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eLife Assessment
The main idea tested in this work is that host galectin-9 inhibits Mycobacterium tuberculosis (Mtb) 
growth by recognizing the Mtb cell wall component arabinogalactan (AG) and, as a result, disrupting 
mycobacterial cell wall structure. Moreover, a similar effect is achieved by anti-AG antibodies. While 
the hypothesis is intriguing and the work has the potential to make a valuable contribution to Mtb 
therapy, the evidence presented is incomplete and does not explain several critical points including 
the dose-independent effect of galectin-9 on Mtb growth and how anti-AG antibodies and galec-
tin-9 access the AG layer of intact Mtb.

Abstract Deeper understanding of the crosstalk between host cells and Mycobacterium tubercu-
losis (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against 
tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a 
critical component. AG has been identified as a virulence factor of Mtb which is recognized by host 
galectin-9. Here, we demonstrate that galectin-9 directly inhibited mycobacterial growth through 
AG-binding property of carbohydrate-recognition domain 2. Furthermore, IgG antibodies with AG 
specificity were detected in the serum of TB patients. Based on the interaction between galectin-9 
and AG, we developed a monoclonal antibody (mAb) screening assay and identified AG-specific 
mAbs which profoundly inhibit Mtb growth. Mechanistically, proteomic profiling and morphological 
characterizations revealed that AG-specific mAbs regulate AG biosynthesis, thereby inducing cell 
wall swelling. Thus, direct AG-binding by galectin-9 or antibodies contributes to protection against 
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TB. Our findings pave the way for the rational design of novel immunotherapeutic strategies for TB 
control.

Introduction
TB, caused by Mtb remains a considerable threat to human health. In 2021, 10.6 million people fell ill 
with TB, 1.6 million people died from the disease, and 450,000 new TB cases suffered from rifampicin-
resistant or multidrug-resistant TB on this globe (Bagcchi, 2023). Although TB treatment measures are 
in place in many parts of the world, cure rates are insufficient due to the increasing emergence of drug 
resistance. Therefore, novel intervention strategies are urgently needed. Rational design of novel TB 
therapeutics depends on a better understanding of the crosstalk between Mtb and host cells.

Following inhalation of aerosols carrying Mtb, innate immune responses are initiated which consti-
tute a first line of defense. First, Mtb are engulfed by mononuclear phagocytes into the phagosome 
which matures and then fuses with lysosomes (Chandra et  al., 2022). The pathogen-associated 
molecular patterns (PAMPs) from Mtb are recognized by a variety of pattern recognition receptors 
(PRRs), such as Toll-like receptors (TLRs), Nod-like receptors (NLRs), C-type lectins receptors (CLRs) 
and cyclic GMP-AMP synthase (cGAS), resulting in production of inflammatory cytokines, chemokines 
and anti-bacterial peptides to restrict bacterial growth (Reiling et al., 2002; Fremond et al., 2004; 
Wilson et al., 2015; Watson et al., 2015). Mtb can escape from the phagosome into the cytosol and 
can be recaptured in autophagosomes, through a process termed xenophagy, to form a degradative 
autolysosome (Wang and Li, 2020; Lopez et al., 2018). Cell-autonomous defense mechanisms also 
include the production of reactive oxygen and nitrogen intermediates, hypoxia, mild acidity, and 
nutrition deprivation (Nathan and Shiloh, 2000; Lupoli et al., 2018). These mechanisms help to limit 
the growth and spread of the bacteria within the cell, and contribute to the initiation of an adaptive 
immune response. However, our knowledge about host immune factors that target Mtb components 
and directly inhibit replication is limited.

Mtb can evade and resist immune defense by entering a state of dormancy which can last for years. 
This is due to the capacity of Mtb to synthesize a sturdy cell wall, slow down metabolism to promote 
growth arrest, and implement the so-called stringent response (Batt et al., 2020; Hauryliuk et al., 
2015). These mechanisms provide the basis for the long-term persistence of Mtb until immune control 
weakens. Once immune control deteriorates, Mtb acquires a metabolic active stage and induces 
progression to active TB.

The complex cell wall of Mtb provides a barrier not only for host defense, but also for antibiotics. 
Accordingly, components of the cell wall are well-established drug targets. The essential core cell wall 
structure is composed of three distinct layers: (a) the cross-linked network of peptidoglycan (PGN), (b) 
the highly branched AG polysaccharide, and (c) the characteristic long-chain mycolic acids (Jankute 
et al., 2015). Among these, AG has been an important target for anti-TB drugs, though understanding 
of its biological functions is limited. E.g., ethambutol, one of the front-line anti-TB drugs, targets the 
arabinosyltransferases EmbA, EmbB, and EmbC, which are critical for AG synthesis (Escuyer et al., 
2001; Goude et al., 2009; Zhang et al., 2020). However, it remains unclear whether AG is directly 
targeted by natural host immune factors in TB.

