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Abstract
We show that a large class of satellite operators are rank-
expanding; that is, theymap some rank-one subgroup of
the concordance group onto an infinite linearly indepen-
dent set. Our work constitutes the first systematic study
of this property in the literature and partially affirms
a conjecture of the second author and Pinzón-Caicedo.
More generally, we establish a Floer-theoretic condition
for a family of companion knots to have infinite-rank
image under satellites from this class. The methods
we use are amenable to patterns that act trivially in
topological concordance and are capable of handling a
surprisingly wide variety of companions. For instance,
we give an infinite linearly independent family ofWhite-
head doubles whose companion knots all have negative
𝜏-invariant. Our results also recover and extend sev-
eral theorems in this area established using instanton
Floer homology.
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1 INTRODUCTION

For any pattern knot 𝑃 ⊂ 𝑆1 × 𝐷2, the satellite operation 𝐾 ↦ 𝑃(𝐾) induces a map

𝑃 ∶  → 

on the smooth (or topological) knot concordance group. These operators have been central to the
study of the concordance groups in both categories; for example, see [2, 4–9, 11, 12, 15, 17, 24–26, 30,
32, 35–40, 43, 45, 51]. In this article, we investigate several questions regarding the rank of different
satellite operators on the smooth concordance group. The starting point for this line of research
is the following conjecture, due to the second author and Pinzón-Caicedo [32]:

Conjecture 1.1 [32, Conjecture 2]. Every nonconstant satellite operator has infinite rank.

Here, by the rank of 𝑃 we mean the rank of the subgroup generated by the image of 𝑃, as in
general 𝑃 is not a homomorphism. Significant progress toward Conjecture 1.1 was made in [32,
Theorem 3], where it was verified for all winding number zero patterns satisfying a certain ratio-
nal linking number condition.† Specifically, it was shown that any such pattern maps a carefully
selected sequence of torus knots to an infinite linearly independent set. Other researchhas focused
on establishing the linear independence of explicit families of knots under patterns such asWhite-
head doubling. For instance, in joint work with Kirk, the second author proved the Whitehead
doubles {𝐷(𝑇2,2𝑘−1)}𝑘⩾2 are linearly independent [24, Theorem 1]; this was extended to the entire
family {𝐷(𝑇2,2𝑘+1)}𝑘∈ℕ by Nozaki, Sato, and Taniguchi [45, Corollary 1.13]. (See also [45, Theorem
1.12].) Linear independence of torus knots under other (Whitehead-like) satellites was studied by
Pinzón–Caicedo in [51].
Given the linear independence of torus knots in , the above results should be thought

of as examples of rank-preserving behavior for 𝑃. The existence of more exotic behavior was
conjectured in [32], where the following strengthening of Conjecture 1.1 was presented:

Conjecture 1.2 [32, Conjecture 4]. If 𝑃 is a nonconstant winding number zero satellite operator,
then there exists a knot 𝐾 for which {𝑃(𝑛𝐾)}𝑛∈ℤ has infinite rank.

By the rank of {𝑃(𝑛𝐾)}𝑛∈ℤ, we again mean the rank of the subgroup generated by {𝑃(𝑛𝐾)}𝑛∈ℤ.
Conjecture 1.2 states that any nontrivial satellite operator sends some rank-one subgroup of 
surjectively onto an infinite linearly independent set.We formalize this in the following definition:

Definition 1.3. A satellite operator 𝑃 is rank-expanding if there exists a rank-one subgroup
{𝑛𝐾}𝑛∈ℤ of  such that {𝑃(𝑛𝐾)}𝑛∈ℤ has infinite rank. When we wish to emphasize the knot 𝐾,
we say that 𝑃 is rank-expanding along {𝑛𝐾}𝑛∈ℤ (or sometimes just along 𝐾).‡

† The proof in the case of nonzerowinding number is straightforward and follows from a consideration of Tristram–Levine
signatures; see [32, Proposition 8].
‡Note that implicitly, 𝐾 is required to be nontorsion in . One can also define rank expansion by requiring that there is
some finite-rank subgroup whose image under 𝑃 generates a subgroup of greater (but still possibly finite) rank; here, we
have instead chosen the strongest possible notion. The authors briefly considered calling the operators of Definition 1.3
rank-exploding.
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3 of 40 DAI et al.

Note that Conjecture 1.2 is false for patterns with nonzero winding number. For example, we
can take 𝑃 such that 𝑃(𝐾) is the connected sum of 𝐾 with the figure-eight knot; this pattern has
winding number one. It it clear that {𝑃(𝑛𝐾)}𝑛∈ℤ has rank one for any nontorsion knot 𝐾.
Prior to the current article, little was known about Conjecture 1.2, even in specific cases. Indeed,

in [32] it was asked whether {𝑃(𝑛𝐾)}𝑛∈ℕ is linearly independent for 𝑃 the Whitehead double and
𝐾 the trefoil. We show:

Corollary 1.4. Let  be any subset of {𝐷(𝑛𝑇2,2𝑘+1)}𝑛,𝑘∈ℕ whose index pairs have distinct products
𝑛𝑘. Then  is linearly independent and in fact spans a ℤ∞-summand of .

Setting 𝑘 = 1 and varying 𝑛 yields the family  = {𝑛𝐷(𝑇2,3)}𝑛∈ℕ. This answers the above ques-
tion in the affirmative and (in particular) shows that𝐷 is rank-expanding along 𝑇2,3. Setting 𝑛 = 1

and varying 𝑘 yields the family  = {𝐷(𝑇2,2𝑘+1)}𝑘∈ℕ, which recovers [45, Corollary 1.13] (and thus
[24, Theorem 1]). Corollary 1.4 is a consequence of amuchmore general result and can be extended
to all multiply-clasped and twisted Whitehead doubling operators; see Theorem 1.10.
In fact, we verify Conjecture 1.2 for many other patterns and families of companions in

Theorem 1.7. The prevailing belief seems to be that nontrivial satellite operators are never homo-
morphisms (for example, see [4, 40, 43]). Our results indicate that they are, in some quantifiable
sense, maximally far from being homomorphisms. Indeed, a potentially reasonable strengthening
of Conjecture 1.2 would be the following:

Conjecture 1.5. Any nonconstant winding number zero satellite operator is rank-expanding along
every rank-one subgroup {𝑛𝐾}𝑛∈ℤ.

It is thus natural to establish robust conditions that affirm rank expansion along different 𝐾.
The difficultywith studying the rank of satellite operators, especially for patterns such asWhite-

head doubling, lies principally with a lack of effective invariants. For example, as discussed in [32,
section 1], the knot Floer homology of Whitehead doubles is sufficiently constrained so that the
usual suite of Floer-theoretic concordance invariants (such as 𝜏, Υ, stable equivalence, and so on)
cannot be used to establish linear independence. The most common technique to date has been
to pass to the branched double covers of these knots and utilize homology cobordism invariants
of the latter manifolds. In the case that these manifolds have nontrivial first homology (when the
determinant of the satellite knots is not one), there are a host of Frøshov-type invariants com-
ing out of Floer theories, or analogous Casson–Gordon signatures available in the topological
category. Analyzing these invariants in conjunction with metabolizers for linking forms yields
a powerful tool for studying satellite operators, and can be used to show that certain operators
whose image consists of satellite knots with nonzero determinant have infinite rank, and are even
rank expanding. (For example, Chuck Livingston pointed out to the authors that Casson-Gordon
invariants can verify that certain twistedWhitehead doubles are rank-expanding. See [3, 5, 25, 26]
for related results using 𝑑-invariants.)
However, when the determinant of the satellite knots is one, the branched double covers are

homology spheres, and such techniques break down. To date, the only method for bypassing this
has been to employ the filtration on instanton Floer homology provided by the Chern–Simons
functional. As instanton Floer homology is onlywell-understood for a small subset of 3-manifolds,
this approach has only been used to study the images of very restricted families of companion
knots, such as those closely related to torus knots [12, 24, 32, 45, 51] or certain twist knots [45] (see
[15] for very recent results in this direction). In particular, although the instanton approach is
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well-suited to understanding {𝑃(𝐾𝑛)}𝑛∈ℕ for {𝐾𝑛}𝑛∈ℕ a family of distinct torus knots, it is not
apparent how to extend this to self-connected sums of a single torus knot, with regard to
Conjecture 1.2.
In this article, we use recent advances in involutive Heegaard Floer homology [14, 23, 27] to

verify Conjecture 1.2 for all proper rational unknotting number one patterns satisfying a certain
nonzero linking number condition; see Theorem 1.7. (This class includes all multiply-clasped and
twisted Whitehead doubles.) More broadly, for such patterns we establish a general condition on
a family of companion knots {𝐾𝑛}𝑛∈ℕ that guarantees that {𝑃(𝐾𝑛)}𝑛∈ℕ has infinite rank; see Theo-
rem 1.9. Applying this to self-connected sums of a given knot 𝐾 allows us to verify Conjecture 1.2
in the cases at hand. In fact, we show that for our examples, 𝐾 may be chosen to be topologically
slice, so that the rank-expanding behavior of Conjecture 1.2 persists even after restricting 𝑃 to 𝑇𝑆 .
Even in the well-studied case ofWhitehead doubles, our formalism can handle many new fam-

ilies of companion knots. In addition to the linear independence of Whitehead doubles of the
form {𝐷(𝑛𝐾)}𝑛∈ℕ, we give the first example of an infinite linearly independent family of (pos-
itively clasped) Whitehead doubles whose companion knots all have 𝜏(𝐾) ⩽ 0. By work of the
second author [20, Theorem 1.7] combined with that of Hom [31] and Sato [54, Theorem 1.2],
if 𝜏(𝐾) ⩽ 0 then the stable equivalence class of the knot Floer homology of 𝐷(𝐾) is trivial. This
means that the (noninvolutive) knot Floer invariants of 𝐷(𝐾) contain no interesting concordance
information; hence such knots are difficult to approach directly using knot Floer homology. Note
that the companion knots of [24, 32, 45, 51] all have positive 𝜏-invariant.

