
COHERENCE FOR ADJUNCTIONS IN A 4-CATEGORY

MANUEL ARAÚJO

Abstract. We give a definition of a coherent adjunction in a 4-category consisting
of a finite list of k-morphisms for k ≤ 4, plus equations beetween 4-morphisms. We
prove that the restriction map from the space of coherent adjunctions in a 4-category to
the space of 1-morphisms which admit an adjoint is a trivial fibration. We prove that
other restriction maps related to fixing parts of the data of an adjunction are also trivial
fibrations. We give a conjectural description of a coherent adjunction in an n-category.

1. Introduction

In this paper, we construct a 4-categorical presentation Adj(4,1) containing two 0-cells
X, Y and two 1-cells l : X → Y and r : Y → X and we define a coherent adjunction
in a strict 4-category C as a functor Adj(4,1) → C. We then prove Theorem 4.1, stating
that the data of a 1-morphism l in C which admits a right adjoint (by which we mean an
adjunction l ⊣ r exists in the homotopy 2-category of C) can be extended in an essentially
unique way to the data of a coherent adjunction.

In order to state this Theorem precisely, denote by θ(1) the computad consisting
of a single 1-cell, so that Map(θ(1), C) is the 4-groupoid of 1-morphisms in C, and let
MapL(θ(1), C) be its full 4-subgroupoid whose objects are the 1-morphisms which admit a
right adjoint in h2(C). The map

El : Map(Adj(4,1), C) → Map(θ(1), C)

given by restriction to the 1-cell l factors through MapL(θ(1), C).

1.1. Theorem. [Main Theorem]
Given a strict 4-category C, the restriction map

El : Map(Adj(4,1), C) → MapL(θ(1), C)

is a trivial fibration of strict 4-groupoids.
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The proof builds on an analogous result for adjunctions in 3-categories proved in
[Ara22a]. Using that result, one is reduced to showing that

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

is a trivial fibration. This map is a fibration, by a small modification of the main result of
[Ara24b] (Corollary 2.33). So we just need to show that its fibres are weakly contractible,
which in practice means checking it’s surjective on objects and that the homotopy groups
of its fibres are trivial. We prove surjectivity by describing how one can lift a coherent
adjunction in h3(C) to one in C. We prove triviality of homotopy groups by constructing
trivialising morphisms for arbitrary elements of these homotopy groups. We do this one
cell at a time, by using the lifting properties of fibrations and using the string diagram
calculus developed in [BV16], [Ara22b], [Ara24a] and [Ara24b] for explicit constructions.

In Section 5, we prove other versions of this Theorem, where instead of fixing only the
left adjoint we fix some more of the data constituting a coherent adjunction.

1.2. Remark. We restrict to strict 4-categories as that is the setting where we can
rigorously justify the use of our string diagram calculus. In upcoming work, we develop
a notion of semistrict 4-category based on these string diagrams and all results in this
paper will then hold in that context, with the same proofs.

1.3. A conjectural description of coherent n-categorical adjunctions.
The most surprising feature of our description of coherent 4-categorical adjunctions is
that no butterfly relations are needed. This is because given one of the swallowtail 3-
morphisms one can construct the other one, and there is a unique choice that satisfies the
butterfly relation (see Section 3.4.1). This means that the swallowtail 3-cell is the only
coherence cell that appears in a minimal description of a coherent 4-categorical adjunction
that is of a genuinely different kind than the ones already appearing in the ususal definition
of an adjunction in a 2-category. This 3-cell already appeared in the description of a 3-
categorical adjunction. This leads us to conjecture that no more genuinely new coherence
is needed in a minimal description of a coherent n-categorical adjunction. See Section 6
for more details.

1.4. Coherence. We explain in what sense a map Adj(4,1) → C can be considered a
coherent adjunction in C. This is intented as an informal discussion and we won’t use
any of it in the rest of the paper. An adjunction between 1-morphisms in a 4-category
C consists of

Data: 1-morphisms l, r and 2-morphisms u, c in C.

Properties: the two zigzag or snake composites of u and c are equal to appropriate
identity 2-morphisms in the homotopy 2-category h2(C).

The properties can be rephrased as follows: there exist 3-equivalences in C from
the snake composites of u and c to the appropriate identity 2-morphisms. The fact that
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these 3-morphisms are equivalences means that there exist inverse 3-morphisms and
4-equivalences from the appropriate composites to the appropriate identity 3-morphisms.
This then means there exist inverse 4-morphisms such that the appropriate composites
are equal to identity 4-morphisms.

The fact that we require the existence of certain morphisms as a property, instead
of having these morphisms as part of the data of an adjunction is the reason we say this
notion of adjunction is not coherent.

Our first attempt at fixing this problem might be to add to the data of an adjunction
all the morphisms whose existence we just postulated as part of the properties. This
would give a candidate for a definition of a coherent adjunction that would look like

Data: all morphisms specified above.

Properties: equations between 4-morphisms specified above.

This defines a certain coherent 4-categorical structure, where we use coherent to mean
that the structure is defined by certain data plus equations at the top dimension,
i.e. a 5-computad.

However, we still don’t know if this new structure is equivalent to that of an adjunc-
tion. By this we mean that, given (l, r, u, c) in C defining an adjunction, there should
be an essentially unique way to extend this to the data and equations of our coher-
ent structure. To make this precise, denote by P the 5-computad corresponding to the
coherent structure we defined above. Denote by Adj(2,1) the 3-computad containing the
data (l, r, u, c) and equations (two snake equations) defining an adjunction in a 2-
category and denote by sk2(Adj(2,1)) its 2-skeleton, obtained by discarding the equations.
Finally, define the space (4-groupoid) of adjunctions in a 4-category C to be the full
4-subgroupoid Mapadj(sk2(Adj(2,1)), C) ↪→ Map(sk2(Adj(2,1)), C) whose objects are those
maps sk2(Adj(2,1)) → C which determine adjunctions in C.

Then the question is whether the map

Map(P , C) → Mapadj(sk2(Adj(2,1)), C)

defined by restriction along sk2(Adj(2,1)) ↪→ P is a trivial fibration. This would mean
that, given (l, r, u, c) in C such that the snake equations are satisfied in h2(C), the space
(4-groupoid) of maps P → C extending (l, r, u, c) would be contractible.

This is not true and one can argue that in fact it is impossible to find a computad
Q such that Map(Q, C) → Mapadj(sk2(Adj(2,1)), C) is a trivial fibration. This means it is
impossible to find a coherent replacement for the data of an adjunction in C as defined
above.

So instead we consider the fact that for a 2-category C the data of an adjunction
(l, r, u, c) is equivalent to the data of a 1-morphism l in C that admits a right adjoint,
in the sense that Map(Adj(2,1), C) → MapL(θ(1), C) is a trivial fibration (see [Ara22a,
Proposition 3.3] for a proof, although the result was known before).

With this in mind, given a 4-category C, a left adjoint 1-morphism in C consists of
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Data: a 1-morphism l in C.

Properties: there exist (r, u, c) in C such that (l, r, u, c) is an adjunction.

Theorem 1.1 says that this is equivalent to the data of a map Adj(4,1) → C. So
in this sense a map Adj(4,1) → C deserves to called a coherent left adjoint 1-morphism.
However, given the additional results in Section 5, we feel justified in calling it a coherent
adjunction, following [RV16].

1.5. Related work. The study of coherence for 3-categorical adjunctions dates back
to [Ver92], where the swallowtail relations are first identified in this context. Further
developments appear in [Gur12], [Bar09] and [Pst22]. In [Ara22a] we proved a coherence
theorem for adjunctions in a strict 3-category, analogous to the one in the present paper.

