at the center of the confining sphere. The boundary condition for the concentration field at
the the edge of the confining sphere being zero ensures that the droplet is formed at the center of the container. As we
are interested in the properties of a dense cluster, the effect of hydrodynamics is neglected against the other dominant
interactions present in the system. We vary the number of colloids in our simulations, N = 250, 500, 750, 1000. We
set the radius of the colloids o as the unit of length and unit of time as 02/D where D is the diffusion coefficient
of colloids and strength of fluctuation. The strength of interactions is determined by a dimensionless number vy =
paD D te~t where D, is the diffusivity of the chemical field and y is the diffusiophoretic mobility. In this work
Vg is varied between 0.5 to 5.0.

RADIAL DENSITY PROFILE INSIDE THE COLLOIDAL DROPLET

The colloids assemble to form a single spherical cluster of radius &~ 100 at the center of the confining sphere due
to attractive long-range interaction between colloids and boundary condition of ¢. The qualitative changes that we
observe in the dynamics as vg is tuned, is linked to the development of structure in the cluster from liquid-like to a
solid state.

For droplets of all sizes, the transition occurs in a two steps as vq is increased. In the first step the droplet transitions
from a fluid like loosely bound structure to one that has concentric spherical layers like an onion and we call this state
the lamellar phase. In a fluid-like cluster, the radial density profile p(r), measured from the centre of mass of the
cluster, is constant near the centre and decays smoothly zero near the periphery of the cluster (see Fig. 1(a), vg = 0.5).
In the lamellar phase the particles organise themselves in concentric spherical shells as visible in the undulations that
develop in p(r)(see Fig. 1(b), vg = 0.7). The radial density p(r), obtained by averaging over spherical shells, clearly
shows the transition from a fluid to a ”lamellar structure” (layered like an onion) (See Fig. 1(b), vg = 0.7)). The
value at which it develops undulations with a length scale ~ 20 is used to determine the lowest boundary of the state
diagram (Main article Fig. 4) that denotes the transition from the fluid-like cluster to a lamellar structure.

We also measure the joint distribution p(6, ¢) of the polar and the azimuthal angle of the angular position # =r/r
to identify the dynamics of the colloids inside a spherical layer. Even though particles arrange shell like structure, the
dynamics of the colloids is similar to fluid phase, see the homogeneous distribution (6, ¢) both in Fig. 1(e) and (f).

The lamellar phase develops an inner core as vg is increased further, within which colloids are immobile due to the
surrounding dynamic layers which we call corona. Colloids are trapped for increasingly longer time within by their
neighbours as we go radially inward from the periphery of the droplet and we call the state ”lamellar phase with core”
(see Fig. 1(c)). Even though in lamellar structure, the exchange of neighbouring colloids is similar to what is seen in
a fluid phase, lamellar with core differ in dynamics. In lamellar with core phase, p(6, ¢) shows inhomogeneities due
to the particle arrest at the core (1(g) vo = 0.9). Finally the entire cluster, with the exception of the colloids right at
the interface, are arrested. (see p Fig. 1(d)) Intense peaks in p(6, ¢) for vg = 3.0 in 1(g) suggest that positional arrest
of colloids in the ’solid phase’. The boundary between the lamellar and the lamellar with core states is determined
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FIG. S1. Structural arrest with increasing strength of interaction. (Left) Radial density profile p(r) as a function of the distance
r from the center of the cluster for four representative values of vo in the (a) fluid (vo = 0.5), (b) lamellar (vo = 0.7), (c) lamellar
with core (v = 0.9) and (d) solid(vo = 3.0) phase. Corresponding values of vy are indicated in each sub-figure. The smoothly
decaying tail of p in fluid-like cluster changes to an abrupt decrease near the edge of a solid cluster; while in the lamellar state
a layering develops with periodicity equal to the colloid diameter. Inset: a snapshot showing all colloid positions in the cluster
at a random instant of time. (Right) Distribution p(6, ¢) of the angular position r/r of colloids is shown in the four states for
the same values of vo as in (Left) (e) fluid phase (vg = 0.5), (f) lamellar phase (vo = 0.7), (g) lamellar with core (vo = 0.9) and
(h) solid (vo = 3.0); both a three dimensional snapshot and a two dimensional projection are shown. Inhomogeneities apparent
in the transition state transform to sharp well defined peaks in arrested state, showing that particles hold their positions.

by looking at the distribution of colloids (p) in the region between 0-6 0. p calculated between 6 — 90 and (p(r) are
used to determined the crossover form the lamellar with core to the solid structure.



FIG. S2. The time varying exponent of anomalous diffusion, « for different values of vg. The exponent is close to unity at the
earliest time scales. A plateau develops for all vy at nearly the same 7, quantified by the minimum value a. of a. The escape
time 7. labelled in the plot is the local maxima at later time scales. 7. increases with vy showing that the colloids are caged
for longer duration of time as the cluster undergoes dynamical arrest.