Corollary 1.6. There exists a family of knots {𝐾𝑛}𝑛∈ℕ with each 𝜏(𝐾𝑛) ⩽ 0 such that {𝐷(𝐾𝑛)}𝑛∈ℕ is
linearly independent. If desired, the 𝐾𝑛 may be taken to be topologically slice.

Finally, we provide a re-proof of a conjecture of the second author and Pinzón–Caicedo [32],
who askedwhether there is a knot𝐾 such that𝐷(𝐾) and𝐷(−𝐾) are both nonzero in concordance.
This was recently answered by Lewark and Zibrowius using Khovanov homology [42, Corollary
1.13]; in Corollary 6.1 we give a general condition on𝐾 that guarantees the linear independence of
𝐷(𝐾) and𝐷(−𝐾). In Corollary 1.6, the knots𝐾𝑛 can be taken so that each pair𝐷(𝐾𝑛) and𝐷(−𝐾𝑛)
are linearly independent.

1.1 Main theorems

We first give a rough overview of the class of patterns considered in this paper. A pattern 𝑃 has
rational unknotting number one if there exists a rational tangle 𝑇 embedded in 𝑃 such that replac-
ing 𝑇 with another rational tangle 𝑇′ gives an unknot in the solid torus. This replacement is said
to be proper if 𝑇′ connects the same two pairs of points as 𝑇. Some examples of rational unknot-
ting number one patterns are given in Figure 1; see Subsections 2.2 and 2.4 for further discussion
and examples.
Let𝑃 be a rational unknotting number one pattern. By theMontesinos trick, a choice of unknot-

ting tangle replacement identifies the branched double cover Σ2(𝑃(𝑈))with surgery on a strongly
invertible knot 𝐽:

Σ2(𝑃(𝑈)) ≅ 𝑆3
𝑝∕𝑞

(𝐽).
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5 of 40 DAI et al.

F IGURE 1 A large class of unknotting number one patterns can be formed by gluing a rational tangle 𝑅 to
another tangle 𝐶 with unknotted (horizontal) closure; see Subsection 2.4. In such cases the unknotting tangle
replacement is given by replacing 𝑅 with a trivial tangle of two vertical strands.

In Subsection 2.2, we describe how to explicitly obtain 𝐽 and the surgery coefficient 𝑝∕𝑞. These
data depend on our choice of unknotting tangle replacement; when discussing a rational unknot-
ting number one pattern, we will usually have a fixed tangle replacement in mind, although we
suppress writing this explicitly.
Using this identification, we define an additional invariant of a rational unknotting number

one pattern, which we call the linking number 𝓁. Let 𝜇 be a meridian of the solid torus for 𝑃 and
𝜇 be a lift of 𝜇 to the branched cover Σ2(𝑃(𝑈)). We then set 𝓁 = 𝑙𝑘(𝐽, 𝜇). This may be computed
by using the algorithm for determining 𝐽 outlined in Subsection 2.2.
We now state our main theorem:

Theorem 1.7. Let 𝑃 be a proper rational unknotting number one pattern with nonzero linking num-
ber. Then 𝑃 is rank-expanding. Moreover, if 𝐾 is any knot such that 𝑉0(𝑛𝐾) − 𝑉0(−𝑛𝐾) → ∞ as
𝑛 → ∞, then 𝑃 is rank-expanding along 𝐾.

Again, all multiply-clasped and twisted Whitehead doubles satisfy the hypotheses of Theo-
rem 1.7. As we may freely replace 𝐾 with −𝐾 for the purposes of rank expansion, note that in
the latter half of the theorem it also suffices to establish 𝑉0(𝑛𝐾) − 𝑉0(−𝑛𝐾) → ∞ as 𝑛 → −∞.
The condition on 𝓁 is equivalent to the linking number condition of [32] and is in fact a property
of 𝑃, independent of the choice of tangle replacement (see Remark 3.5).
Although the Floer-theoretic condition 𝑉0(𝑛𝐾) − 𝑉0(−𝑛𝐾) → ∞might seem slightly opaque,

there are many classes of knots for which this hypothesis is easy to verify. These include the
following large families.

(1) 𝐾 is any L-space knot, such as a torus knot or algebraic knot, or any linear combination of
such knots of the same sign/handedness.

(2) 𝐾 is any thin knot with 𝜏(𝐾) ≠ 0, such as a (quasi-)alternating knot of nonzero signature.
(3) 𝐾 is any linear combination of genus one knots such that the overall connected sum satisfies

𝜏(𝐾) ≠ 0.

These examples are discussed in Section 5; note that the above list is certainly not exhaustive.
The wide applicability of Theorem 1.7 may be taken as evidence that Conjecture 1.2 indeed holds
along every rank-one subgroup.
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Note that as any Whitehead double has genus one, in Theorem 1.7 we may take 𝐾 itself to be
a Whitehead double so long as 𝜏(𝐾) ≠ 0. This additional condition is quite mild, and can easily
be verified using [20, Theorem 1.4] (cf. [41]). Setting (for example) 𝐾 = 𝐷(𝑇2,3), we immediately
obtain:

Corollary 1.8. Let𝑃 be a proper rational unknotting number one patternwith nonzero linking num-
ber. Then 𝑃 is rank-expanding when restricted to the subgroup 𝑇𝑆 of topologically slice knots. Setting
𝑃 itself to be 𝐷 (so that the image of 𝑃 is contained in 𝑇𝑆) gives an example of a rank-expanding
operator 𝑃|𝑇𝑆 ∶ 𝑇𝑆 → 𝑇𝑆 .

Theorem 1.7 is a special case of a broader statement regarding the images of general families of
companions:

Theorem 1.9. Let 𝑃 be a proper rational unknotting number one pattern with nonzero linking
number and 𝑝∕𝑞 > 0. If {𝐾𝑛}𝑛∈ℕ is any family of knots such that 𝑉0(𝐾𝑛) − 𝑉0(−𝐾𝑛) → ∞ as 𝑛 →
∞, then {𝑃(𝐾𝑛)}𝑛∈ℕ has infinite rank.

Theorem 1.7 follows immediately from Theorem 1.9 by setting 𝐾𝑛 = 𝑛𝐾 and (if needed) replac-
ing 𝑃 by−𝑃. (If 𝑃 has 𝑝∕𝑞 > 0, then the mirrored pattern−𝑃 has 𝑝∕𝑞 < 0.) Note that the families
of knots discussed after Theorem 1.7 all apply to Theorem 1.9. Previous results in the vein of
Theorem 1.9 have generally focused on families of companions such as torus knots; the classes
discussed in this section are significantly broader.
In certain cases, it is possible to strengthen Theorem 1.9 by establishing linear independence of

the entire image {𝑃(𝐾𝑛)}𝑛∈ℕ. For this, we restrict to the class of rational tangle patterns. We define
the 𝑝∕𝑞-rational tangle pattern by taking the closure of a 𝑝∕𝑞-rational tangle, as discussed in Sub-
section 2.4. This is the simplest case of a rational unknotting number one pattern and corresponds
to the case where 𝐽 is an unknot.

Theorem 1.10. Let 𝑃 be a 𝑝∕𝑞-rational tangle pattern with 𝑝∕𝑞 > 0.

(1) Suppose 𝑞 is even. Let {𝐾𝑛}𝑛∈ℕ be any family of thin knots with 𝜏(𝐾𝑛) distinct and greater than⌊(⌊𝑝∕𝑞⌋ + 1)∕4⌋. Then {𝑃(𝐾𝑛)}𝑛∈ℕ is linearly independent and in fact spans a ℤ∞-summand
of .

(2) Suppose 𝑞 is odd. Let {𝐾𝑛}𝑛∈ℕ be any family of thin knots with 𝜏(𝐾𝑛) distinct and less than zero.
Then {𝑃(𝐾𝑛)}𝑛∈ℕ is linearly independent and in fact spans a ℤ∞-summand of .

A rational tangle pattern always has rational unknotting number one. However, the tangle
replacement is proper if and only if 𝑞 is even. Note that everymultiply-clasped and twistedWhite-
head double is a rational tangle pattern; hence Theorem 1.10 recovers [51, Theorem 13]. Using
the methods of this paper, it is also possible to extend Theorem 1.10 to other (nonthin) classes of
companions, including certain families of torus knots or L-space knots.