In [BV16], there is a string diagram proof of the fact that, given an adjunction in
a 4-category which is already equipped with 4-morphisms implementing the swallowtail
coherence laws, one can modify one of these 4-morphisms so that two butterfly relations
are satisfied. This proof is formalized in the proof assistant Globular ([BKV16]).

In [RV16] the authors construct an (∞, 2)-category Adj and prove that the space of
functors Adj → Cat∞ is equivalent to the space 1-morphisms in Cat∞ which admit a right
adjoint. They also prove a result analogous to Theorem ??. One can think of Adj(4,1) as
an explicit finite presentation for the homotopy 4-category of Adj. This seems to be the
first place in the literature where coherence for adjunctions in a higher category C is stated
in terms of an equivalence of spaces between the space of morphisms in C which admit
an adjoint and the space of maps into C out of a category consisting of a free adjunction.
The strictly undulating squiggles used there are also a kind of string diagram calculus.

1.6. Future work. We will use the main result in this paper to give a new proof of
the coherence Theorem for 3-dualizable objects in strict symmetric monoidal 3-categories
in the author’s PhD Thesis [Ara17]. This new proof uses the machinery of fibrations of
4-groupoids and the associated long exact sequence on homotopy groups to vastly reduce
the amount and the complexity of the necessary string diagram calculations. In fact, all
the necessary string diagram calculations are done in [Ara22a] and the present paper. The
final step is essentially just [Ara17, Chapter 4] and will be the subject of a subsequent
paper.

The cobordism hypothesis should allow us to interpret the presentation encoding a
coherent 3-dualizable object as giving a finite presentation of the 3-dimensional fully
extended framed bordism category, as a symmetric monoidal 3-category. This would
however require the coherence result to be extended to weak symmetric monoidal 3-
categories. These results on coherence for adjoints would easily be extended to the case
of weak categories, as long as one establishes that our string diagram calculus is valid in
that context. This is also the subject of ongoing research.

Concretely, we are working on a theory of semistrict n-categories based on composi-
tion of string diagrams ([Ara22b],[Ara24a]). The main obstacle will be establishing the
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equivalence of this theory to standard models of weak n-categories. Recent results suggest
this might me achievable ([Gri21, Section 6.2]).

A subsequent goal of this project is to use the obtained finite presentation of the
bordism category to produce an efficient method for computing the values on 3-framed
manifolds of the fully extended framed Topological Field Theory associated to a fusion
category in [DSPS21].

2. Background

We now give some necessary definitions and recall the main results from [Ara24b] and
[Ara22a] which we will need in the rest of this paper.

2.1. Strict n-categories. We think of a strict n-category as an algebra over a certain
monad

Tn : gSetn → gSetn

on the category of n-globular sets. This is the monad defined in [Lei04, Chapter 8].
Alternatively one can think of a strict n-category as a category enriched in strict (n− 1)-
categories with the cartesian product. We use Ck to denote the set of k-morphisms in
the n-category C. We denote the k-fold identity morphism on some m-morphism f by
id

(k)
f ∈ Cm+k. A full n-subcategory of an n-category C is an n-subcategory D ⊂ C such

that D(x, y) = C(x, y) as (n− 1)-categories, for any objects x, y ∈ C0.

2.2. Equivalences. In a strict n-category, we say that a k-morphism f : x → y is an
isomorphism if there exists another k-morphism f : y → x such that f ◦ g = idy and
g ◦ f = idx. We also say that f is invertible and we call g its inverse (one can show
that it is unique). However, we are more interested in a weaker version of this, known as
equivalence.

2.3. Definition. Let C be a strict n-category. An n-morphism f : x → y in C is an
equivalence if it is an isomorphism. When k < n, a k-morphism f : x → y in C is an
equivalence when there is another k-morphism g : y → x and equivalences f ◦ g → idy
and g ◦ f → idx in C. We say that x is equivalent to y, and write x ≃ y, if there is an
equivalence x → y. When f : x → y is an equivalence, we also call it weakly invertible
and any morphism g : y → x such that f ◦g ≃ idy and g◦f ≃ idx is called a weak inverse
to f . When f is a k-morphism and an equivalence we also call it a k-equivalence.

2.4. Definition. An n-groupoid is an n-category all of whose morphisms are equiva-
lences.

2.5. Definition. Given an strict n-category C and k ≤ n, we define its homotopy k-
category hk(C) as the k-category whose ℓ-morphisms for ℓ ≤ k − 1 agree with those in C
and whose k-morphisms are the equivalence classes of k-morphisms in C. The composition
is induced by that in C.
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Finally, we use the following notion of weak equivalence for functors, which coincides
with the one in the folk model structure of [LMW10].

2.6. Definition. A functor F : C → D between strict n-categories is called essentially
surjective if for every object d ∈ D there exists an object c ∈ C and an equivalence
F (c) → d in D. A functor F : C → D between strict n-categories is called a weak
equivalence if it is essentially surjective and for all objects c1, c2 ∈ C the induced functor
C(c1, c2) → D(F (c1), F (c2)) is a weak equivalence of (n− 1)-categories.

2.7. Lemma. If F : C → D and G : D → E are weak equivalences of strict n-categories,
then G ◦ F is a weak equivalence.

2.8. Definition. An n-groupoid G is called weakly contractible if the map G → ∗ is
a weak equivalence.

Notice that a weakly contractible n-groupoid must be nonempty.

2.9. Homotopy groups.

2.10. Definition. Let G be an n-groupoid and x ∈ G0 an object. Denote by ΩxG the
(n − 1)-groupoid Hom(x, x). This comes equipped with a strictly associative monoidal
structure, given by composition in G.

2.11. Definition. Let G be an n-groupoid. We define π0(G) := G0/ ∼, where the
equivalence relation ∼ is equivalence in G. Now let x ∈ G be an object. Define π0(G, x)
to be the pointed set (π0(G), [x]), were [x] denotes the equivalence class of x in π0(G).
Finally, for 1 ≤ k ≤ n, define πk(G, x) := πk−1(ΩxG, idx) with monoid structure induced
by composition.

Note that, for k ≥ 1, the monoids πk(G, x) are actually groups and for k ≥ 2 they are
abelian, by an Eckmann-Hilton argument with pasting diagrams. Moreover, given a map
of n-groupoids f : A → B and an object a ∈ A one can also define πk(f, a) : πk(A, a) →
πk(B, f(a)), making πk into a functor on pointed n-groupoids.

2.12. Lemma. [Ara22a, Lemma 5.6]
Let f : A → B be a map of n-groupoids. Then f is a weak equivalence if and only if

the maps πk(f, a) : πk(A, a) → πk(B, f(a)) are isomorphisms, for all a ∈ A0 and for all
k ≥ 0.

2.13. Definition. Given an n-groupoid G and an integer k ≥ 0, we say that G is k-
connected if πℓ(G, x) = ∗ for every ℓ ≤ k and x ∈ G0. We usually write connected
when we mean 0-connected.

2.14. Corollary. An n-groupoid G is n-connected if and only if it is weakly contractible.

2.15. Fibrations.
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2.16. Definition. A map of n-groupoids p : E → B is called a fibration if, given any
k-morphism f : x→ y in B and a lift x̃ of its source along p, there exists a lift f̃ : x̃→ ỹ
of f along p. A map that is both a fibration and a weak equivalence is called a trivial
fibration.

In other words, a fibration of n-groupoids is a map that has the right lifting property
with respect to source inclusions s : θ(k−1) ↪→ θ(k) for all 1 ≤ k ≤ n.

2.17. Remark. Given n-groupoids E and B, it is natural to ask whether a map p : E →
B is a fibration in the sense of this paper if and only if it is is a fibration in the folk model
structure on strict n-categories defined in [LMW10]. This seems plausible, see [Ara24b]
for some discussion.