Recently, we identified AG as a virulence factor of Mtb that is recognized by galectin-9, a member 
of the β-galactoside binding gene family. Upon AG binding, galectin-9 initiates the downstream TAK1-
ERK-MMP signaling cascade leading to pathologic impairment of the lung (Wu et al., 2021). Galec-
tin-4 and galectin-8 directly kill E. coli by recognizing blood group antigens of bacteria (Stowell et al., 
2010). This raises the question of whether galectin-9 inhibits mycobacterial growth via targeting AG. 
Here, we demonstrate a novel cell-autonomous mechanism by which galectin-9 impedes mycobac-
terial growth via its AG-binding property in a carbohydrate recognition domain (CRD) 2-dependent 
mode. Moreover, in sera of TB patients, we identified anti-AG IgG antibodies which were supposed 
to defend against TB. Employing a monoclonal antibody (mAb) screening array, we identified anti-AG 
mAbs, CL010746 and CL046999, which were capable of restraining Mtb growth by regulating AG 
biosynthesis. Thus, AG possesses characteristic features of protective antigens. In sum, our work iden-
tified a previously unknown role of galectin-9 and anti-AG antibodies in TB control. Hence, our find-
ings provide the basis for the rational design of mAb-based immunotherapy of TB as a novel approach 
toward host-directed therapy of one of the deadliest infectious diseases globally.

https://doi.org/10.7554/eLife.92737
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Results
Galectin-9 inhibits mycobacterial growth
Our previous work demonstrated that galectin-9 directly interacts with AG and AG-containing bacteria 
(Wu et al., 2021). Given the capacity of galectin-4 and galectin-8 to kill E. coli (Stowell et al., 2010), 
we interrogated whether galectin-9 directly interferes with mycobacterial replication. Real-time moni-
toring of in vitro cultures revealed that recombinant galectin-9 protein inhibits the growth of Mtb at 
a concentration as low as 10 ng/mL (Figure 1A). Native structural conformation of galectin-9 was 
required for its bacteriostatic effect since heat inactivation at 95℃ for 5 min abrogated this activity 
(Figure 1B). CFU assays further validated that galectin-9 inhibited Mtb growth (Figure 1C). Galectin-9 
also impaired the replication of the fast-growing Mycobacterium smegmatis in a dose-dependent 
manner (Figure 1D). Consistently, ELISA revealed a profoundly higher abundance of galectin-9 in 
serum from TB patients than that from heathy donors, implying that galectin-9 contributes to resis-
tance against Mtb infection (Figure 1E). Of note, the average concentration of galectin-9 in the sera 
of healthy donors was 3.602 ng/mL (Figure 1E). We speculate that this high abundance of galectin-9 
contributes to the maintenance of latent TB infection by restricting Mtb spreading from granuloma, 
where the pathogen is contained. In sum, we conclude that galectin-9 directly inhibits mycobacterial 
growth.

Macrophages are part of the first line of defense against invading mycobacteria. When human 
monocytic THP-1 cells were infected with Mycobacterium bovis BCG fused with DsRed, immunoflu-
orescence assays revealed recruitment of galectin-9 to mycobacteria in a time-dependent manner 
(Figure 1F and G). In line with this observation, a robust accumulation of galectin-9 around invading 
Mtb H37Rv-GFP was also observed in THP-1 cells post infection (Figure 1H and I). Though galectin-9 
has been reported to be critical for initiation of mTOR signaling and induction of autophagy (Jia et al., 
2018; Jia et al., 2020; Bell et al., 2021), our work revealed a novel cell-autonomous mechanism 
whereby galectin-9 recruitment restricts mycobacterial growth in an autophagy-independent manner.

Carbohydrate recognition is essential for galectin-9-mediated inhibition 
of mycobacterial growth
Given that galectin-9 binds to β-galactoside, we interrogated whether carbohydrate recognition by 
galectin-9 is essential for inhibition of mycobacterial growth. Addition of lactose rich in β-galacto-
side (generally used for neutralization of carbohydrate-binding of galectin-9) completely reversed 
mycobacterial growth inhibition by galectin-9 in vitro (Figure 2A). In contrast, the addition of glucose 
had no such effect (Figure 2B). These results indicate that the β-galactose binding property of galec-
tin-9 is involved in mycobacterial activity. Moreover, the addition of AG reversed growth inhibition by 
galectin-9 (Figure 2C), indicating that the AG-binding property of galectin-9 is involved in an anti-
mycobacterial activity. Our previous work had demonstrated that CRD2, but not CRD1, of galectin-9, 
mediated its interaction with AG (Wu et  al., 2021). As expected, the addition of purified CRD2, 
but not of CRD1, to some extent hindered Mtb growth, emphasizing that AG binding to galectin-9 
was sufficient for anti-mycobacterial effects (Figure 2D). Taken together, carbohydrate recognition is 
essential for galectin-9-mediated inhibition of mycobacterial growth.

Identification of anti-AG antibodies from TB patients
Given the higher abundance of galectin-9 in serum from active TB patients, we next interrogated 
whether anti-AG antibodies are present in the serum of TB patients. An ELISA assay was developed 
for the identification of anti-AG antibodies by coating AG on plates (Figure 3A). An adequate window 
of serum dilutions allowed a linear correlation between OD450 and dilution over an appropriate range 
(Figure 3B). Subsequently, we determined the relative abundance of anti-AG serum antibodies in 
17 healthy donors and 25 active TB patients, all of whom had received BCG vaccination within 24 hr 
after birth. Our findings revealed a significant increase in the abundance of anti-AG antibodies among 
TB patients when compared to healthy donors (Figure 3C). We speculate that during Mtb infection, 
anti-AG IgG antibodies are induced, which potentially contribute to protection against TB by directly 
inhibiting Mtb replication albeit seemingly in vain. Whether anti-AG antibody levels at the site of Mtb 
growth in patients are too low or whether growth inhibition is nullified by excessive replication of Mtb 
remains to be solved in the future.