1.2 Overview

Our results employ the well-established strategy of translating the linear independence of satel-
lites to a question about branched double covers. Recall that taking the branched double cover
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7 of 40 DAI et al.

gives a homomorphism

Σ2 ∶  → Θ3
ℤ2
.

Thus, to determine whether a given family of knots is linearly independent in , it suffices to
show that their branched double covers are linearly independent inΘ3

ℤ2
. Establishing linear inde-

pendence in the homology cobordism group is an old and well-explored application of Floer
homology, and the results of [24, 32, 45, 51] have all relied on leveraging the Chern–Simons fil-
tration on instanton Floer theory in this setting. In this paper, we instead use the involutive
Heegaard Floer package of Hendricks and Manolescu [27]. This has already been employed by
several authors to study homology cobordism; see, for example, [14, 16, 18, 22, 23, 28].
The Heegaard Floer framework is especially suited to this strategy. Indeed, let 𝑃 be any ratio-

nal unknotting number one pattern. We show in Section 2.3 that for any companion knot 𝐾, the
branched double cover Σ2(𝑃(𝐾)) is homeomorphic to 𝑝∕𝑞-surgery on a certain knot 𝐽𝐾,𝜇 con-
structed from 𝐽 and 𝐾. To establish the linear independence of {𝑃(𝐾𝑛)}𝑛∈ℕ, it thus suffices to
show that the family of ℤ2-homology spheres {𝑆3𝑝∕𝑞(𝐽𝐾𝑛,𝜇)}𝑛∈ℕ is linearly independent. In joint
work with Hendricks, Hom, and Zemke [23], the fourth author established a surgery formula for
involutive Heegaard Floer homology. Our approach is to use this surgery formula to analyze the
involutive Floer homology of {𝑆3

𝑝∕𝑞
(𝐽𝐾𝑛,𝜇)}𝑛∈ℕ and apply existing involutive Floer techniques to

show that this family has infinite rank.

1.3 Comparison with other techniques

It may be somewhat surprising that involutive Heegaard Floer theory can be used to study the
classes of satellites at hand. Indeed, prior to this article, Heegaard Floer invariants had not been
successfully employed to establish that anywinding number zero satellite operators have infinite
rank. In particular, a host of Heegaard Floer theoretic invariants had failed a simple litmus test in
this direction; namely, (re)proving the independence of infinite families of (untwisted)Whitehead
doubles, first exhibited in [24].
It is also worth noting an interesting conceptual distinction between the instanton and Hee-

gaard Floer homologies. An important feature in the realm of instanton Floer homology is its
filtration by the Chern–Simons functional, which provides refined topological invariants that are
crucial for the arguments of [12, 24, 32, 45, 51]. While instanton and Heegaard Floer homology
share many formal properties, no such filtration is present on the Heegaard Floer side. Indeed,
the analogous filtration on the Heegaard Floer side comes from the symplectic action functional
used in the definition of Lagrangian Floer homology for the symmetric product of a Heegaard
diagram. To date, however, no topological significance of this information for 3-manifolds and
cobordisms between them has been discovered. Even if the action functional could be used in
a similar manner, it seems unlikely that the Heegaard Floer package, being isomorphic to an
abelian gauge theoretic Floer theory (Seiberg–Witten monopole Floer homology) could recover
the topological information about non-abelian fundamental group representations contained in
the Chern–Simons filtration. It is thus curious that the usage of involutive Heegaard Floer homol-
ogy in our situation suffices to recover (and in some cases extend) previously known results
established using instanton Floer theory.
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 8 of 40

F IGURE 2 Left: The tangles 𝑇1∕0 = 𝑇∞ and 𝑇0∕1 = 𝑇0. Right: Adding half-twists to a tangle 𝑇 via the
operations 𝑣 and ℎ.

Organization

In Section 2, we introduce the notion of a rational unknotting number one pattern and review the
basic setup of involutive Heegaard Floer homology and local equivalence. We then prove Theo-
rems 1.7 and 1.9 in Section 3 and Theorem 1.10 in Section 4. In Section 5, we give some examples
of Theorems 1.7 and 1.9. Finally, in Section 6 we prove Corollaries 1.4 and 1.6 and discuss further
applications to Whitehead doubles.

2 BACKGROUND

In this section, we define the class of rational unknotting number one patterns and give a brief
overview of the setup of involutive Heegaard Floer homology.

2.1 Rational tangles

We first review the notion of a rational tangle. Let 𝐵3 be a 3-ball with four marked points on its
boundary. A Conway tangle (or sometimes just tangle) is a proper embedding of two disjoint arcs
𝑇 ⊆ 𝐵3 whose boundaries are precisely the four marked points. Two tangles are isotopic if there is
an isotopy fixing the boundary that takes one to the other.

Definition 2.1. A tangle is rational if it consists of a pair of boundary-parallel arcs.

The set of rational tangles in a fixed 3-ball 𝐵3 may be placed in (noncanonical) bijection with
ℚ ∪ {∞}, as follows. Fix a projection of𝐵3 and let𝑇1∕0 = 𝑇∞ and𝑇0∕1 = 𝑇0 be the tangles displayed
in Figure 2. Given any 𝑝∕𝑞 ∈ ℚ ∪ {∞}, consider the continued fraction

𝑝∕𝑞 = [𝑥1, 𝑥2, … , 𝑥𝑛] = 𝑥1 +
1

𝑥2 +
1

𝑥3 +⋯ +
1

𝑥𝑛

with each 𝑥𝑖 ∈ ℤ. Let ℎ and 𝑣 be the horizontal and vertical half-twist operations displayed on the
right in Figure 2. We then define the 𝑝∕𝑞-rational tangle 𝑇𝑝∕𝑞 to be

𝑇𝑝∕𝑞 =

{
ℎ𝑥1𝑣𝑥2 ⋯ℎ𝑥𝑛−1𝑣𝑥𝑛𝑇∞ for n even
ℎ𝑥1𝑣𝑥2 ⋯ 𝑣𝑥𝑛−1ℎ𝑥𝑛𝑇0 for n odd.
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9 of 40 DAI et al.

F IGURE 3 Examples of rational tangles.

Conway [10] showed that up to isotopy, 𝑇𝑝∕𝑞 is independent of the choice of the continued
fraction decomposition of 𝑝∕𝑞 and that every rational tangle (on the same marked 3-ball) arises
from the above construction. (Here, our sign convention is opposite to that in [19].) See Figure 3
for some examples of rational tangles.
We stress that identifying a rational tangle with an element ofℚ ∪ {∞} is relative to a particular

projection; or, equivalently, a choice for 𝑇∞ and 𝑇0. (In the next subsection, we will see why being
precise with this identification is so important.) Indeed, given an abstract 3-ball with four marked
points, there is no canonical choice for 𝑇∞ or 𝑇0 without fixing a preferred projection. Instead,
we declare 𝑇∞ and 𝑇0 to be a pair of rational tangles that connect different pairs of marked points
on 𝜕𝐵3 and are simultaneously boundary-parallel. Pushing 𝑇∞ and 𝑇0 to the boundary of 𝐵3 then
divides 𝜕𝐵3 into two hemispheres, from which it easily follows that up to homeomorphism (not
fixing 𝜕𝐵3) wemay draw 𝑇∞ and 𝑇0 as in Figure 2.Whenwe refer to a 𝑝∕𝑞-rational tanglewithout
further elaboration, we will usually have in mind the standard projection in the sense of Figure 2.
In general, if we have fixed a projection of 𝐵3 in which 𝑇∞ and 𝑇0 are not standard (in the

sense of Figure 2), then in order to identify a tangle 𝑇 with an element of ℚ ∪ {∞}, we must find
the homeomorphism 𝐹 ∶ 𝐵3 → 𝐵3 that moves 𝑇∞ and 𝑇0 into standard position with respect to
the projection. We then apply the previous discussion to the projection of 𝐹(𝑇).

2.2 Rational unknotting number one patterns

We now define the class of patterns considered in this paper.

Definition 2.2. Let 𝑃 ⊆ 𝑆1 × 𝐷2 be a pattern. We say that 𝑃 has rational unknotting number one
if there exists a rational tangle 𝑇 in 𝑃 such that replacing 𝑇 with another rational tangle 𝑇′ gives
a knot that is unknotted in the solid torus. We say that 𝑃 has proper rational unknotting number
one if 𝑇′ can be taken to be a proper tangle replacement; that is, connecting the same two pairs of
marked points as 𝑇.

See Figure 4 for an example of a rational unknotting one pattern. We will write 𝑃′ to refer
to the result of replacing 𝑇 with 𝑇′; this is of course isotopic to the unknot. When we dis-
cuss a rational unknotting number one pattern, we will usually implicitly have a particular
unknotting tangle replacement 𝑇′ in mind, although a single pattern may admit several different
unknotting replacements.
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 10 of 40

F IGURE 4 Top row: (1) the pattern 𝑃; (𝑎), (𝑏), and (𝑐) are the tangles 𝑇, 𝑇′, and 𝑆. Middle row: (2) the
pattern 𝑃′ and arc 𝛾; (3) applying the isotopy 𝐹1 to 𝑃′ and 𝛾; (4) the strongly invertible knot 𝐽. Note that the axis of
symmetry of 𝐽 passes through the crossing rather than going under it. Bottom row: (5) the tangle 𝑆; (6) applying
the isotopy 𝐹1 to 𝑆; (7) the two 𝜏-invariant Seifert framings of 𝐽. We have isotoped one of the two framings to
coincide with 𝐽 as drawn in (4), so as to illustrate that the other has zero linking with 𝐽 and is thus a Seifert
framing.