2.18. Lemma. If f : X → Y and g : Y → Z are fibrations of strict n-groupoids, then
g ◦ f is a fibration.

One can define the pullback of a diagram of n-categories by taking the pullback in
n-globular sets and equipping it with a canonical Tn-algebra structure. In the case of
n-groupoids, we have the following result.

2.19. Proposition. [Ara22a, Proposition 4.11]
Given a diagram of n-groupoids

X

F
��

Y
G
// Z

where F is a fibration, the pullback X ×Z Y is an n-groupoid.

2.20. Definition. Given a fibration of n-groupoids p : E → B and an object b ∈ B0, its
fibre is the n-groupoid p−1(b) defined by the pullback

p−1(b) E

∗ B

⌟
p

b

.

In [Ara22a] we constructed a long exact sequence in homotopy groups associated to a
fibration of n-groupoids, which allowed us to prove the following result.

2.21. Proposition. [Ara22a, Corollary 5.12]
A fibration of n-groupoids p : E → B is a trivial fibration if and only if for every object

b ∈ B the fibre p−1(b) is weakly contractible.

Notice that this implies that such a map must be surjective on objects, as its fibres
are contractible, which implies they are nonempty.

We will also need the following standard fact, whose straightforward proof can be
found in [Ara22a].
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2.22. Lemma. Consider a pullback

X ×B Y //

��

Y

g

��

X
f

// B

where f is a trivial fibration. Then π2 : X ×B Y → Y is a trivial fibration.

2.23. Adjunctions.

2.24. Definition. An adjunction in a strict 2-category C is a pair of 1-morphisms
l : X → Y and r : Y → X together with 2-morphisms u : idX → r ◦ l and c : l ◦ r → idY
called the unit and the counit, which satisfy two standard relations, called zigzag, snake
or triangle identities.

The following definitions of adjunctions in n-categories are adapted from the ones
given in [Lur08] for the case of (∞, n)-categories.

2.25. Definition. An adjunction between 1-morphisms in a strict n-category C is a
pair of 1-morphisms l : X → Y and r : Y → X together with 2-morphisms u : idX → r ◦ l
and c : l ◦ r → idY called the unit and the counit, which determine an adjunction in the
homotopy 2-category h2(C).

This means that an adjunction between 1-morphisms in a 4-category consists of a pair
of 1-morphisms l : X → Y and r : Y → X together with unit and counit 2-morphisms
satisfying the usual snake relations (also known as triangle identities) up to 3-equivalence.

2.26. Definition. An adjunction between k-morphisms in a strict n-category C is an
adjunction between 1-morphisms in an appropriate (n− k + 1)-category of morphisms in
C.

The following Lemma relating equivalences and adjunctions is well known (see [Ara22a,
Lemma 2.9] for a proof).

2.27. Lemma. Let C be a strict n-category, f : x → y a k-equivalence in C, g : y → x
a weak inverse and u : idx → g ◦ f a (k + 1)-equivalence. Then there exists a (k + 1)-
equivalence c : f ◦ g → idy such that (f, g, u, c) is an adjunction in C.

2.28. Presentations. An n-categorical presentation is simply a collection of k-cells
for every k ≤ n+ 1, whose sources and targets are composites of lower dimensional cells.
We interpret the (n+1)-cells as relations. Given an n-categorical presentation P we denote
by F (P) the n-category generated by P . Its k-morphisms are arbitrary composites
of the k-cells in P . Two n-morphisms are declared equal when they are related by an
(n+ 1)-cell. We sometimes write P → C to refer to a functor F (P) → C.

This can be made precise by using the theory of computads. See [SP09] for a detailed
treatment of computads.
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We denote by θ(k) the computad generated by a single k-cell, so that functors θ(k) → C
are in canonical bijection with the set of k-morphisms in C.

2.29. String diagrams. We refer the reader to [Ara24b] for a detailed description of
the string diagram calculus for 4-categories which we will use in this paper. However, we
hope the reader who is familiar with the general idea of string diagrams for 2-categories
(or monoidal categories) may be able to read on without reading [Ara24b] in detail.

2.30. Functor categories. In [Ara24b] we gave an explicit description of the 4-
category Fun(C,D) in terms of string diagrams, when C and D are 4-categories. We
include it below for convenience. We denote by Map(C,D) the underlying 4-groupoid in
Fun(C,D). Given a presentation P we write Fun(P ,D) instead of Fun(F (P),D) and sim-
ilarly for Map. We denote by MapL(θ(1), C) the full 4-subgroupoid of Map(θ(1), C) whose
objects are the 1-morphisms in C which admit a right adjoint in h2(C).

2.30.1. Natural transformations. Given functors F,G : C → D, a natural trans-
formation, or 1-transfor, α : F → G consists of the following data. We use red and blue
to denote the images of objects and morphisms under F and G, respectively.

0. For each object Y ∈ C a 1-morphism αY : F (Y ) → G(Y ).

Y = 7→ αY =

1. For each 1-morphism g : X → Y in C an invertible 2-morphism αg in D.

g = 7→ αg = : →

2. For each 2-morphism ζ : f → g in C an invertible 3-morphism αζ in D.

ζ = 7→ αζ = : →

3. For each 3-morphism t : η → ζ in C an invertible 4-morphism αt in D.

t = 7→ αt = : →

4. For each 4-morphism W : s→ t in C a relation αW in D.
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W = 7→ αW : =

This data is subject to relations equating the values of α on composite morphisms
with the corresponding composites of values of α given by stacking diagrams.

2.30.2. Modifications. Given natural transformations α, β : F → G, a modification,
or 2-transfor, m : α → β consists of the following data. We use green for α and purple
for β.

0. For each object Y ∈ C a 2-morphism mY : αY → βY in D.

Y = 7→ mY = : →

1. For each 1-morphism g : X → Y in C an invertible 3-morphism mg in D.

g = 7→ mg = : →

2. For each 2-morphism ζ = : f → g in C an invertible 4-morphism mζ in D.

mζ = : →

3. For each 3-morphism t : η → ζ in C a relation mt in D.
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t = 7→ mt : =

This data is subject to relations equating the values of m on composite morphisms
with the corresponding composites of values of m given by stacking diagrams.

2.30.3. Perturbations. Given modifications l,m : α → β, a perturbation, or 3-
transfor, A : l → m consists of the following data. We use orange for l and light blue for
m.

0. For each object Y ∈ C a 3-morphism AY : lY → mY in D.

Y = 7→ AY = : →

1. For each 1-morphism g = : X → Y in C an invertible 4-morphism Ag in D.

Ag = : →

2. For each 2-morphism ζ : f → g in C a relation Aζ in D.
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ζ = 7→ Aζ : =

This data is subject to relations equating the values of A on composite morphisms
with the corresponding composites of values of A given by stacking diagrams.

2.30.4. 4-transfors. Given perturbations A,B : l → m, a 4-transfor Λ : A → B
consists of the following data. We use olive for A and teal for B.

0. For each object Y ∈ C a 4-morphism ΛY : AY → BY in D.

Y = 7→ ΛY = : →

1. For each 1-morphism g =: X → Y in C a relation Λg in D.

g = 7→ Λg : =

2.31. Fibrations of mapping 4-groupoids.
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2.32. Theorem. [Ara24b, Theorem 1.2]
Let C be a strict 4-category, P a presentation and Q another presentation, obtained

by adding a finite number of cells to P. Then the restriction map

Map(Q, C) → Map(P , C)

is a fibration of 4-groupoids.

In this paper we will need the following strenghtening of Theorem 2.32.

2.33. Corollary. Let C be a strict 4-category, P a presentation and Q another presen-
tation, obtained by adding a finite number of cells to P. Then the restriction map

Map(Q, C) → Map(Q, hk(C))×Map(P,hk(C)) Map(P , C)

is a fibration of 4-groupoids.