https://doi.org/10.7554/eLife.92737
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Figure 1. Galectin-9 inhibits mycobacterial growth directly. (A) Profile of Mycobacterium tuberculosis (Mtb) H37Rv (Rv) grown at 37 °C in Middlebrook 
7H9 liquid medium with different concentrations of Galectin-9 (Gal9, 0, 0.01, 0.1, 1, 10 μg/mL). Growth curve was measured using a Bioscreen Growth 
Curve Instrument. Optical density was measured at absorbance at 600 nm every 2 hr. (B) Growth profile of Mtb H37Rv (Rv) in Middlebrook 7H9 liquid 
medium with10 μg/mL galectin-9 (Gal9) or inactivated galectin-9 (Gal9 HK, heat-killed at 95℃ for 5 min). (C) CFU of Mtb H37Rv (Rv) on Middlebrook 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.92737
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7H10 solid medium after being incubated in Middlebrook 7H9 liquid medium with or without 10 μg/mL Galectin-9 (Gal9) for 30 hr at 37℃. Cultures 
were grown at 37 °C for 4 weeks for enumeration of CFU. (D) Growth profile of Mycobacterium smegmatis (MS) in Middlebrook 7H9 liquid medium 
with different concentrations of Galectin-9 (Gal9, 0, 0.01, 0.1, 1 μg/mL). (E) Concentrations of galectin-9 in sera of healthy donors (n=40) and active TB 
patients (n=40). (F) Confocal microscopy of M. bovis BCG-DsRed (BCG-DsRed, red) and Galectin‐9 (Anti-Gal9, green) in THP-1 cells. Nuclei was stained 
with DAPI (blue). (G) Percent of cells with galectin-9 positive (gal9+) BCG in total infected THP-1 cells. Symbols indicate a colocalization ratio of at least 
12 fields in each experiment. (A, H) Confocal microscopy of Mtb H37Rv-GFP (Rv-GFP, green) and Galectin‐9 (Anti-Gal9, red) in THP-1 cells. Nuclei were 
stained with DAPI (blue). 63x magnification.Scar bar, 5μm. (I) Percent of cells with galectin9 positive (gal9+) Mtb H37Rv in total infected THP-1 cells. 
Symbols indicate a colocalization ratio of at least 12 fields in each experiment. Data are shown as mean ± SD, n=3 biologically independent experiments 
performed in triplicate (A–D). Data are representative of three independent experiments with similar results (F and H). Two-tailed unpaired Student’s 
t-test (A-D, G, and I) or Mann-Whitney U test (E). p<0.05 was considered statistically significant.

Figure 1 continued

Figure 2. Carbohydrate recognition is essential for galectin-9-mediated inhibition of Mycobacterium tuberculosis (Mtb) growth. (A) Growth profile of 
Mtb H37Rv (Rv) in Middlebrook 7H9 liquid medium with or without galectin-9 (Gal9, 10 μg/mL) and lactose (1 μg/mL). (B) Growth profile of Mtb H37Rv 
(Rv) in Middlebrook 7H9 liquid medium with or without galectin-9 (Gal9, 10 μg/mL) and D-glucose (10 μg/mL). (C) Growth profile of Mtb H37Rv (Rv) in 
Middlebrook 7H9 liquid medium with or without galectin-9 (Gal9, 10 μg/mL) and AG (1 μg/mL). (D) Growth profile of Mtb H37Rv (Rv) in Middlebrook 
7H9 liquid medium with 1 μg/mL CRD1 or CRD2 of galectin-9. Data are shown as mean ± SD, n=3 biologically independent experiments performed in 
triplicate (A–D). Two-tailed unpaired Student’s t test (A–D). p<0.05 was considered statistically significant.

https://doi.org/10.7554/eLife.92737
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Generation of anti-AG mAb
Based on the finding that AG binding of galectin-9 inhibits mycobacterial growth, we embarked on the 
development of anti-AG mAbs with blocking acivity. Given the high affinity between galectin-9 and 
AG, we developed an antibody chip comprising 62,208 mAbs to screen for anti-AG activity (Wu et al., 
2021). Briefly, the antibody chip was incubated with AG, and bound AG was subsequently detected 
using galectin-9 in conjunction with FITC-labeled anti-galectin-9 monoclonal antibody (Figure 4A). 
We filtered out 12 candidate mAbs exhibiting binding affinity to AG (Figure 4A and B). Subsequently, 
we validated their AG-binding capacity using ELISA. AG was coated on plates, and mAbs were 
added in twofold serial dilutions (Figure 4C). The ELISA assay revealed a robust AG-binding curve for 
CL010746 (referred to as mAb1) and CL046999 (referred to as mAb2) (Figure 4D). Furthermore, both 
mAbs exhibited specific binding to Mtb H37Rv-GFP as demonstrated by immunofluorescent assay 
(Figure 4E and F). Therefore, we have successfully developed anti-AG mAbs that bind Mtb directly.

Anti-AG antibody inhibits Mtb growth
For functional characterization, we monitored the in vitro mycobacterial growth in the presence or 
absence of anti-AG mAbs. Both mAb1 and mAb2 demonstrated inhibition of Mtb growth (Figure 5A). 
This finding was further confirmed through CFU determination (Figure  5B). Likewise, both mAbs 
markedly inhibited the growth of Mycobacterium smegmatis as evidenced by real-time OD monitoring 
(Figure 5C) and CFU assay (Figure 5D). In conclusion, the newly identified anti-AG mAbs demon-
strated direct blockade of mycobacterial growth through binding to AG. Direct inhibitory effects on 
Mtb growth by anti-AG antibodies emphasize that AG expresses features of protective antigens.