For us, the important feature of a rational unknotting number one pattern is that its branched
double cover is surgery on a strongly invertible knot. Recall that a knot 𝐽 is called strongly invertible
if there exists an orientation-preserving involution 𝜏 of 𝑆3 that fixes 𝐽 setwise and has two fixed
points on 𝐽. By [57], it follows that 𝜏 is conjugate to 180◦ rotation about an unknotted axis. We
claim that if 𝑃 has rational unknotting number one, then

Σ2(𝑃(𝑈)) ≅ 𝑆3
𝑝∕𝑞

(𝐽)

for some strongly invertible knot 𝐽 and surgery coefficient 𝑝∕𝑞. Moreover, this homeomorphism
identifies the branched covering action on Σ2(𝑃(𝑈)) with the involution on 𝑆3𝑝∕𝑞(𝐽) induced by
the strong inversion on 𝐽. Our claim is immediate from the Montesinos trick: as 𝑃′ is an unknot,
the branched double cover over 𝑃′ is 𝑆3. The 3-ball 𝐵3 containing 𝑇′ lifts to a solid torus in 𝑆3, and
replacing 𝑇′ with 𝑇 corresponds to doing surgery on the core of this solid torus.
However, explicitly producing 𝐽 and the surgery coefficient𝑝∕𝑞 is slightly involved.An example

of this procedure is given in Figure 4. Here, we have drawn the tangles 𝑇 and 𝑇′ in black and red,
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11 of 40 DAI et al.

respectively, while 𝐵3 is drawn in green. It is straightforward to check that replacing 𝑇 with 𝑇′
gives an unknot in the solid torus. The meridian of 𝑆1 × 𝐷2 is labeled 𝜇.
To draw 𝐽, let 𝛾 be a reference arc in 𝐵3 that has one endpoint on each component of 𝑇′. In

general, there are many such arcs (each looping around the components of 𝑇′multiple times); we
select one by requiring 𝛾 not to intersect the disks obtained as traces of the isotopy pushing 𝑇′ to
𝜕𝐵3. In the case that 𝑇′ has trivial projection, 𝛾 is the obvious arc running from one component
to the other, as displayed in panel (2) of Figure 4. Let 𝐹𝑡 be an isotopy of the solid torus moving
𝑃′ into a local unknot in 𝑆1 × 𝐷2. Apply 𝐹1 to 𝛾 and 𝐵3, as shown in (3) of Figure 4. It is then
straightforward to draw the lift of 𝐹1(𝛾) to the branched double cover over the unknot 𝐹1(𝑃′).
This gives the desired strongly invertible knot 𝐽, displayed in panel (4).
Determining the surgery coefficient 𝑝∕𝑞 is slightly more involved. To do this, we must find the

unique rational tangle 𝑆 in 𝐵3 whose arcs lift to a pair of 𝜏-equivariant Seifert framings of 𝐽. (The
reader may easily check that, up to equivariant isotopy, there are exactly two equivariant Seifert
framings of a strongly invertible knot.) This is colored blue in Figure 4. Determining 𝑆 can be done
by running 𝐹𝑡 backward: in Figure 4, panel (7) shows the two 𝜏-invariant Seifert framings for 𝐽.
The quotient of these by 𝜏 is displayed in (6), while in (5) we have reversed the isotopy 𝐹𝑡 to draw
𝑆 in the original 3-ball 𝐵3. By the Montesinos trick, the surgery coefficient 𝑝∕𝑞 is then precisely
the rational number identified with the original tangle 𝑇 relative to the choice of reference tangles
𝑇∞ = 𝑇′ and 𝑇0 = 𝑆. In Figure 4, the surgery coefficient is given by 1∕3.
While the above construction illustrates the process of producing 𝐽 in the context of diagram-

matically taking the double branched cover, we can also describe the knot 𝐽 in a more abstract
manner. Indeed, the green 3-ball containing the unknotting tangle lifts to a solid torus under the
double branched cover; the core of this solid torus is precisely the knot 𝐽. Thus, isotoping the black
unknot (for example by 𝐹𝑡) only changes the knot 𝐽 by an equivariant isotopy. Hence, the knot 𝐽,
when produced using the above construction, is well-defined up to equivariant isotopy. Changing
the tangle inside the green 3-ball (as in panel (1) of Figure 4) changes the framing of the 3-ball,
which precisely corresponds to changing the framing of the lifted solid torus. The fact that there
are a unique pair of equivariant Seifert framings of 𝐽 determines the replacement tangle 𝑆without
reference to a particular isotopy. This gives an intrinsic definition of the surgery coefficient 𝑝∕𝑞.

Definition 2.3. Let 𝑃 be a rational unknotting number one tangle with a fixed choice of
unknotting tangle replacement 𝑇′. As discussed above, this gives an identification

Σ2(𝑃(𝑈)) ≅ 𝑆3
𝑝∕𝑞

(𝐽).

We refer to 𝑝∕𝑞 as the coefficient of 𝑃. Note that because 𝑃 is a knot, its branched double cover is
a ℤ2-homology sphere; hence 𝑝 is necessarily odd. We say that 𝑃 is even or odd according to the
parity of 𝑞 and positive or negative according to the sign of 𝑝∕𝑞.

In our setting, it turns out that even and odd rational unknotting number one patterns behave
rather differently. Fortunately, even though determining the exact coefficient 𝑝∕𝑞 of 𝑃 is rather
difficult, the parity of 𝑞 can be easily read off from the tangle replacement:

Lemma 2.4 [44, Corollary 2]. Let 𝑃 be a rational unknotting number one pattern with a fixed choice
of unknotting tangle replacement 𝑇′. Then 𝑞 is even if and only if the tangle replacement is proper.
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 12 of 40

Proof. As in the discussion of Subsection 2.1, let 𝐹 be a homeomorphism of 𝐵3 taking 𝑇′ and 𝑆 to
the standard∞- and 0-tangles 𝑇∞ and 𝑇0, respectively. Note that the tangle replacement 𝑇 to 𝑇′
is proper if and only if the tangle replacement 𝐹(𝑇) (which is by definition the 𝑝∕𝑞-tangle with
respect to the standard ∞- and 0-tangles) to 𝑇∞ is proper. It was shown in [44, Lemma 11] that
the distance between 𝑇𝑝∕𝑞 and 𝑇∞ is even if and only if the replacement 𝑇𝑝∕𝑞 to 𝑇∞ is proper. The
result follows by observing that the distance between 𝑇𝑝∕𝑞 and the 𝑇∞ is precisely 𝑞. □

Note that if 𝑃 is a negative pattern, then its mirror is positive. We thus lose no generality in
considering the class of positive rational unknotting number one patterns.
There is one more important piece of data associated to a rational unknotting number one

pattern. This is the following:

Definition 2.5. Let 𝑃 be a rational unknotting number one tangle with a fixed choice of
unknotting tangle replacement 𝑇′. We define the linking number of 𝑃 by

𝓁 = 𝑙𝑘(𝐽, 𝜇).

As 𝜇 and 𝜏𝜇 are equally preferenced, 𝓁 is defined only up to sign. Note that as discussed above,
the knot 𝐽 is well-defined up to equivariant isotopy; it is clear that a different choice of isotopy 𝐹𝑡
does not change the linking number of 𝐽 with 𝜇 (up to sign).

2.3 Branched covers of satellites

Wenow extend the discussion of the previous subsection to the branched double cover of 𝑃(𝐾) for
an arbitrary companion knot 𝐾. First observe that in the algorithm of Section 2.2, the meridian 𝜇
of our pattern lifts to a symmetric unlink 𝜇 ∪ 𝜏𝜇 in 𝑆3 disjoint from 𝐽. Here, the fact that 𝜇 ∪ 𝜏𝜇 is
a two-component unlink follows from the condition that 𝑃′ is unknotted in 𝑆1 × 𝐷2. Note that the
data of 𝑃 comewith an orientation of 𝜇; we give 𝜇 ∪ 𝜏𝜇 the lifted orientation. Let𝐾 be an oriented
knot in 𝑆3. Recall that 𝑃(𝐾) can be constructed by taking the image of 𝑃 inside the gluing

𝑆3 ≅ (𝑆3 − 𝑁(𝜇)) ∪𝜕𝑁(𝜇) (𝑆
3 − 𝑁(𝐾))

formed by a boundary identification that maps a meridian of 𝜇 to a Seifert framing of 𝐾 and a
longitude of 𝜇 to a meridian of 𝐾 (respecting the orientations). It follows from the discussion of
the previous subsection that

Σ2(𝑃(𝐾)) ≅ (𝑆3
𝑝∕𝑞

(𝐽) − 𝑁(𝜇) − 𝑁(𝜏𝜇)) ∪𝜕𝑁(𝜇) (𝑆
3 − 𝑁(𝐾)) ∪𝜕𝑁(𝜏𝜇) (𝑆

3 − 𝑁(𝐾)).