First notice that the target is indeed a 4-groupoid, because Map(Q, hk(C)) → Map(P , hk(C))
is a fibration, by Theorem 2.32.

2.34. Proposition. Let C a strict 4-category, P a presentation, to which we add an
m-cell g. Then the restriction map

Map(P ∪ {g}, C) → Map(P ∪ {g}, hk(C))×Map(P,hk(C)) Map(P , C)

is a fibration of 4-groupoids.

Proof. Suppose we have an ℓ-morphism α : F → G in Map(P ∪{g}, hk(C))×Map(P,hk(C))

Map(P , C) and a lift F̃ of F to Map(P ∪ {g}, C). We want to find a lift α̃ : F̃ → G̃ in
Map(P ∪ {g}, C). So we have αg ∈ hk(C)m+ℓ, Gg ∈ hk(C)m+ℓ−1 and we want to lift both
to C.

If m + ℓ ≤ k + 1 then one can easily find the desired lifts, simply by the definition
of hk(C). The reader who is interested in checking the details can split further into cases
m+ ℓ < k, m+ ℓ = k and m+ ℓ = k + 1.

If m + ℓ ≥ k + 2 then the given data αg ∈ hk(C)m+ℓ and Gg ∈ hk(C)m+ℓ−1 is actually
no data at all, so this becomes a lifting problem for Map(P ∪{g}, C) → Map(P , C), which
can be solved by Theorem 2.32.

Proof. (of Corollary 2.33)
We use induction on the number of cells added to P to obtain Q. The base case is

Proposition 2.34. For the induction step, suppose g is the last cell added in getting from
P to Q. Then the restriction map

Map(Q, C) → Map(Q, hk(C))×Map(P,hk(C)) Map(P , C)
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is equal to the composite

Map(Q, C)

Map(Q, hk(C))×Map(Q\{g},hk(C)) Map(Q \ {g}, C)

Map(Q, hk(C))×Map(Q\{g},hk(C)) (Map(Q \ {g}, hk(C))×Map(P,hk(C)) Map(P , C))

Map(Q, hk(C))×Map(P,hk(C)) Map(P , C)

fib

id×idfib

≃

where the first map is a fibration by Proposition 2.34, the second map is a fibration by
the induction hypothesis and the final map is a fibration because it is an isomorphism.
Finally, the composite is a fibration by Lemma 2.18.

2.35. Coherence for adjunctions in a 3-category. We recall here the coherence
result for adjunctions in a 3-category from [Ara22a], which we will need to use. We defined
the 3-categorical presentation Adj(3,1) as follows.

2.36. Definition. [Ara22a, Definition 6.2]
The presentation Adj(3,1) consists of

(0) objects X = and Y =

(1) 1-cells l= : X
//
Yoo : = r

(2) 2-cells

u = : +3

c = : +3

(3) 3-cells

Cl = :
*4

jt : = C−1
l

Cr = :
*4

jt : = C−1
r

(4) relations
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: = id
(2)
l

: =

: = id(2)
r

: =

: =

We proved the corresponding coherence result.

2.37. Theorem. [Ara22a, Theorem 1.1]
Given a strict 3-category C, the restriction map

El : Map(Adj(3,1), C) → MapL(θ(1), C)

is a weak equivalence of strict 3-groupoids.

Finally, we showed that certain additional relations are satisfied in F (Adj(3,1)). Denote
by (SW) the last relation in Adj(3,1), which is called a swallowtail relation. Usually the
definition of a coherent adjunction in a 3-category includes another swallowtail relation,
which we call here (SW2), but in [Pst22] the author proves that one follows from the other.
In [Ara22a] we gave a new string diagram proof of this fact. There are also relations (SW)
and (SW2) whose sources are inverse to those of SW and SW2. We therefore defined a
larger presentation Adj+(3,1) and showed that F (Adj+(3,1)) = F (Adj(3,1)).

2.38. Definition. [Ara22a, Definition 6.9]
We define Adj+(3,1) to be the presentation obtained from Adj(3,1) by adding the relations
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(SW) : =

(SW2) : =

(SW2) : = .

2.39. Proposition. [Ara22a, Proposition 6.10]
We have F (Adj+(3,1)) = F (Adj(3,1)).

3. The presentation

We start by defining the presentation Adj(4,1) consisting of coherence data for an adjunc-
tion between 1-morphisms in a 4-category. This presentation is obtained from Adj(3,1) by
replacing each relation between 3-morphisms by a pair of 4-morphisms and then adding
relations witnessing the fact that these 4-morphisms are inverse to each other. More-
over, we add two snake relations expressing the fact that each of the two weakly inverse
pairs of cusp 3-cells in Adj(4,1) is an adjoint equivalence (note that two adjunctions would
normally require four snake relations, but in the case of adjoint equivalences one snake
relation implies the other, see the nLab page "adjoint equivalence" for a string diagram
proof of this fact).

3.1. Definition. The presentation Adj(4,1) consists of

(0) 0-cells X = and Y =

(1) 1-cells
l = : X

//
Yoo : = r

(2) 2-cells

u = : +3

c = : +3

(3) 3-cells
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Cl = :
*4

jt : = C−1
l

Cr = :
*4

jt : = C−1
r

(4) 4-cells

cCl
= :

//

oo id
(2)
l : = c−1

Cl

u−1
Cl

= :
//

oo : = uCl

cCr = :
//

oo id(2)
r : = c−1

Cr

u−1
Cr

= :
//

oo : = uCr

SW = :
//

oo : = SW−1

(5) relations
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= id
(3)
l ; =

= ; =

= id(3)
r ; =

= ; =

= id(2)
u ; =

= idCl
; = idCr

An adjunction in a 4-category is a pair of 1-morphisms, together with unit and counit
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2-morphisms satisfying the snake relations up to 3-equivalence. By picking weakly in-
verse pairs of 3-morphisms - which are usually called cusp 3-morphisms - implementing
these snake relations and then considering the invertible 4-morphisms and relations be-
tween these, implied in witnessing the fact that these are in fact weakly inverse pairs
of 3-morphisms, one obtains most of the cells in the above presentation. Additionally,
one needs the swallowtail 4-morphism SW and its inverse, together with two relations
witnessing the fact that these are an inverse pair. Finally, we add two snake relations
expressing the fact that each weakly inverse pair of cusp 3-morphisms is an adjoint equiv-
alence.

In [Ver92] and [Gur12] the definitions of coherent adjunction include two swallowtail
relations, but in [Pst22] the author shows that the second follows from the first. Here
we are one categorical dimension above, so we instead have a swallowtail 3-morphism
(together with an inverse), from which we can construct a second swallowtail 3-morphism,
related to the first by a butterfly relation. For this reason, we only need to include
one swallowtail 3-morphism and no butterfly relations in our presentation. The butterfly
relations are included as part of the coherence data for an adjunction in a 4-category in e.g.
[BV16]. Our result shows that they are actually not required in a minimal presentation
of the coherence data. We will show below how to enlarge our presentation to include
the butterfly relations, as well as certain relations we call swallowtail flip relations
(analogous to the cusp flip relations in [SP09]), obtaining a presentation which generates
an isomorphic 4-category.

3.2. Enlarging the presentation. In writing down the presentation Adj(4,1) we have
tried to make it as small as possible. However, it is also sometimes useful to have more
generators and relations at our disposal. We now introduce an enlarged presentation
Adjmax(4,1) and show that the map F (Adj(4,1)) → F (Adjmax(4,1)) induced by the inclusion of
presentations is an isomorpism of 4-categories, by constructing an explicit inverse. We do
this by introducing new generating 4-cells, together with relations which force them to be
equal to certain composites of generators in Adj(4,1), as well as some extra relations which
already follow from the ones in Adj(4,1).