Proteomics profiling of the mycobacterial response to anti-AG mAb
To elucidate the molecular mechanisms underlying the inhibition of mycobacterial growth by anti-AG 
antibodies, we conducted proteomic profiling of Mtb in response to anti-AG mAb1 treatment. Gene 
ontology (GO) enrichment analysis revealed significant enrichment of numerous cellular and meta-
bolic processes, primarily related to the biosynthesis of the outer membrane, upon treatment with 
anti-AG mAb1. These processes include cell periphery, external encapsulating structure, organic 
substance metabolic process, cellular metabolic process, primary metabolic process, nitrogen 
compound metabolic process, and biosynthetic process (Figure 6A). Moreover, the formamidopy-
rimidine-DNA glycosylase N-terminal domain was enriched based on the analysis of functional enrich-
ment and protein domain of differentially expressed antigens (Figure 6B and C). Additionally, the 
KEGG pathway analysis demonstrated a significant enrichment of lipoarabinomannan (LAM) biosyn-
thesis pathways (Figure  6D). Consistently, the upregulated proteins Rv0236.1 and Rv3806c were 
involved in the biosynthesis of the mycobacterial cell wall arabinan (Figure 6E). In the re-annotated 

Figure 3. Identification of anti-arabinogalactan (AG) antibodies from tuberculosis (TB) patients. (A) Schematic presentation of ELISA assay for detecting 
anti-AG IgG antibodies in the serum of TB patients. (B) Linear correlation between OD and serum dilution ratio determined by ELISA assay. (C) Anti-
AG IgG antibody levels in TB patients (n=25) and healthy BCG-immunized controls (n=17) were determined via ELISA. Data are representative of three 
independent experiments with similar results (B). Mann-Whitney U test (C). p<0.05 was considered statistically significant.

https://doi.org/10.7554/eLife.92737
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genome sequence of Mtb, Rv0236.1 consists of Rv0236c and Rv0236A. Rv0236c is predicted to be a 
cognate of the GT-C superfamily of glycosyltransferases and likely acts as arabinofuranosyltransferase 
involved in AG synthesis (Skovierová et al., 2009). On the other hand, Rv0236A is a small secreted 
protein involved in cell walls and cell processes (Marmiesse et al., 2004). Additionally, Rv3806c is a 
decaprenylphosphoryl-5-phosphoribose (DPPR) synthase involved in AG synthesis (He et al., 2015). 
These data provide compelling evidence to suggest that anti-AG mAbs regulate AG biosynthesis.

Figure 4. Development of anti-arabinogalactan (AG) mAbs. (A) Schematic presentation of mAb screening for AG specificity. (B) Representative image 
of chip hybridization for mAb screening. Bright spots in the bottom mark the end line of each array block. Other spots represent AG binding to mAbs. 
CL010746 (mAb1) and CL046999 (mAb2) were labeled with red arrow and blue arrow, respectively. (C) Schematic presentation of candidate anti-AG 
mAbs validation by ELISA. (D) Binding curve of mAb1 and mAb2 to AG was determined by ELISA assay. (E) Confocal microscopy of Mycobacterium 
tuberculosis (Mtb) H37Rv-GFP (Rv-GFP, green) and anti-AG mAbs (red). 100x oil immersion.Scar bar, 10 μm. (F) Quantification of colocalization between 
anti-AG mAb and Mtb H37Rv-GFP by calculating Mander’s coefficients in (E). tM2, Mander’s coefficient of red above the autothreshold of green. Data 
are representative of three independent experiments with similar results (D, E). Data are shown as mean ± SD, n=10 (F). Two-tailed unpaired Student’s 
t-test (F). p<0.05 was considered statistically significant.

https://doi.org/10.7554/eLife.92737


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Qin, Xu, Chen et al. eLife 2024;13:RP92737. DOI: https://doi.org/10.7554/eLife.92737 � 8 of 19

Figure 5. Anti-arabinogalactan (AG) antibody inhibits mycobacterial growth. (A) Growth profile of Mycobacterium tuberculosis (Mtb) H37Rv (Rv) in 
Middlebrook 7H9 liquid medium with or without mAb1/mAb2 (1 μg/mL). (B) CFU of Mtb H37Rv (Rv) on Middlebrook 7H10 solid medium with or without 
mAb1/mAb2 (1 μg/mL). Cultures were grown at 37 °C for 4–8 weeks. (C) Growth profile of Mycobacterium smegmatis (MS) in Middlebrook 7H9 liquid 
medium with or without mAb1/mAb2 (1 μg/mL). (D) CFU of Mycobacterium smegmatis (MS) on Middlebrook 7H10 solid medium with or without mAb1/
mAb2 (1 μg/mL). Cultures were grown at 37 °C for 5–10 days. Data are shown as mean ± SD, n=3 (A, C) and n=3 biologically independent experiments 
performed in triplicate (B, D). Two-tailed unpaired Student’s t-test (A–D). p<0.05 was considered statistically significant.

https://doi.org/10.7554/eLife.92737


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Qin, Xu, Chen et al. eLife 2024;13:RP92737. DOI: https://doi.org/10.7554/eLife.92737 � 9 of 19