Note that this manifold has an obvious involution. On 𝑆3
𝑝∕𝑞

(𝐽) − 𝑁(𝜇) − 𝑁(𝜏𝜇), this involution
is induced by the strong inversion on 𝐽, while elsewhere we simply exchange the two copies of
𝑆3 − 𝑁(𝐾).

Definition 2.6. Let 𝐽 be a strongly invertible knot and 𝜇 ∪ 𝜏𝜇 be an oriented, symmetric unlink
disjoint from 𝐽. We assume that 𝜇 ∪ 𝜏𝜇 is given a 𝜏-invariant orientation. For any oriented knot
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13 of 40 DAI et al.

F IGURE 5 In the trivial case where 𝐽 is the unknot and 𝜇 is a standard meridian, we have 𝐽𝐾,𝜇 = 𝐾#𝐾𝑟 .
Note the reversal of orientation in the second factor; this is because 𝜇 and 𝜏𝜇 are oriented such that
𝑙𝑘(𝐾, 𝜇) = −𝑙𝑘(𝐾, 𝜏𝜇).

𝐾, define the double infection 𝐽𝐾,𝜇 by infecting 𝐽 twice: once using 𝐾 along 𝜇 and once using 𝐾
along 𝜏𝜇. Note that 𝐽𝐾,𝜇 is a strongly invertible knot (see Figure 5).

We thus have:

Σ2(𝑃(𝐾)) ≅ 𝑆3
𝑝∕𝑞

(𝐽𝐾,𝜇).

Note that the surgery coefficient𝑝∕𝑞 is independent of𝐾 (and is the same as that ofDefinition 2.3).
Moreover, once again this homeomorphism identifies the branching action on Σ2(𝑃(𝐾))with the
involution on 𝑆3

𝑝∕𝑞
(𝐽𝐾,𝜇) induced by the strong inversion on 𝐽𝐾,𝜇.

To spell out the relevance of this construction, recall that our general strategy is to study the
family {𝑃(𝐾𝑛)}𝑛∈ℕ via their branched double covers {Σ2(𝑃(𝐾𝑛))}𝑛∈ℕ. If 𝑃 is a rational unknotting
number one pattern, then this is the same as studying 𝑝∕𝑞-surgeries on the family of knots

𝐽𝑛 = 𝐽𝐾𝑛,𝜇.

We will use the fact that the 𝐽𝑛 are all (double) infections of the same knot in order to derive
certain structural results regarding the Floer homologies of these surgeries. This will allow us to
establish the desired linear independence.

2.4 Examples

Wenowgive some examples of rational unknotting number one patterns. The simplest of these are
rational tangle patterns. A rational tangle pattern is obtained by taking the horizontal closure of a
𝑝∕𝑞-rational tangle in the standard projection, as in Figure 6. Clearly, each such pattern has ratio-
nal unknotting number one, with the replacement tangle 𝑇′ being the standard∞-tangle. (The
resulting strongly invertible knot 𝐽 is the unknot.) A rational tangle pattern has linking number±1
and surgery coefficient precisely 𝑝∕𝑞. Note that all multiply-clasped, multiply-twistedWhitehead
doubling patterns fall into this class.
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 14 of 40

F IGURE 6 The rational tangle patterns corresponding to 1∕2 and 21∕16.

F IGURE 7 Left: A tangle 𝐶 with an unknotted closure. Right: A rational unknotting number one pattern
defined using 𝐶.

One particularly simple way of constructing a rational unknotting number one pattern is to
start from aConway tangle𝐶with unknotted (horizontal) closure and glue it to any rational tangle
𝑅, as in Figure 7. We embed this in 𝑆1 × 𝐷2 by choosing the indicated meridian 𝜇. The resulting
pattern tautologically has rational unknotting number one by replacing𝑅with the usual∞-tangle,
and some thought shows that 𝓁 = ±1. Note that rational tangle patterns are a special case of this
construction, where 𝐶 is chosen to be the trivial tangle of two horizontal strands.
In general, it is often easier to construct a rational unknotting number one pattern by work-

ing backward from the associated knot 𝐽. As in Definition 2.6, let 𝐽 be a strongly invertible knot
equipped with a symmetric unlink 𝜇 ∪ 𝜏𝜇 disjoint from 𝐽. We furthermore require that 𝜇 ∪ 𝜏𝜇 is
in fact unlinked in the complement of the axis of symmetry. The algorithm of, for example, [55,
section 1.1.12] allows us to express any surgery 𝑆3

𝑝∕𝑞
(𝐽) as the branched double cover over a knot.

We turn this knot into a pattern by taking the image of 𝜇 ∪ 𝜏𝜇 under the quotient map. Examples
of this procedure are shown along the top rows of Figures 8 and 9.
As shown along the bottom rows of Figures 8 and 9, the result may be viewed as a Conway

tangle𝐶 glued to a 𝑝∕𝑞-rational tangle 𝑅 in the standard projection. If 𝜇 is chosen to be ameridian
of 𝐽 (as in Figure 8), then the meridian 𝜇 of the resulting pattern will be obviously isotopic to a
curve between 𝐶 and 𝑅, as in Figure 7 but in general 𝜇may be more complicated (as in Figure 9).
(Different choices for 𝜇 give patterns that are the same as knots, but which may have different
embeddings in the solid torus.) It is clear from the algorithm of [55, section 1.1.12] that replacing
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15 of 40 DAI et al.

F IGURE 8 A pattern whose double branched cover is surgery on the figure-eight knot, with 𝜇 a standard
meridian. Here, 𝓁 = 1. Note that in the top-left, the axis of symmetry passes through the crossing rather than
going under it.

the 𝑝∕𝑞-rational tangle with an ∞-tangle gives an unknot in the complement of 𝜇. The same
algorithm likewise shows that the tangle 𝑆 coming from the Seifert framing of 𝐽 is the usual 0-
tangle in the standard projection. By construction, any such pattern has nonzero linking number
as long as 𝜇̃ was chosen so that 𝑙𝑘(𝐽, 𝜇̃) ≠ 0.

2.5 Local equivalence

In this section, we give a brief overview of the involutive Heegaard Floer package and themachin-
ery of local equivalence. Let 𝑌 be a 3-manifold equipped with a self-conjugate spinc-structures
𝔰 = 𝔰̄. In [27], Hendricks and Manolescu defined a homotopy involution on the Heegaard Floer
chain complex coming from the conjugation symmetry present in a Heegaard diagram:

𝜄 ∶ 𝐶𝐹−(𝑌, 𝔰) → 𝐶𝐹−(𝑌, 𝔰).
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 16 of 40

F IGURE 9 A pattern whose double branched cover is surgery on the (2,1)-cable of the trefoil, with 𝜇 as
indicated. Here, 𝓁 = 2. Note that in the top-left, the axis of symmetry passes through the crossing rather than
going under it. The (−13)-twist box is due to the writhe of the knot and comes from the need to find an
equivariant Seifert framing; see the algorithm in [55, section 1.1.12].

These additional data provide an enhancement of the usual Heegaard Floer invariant of Ozsváth
and Szabó [48, 49]. More precisely, associated to (𝑌, 𝔰), we may consider the pair (𝐶𝐹−(𝑌, 𝔰), 𝜄);
up to an appropriate notion of homotopy equivalence, this is a diffeomorphism invariant of 𝑌.
Although involutive Heegaard Floer homology is defined for all 3-manifolds, we will mainly

be concerned with rational homology spheres. In this case, we formalize the resulting algebraic
structure in the following definition:

Definition 2.7 [28, Definition 8.1]. An 𝜄-complex is a pair (𝐶, 𝜄), where:

(1) 𝐶 is a (free, finitely generated) chain complex over 𝔽[𝑈] with

𝑈−1𝐻∗(𝐶) ≅ 𝔽[𝑈,𝑈−1],

here, 𝔽 = ℤ∕2ℤ. We require 𝐶 to be graded by a coset of ℤ in ℚ and 𝑈 to be of degree −2;
(2) 𝜄 ∶ 𝐶 → 𝐶 is a 𝔽[𝑈]-equivariant, grading-preserving homotopy involution; that is,

𝜄2 ≃ id
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17 of 40 DAI et al.

via a 𝑈-equivariant chain homotopy.

In [28], it is shown that if𝑌 is a rational homology sphere equipped with a self-conjugate spinc-
structures 𝔰, then the pair (𝐶𝐹−(𝑌, 𝔰), 𝜄) is an 𝜄-complex.
To study homology cobordism, we introduce the following equivalence relation:

Definition 2.8 [28, Definition 8.3]. Two 𝜄-complexes (𝐶, 𝜄) and (𝐶′, 𝜄′) are called locally equivalent
if there exist 𝔽[𝑈]-equivariant, grading-preserving chain maps

𝑓∶ 𝐶 → 𝐶′ and g ∶ 𝐶′ → 𝐶

such that

𝑓◦𝜄 ≃ 𝜄′◦𝑓 and g◦𝜄′ ≃ 𝜄◦g

and 𝑓 and g induce isomorphisms on homology after localizing with respect to 𝑈. We call a map
𝑓 as above a local map from (𝐶, 𝜄) to (𝐶′, 𝜄′), and similarly we refer to g as a local map in the
other direction.