3.2.1. Additional snake relations. Consider the final two relations in Adj(4,1). We
include them because we want the cusp 3-morphisms to be not only equivalences but
adjoint equivalences. More precisely, we want (Cl ⊣ C−1

l , uCl
, cCl

) and (Cr ⊣ C−1
r , uCr , cCr)

to be adjunctions. However, we have only included two snake relations, whereas we would
need four such relations to witness these two adjunctions. The reason we left out these
other snake relations is that, in the case of adjoint equivalences, they follow from the ones
we included. A string diagram proof of this fact can be found in the nLab page "adjoint
equivalence". We can also include the four snake relations involving the generators u−1

Cl
,

c−1
Cl

, u−1
Cr

, c−1
Cr

, which follow from the ones above because their sources are inverses.

3.3. Definition. Let Adj+(4,1) be the presentation obtained from Adj(4,1) by adding the six
relations
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= idC−1
l

; = idC−1
r

= idCl
; = idCr

= idC−1
l

; = idC−1
r
.

3.4. Proposition. We have F (Adj(4,1)) = F (Adj+(4,1)).

Proof. We have only added relations which already hold in F (Adj(4,1)).

3.4.1. The second swallowtail 4-morphism and the butterfly relations. We
will now construct inside F (Adj(4,1)) a second swallowtail 4-morphism SW2, together with
an inverse SW−1

2 .

SW2 = :
//

oo : = SW−1
2 .

We will then show that these 4-morphisms are related to SW, SW−1 by two butterfly
relations.

The construction proceeds as follows. Consider the map of 3-categories F(Adj(3,1)) →
h3(F(Adj(4,1))) determined by the obvious map on generators. By Proposition 2.39 the
relation SW2 holds in F(Adj(3, 1)), so it will also hold in h3(F(Adj(4,1))). Therefore we
can pick an isomorphism

: //
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in F(Adj(4,1)). This is obviously not unique, but an explicit construction can be found in
[Ara22a]. Now we just need to modify this so that it satisfies the butterfly relations. So
define SW2 by

SW2 = := .

It is clear that SW2 is invertible, being a composite of invertible morphisms.

3.5. Lemma. The 4-morphisms SW−1 and SW2 (as defined above) satisfy the butterfly
relation

= idCr .

Proof. The proof is the following string diagram computation.
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=

= =
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= = .

3.6. Lemma. The 4-morphisms SW−1 and SW2 (as defined above) satisfy the butterfly
relation

= idC−1
l
.

Proof. The proof is the following string diagram computation.
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= =
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= =
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= =
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= =
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= =
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= = .

Now we show that in fact the butterfly relations uniquely determine our choice of SW2.

3.7. Definition. Let Adj++
(4,1) be the presentation obtained from Adj+(4,1) by adding gener-

ating 4-cells SW2 and SW−1
2 and the two butterfly relations, as above, together with two

relations witnessing the fact that SW2 and SW−1
2 are inverse to each other.

3.8. Lemma. Let C be a 4-category and F,G : F (Adj++
(4,1)) → C functors which agree on

Adj+(4,1). Then F = G.

Proof. We need to show that F (SW2) = G(SW2), which amounts to the fact that the
butterfly relations already uniquely constrain the choice of SW2, once the choice of SW
is fixed. This can be proved by a string diagram calculation which is very similar to the
one in the proof of Lemma 4.8 below.

3.9. Proposition. The functor F (Adj+(4,1)) → F (Adj++
(4,1)) induced by the inclusion of

presentations is an isomorphism.

Proof. The above constructions determine a functor F (Adj++
(4,1)) → F (Adj+(4,1)) which is

the identity on F (Adj+(4,1)). So we only need to show that the composite F (Adj++
(4,1)) →

F (Adj+(4,1)) → F (Adj++
(4,1)) is the identity. This follows from the above Lemma.

3.9.1. The swallowtail flip relations. In addition to SW and SW2, we can define
isomorphisms SW and SW2 between the inverses of the sources of SW and SW2 and the
appropriate identity morphisms. These are related to SW, SW2 by the swallowtail flip
relations and they also satisfy two butterfly relations.
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SW = :
//

oo : = SW
−1

SW2 = :
//

oo : = SW2
−1

Namely, we can take

SW = :=

and

SW2 = := .

3.10. Remark. We could also have defined SW and SW2 by bending the legs of SW and
SW2 to the right, instead of the left. It is easy to show, using the snake relations, that
the resulting composites would be equal to the ones we have written down.
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3.11. Lemma. The pairs (SW−1, SW) and (SW−1
2 , SW2) satisfy the two swallowtail flip

relations:

=

=

Proof. This is immediate from the definition of SW, SW2, using the snake relations.

3.12. Lemma. The 4-morphisms SW
−1 and SW2 as defined above satisfy the butterfly

relations

= idCl
and = idC−1

r
.

Proof. The proof of the first relation is the string diagram computation below. The
proof of the second relation is a very similar computation.
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= =
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= =

= = .
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3.13. Definition. Let Adj+++
(4,1) be the presentation obtained from Adj++

(4,1) by adding gen-

erating 4-cells SW, SW
−1, SW2 and SW2

−1 together with four relations witnessing the
fact that these two pairs of cells are actually inverse two each other; the two butterfly
relations, as above; plus the two swallowtail flip relations as above.

3.14. Lemma. Let C be a 4-category and F,G : F (Adj+++
(4,1) ) → C functors which agree on

Adj++
(4,1). Then F = G.

Proof. The swallowtail flip relations imply that the images of SW and SW2 under F and
G must be defined from the images of SW−1 and SW−1

2 by the formulas we used above.
Finally the images of SW−1 and SW2

−1 must be the inverses of the images of SW and
SW2. This shows that F and G are determined by their values on Adj++

(4,1), so F = G.

3.15. Proposition. The functor F (Adj++
(4,1)) → F (Adj+++

(4,1) ) induced by the inclusion of
presentations is an isomorphism.

Proof. The constructions above determine a functor F (Adj+++
(4,1) ) → F (Adj++

(4,1)) which is
inverse to the inclusion, by the previous Lemma.

3.15.1. The final enlarged presentation. Finally, one can add some extra relations
which already hold in F (Adj+++

(4,1) ). There are two swallowtail flip relations that look
exactly like the ones we wrote down, except we bend one leg to the right, instead of
the left. These follow from the ones we wrote down, by Remark 3.10. There are then
four additional swallowtail flip relations, whose sources are inverse to the four already
described. Finally there are four additional butterfly relations, whose sources are inverse
to the four already described.

3.16. Definition. We define the presentation Adjmax(4,1) by adding to Adj+++
(4,1) the six swal-

lowtail flip relations and four butterfly relations described above.
This presentation therefore includes a total of four inverse pairs of swallowtail 4-

morphisms (one of these pairs is already in Adj(4,1)), eight butterfly relations, eight swal-
lowtail flip relations and eight snake relations (two of which are in Adj(4,1)).

3.17. Lemma. We have F (Adjmax(4,1)) = F (Adj+++
(4,1) )

Proof. We have only added relations which already hold in Adj+++
(4,1) .

3.18. Corollary. The inclusion map F (Adj(4,1)) → F (Adjmax4,1 ) is an isomorphism, with
an explicit inverse given by the constructions in this section.

In view of the above result, we will sometimes use generators and relations from
Adjmax4,1 in our computations in the rest of this paper, as these can all be interpreted inside
F (Adj(4,1)).
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4. Proof of the main Theorem

We now give a proof of the Main Theorem, which we state here again, for convenience.