Figure 6. Proteomics profiling of the response of Mycobacterium tuberculosis (Mtb) to anti-arabinogalactan (AG) antibody. (A) Gene ontology (GO) 
class of differentially expressed proteins in Mtb H37Rv treated with mAb1 (1 μg/mL) for 30 hr followed by proteomics analysis. IgG was set as control. 
(B) Functional enrichment of differentially expressed proteins in Mtb H37Rv in (A). (C) Protein domain of differentially expressed proteins in Mtb H37Rv in 
(A). (D) KEGG class of differentially expressed proteins in Mtb H37Rv in (A). (E) Upregulation or downregulation genes in Mtb H37Rv in (A).

https://doi.org/10.7554/eLife.92737
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Targeting AG by mAbs modulates the cell wall of Mtb
To verify the impact of anti-AG mAbs on the biosynthesis of the mycobacterial cell wall, we char-
acterized the morphological changes of Mtb treated with or without mAbs. Intriguingly, mAb1 and 
mAb2 treatment both led to a dispersed distribution of Mtb in cultures (Figure 7A). Acid-fast staining 
further revealed the formation of a cord-like structure in Mtb treated with mAb1 or mAb2, which 
was not observed following ethambutol (EMB) treatment (Figure 7B). Moreover, electron microscopy 
demonstrated that anti-AG mAbs treatment markedly increased the thickness of the Mtb cell wall 
(Figure 7C and D). Based on these findings, we conclude that targeting AG by specific antibodies, 
and likely by galectin-9 as well, impairs the growth of Mtb and other mycobacteria by modulating cell 
wall structure.

Discussion
Mtb, the etiologic agent of TB, is one of the leading causes of death worldwide, further aggravated by 
increasing incidences of antibiotic resistance (Singh and Chibale, 2021; Miotto et al., 2018). Hence, 
TB remains a major contributor to the global disease burden. Host-directed therapy is increasingly 
recognized as an alternative or adjunct to antibiotic therapy (Kaufmann et  al., 2018). Therefore, 
deeper insights into the interactions between Mtb and the host immune system are warranted. We 
previously demonstrated that mycobacterial AG binds to the galactoside-binding protein galectin-9, 
causing pathologic impairments in the lung via the TAK1-ERK-MMP signaling pathway (Wu et al., 
2021). Here, we demonstrate that galectin-9 directly impedes mycobacterial growth through its 
AG-binding property. Furthermore, we identified natural anti-AG antibodies in sera of TB patients, 
which are predicted to inhibit Mtb growth. Based on these findings, we generated mAbs capable of 
binding AG and hindering Mtb replication. Proteomics profiling of Mtb revealed that the binding of 
anti-AG antibodies regulates AG biosynthesis which leads to swelling of the cell wall, as validated by 
morphological characterization. We conclude that galectin-9 and anti-AG antibodies serve as immune 
factors that restrain bacterial growth by targeting AG in the cell wall. Increasing evidence suggests a 
role for antibodies in protection against TB (Lu et al., 2019; Irvine et al., 2021). It is generally assumed 
that the role of antibodies in TB is based on their interactions with macrophages, which promote 
anti-mycobacterial activities such as phagolysosome fusion and production of reactive oxygen and 
nitrogen intermediates (Chandra et al., 2022; Nathan and Shiloh, 2000). In striking contrast, our 
findings demonstrate that anti-AG antibodies directly impair Mtb growth and thus emphasize that AG 
comprises features of protective antigens.

Galectins are a highly conserved class of molecules that play critical roles in multiple biological 
processes. Fifteen different types of galectins are known in humans, which can be classified based on 
their structure, subcellular localization, and function. For instance, galectin1 participates in regulating 
cell proliferation, apoptosis, and immune responses through interactions with specific glycosylated 
receptors on the cell surface, such as integrins and CD45 (Cedeno-Laurent et al., 2012; Perillo et al., 
1995; Ge et al., 2016). More recently, it was shown that galectin-4 disrupts bacterial membranes and 
kills E. coli through interactions with lipopolysaccharides on the bacterial outer membrane (Stowell 
et al., 2010). Here, we demonstrate that galectin-9 significantly inhibits the replication of Mtb by 
interacting with AG in Mtb via its CRD2 domain. Similar to galectin-9, galectin-4, galectin-6, and 
galectin-8 also comprise 2 CRDs in tandem connected by a linker sequence (Leffler et al., 2002). It 
remains to be explored whether and how these galectins exert anti-mycobacterial activities via the 
CRD2 domain, thereby providing general insights into the role of galectin family cognates in immunity 
to TB.

After phagocytosis by pulmonary macrophages of the newly infected host, Mtb ends up inside 
phagosomes, where it downregulates its metabolism and enters a non-replicating persistent (NRP) 
state, termed dormancy, in response to host stress (Russell, 2001; Gengenbacher and Kaufmann, 
2012). Once the immune response ‘breaks down,’ Mtb transits into a metabolically active and repli-
cative state which ultimately results in progression to active TB disease (van der Wel et al., 2007). 
We demonstrated that galectin-9 accumulates around invading mycobacteria in host cells. However, 
whether Mtb recruits galectin-9 during dormancy, its active stage, or during both stages, has not been 
investigated. Of note, AG is hidden by mycolic acids in the outer layer. We speculate that during Mtb 

https://doi.org/10.7554/eLife.92737
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Figure 7. Mtb cell wall modulation by anti-arabinogalactan (AG) antibodies. (A) Morphologic characteristics for Mycobacterium tuberculosis (Mtb) 
H37Rv strain grown in liquid culture with or without anti-AG mAbs (1 μg/mL) observed by 2x magnifier. (B) Bacterial shape of Mtb H37Rv strain treated 
as in (A) was observed by acid-fast staining under a Leica DM2500 microscope using the 100x oil microscopy. EMB, Ethambutol. Scale bar, 20 μm. 
(C) Ultrastructural morphology of Mtb H37Rv treated as in (A) analyzed by transmission electron microscopy (TEM). The cell wall was labeled with 

Figure 7 continued on next page
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replication, cell wall synthesis is active and AG becomes exposed, thereby facilitating its binding to 
galectin-9 and leading to Mtb growth arrest.