To see the relevance of Definition 2.8 to homology cobordism, let (𝑌1, 𝔰1) and (𝑌2, 𝔰2) be two
rational homology spheres equipped with self-conjugate spinc-structures and let 𝑊 be a ratio-
nal homology cobordism from 𝑌1 and 𝑌2. Suppose 𝑊 admits a self-conjugate spinc-structure
𝔰 restricting to 𝔰𝑖 on each 𝑌𝑖 . Then the Heegaard Floer cobordism map 𝐹𝑊,𝔰 (together with
its reverse) constitutes a local equivalence between the 𝜄-complexes associated to (𝑌1, 𝔰1) and
(𝑌2, 𝔰2).
In the setting of ℤ- or ℤ2-homology cobordism, we always have a unique self-conjugate spinc-

structure on𝑌 or𝑊. In this case, wemay unambiguously associate to𝑌 its local equivalence class;
this is a homology cobordism invariant. Denote

ℑ = {all 𝜄-complexes} ∕ local equivalence.

We then obtain a map ℎ∶ Θ3
ℤ2
→ ℑ given by sending

[𝑌] ↦ ℎ([𝑌]) = [(𝐶𝐹−(𝑌, 𝔰)[−2], 𝜄)].

Here, 𝔰 is the unique self-conjugate spinc-structure on 𝑌 and the [−2] is a formal (unim-
portant) grading shift. In [28, section 8.3], it is shown that ℑ is an abelian group with the
operation of tensor product. The identity element is given by the trivial complex 𝔽[𝑈] and
inverses are given by dualizing; see [28, section 8.3] for details.† Moreover, it is shown that ℎ is a
well-defined homomorphism.
It is thus possible to show that a given family of ℤ2-homology spheres is linearly indepen-

dent by computing their local equivalence classes and establishing their linear independence in
ℑ. However, this requires an analysis of the algebraic structure of ℑ. Although in general ℑ is
very complicated, techniques for carrying out this strategy have been developed in (for example)

† Strictly speaking, our notation ℑ is not quite the group ℑ of [28, section 8.3]. The difference is that here, we allow our
𝜄-complex to have gradings valued in ℚ, rather than ℤ.
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 18 of 40

F IGURE 10 Left: The complex 𝑋2 and its homology. Right: The complex 𝑋∨
2
and its homology. In both

cases, generators over 𝔽 are represented by dots; the action of 𝑈 is given by following the vertical line segments
downward. For the two chain complexes, the action of 𝜕 is given by extending the indicated arrows
𝑈-equivariantly.

[14, 16, 18, 22]. The results of the current article will depend on several such calculations, which
we outline in the next subsection.

2.6 Linear independence in𝕴

We will need to be familiar with the following especially simple class of 𝜄-complexes:

Definition 2.9. For 𝑖 ∈ ℕ, define𝑋𝑖 to be the 𝜄-complex generated over 𝔽[𝑈] by three elements: 𝑥,
𝜄𝑥, and 𝛼 = 𝜄𝛼. These have gradings given by gr(𝑥) = gr(𝜄𝑥) = 0 and gr(𝛼) = −2𝑖 + 1; the differen-
tial is defined by 𝜕𝛼 = 𝑈𝑖(𝑥 + 𝜄𝑥). We likewise have the dual complex 𝑋∨

𝑖
, which is generated by

𝑥∨, 𝜄𝑥∨, and𝛼∨ = 𝜄𝛼∨. These have gradings given by gr(𝑥∨) = gr(𝜄𝑥∨) = 0 and gr(𝛼∨) = 2𝑖 − 1; the
differential is defined by 𝜕𝑥∨ = 𝜕𝜄𝑥∨ = 𝑈𝑖𝛼∨. The complexes𝑋𝑖 and𝑋∨𝑖 are displayed in Figure 10,
along with their homologies. We will often also write 𝑋𝑖 for the local equivalence class of 𝑋𝑖 inℑ,
and similarly for 𝑋∨

𝑖
.

The 𝑋𝑖 turn out to be fundamental for understanding the structure of ℑ and occur as the local
equivalence classes of several families of homology spheres; see, for example, [16]. We have the
following basic fact regarding the 𝑋𝑖:

Theorem 2.10 [16, Proof of Theorem 1.7]. For 𝑖 ∈ ℕ, the classes 𝑋𝑖 are linearly independent inℑ.

We will also need a generalization of Theorem 2.10 that follows from the proof of [13, Proof
of Theorem 1.3]. To state this, we recall some notation. If (𝐶, 𝜄) is an 𝜄-complex, then it follows
from the first condition of Definition 2.7 that𝐻∗(𝐶) is isomorphic to an 𝔽[𝑈]-module of the form
𝔽[𝑈] ⊕ (𝑈-torsion). The grading of the uppermost generator of the copy of 𝔽[𝑈] is well-defined
and gives the 𝑑-invariant 𝑑(𝐶).

Definition 2.11. If (𝐶1, 𝜄1) and (𝐶2, 𝜄2) are two 𝜄-complexes with 𝑑(𝐶1) = 𝑑(𝐶2), then we write
(𝐶1, 𝜄1) ⩽ (𝐶2, 𝜄2) if there is a local map from (𝐶1, 𝜄1) to (𝐶2, 𝜄2).

We will often suppress writing 𝜄1 and 𝜄2 in the inequality (and when discussing local equiva-
lence). Note that if 𝐶1 is locally equivalent to 𝐶2, then automatically 𝑑(𝐶1) = 𝑑(𝐶2). However, in
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19 of 40 DAI et al.

general, a localmap from𝐶1 to𝐶2 only guarantees 𝑑(𝐶1) ⩽ 𝑑(𝐶2); henceDefinition 2.11 is stronger
than the presence of a local map.† It turns out that Definition 2.11 defines a partial order onℑ; for
a discussion of the importance of Definition 2.11, see [14].

Theorem 2.12 [13, Proof of Theorem 1.3]. Let {𝐶𝑖}𝑖∈ℕ be a sequence of 𝜄-complexes. Suppose there
exists a sequence (𝑛𝑖)𝑖∈ℕ such that 𝑛𝑖 → ∞ and 𝐶𝑖 ⩽ 𝑋𝑛𝑖 for each 𝑖. Then {𝐶𝑖}𝑖∈ℕ has infinite rank in
ℑ.

Proof. We sketch the proof for the convenience of the reader. It was shown in [13, Lemma 7.11] that
for any local equivalence class 𝐶𝑖 with 𝐶𝑖 ⩽ 𝑋𝑛𝑖 , the connected homology 𝐻𝐹conn(𝑚𝐶𝑖) (see [22]
for a definition) has a𝑈-torsion tower of length at least 𝑛𝑖 whenever𝑚 ≠ 0. We then build a infi-
nite linearly independent subsequence of the 𝐶𝑖 as follows. At the 𝑝th stage, let 𝑖𝑝 be any integer
for which 𝑛𝑖𝑝 is larger than the maximal 𝑈-torsion tower length appearing among 𝐻𝐹conn(𝐶𝑖1),
𝐻𝐹conn(𝐶𝑖2), … ,𝐻𝐹conn(𝐶𝑖𝑝−1). It follows 𝐻𝐹conn(𝑚𝐶𝑖𝑝 ) has a 𝑈-torsion tower of length at least
𝑛𝑖𝑝 . According to [13, Lemma 7.10], this implies that 𝑚𝐶𝑖𝑝 does not lie in the the span of 𝐶𝑖1 ,
𝐶𝑖2 , … , 𝐶𝑖𝑝−1 for any𝑚 ≠ 0. Hence, {𝐶𝑖}𝑖∈ℕ has infinite rank in ℑ. □

For concreteness, in Definition 2.9 we have normalized the 𝑋𝑖 such that each 𝑑(𝑋𝑖) = 0. How-
ever, Theorems 2.10 and 2.12 hold more generally upon applying a grading shift to each 𝑋𝑖 or
𝑋𝑛𝑖 . More precisely, for any sequence of integers 𝑑𝑖 , the grading-shifted classes 𝑋𝑖[𝑑𝑖] are linearly
independent. Similarly, if {𝐶𝑖}𝑖∈ℕ is a sequence of 𝜄-complexeswith𝐶𝑖 ⩽ 𝑋𝑛𝑖 [𝑑𝑖], then {𝐶𝑖}𝑖∈ℕ again
has infinite rank inℑ. Note that in the latter case, Definition 2.11 requires 𝑑𝑖 = −𝑑(𝐶𝑖); otherwise
Theorem 2.12 is false.‡ These minor extensions easily follow from considering the splitting

ℑ = ℑ0 ⊕ ℤ,

whereℑ0 is the subgroup of ℑ consisting of all 𝜄-complexes with 𝑑-invariant zero.