4.1. Theorem. [Main Theorem]
Given a strict 4-category C, the restriction map

El : Map(Adj(4,1), C) → MapL(θ(1), C)

is a trivial fibration of strict 4-groupoids.

Theorem 4.1 will be a consequence of the following Lemma.

4.2. Lemma. Given a 4-category C, the map

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

induced by the square

Map(Adj(4,1), C)

��

El //MapL(θ(1), C)

��

Map(Adj(4,1), h3(C)) El

//MapL(θ(1), h3(C))

is a trivial fibration.

Given this Lemma, it is easy to give a proof of Theorem 4.1.

Proof Proof of Theorem 4.1. Note that the bottom map in the square from Lemma
4.2 is the same as

Map(Adj(3,1), h3(C)) → MapL(θ(1), h3(C))

which is a fibration by Theorem 2.32 and a weak equivalence of 3-groupoids by Proposition
2.37. Therefore, applying Lemma 2.22, the map

π2 : Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C) → MapL(θ(1), C)

is a trivial fibration of 4-groupoids. By Lemmas 4.2, 2.7 and 2.18, the composite Map(Adj(4,1), C) →
MapL(θ(1), C) is a trivial fibration.

So it is enough to prove Lemma 4.2. Since ψ is a fibration (Corollary 2.33), it is
enough to show that it has weakly contractible fibres. This is what we will do in the rest
of this section.

4.3. Lemma. The fibres of ψ are 3-groupoids.

Proof. Note that a priori the fibres are 4-groupoids, being fibres of a map between 4-
groupoids. So we have to show that the fibres contain only identitity 4-morphisms. This
follows from the fact that θ(1) contains the 0-skeleton of Adj(4,1).
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4.4. The fibres are nonempty. We show that

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

is surjective on objects. In other words, we show its fibres are all nonempty.
Given F : Adj(4,1) → h3(C) we must lift it to a functor Adj(4,1) → C.

4.5. Definition. We define Adj−(4,1) to be the presentation obtained from Adj(4,1) by re-
moving the two snake relations

= idCl
and = idCr .

4.6. Lemma. The map ψ is surjective on objects.

Proof. Consider F : Adj(4,1) → h3(C). From this one can construct a functor F− :

Adj−(4,1) → C. In order to obtain a functor F : Adj(4,1) → C we apply Lemma 2.27
to the invertible 3-morphisms F (Cr) and F (Cl), with inverses F (C−1

r ) and F (C−1
l ) and

units F (uCr) and F (uCl
). We obtain new counit 4-morphisms satisfying the appropriate

snake equations. Letting F (cCr) and F (cCl
) equal these morphisms, we get a functor

F : Adj(4,1) → C which lifts the original F .

4.7. The fibres are connected. Now we prove that the fibres of

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

are connected.

4.8. Lemma. Given F,G ∈ Map(Adj(4,1), C) with F = G on the 3-skeleton of Adj(4,1),
there exists an isomorphism α : F → G in

Map(sk3(Adj(4,1)) ∪ {SW, SW−1}, C)

which is the identity on sk3(Adj(4,1)) \ {C−1
l }.

Proof. Since F = G on {X, Y, l, r, u, c, Cl, C−1
l , Cr, C

−1
r }, the relation αSW takes the form
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= .

We define αC−1
l

to be the 4-morphism

and we check that the relation αSW holds as follows

= =
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= =
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.

The relation αSW−1 follows from αSW.

4.9. Lemma. Given F,G ∈ Map(Adj(4,1), C) with F = G on

sk3(Adj(4,1)) ∪ {SW, SW−1}

there exists an isomorphism α : F → G in Map(Adj(4,1), C), which is the identity on
sk3(Adj(4,1)) \ {Cl, C−1

r }.

Proof. We define

αCl
:= and αC−1

r
:=

so the relations αuCl
, αcCl

, αuCr
and αcCr

are satisfied. The relations αu−1
Cl

, αc−1
Cl

, αu−1
Cr

and αc−1
Cr

follow from these ones. The relation αSW holds because αC−1
l

and αCr are the
identity and F (SW) = G(SW). The relation αSW−1 follows from αSW.



40 MANUEL ARAÚJO

4.10. Lemma. Given F,G ∈ Map(Adj(4,1), C) such that F = G on the 3-skeleton, there
exists α : F → G in Map(Adj(4,1), C) such that α = idF on the 2-skeleton.

Proof. By Lemma 4.8 there is an isomorphism α : F → G in

Map(sk3(Adj(4,1)) ∪ {SW, SW−1}, C)

which is the identity on sk3(Adj(4,1)) \ {C−1
l }. Since the restriction map

Map(Adj(4,1), C) → Map(sk3(Adj(4,1)) ∪ {SW, SW−1}, C)

is a fibration (Theorem 2.32), one can extend this to an equivalence α : F → F1 in
Map(Adj(4,1), C). Now it is enough to find an equivalence F1 → G which is the identity on
sk2(Adj(4,1)). Since F1 = G on sk3(Adj(4,1)) ∪ {SW, SW−1}, this can be done by Lemma
4.9.

4.11. Lemma. The fibres of

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

are connected.

Proof. By Lemma 4.6, the fibres are nonempty. So we just need to check that all objects
in the same fibre are equivalent. Given F,G ∈ Map(Adj(4,1), C) with ψ(F ) = ψ(G) we
need to find an equivalence α : F → G in Map(Adj(4,1), C) such that ψ(α) = idψ(F ).
Equivalently, we are given F,G ∈ Map(Adj(4,1), C) with F = G on the 2-skeleton of
Adj(4,1) and F (f) ≃ G(f) for every 3-cell f ∈ Adj(4,1). We need to find α : F → G in
Map(Adj(4,1), C) such that α = idF over the 1-skeleton and αx ≃ idF (x) for every 2-cell x
in Adj(4,1).

We use the equivalences F (f) ≃ G(f) to build α : F → G over the 3-skeleton of
Adj(4,1), with α = idF over the 2-skeleton. Because Map(Adj(4,1), C) → Map(sk3(Adj(4,1)), C)
is a fibration (Theorem 2.32), we can lift this to α̃ : F → G̃ in Map(Adj(4,1), C). On the
3-skeleton of Adj(4,1) we have G̃ = G and α̃ = α, so α̃ = idF on the 2-skeleton.

Now it’s enough to find an equivalence β : G̃ → G in Map(Adj(4,1), C) which is the
identity on the 2-skeleton, as its composite with α̃ will provide an equivalence F → G
over Adj(4,1) which is the identity over the 2-skeleton, which is even more than we need.
We can find such β by applying Lemma 4.10.

4.12. The fibres are 1-connected. Now we prove that the fibres of

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

are 1-connected.

4.13. Lemma. Given a 1-morphism α : F → F in Map(Adj(4,1), C) such that α is the
identity on the 2-skeleton, there exists a 2-morphism m : α → idF in Map(sk2(Adj(4,1)) ∪
{Cl, C−1

l }, C) which is the identity on sk2(Adj(4,1)) \ {u}.
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Proof. Denote αCl
: F (Cl) → F (Cl) by

.

We want to define a 4-morphism mu : idu → idu, which we denote by

,

such that the relations mCl
and mC−1

l
hold. The relation mCl

looks like

=

and the relation mC−1
l

follows from mCl
. We have
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= =

=

so we just define mu to be the inverse of
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.

4.14. Lemma. Given a 1-morphism α : F → F in Map(Adj(4,1), C) such that α is the
identity on sk3(Adj(4,1)) \ {Cr, C−1

r }, we have α = id in Map(Adj(4,1), C),

Proof. Consider the relation

αSW : = .

We use this to show αCr = id as follows.

= = =
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= = .

It follows that αC−1
r

is the identity, since Cr ⊣ C−1
r .