ESTIMATING THE CAGING AND ESCAPING TIME FROM THE MSD

Since the diffusion is anomalous at all time scales, the MSD can be written as Ar?(r) oc 7%(7); thus defining the
time dependent exponent «(7) = dlog Ar?(7)/dlog 7. o changes with time following a general trend in all four states,
see Fig. 2 — a decreases from 1 to a minimum value «, at the caging timescale 7., thereafter increasing to a maximum
value o, at the escape time 7.. 7. ~ 1 for all vy; implying that colloids are trapped by neighbours when they have
moved their own size. In contrast, escape from a cage is a collective manoeuvre and the related timescale 7. increases
over three orders of magnitude from the fluid to the isotropic solid phase.

Individual trajectories of colloids

Spatial heterogeneity in the dynamics of the colloids: Fig. 3 (a) shows a polar plot 7(t), ¢(t) of the radial and
azimuthal components of the colloid position in spherical coordinates. Fig. 3(a-b) are different trajectories and their
MSDs. The Fig. 3 show that dynamics of colloids strikingly vary with the initial location of the tagged particle in the
cluster.
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FIG. S3. (a) Various trajectories showing different dynamics:

trapped, intermittent caging and hoping, system spanning
trajectories. (b) MSD of colloids for vg = 1.5, initially located in the core, corona and interface

NON-GAUSSIAN FLUCTUATIONS

In the main text we have shown that the self part of the Van Hove function assumes distinct forms as vq is varied.
Particularly, it is interesting that the cage breaking dynamics becomes explicit in the inner dome and the wide tail
of G. To quantify the distributions further we have fitted the curves to the ¢g—Gaussian that is knoyvn to describe
systems with long range correlations. The g-Gaussian of a length x scaled by £ is [1 — (1 — ¢)(x/£)?] "=7. Fig. 4(a-b)
shows the results of the fits for values of vy specified in the figure. The fits have also been carried out for a large range
of 7 and by changing the total number N of colloids. The observed trends are summarized in Fig. 4(c-f)
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FIG. S4. Characterizing the non-Gaussian fluctuations: (a) the inner dome of G for colloids in the corona are fitted to g-
Gaussian distribution in the solid phase. The data from simulations is plotted with markers and the solid line shows the fitting.
The light blue curves correspond to vo = 3.0, and the dark blue curves correspond to vo = 1.4. The values of g obtained from
the fitting are shown in the legend. (b) Similarly, the outer dome of G is fitted to q-Gaussian distribution in the ‘lamellar with
core’ phase with vg = 1.2, the value of g obtained from the fitting is shown in the legend. (c-d) The change in the non-Gaussian
parameter with time is shown panels (c¢) inner dome (d) tail. The corresponding values of vy are shown in the legend. Panels
(e) and (f) show the universal aspects of the exponent averaged over the times 10 — 10, obtained by varying vo and N. We
find that g approaches 1.35 deep into the solid phase for all N and at long times.

WAITING TIME DISTRIBUTION

The question that naturally arises form the description of the heterogeneous dynamics is: how frequent are the
escapes from the caged states? As clear from the multitude of length-scales revealed by calculation of the Van-Hove
functions, an accurate estimation of the length-scale for hops often possible in bulk systems (see [48]) is not possible
here. We use a uniform definition for the jump event: a jump for particle ¢ at time ¢ is said to occur when Azx; =
|x;(t+7) — x;(t)] exceeds /MSD(7). The waiting time t,, between two jumps is distributed as ¥ (t,,, 7) and shown in
Fig. 5. The calculation reveals a striking feature for all system sizes, the distribution changes with vy from being close
to an exponential distribution to a power law in the arrested state. A thorough understanding of the universality
remains to be explored, however we can point out that with this definition of the jump subsumes several length-scales.
Notice that the exponent 2 is when the mean time between two hops diverges logarithmically. The appearance of
these heavy tails point out that the system has developed memory; the amount of time a trapped colloid spends in
its current cage depends on the amount of time it has spent in the cage already.
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FIG. S5. (a) Intermittent caging and hopping events. (b) The waiting time distribution goes from an exponential to power
law. The waiting time distribution is typically distributed as a power law with an exponent 2 for all N in the solid phase.

MOVIES

1. SM1: S-Movie-1.mp4, Trajectory of a few colloids in fluid phase vy = 0.5. Irrespective of the origin colloids
traverse the entire droplet.

2. SM2: S-Movie-2.mp4, Trajectory of a few colloids in lamellar with core phase vy = 1.0. Colloids at different
regions of the droplet exhibit varying dynamics.

. SM3: S-Movie-3.mp4, Movie for fluid phase vy = 0.5, red bead shows a particle spanning entire droplet.
. SM4: S-Movie-4.mp4, Movie for lamellar phase vy = 0.7, red bead shows a particle spanning entire droplet.

. SM5: S-Movie-5.mp4, Movie for lamellar with core phase vy = 0.8, Red bead shows caging and escape dynamics.

(=2 B 2

. SM6: S-Movie-6.mp4, Movie for lamellar with core phase vy = 0.8, A slice of the droplet is shown. It shows
immobile core and a dynamic outer region. Red bead clearly shows caging and escape or slow and fast dynamics.

7. SM7: S-Movie-7.mp4, Movie for solid phase vy = 3.0.
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