Major drugs in clinical use for TB treatment inhibit Mtb growth by targeting different essential 
components and processes. For instance, Isoniazid inhibits mycolic acid synthesis by targeting InhA 
enzyme (Quémard et al., 1995), Ethambutol blocks AG biosynthesis by targeting EmbCAB complex 
Telenti et  al., 1997, and Pyrazinamide disrupts the pH balance within the bacterial cell, thereby 
impairing mycobacterial growth (Zhang et al., 1999). Although the mycobacterial cell wall has been 
widely exploited as an antibiotic target, to date, drugs that directly bind AG and inhibit Mtb growth 
have not been reported. Here, we identified host galectin-9 and anti-AG antibodies (both serum 
antibodies from patients and mAbs) which recognize AG and thus inhibit Mtb replication. Hence, 
anti-AG mAbs can be harnessed for the design of novel biologics which address the challenge of drug 
resistance in TB.

We observed elevated levels of galectin-9 in the serum of active TB patients, consistent with 
reports indicating that cleaved galectin-9 levels in the serum serve as a biomarker for severe infection 
(Iwasaki-Hozumi et al., 2021; Padilla et al., 2020). We consider that the elevated levels of galec-
tin-9 in the serum of active TB may be an indicator of the host immune response to Mtb infection, 
however, the magnitude of elevated galectin-9 is not sufficient to control Mtb infection and maintain 
latent infection. This is highly similar to other protective immune factors such as interferon-gamma, 
which is elevated in active TB as well (El-Masry et al., 2007; Hasan et al., 2009). On the other hand, 
mechanisms underlying the inhibition of mycobacterial growth induced by galectin-9 or anti-AG mAbs 
remain elusive. We propose they interfere with the activity of enzymes involved in AG biosynthesis 
and/or modify the physical properties of the cell wall, leading to disruption of AG side chain exten-
sion, thereby increasing Mtb vulnerability to host immunity. They may also function through the two-
component system, that is commonly found in bacteria and allows bacteria to sense and respond to 
changes in the environment, such as nutrient availability or stress (Glover et al., 2007; James et al., 
2012; Majumdar et  al., 2012). Interactions between galectin-9 and AG in the cell wall may alter 
membrane permeability, which restrains nutrient uptake and activates sensor proteins, causing bacte-
rial growth arrest.

Aside from their direct anti-Mtb activity, anti-AG antibodies in the serum of TB patients probably 
also opsonize Mtb, thereby promoting phagocytosis by mononuclear phagocytes (Lu et al., 2019; 
Chen et al., 2016). However, the mechanisms by which galectin-9 or antibodies inhibit mycobacterial 
growth depend on the details of the molecular interactions and require further investigation.

Our knowledge about antibodies which target glycans is scarce, not the least due to technical 
challenges. Glycan antigens have been identified on the surface of numerous microorganisms and 
are also expressed by certain cancer cells. Antibodies that recognize and bind these glycan antigens, 
therefore, are promising candidates for therapy and diagnosis of infectious and malignant diseases. 
For instance, the mAb 2G12 neutralizes human immunodeficiency virus-1 (HIV-1) by recognizing 
oligomannose-type N-glycans on the HIV-1 gp120 envelope protein, and the mAb FH6 specifically 
binds the Sialyl Lewis X (SLeX) antigen on the surface of various cancer cells (Trkola et al., 1996; 
Fukushi et al., 1984; Kannagi et al., 1986). In this study, we not only discovered anti-AG mAbs which 
directly impair Mtb growth, but also developed an efficient high-throughput screening for identifying 
mAbs with specificity for glycans.

In conclusion, we (i) discovered a novel cell-autonomous mechanism by which galectin-9 protects 
against TB via targeting AG in the cell wall of Mtb, (ii) identified neutralizing antibodies against AG in 
serum of TB patients, (iii) selected anti-AG mAbs for passive immunization against TB by means of a 
mAb screening array, (iv) characterized inhibition of Mtb replication by induction of cell wall swelling 
as critical mechanism of protection through AG targeting (Figure 7E). Our findings, thus, not only 
provide deeper insights into humoral immune mechanisms involved in protection against TB, but also 
serve as a basis for new intervention strategies against TB in adjunct to chemotherapy.

red arrows. (D) Cell wall thickness of bacteria in (C). (E) Schematic presentation of Mtb growth arrest by Galectin-9 or anti-AG antibodies. Data are 
representative of three independent experiments with similar results (A, B, and C). Data are means ± SD of 11 bacteria, representatives of three 
independent experiments (D). Two-tailed unpaired Student’s t-test (D). p<0.05 was considered statistically significant.