4.15. Lemma. Given F ∈ Map(Adj(4,1), C) and an equivalence α : F → F which is the
identity on the 2-skeleton, there exists a 2-equivalence m : α → id in Map(Adj(4,1), C)
which is the identity on the 1-skeleton.

Proof. By Lemma 4.13, there exists a 2-morphism m : α → idF in Map(sk2(Adj(4,1)) ∪
{Cl, C−1

l }, C) which is the identity on sk1(Adj(4,1)) ∪ {c}. Since

Map(Adj(4,1), C) → Map(sk2(Adj(4,1)) ∪ {Cl, C−1
l }, C)

is a fibration (Theorem 2.32), we can extend this to a 2-morphism m : α → α1 in
Map(Adj(4,1), C). Now α1 = idF on sk2(Adj(4,1)) ∪ {Cl, C−1

l } so, by Lemma 4.14, we have
α1 = id in Map(Adj(4,1), C).

4.16. Lemma. The fibres of ψ are 1-connected.

Proof. By Lemma 4.11, the fibres are connected, so we just need to show that π1(ψ−1(ψ(F )), F ) =
∗ for any F ∈ Map(Adj(4,1), C). By an argument which is completely analogous to the one
given in the proof of Lemma 4.11, this reduces to Lemma 4.15.

4.17. The fibres are 2-connected. Now we prove that the fibres of

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

are 2-connected.

4.18. Lemma. Given a 2-morphism m : idF → idF in Map(Adj(4,1), C) such that m is the
identity on the 1-skeleton, there exists a 3-morphism A : m→ id

(2)
F in Map(sk1(Adj(4,1))∪

{u}, C) which is the identity on {X, Y, l}.
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Proof. We need to define a 4-morphism

Ar := : id
(2)
F (r) → id

(2)
F (r)

such that the relation

Au : = id
(2)
F (u)

holds. Here we denote

mu := .

We have

=

= = = .

so we just define Ar to be the inverse of
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.

4.19. Lemma. Given a 2-morphism m : idF → idF in Map(Adj(4,1), C) such that m is the
identity on sk2(Adj(4,1)) \ {c}, we have m = id in Map(Adj(4,1), C).

Proof. Denote

mc :=

and consider the relation

mCl
: = .

Then we have

= = = = .
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4.20. Lemma. Given F : Adj(4,1) → C and a 2-morphism m : idF → idF in Map(Adj(4,1), C)
such that m is the identity on the 1-skeleton, there exists a 3-morphism A : m→ id

(2)
F in

Map(Adj(4,1), C), which is the identity on {X, Y, l}.

Proof. By Lemma 4.18 there exists a 3-morphism A : m → id
(2)
F in Map(sk1(Adj(4,1)) ∪

{u}, C) which is the identity on {X, Y, l}. Since the restriction map

Map(Adj(4,1), C) → Map(sk1(Adj(4,1)) ∪ {u}, C)

is a fibration (Theorem 2.32), we can extend this to A : m→ m1 in Map(Adj(4,1), C). Now
m1 = id

(2)
F on sk1(Adj(4,1))∪{u}, so by Lemma 4.19 we have m = id in Map(Adj(4,1), C).

4.21. Lemma. The fibres of ψ are 2-connected.

Proof. By Lemma 4.16, the fibres are 1-connected, so we just need to show that π2(ψ−1(ψ(F )), F ) =
∗ for any F ∈ Map(Adj(4,1), C). By an argument analogous to the one given in the proof
of Lemma 4.11, this reduces to Lemma 4.20.

4.22. The fibres are 3-connected. Now we prove that the fibres of

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

are 3-connected.

4.23. Lemma. Given a 3-morphism A : id
(2)
F → id

(2)
F in Map(Adj(4,1), C) such that A is

the identity on {X, Y, l}, we have A = id in Map(Adj(4,1), C).

Proof. All we have to do is show that

Ar = : id
(2)
F (r) → id

(2)
F (r)

is the identity. Consider the relation

Au : = .

Using this, we have
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= = = = = .

4.24. Lemma. The fibres of ψ are 3-connected.

Proof. This follows from the Lemmas 4.21 and 4.23.

4.25. Proposition. The fibres of ψ are weakly contractible.

Proof. The fibres are 3-groupoids (Lemma 4.3) and we have shown they are 3-connected
(Lemma 4.24). So by Corollary 2.14 the fibres are weakly contractible.

Proof Proof of Lemma 4.2. The map

ψ : Map(Adj(4,1), C) → Map(Adj(4,1), h3(C))×MapL(θ(1),h3(C)) MapL(θ(1), C)

is a fibration by Corollary 2.33 and its fibres are weakly contractible by Proposition 4.25.
Therefore, by Proposition 2.21, the map ψ is a trivial fibration.

5. Other versions of the main theorem

5.1. Definition. We define Unit to be the subcomputad of Adj(4,1) containing the cells
{X, Y, l, r, u}.

5.2. Definition. We define Cusp to be the subcomputad of Adj(4,1) containing Unit plus
{c, Cr}.

5.3. Definition. We define Sw to be the subcomputad of Adj(4,1) containing Cusp plus
{C−1

l , SW}.
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5.4. Definition. We define Mapadj(Unit, C) to be the full 4-subgroupoid of Map(Unit, C)
whose objects are those F such that (F (l), F (r), F (u)) can be extended to an adjunction
in C.

5.5. Definition. Define Mapadj(Cusp, C) to be the full 4-subgroupoid of Map(Cusp, C)
whose objects are those F such that F (Cr) is an equivalence and (F (l), F (r), F (u), F (c))
is an adjunction.

5.6. Definition. Define Mapadj(Sw, C) to be the full 4-subgroupoid of Map(Sw, C) whose
objects are those F such that F (Cr), F (C−1

l ) and F (SW) are equivalences.

5.7. Theorem. Let C be a strict 4-category. All restriction maps below are trivial fibra-
tions of 4-groupoids.

Map(Adj(4,1), C) Mapadj(Sw, C) Mapadj(Cusp, C) Mapadj(Unit, C) MapL(θ(1), C)

In this section we will prove that the first map

ϕ : Mapadj(Unit, C) → MapL(θ(1), C)

is a trivial fibration. The proofs that the second and third maps are trivial fibrations are
very similar and we ommit them. Finally the fact that the first map is a trivial fibration
follows from the following simple argument.

5.8. Proposition. The map ESw : Map(Adj(4,1), C) → Mapadj(Sw, C) is a trivial fibra-
tion.

Proof. Consider

Map(Adj(4,1), C) Mapadj(Sw, C)

MapL(θ(1), C)

ESw

El ψ
.

We know El is a trivial fibration by Theorem 4.1. The map ESw is a fibration because
Map(Adj(4,1), C) → Map(Sw, C) is a fibration by Theorem 2.32. Now ψ is a weak equiva-
lence because it’s a composite of weak equivalences (Lemma 2.7). Since weak equivalences
satisfy the 2 out of 3 property (follows from Lemma 2.12) we conclude that ESw is also a
weak equivalence.
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In the rest of this section we prove that ϕ is a trivial fibration. Consider

Map(Adj(4,1), C) Mapadj(Unit, C)

MapL(θ(1), C)

EUnit

El ϕ
.

5.9. Lemma. Given F ∈ Mapadj(Unit, C) and F → G in Map(Unit, C) we have G ∈
Mapadj(Unit, C).

Proof. Let P be the subcomputad of Adj(4,1) obtained by removing the swallowtail 3-cells
(and all relations involving them) and the snake relations between the cusp cancellation
and creation 4-morphisms. In other words, P consists of (l, r, u, c) together with the four
cusp 3-cells (Cl, C

−1
l , Cr, C

−1
r ), and all 4-cells and relations witnessing the fact C−1

r is a
weak inverse of Cr and C−1

l is a weak inverse of Cl. Now F ∈ Mapadj(Unit, C) implies F
can be extended to P . Since Map(P , C) → Map(Unit, C) is a fibration (Theorem 2.32),
we can extend F → G to P . This gives an extension of G to P , which shows that
G ∈ Mapadj(Unit, C).