2.7 Involutive surgery formula

Let 𝐾 be an oriented knot in 𝑆3. In [27], Hendricks and Manolescu defined a grading-preserving,
skew-filtered homotopy involution

𝜄𝐾 ∶ 𝐶𝐹𝐾
∞(𝐾) → 𝐶𝐹𝐾∞(𝐾)

on the knot Floer complex of 𝐾. As in the 3-manifold case, the (filtered) homotopy equivalence
class of the pair (𝐶𝐹𝐾∞(𝐾), 𝜄𝐾) is a diffeomorphism invariant of𝐾. Although in general the action
of 𝜄𝐾 is difficult to compute, there are a wide variety of cases in which 𝜄𝐾 is determined for formal
reasons; these include thin knots and L-space knots (see [27, section 7] and [27, section 8]).
In this paper, we will mainly utilize the involutive knot Floer package in the context of the

involutive surgery formula. To state this, we first review some notation from the usual knot Floer

† This is essentially matter of notational convention. Elsewhere in the literature, it is often assumed that 𝑑(𝐶) = 0 for
convenience, in which case an inequality is indeed equivalent to the existence of a local map.
‡Our convention for the grading-shift notation is that an element of 𝐶 in grading zero has grading −Δ in 𝐶[Δ].
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 20 of 40

surgery formula. For 𝑠 ∈ ℤ, let 𝐴−𝑠 (𝐾) be the subcomplex of 𝐶𝐹𝐾
∞(𝐾) given by:

𝐴−𝑠 (𝐾) = span𝔽[𝑈]{[𝐱, 𝑖, 𝑗], such that 𝑖 ⩽ 0, 𝑗 ⩽ 𝑠}.

Let 𝐵−𝑠 (𝐾) be the subcomplex of 𝐶𝐹𝐾
∞(𝐾) given by:

𝐵−𝑠 (𝐾) = span𝔽[𝑈]{[𝐱, 𝑖, 𝑗], such that 𝑖 ⩽ 0}.

Note that𝐻∗(𝐵
−
𝑠 (𝐾)) ≅ 𝔽[𝑈] for any 𝑠. We also have the inclusion map

𝑣 ∶ 𝐴−𝑠 (𝐾) → 𝐵−𝑠 (𝐾).

See [47, 52] for further discussion.
In [27, section 6], Hendricks and Manolescu established a large surgery formula by showing

that for any integer 𝑝 ⩾ g(𝐾), there is a relatively graded homotopy equivalence

(𝐶𝐹−(𝑆3𝑝(𝐾), [0]), 𝜄) ≃ (𝐴−0 (𝐾), 𝜄𝐾).

Note that 𝜄𝐾 preserves 𝐴−0 (𝐾). In [23], Hendricks, Hom, Zemke, and the fourth author extended
this to a general surgery formula for computing (𝐶𝐹−(𝑆3

𝑝∕𝑞
(𝐾), [0]), 𝜄). The local equivalence class

of the resulting 𝜄-complex is easily described. The following will be the main technical tool used
in this paper:

Theorem 2.13 [23, Proposition 22.9]. Let 𝑝 and 𝑞 be positive, relatively prime integers. Suppose 𝑝 is
odd, so that [0] is the unique self-conjugate spinc-structure on 𝑆3

𝑝∕𝑞
(𝐾). Then:

(1) if 𝑞 is odd, (𝐶𝐹−(𝑆3
𝑝∕𝑞

, [0]), 𝜄) is locally equivalent to (𝐴−
0
(𝐾), 𝜄𝐾).

(2) if 𝑞 is even, (𝐶𝐹−(𝑆3
𝑝∕𝑞

, [0]), 𝜄) is locally equivalent to truncated mapping cone complex below:

Here, [𝑛] represents the integer closest to 𝑛.† The 𝜄-action on this complex is given by interchanging
the two copies of 𝐴−

[𝑝∕2𝑞]
and fixing 𝐵−

[𝑝∕2𝑞]
.

Note that if 𝑞 is even, up to local equivalence the action of 𝜄 does not in fact depend on 𝜄𝐾 .

3 PROOF OF THEOREMS 1.7 AND 1.9

We now turn to the proof of Theorem 1.9, which will quickly imply Theorem 1.7.

†No half-integers for 𝑛 appear in this article.
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21 of 40 DAI et al.

3.1 Families of surgeries

We begin with a general theorem regarding the linear independence of families of homology
spheres obtained by odd-over-even surgeries on knots.

Theorem 3.1. Let 𝑝 and 𝑞 be positive integers with 𝑝 odd and 𝑞 even. Let {𝐽𝑛}𝑛∈ℕ be any family
of knots in 𝑆3. If 𝑉0(𝐽𝑛) → ∞ as 𝑛 → ∞, then the family of ℤ2-homology spheres {𝑆3𝑝∕𝑞(𝐽𝑛)}𝑛∈ℕ has
infinite rank in Θ3

ℤ2
.

Proof. For convenience, write 𝑠 = [𝑝∕(2𝑞)]. Denote 𝐴−𝑠 = 𝐴−𝑠 (𝐽𝑛) and 𝐵
−
𝑠 = 𝐵−𝑠 (𝐽𝑛), so that the

𝜄-complex 𝐶𝑛 of 𝑆3𝑝∕𝑞(𝐽𝑛) is locally equivalent to the complex 𝐴
−
𝑠 ⊕ 𝐴−𝑠 → 𝐵−𝑠 of Theorem 2.13.

The structure of knot Floer homology implies we have a relatively graded isomorphism

𝐻∗(𝐴
−
𝑠 ) ≅ 𝔽[𝑈] ⊕ (𝑈-torsion) and 𝐻∗(𝐵

−
𝑠 ) ≅ 𝔽[𝑈].

The map 𝑣 induces an injection from the 𝔽[𝑈]-tower of 𝐻∗(𝐴
−
𝑠 ) to 𝐻∗(𝐵

−
𝑠 ) ≅ 𝔽[𝑈] which is

modeled on multiplication by some power of 𝑈.† This power of 𝑈 is precisely the knot Floer
concordance invariant 𝑉𝑠(𝐽𝑛) defined in [46].
Although in general it is difficult to completely understand 𝐶𝑛, we will show that the above

discussion suffices to produce an inequality

𝑋∨
𝑉𝑠(𝐽𝑛)

[−𝑑(𝐶𝑛)] ⩽ 𝐶𝑛.

We then dualize and apply Theorem 2.12. This will give the linear independence of the 𝐶∨𝑛 , and
hence the 𝐶𝑛.
Let 𝑎 ∈ 𝐴−𝑠 be a cycle generating the 𝔽[𝑈]-tower in 𝐻∗(𝐴

−
𝑠 ) and let 𝑏 ∈ 𝐵−𝑠 be a cycle gener-

ating 𝐻∗(𝐵
−
𝑠 ) ≅ 𝔽[𝑈]. Write 𝑎1 for the copy of 𝑎 in the first summand of 𝐴−𝑠 ⊕ 𝐴−𝑠 and 𝑎2 for

the copy of 𝑎 in the second. Note that 𝑣(𝑎) is homologous to 𝑈𝑉𝑠(𝐽𝑛)𝑏; let 𝑐 ∈ 𝐵−𝑠 be such that
𝜕𝑐 = 𝑣(𝑎) + 𝑈𝑉𝑠(𝐽𝑛)𝑏.
Define a (grading-homogenous) map from 𝑋∨

𝑉𝑠(𝐽𝑛)
to 𝐶𝑛 by sending

𝑥∨ ↦ 𝑎1 + 𝑐, 𝜄𝑥∨ ↦ 𝑎2 + 𝑐, and 𝛼∨ ↦ 𝑏

This is an 𝜄-equivariant chain map; the situation is schematically depicted in Figure 11. The 𝑑-
invariant of 𝐶𝑛 is given by the grading of 𝑎1 + 𝑎2. Applying a grading shift to 𝑋∨𝑉𝑠(𝐽𝑛) so that 𝑥

∨

and 𝜄𝑥∨ have this grading then gives the claimed inequality.
Dualizing, we obtain an inequality from𝐶∨𝑛 to some grading shift of𝑋𝑉𝑠(𝐽𝑛). By [46, 53], we have

that

𝑉0(𝐽𝑛) − 𝑠 ⩽ 𝑉𝑠(𝐽𝑛) ⩽ 𝑉0(𝐽𝑛).

As 𝑠 is independent of 𝑛, the condition 𝑉0(𝐽𝑛) → ∞ implies that 𝑉𝑠(𝐽𝑛) → ∞. Theorem 2.12 then
shows that the span of the 𝐶∨𝑛 , and hence the span of the 𝐶𝑛, has infinite rank in ℑ. □

† The decomposition 𝐻∗(𝐴
−
𝑠 ) ≅ 𝔽[𝑈] ⊕ (𝑈-torsion) is of course not canonical, but this statement holds for any choice

of decomposition.
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 22 of 40

F IGURE 11 Left: The complex 𝑋∨
𝑉𝑠(𝐽𝑛)

. Middle: the complex 𝐴−
𝑠
⊕ 𝐴−

𝑠
→ 𝐵−

𝑠
afforded by Theorem 2.13.

Right: A subcomplex of 𝐴−
𝑠
⊕ 𝐴−

𝑠
→ 𝐵−

𝑠
isomorphic to 𝑋∨

𝑉𝑠(𝐽𝑛)
.