Figure 7 continued
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Materials and methods
Bacteria
Mtb H37Rv, Mycobacterium bovis BCG, and Mycobacterium smegmatis mc2 155, were from Shanghai 
Key Laboratory of Tuberculosis. H37Rv-GFP, and Mycobacterium bovis BCG-DsRed were generated 
and provided by Stefan HE Kaufman Lab. They were grown in Middlebrook 7H9 (Becton Dickinson, 
Cockeysville, MD) liquid medium supplemented with 0.25% glycerol, 10% oleic acid–albumin-
dextrose-catalase (OADC) (Becton Dickinson, Sparks, MD) and 0.05% Tween-80.

Cell lines
THP-1 cell line (human, acute monocytic leukemia, TIB-202) were from the American Type Culture 
Collection (ATCC). The identity of THP-1 has been authenticated with STR profiling by a provider. 
THP-1 cell line was tested negative for mycoplasma contamination.

Clinical serum specimens
Clinical serum specimens were collected from Shanghai Pulmonary Hospital (Shanghai, PR China) 
from individuals who had all received BCG vaccination within 24 hr after birth. The diagnosis of TB 
was based on sputum culture, the presence of acid-fast bacilli in sputum smear, clinical presentation, 
and radiological signs. Patients who were culture-positive, sputum smear-positive, and showed signs, 
symptoms, or abnormal chest X-ray results were considered to have active TB. All TB patients were 
human immunodeficiency virus (HIV) negative and had not received anti-TB treatment. The controls 
were recruited from a pool of individuals who participated in a health examination program and had 
not been tested for antibodies to HIV. To detect the concentrations of galectin-9 in serum, 40 active 
TB patients and 40 healthy donors were included. For the analysis of anti-AG IgG antibody levels, 25 
active TB patients and 17 healthy donors were included. All participants were between the ages of 50 
and 65, of Han ethnicity, with an equal representation of males and females.

Recombinant galectin-9 preparation
Recombinant galectin-9 protein was generated and purified as previously described (Wu et al., 2021). 
In brief, human galectin-9 cDNA was subcloned into a pET28a vector and subsequently transfected 
into BL21 (DE3) competent E. coli. Bacteria were cultivated in a Luria-Bertani (LB) liquid medium 
and induced overnight at 16 °C with isopropyl β-D-1-thiogalactopyranoside. Recombinant proteins 
were then purified from the bacterial lysates using a Ni-chelating Sepharose Fast Flow (SFF) column 
(GE Healthcare, Little Chalfont, UK). The concentration of galectin-9 protein was determined using a 
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 23227).

In vitro growth of mycobacteria
Mycobacteria were harvested at the mid-log phase and diluted to a calculated starting OD600 of 
0.25 and added to 96-well culture plates containing Middlebrook 7H9 liquid medium together with 
antibody or galectin-9. OD600 of each time point of each strain was tested in real time by a Bioscreen 
C microplate incubator (Labsystems, USA, 23227) at 37℃.

CFU assay
Mycobacteria were harvested at mid-log phase and diluted to a calculated starting OD600 of 0.25 and 
incubated in Middlebrook 7H9 liquid medium with or without antibody or galectin-9 for 30 hr at 37 ℃. 
Appropriate dilutions were plated on 7H10 agar plates for enumeration of CFU.

Quantification of galectin-9 by ELISA
The concentration of galectin-9 in serum was determined with the Human Galectin-9 ELISA Kit 
(Abcam, ab213786) according to the manufacturer’s instructions.

Immunofluorescence assay
For colocalization of galectin-9 and mycobacteria, immunofluorescence assays were performed as 
described previously (Liu et al., 2018). Briefly, THP-1 cells (ATCC, TIB-202) were infected with bacteria 
for 2 hr, fixed with 4% formaldehyde for 30 min at R.T., permeabilized with 0.1% Triton X-100 in PBS 

https://doi.org/10.7554/eLife.92737
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for 5 min, and blocked with 5% BSA in PBS for 60 min at R.T. Cells were stained with the anti-galectin-9 
antibody (Cell Signaling Technology, Cat#54330, RRID:AB_2799456), antibodies at a dilution of 1:200 
in 5% BSA in PBS overnight at 4  °C and then incubated with Alexa Fluor 488 or 555 conjugated 
secondary antibodies (Thermo Fisher Scientific, Cat# A-11008; RRID: AB_143165; Cat# A32732, 
RRID:AB_2633281) at a dilution of 1:1000 for 2 hr at R.T. Nuclei were stained with DAPI.

For binding of anti-AG mAb with Mtb, H37Rv-GFP strains were harvested at mid-log phase. Subse-
quently, 2×107 H37Rv-GFP/100 μL FACS buffer was incubated with anti-AG mAb (mAb1 or mAb2, 
20 μg/mL) at R.T. for 1 hr, and washed three times with PBST (PBS containing 0.05% Tween 20, pH 7.4) 
by centrifugation (12,000 g, 5 min). The resulting sediment was resuspended in 10 μL of ddH2O and 
smeared on microscopic slides.

Images were acquired using a Leica TCS SP8 confocal laser microscopy system (Leica Microsys-
tems) at 63x magnification.