5.10. Lemma. The map ϕ is a fibration.

Proof. In the diagram below the dotted arrow exists because Map(Unit, C) → Map(θ(1), C)
is a fibration (by Theorem 2.32). The dashed arrow exists because Mapadj(Unit, C) ↪→
Map(Unit, C) is a full 4-subgroupoid (together with Lemma 5.9 in the k = 1 case).

θ(k−1) Mapadj(Unit, C) Map(Unit, C)

θ(k) MapL(θ(1), C) Map(θ(1), C)

ϕ

5.11. Lemma. The map ϕ is surjective on objects.

Proof. An object in MapL(θ(1), C) is by definition a 1-morphism in C which admits a
right adjoint.

5.12. Lemma. The fibres of ϕ are connected.

Proof. Given F,G ∈ Mapadj(Unit, C) such that ϕ(F )=ϕ(G) we must find an equiv-
alence α : F → G in Mapadj(Unit, C) with α = id on {X, Y, l}. From F,G we ob-
tain F,G ∈ Map(Adj(2,1), h2(C)). The fibres of Map(Adj(2,1), h2(C)) → MapL(θ(1), h2(C))
are connected, by [Ara22a, Lemma 3.10], so we have an equivalence α : F → G in
Map(Adj(2,1), h2(C)) with α = id on {X, Y, l}. This consists of a 2-morphism αr and two
equations αu and αc. The equation αu in h2(C) can be lifted to a 3-equivalence in C, so
we obtain the desired α : F → G in Mapadj(Unit, C).
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5.13. Lemma. The map EUnit : Map(Adj(4,1), C) → Mapadj(Unit, C) is surjective on ob-
jects.

Proof. Given G ∈ Mapadj(Unit, C), there exists F̃ ∈ Map(Adj(4,1), C) such that El(F̃ ) =
ϕ(G), because El : Map(Adj(4,1), C) → MapL(θ(1), C) is surjective on objects (Theorem
4.1). Letting F = EUnit(G̃), we have ϕ(F ) = ϕ(G) so by Lemma 5.12 there is an equiva-
lence F → G in Mapadj(sk2(Adj(2,1)), C), which we can lift to F̃ → G̃ in Map(Adj(4,1), C),
because EUnit is a fibration. Then G̃ is our desired lift of G.

Now we prove the fibres of ϕ are 1-connected.

5.14. Lemma. Let F ∈ Map(sk3(Adj(3,1)), C) and α : F → F in Map(Unit, C) such that
α = idF on {X, Y, l}. Then there exists m : α → idF in Map({X, Y, l, r}, C) with m = id

(2)
F

on {X, Y, l}.

Proof. Same as [Ara22a, Lemma 3.11]

5.15. Lemma. Let F ∈ Map(sk4(Adj(4,1)), C) and α : F → F in Map(Unit, C), such that
α = idF on {X, Y, l, r}. Then there exists m : α → idF in Map(Unit, C) with m = id

(2)
F

on {X, Y, l}.

Proof. Same as [Ara22a, Lemma 6.14].

5.16. Lemma. The fibres of ϕ are 1-connected.

Proof. Consider α : F → F in Mapadj(Unit, C) with α = idF on {X, Y, l}. We need to
construct m : α → idF in Mapadj(Unit, C) with m = id

(2)
F on {X, Y, l}.

By Lemma 5.13 we can extend F to Adj(4,1).
By Lemma 5.14, we can construct m1 : α → idF in Map(sk1(Adj(2,1)), C) with m1 =

id
(2)
F on {X, Y, l}. By Theorem 2.32, we can extend this tom1 : α → α1 in Mapadj(Unit, C),

where α1 = idF over sk1(Adj(2,1)) and m1 = id
(2)
F over {X, Y, l}.

By Lemma 5.15 we can construct m2 : α1 → idF in Map(Unit, C) with m2 = id
(2)
F on

{X, Y, l}.
Composing m1 and m2 we obtain the desired m : α → idF in Mapadj(Unit, C), with

m = id
(2)
F on {X, Y, l}.

Now we show the fibres of ϕ are 2-connected.

5.17. Lemma. Let F ∈ Map(sk4(Adj(4,1)), C) and m : idF → idF in Map(Unit, C) such
that m = id

(2)
F on {X, Y, l}. Then there exists A : m → id

(2)
F in Map({X, Y, l, r}, C) with

A = id
(3)
F on {X, Y, l}.

Proof. This is almost the same as the proof of [Ara22a, Lemma 6.17], except there
we use the 4-morphism mc in the construction of Ar. There is a completely analogous
construction using mu instead.
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5.18. Lemma. Let F ∈ Map(Adj(4,1), C) and m : idF → idF in Map(Unit, C) such that
m = id

(2)
F on {X, Y, l, r}. Then there exists A : m→ id

(2)
F in Map(Unit, C) with A = id

(3)
F

on {X, Y, l}.

Proof. Same as Lemma 4.18.

5.19. Lemma. The fibres of ϕ are 2-connected.

Proof. This follows from Lemmas 5.17 and 5.18, by an argument which is analogous to
the one in the proof of Lemma 5.16.

Now we show the fibres of ϕ are 3-connected.

5.20. Lemma. Let F ∈ Map(Adj(4,1), C) and A : id
(2)
F → id

(2)
F in Map(Unit, C) such that

A = id
(3)
F on {X, Y, l}. Then Ar = id

(3)
F (r).

Proof. Same as Lemma 4.23.

5.21. Lemma. The fibres of ϕ are 3-connected.

Proof. Follows immediately from Lemma 5.20.

5.22. Proposition. The map ϕ : Mapadj(Unit, C) → MapL(θ(1), C) is a trivial fibration
of 4-groupoids.

Proof. We know ϕ is a fibration of 4-groupoids. Its fibres are 3-groupoids because
θ(1) contains the 0-skeleton of Unit. Since the fibres are 3-connected, they are weakly
contractible, so ϕ is a trivial fibration.

6. A conjectural description of n-categorical adjunctions

6.1. Definition. An adjoint k-equivalence X → Y in an n-category C, for 2 ≤ k ≤
n+1, is an adjoint 1-equivalence in the n−k+1-category HomC(s(X), t(X)). An adjoint
1-equivalence in an n-category is an isomorphism for n = 1 and an equality for n = 0.
When n ≥ 2, an adjoint 1-equivalence X → Y in an n-category C consists of the following
data.

(0) 0-cells X = and Y =

(1) 1-cells
f = : X

//
Yoo : = f−1

(2) two adjoint 2-equivalences

u = : +3

c = : +3
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(3) an adjoint 3-equivalence

Cf = : *4

6.2. Conjecture. This notion of adjoint k-equivalence is a coherent k-equivalence,
in the sense that the space of adjoint k-equivalences in an n-category is equivalent to the
space of k-morphisms which are equivalences.

6.3. Definition. We define Adj(n,1) to be the (n+ 1)-computad containing the following
cells.

(0) 0-cells X = and Y =

(1) 1-cells
l = : X

//
Yoo : = r

(2) 2-cells

u = : +3

c = : +3

(3) two adjoint 3-equivalences

C−1
l = : *4

Cr = : *4

(4) an adjoint 4-equivalence

SW = : →

6.4. Conjecture. Given an n-category C, the space of maps Adj(n,1) → C is equivalent
to the space of 1-morphisms in C which admit a right adjoint. So such a map deserves to
be called a coherent adjunction.
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