Validation of anti-AG antibodies by ELISA
AG antigen (10 μg in 100 μL 0.1 mol/L NaHCO3 buffer, pH 9.4) was added to wells of microwell plates 
and incubated overnight at 4 °C. After four rinses with PBST (PBS containing 0.05% Tween 20, pH 7.4), 
the wells were saturated with a blocking buffer. After four additional PBST rinses, serum or candidate 
anti-AG mAbs were added to each well and incubated for 1 hr at 37 °C. The wells were rinsed three 
times with PBS containing 0.05% Tween 20 and horseradish-peroxidase-labeled rabbit anti-human or 
anti-mouse IgG (100 μL/well; Sigma-Aldrich, Germany) was added to each well and incubated for 1 hr 
at 37 °C. Finally, the TMB substrate was added and the absorbance was measured with the Thermo 
Fisher Scientific Multiskan FC microplate photometer. Clinical serum specimens were collected from 
17 healthy volunteers and 25 pulmonary TB patients before undergoing treatment at Shanghai Pulmo-
nary Hospital (Shanghai, PR China), all of whom had received BCG vaccination within 24 hr after birth. 
The donors are between the ages of 50 and 65, ethnic Han, with an equal representation of males 
and females.

High throughput screening of anti-AG antibody
Screening of anti-AG antibodies was based on a selection platform for Proteome Epitope Tag Anti-
body Library (PETAL) to pinpoint antibodies with high specificity for AG (Wang et al., 2020). In Brief, 
an antibody chip harboring 62208 mAbs was incubated with 10 μg AG in 10 mL incubation buffer 
(1 x PBS buffer containing 10% BSA) for 1 hr, followed by incubation with 10 μg galectin-9 protein in 
10 mL incubation buffer for 1 hr. The chip was incubated with rabbit anti-galetin-9 antibody (1:5000 
diluted in 10 mL incubation buffer; ab227046, Abcam, UK) followed by staining with FITC-labelled 
anti-rabbit IgG (1:5000 diluted in 10 mL incubation buffer; ab6717, Abcam, UK). Then the chip was 
scanned by GenePix 4200 A Microarray Scanner (Molecular Devices LLC) and analyzed by GenePix 
Pro 6.0 software.

Chemical synthesis of AG
Mycobacterial AG containing 92 mono-saccharide units was synthesized following the reported 
procedure Wu et al., 2017 and was used throughout the study.

Proteomics analysis
LC-MS/MS
Mycobacteria at the mid-log phase were diluted to a calculated starting OD600 of 0.25 and incubated 
in Middlebrook 7H9 liquid medium with or without mAb1 for 30 hr at 37℃. The bacterial pellets were 
collected followed by three washes with sterile saline. The bacterial pellets were resuspended in lysis 
buffer (8 M urea, 1% Protease Inhibitor Cocktail) and inactivated for 10 min at 100℃. The lysate was 
sonicated three times on ice using a high-intensity ultrasonic processor (Scientz) and centrifuged. The 
protein concentration of the lysate was determined with a BCA kit according to the manufacturer’s 
instructions.

After trypsin digestion, peptides were dissolved in 0.1% formic acid and separated with nanoElute 
UHPLC system (Bruker, Germany) and subjected to Capillary source followed by the timsTOF Pro mass 
spectrometry. The resulting MS/MS data were processed using the Maxquant search engine (v1.6.6.0). 
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Tandem mass spectra were searched against Mtb strain ATCC 25618 83332 PR 20191210 database 
(3993 entries) concatenated with reverse decoy database.

Enrichment of Gene Ontology analysis
GO annotations of proteins are divided into three broad categories: Biological Process, Cellular 
Component, and Molecular Function. For each category, a two-tailed Fisher’s exact test was employed 
to test the enrichment of the differentially expressed protein against all identified proteins. The GO 
with a corrected p-value <0.05 was considered significant. Enrichment of pathway analysis The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database was used to identify enriched pathways by 
a two-tailed Fisher’s exact test to test the enrichment of the differentially expressed protein against 
all identified proteins. The pathway with a corrected p-value <0.05 was considered significant. These 
pathways were classified into hierarchical categories according to the KEGG website. Enrichment of 
protein domain analysis For each category of proteins, the InterPro database (a resource that provides 
functional analysis of protein sequences by classifying them into families and predicting the presence 
of domains and important sites) was researched and a two-tailed Fisher’s exact test was employed 
to test the enrichment of the differentially expressed protein against all identified proteins. Protein 
domains with a corrected p-value <0.05 were considered significant.

Morphologic characterization of Mtb
Mtb strains were cultured in 96  U well culture plates containing Middlebrook 7H9 liquid medium 
with anti-AG antibody or without anti-AG antibody at 37℃, and were grown for 10–14 days until the 
formation of colonies. Morphologic characterization of tested strains in liquid medium were observed 
by 2 x magnifier. At the same time, 10 µl of culture were spread onto a glass slide. Smears on glass 
slides were fixed under ultraviolet light overnight. Glass slides were stained with Ziehl–Neelsen stain 
using a TB Stain Kit (Baso DIAGNOTICS TAIWAN, Zhuhai, China). Morphological characteristics or cell 
lengths of tested strains were observed using a Leica DM2500 microscope using the 100x objective.

For ultrastructural characteristics, strains at mid-log phase were collected, and analyzed by Tecnai 
transmission electron microscopy (TEM) with 160 kV according to the procedures of the manufacturer 
(GOODBIO, Wuhan, China). A 107–108 bacterial suspension was used for TEM examination.

Statistical analysis
The statistical significance of comparisons was analyzed with two-tailed unpaired Student’s t-test or 
Mann-Whitney U test in GraphPad Prism version 8.0.1. p<0.05 was considered statistically significant. 
All data are shown as mean ± SD of two or more independent experiments performed in triplicate. 
Detailed statistical information on each experiment is provided in the respective figure legends.

Materials availability statement
Bacterial strains and monoclonal antibodies generated in this study are available from the Lead 
Contact upon reasonable request.
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