In fact, an examination of the proof of Theorem 3.1 establishes a slightly stronger claim: we
may even allow the surgery coefficient 𝑝∕𝑞 to vary, so long as 𝑠 = [𝑝∕(2𝑞)] remains bounded.
(This extension will not be used in the present paper.) Theorem 3.1 immediately gives a general
result regarding rational unknotting number one patterns. For completeness, we record this here:

Theorem 3.2. Let 𝑃 be a positive proper rational unknotting number one pattern with associated
knot 𝐽. For any family of knots {𝐾𝑛}𝑛∈ℕ in 𝑆3, let 𝐽𝑛 = 𝐽𝐾𝑛,𝜇̃ be the corresponding doubly infected
family. If 𝑉0(𝐽𝑛) → ∞ as 𝑛 → ∞, then {𝑃(𝐾𝑛)}𝑛∈ℕ has infinite rank.

Proof. As explained in Section 2, by passing to branched double covers and applying the discussion
of Subsection 2.3, it suffices to prove that {𝑆3

𝑝∕𝑞
(𝐽𝑛)}𝑛∈ℕ has infinite rank in Θ3ℤ2 . As explained in

Subsection 2.2, the fact that 𝑃 is proper means that 𝑞 is even, while 𝑝 is always odd. The claim
then follows verbatim from Theorem 3.1. □

Theorem 3.2 is trivially a specialization of Theorem 3.1: so far, we have not imposed any con-
dition on 𝓁 = 𝑙𝑘(𝐽, 𝜇), nor have we used any details of the definition of a rational tangle pattern
other than the fact that their branched double covers are surgeries on knots. However, while in
principle Theorem 3.2 is entirely general, in practice it may be difficult to check the condition
𝑉0(𝐽𝑛) → ∞, as the knots 𝐽𝑛 are extremely complicated.
Our approach will thus be to estimate𝑉0(𝐽𝑛) in terms of the invariants of the companion knots

𝐾𝑛. We show that if 𝓁 ≠ 0, then we can bound𝑉0(𝐽𝑛) below in terms of𝑉0(𝐾𝑛) − 𝑉0(−𝐾𝑛), which
will establish Theorem 1.9. The desired inequality will follow from the construction of a certain
negative-definite cobordism whose incoming end is positive surgery on 𝐽𝑛. The outgoing end of
our cobordismwill be the connected sum of three pieces: positive surgery on𝐾𝑛, negative surgery
on 𝐾𝑛, and a third fixed manifold that is independent of 𝐾𝑛. A similar cobordism was considered
in [32]. We provide an elementary discussion of this technique in the next subsection.

3.2 Construction of the cobordism

Fix any nonzero integer 𝑀. In Figure 12, we have displayed an alternative surgery diagram for
𝑀-surgery on 𝐽𝐾,𝜇. This consists of a copy of 𝐽 with surgery coefficient 𝑀, together with 𝐾, 𝜏𝐾,
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23 of 40 DAI et al.

F IGURE 1 2 A surgery diagram for𝑀-surgery on 𝐽𝐾,𝜇. In this example, 𝓁 = 1.

𝜇, and 𝜏𝜇, all with surgery coefficient zero. For convenience, we denote these by 𝐾1, 𝐾2, 𝜇1, and
𝜇2, respectively. For ease of bookkeeping, we give𝐾2 and 𝜇2 the reversed orientation as compared
to their pushforward orientations under 𝜏. (Note that in the discussion of Subsection 2.2, both of
these are given the pushforward orientation. Hence, we may simultaneously reverse orientation
on both at no cost.) Then

𝑙𝑘(𝜇𝑖, 𝐾𝑖) = 1 and 𝑙𝑘(𝜇𝑖, 𝐽) = 𝓁.

for 𝑖 = 1, 2.
To see that the diagram of Figure 12 is correct, slide the strands of 𝐽 that pass through 𝜇𝑖 over

𝐾𝑖 , via 𝐽 ↦ 𝐽 − 𝓁𝐾1 − 𝓁𝐾2. This changes 𝐽 into 𝐽𝐾,𝜇 (with surgery coefficient 𝑀) and unlinks 𝐽
from each 𝜇𝑖 . We then use 𝜇𝑖 to separate 𝐾𝑖 from the rest of the diagram and delete both pairs 𝜇𝑖
and 𝐾𝑖 .
Now fix any pair of integers 𝑁1 and 𝑁2. Construct a cobordism𝑊 from𝑀-surgery on 𝐽𝐾,𝜇 by

attaching a pair of 2-handles along the curves 𝛾1 and 𝛾2 indicated on the left in Figure 13. These
have framings −𝑁1 and −𝑁2, respectively. For concreteness, we orient 𝛾1 and 𝛾2 such that the
nonzero linking numbers are given by

𝑙𝑘(𝛾𝑖, 𝜇𝑖) = 1 and 𝑙𝑘(𝛾𝑖, 𝐾𝑖) = −𝑁𝑖.

The outgoing end of this cobordism is homeomorphic to the connected sum

𝑆3𝑁1
(𝐾)#𝑌(𝐽, 𝜇,𝑀)#𝑆3𝑁2

(𝐾),

where 𝑌(𝐽, 𝜇,𝑀) is a 3-manifold that depends only on 𝐽, 𝜇,𝑀, 𝑁1 and 𝑁2, although we suppress
the dependence on 𝑁1 and 𝑁2. (In particular, it does not depend on 𝐾.) To see this, slide 𝐾𝑖 over
𝛾𝑖 , as in Figure 13.
We now investigate under what conditions this cobordism is negative definite:
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 24 of 40

F IGURE 13 Left: Constructing a cobordism by attaching a pair of 2-handles along the curves 𝛾1 and 𝛾2.
Right: The outgoing end of this cobordism. The equivalence between the left- and right-hand pictures is most
easily envisioned by going from right-to-left, in which case the map is given by sliding 𝐾𝑖 over 𝛾𝑖 via 𝐾𝑖 ↦ 𝐾𝑖 + 𝛾𝑖 .
The map from left-to-right corresponds to the slide 𝐾𝑖 ↦ 𝐾𝑖 − 𝛾𝑖 . The 3-manifold 𝑌(𝐽, 𝜇,𝑀) is surgery on the
sublink on the right consisting of 𝐽, 𝜇𝑖 , and 𝛾𝑖 . In this example, 𝓁 = 1, 𝑁1 = 2, and 𝑁2 = −1.

Lemma 3.3. The cobordism of Figure 13 is negative definite if and only if

𝓁2(𝑁2
1 + 𝑁

2
2) − (𝑁1 + 𝑁2)𝑀 > 0 and 𝑀𝑁1𝑁2(−𝓁

2(𝑁1 + 𝑁2) +𝑀) > 0.

Proof. As 𝑀 ≠ 0, the incoming end of the cobordism is a rational homology sphere with first
homology ℤ∕𝑀ℤ. Over ℚ, the second homology of the cobordism is thus clearly of rank two and
is generated by the cores of the 2-handles attached along 𝛾1 and 𝛾2. However, in order to calculate
the self-intersections of these generators, we must perform handleslides on the 𝛾𝑖 to algebraically
unlink them from the rest of the diagram. In addition, the 𝛾𝑖 are not null-homologous in general;
instead, we are only guaranteed that they are𝑀-torsion in first homology.
We thus instead consider the curves

𝐶1 = 𝑀𝛾1 + (𝑁1𝓁
2 − 𝑀)𝐾1 +𝑀𝑁1𝜇1 − 𝑁1𝓁𝐽 + 𝑁1𝓁

2𝐾2

𝐶2 = 𝑀𝛾2 + (𝑁2𝓁
2 − 𝑀)𝐾2 +𝑀𝑁2𝜇2 − 𝑁2𝓁𝐽 + 𝑁2𝓁

2𝐾1.

These are obtained by sliding𝑀𝛾1 and𝑀𝛾2 over the other curves in the diagram to make them
algebraically unlinked from the left-hand side of Figure 13. Indeed, the reader should verify that
the linking numbers between 𝐶1 and the five curves 𝐾1, 𝜇1, 𝐽, 𝜇2, and 𝐾2 are zero, and similarly
for 𝐶2. For convenience, we recall that the nonzero linking numbers are given by

𝑙𝑘(𝜇𝑖, 𝐾𝑖) = 𝑙𝑘(𝜇𝑖, 𝛾𝑖) = 1, 𝑙𝑘(𝜇𝑖, 𝐽) = 𝓁, and 𝑙𝑘(𝛾𝑖, 𝐾𝑖) = −𝑁𝑖,

and

𝑙𝑘(𝛾𝑖, 𝛾𝑖) = −𝑁𝑖 and 𝑙𝑘(𝐽, 𝐽) = 𝑀.
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25 of 40 DAI et al.

The self-linking of 𝐶1 is given by

𝑙𝑘(𝐶1, 𝐶1) = 𝑀𝑙𝑘(𝐶1, 𝛾1)

= 𝑀
(
𝑀(−𝑁1) + (𝑁1𝓁

2 − 𝑀)(−𝑁1) +𝑀𝑁1

)
= 𝑀𝑁1(𝑀 − 𝑁1𝓁

2).

Similarly, 𝑙𝑘(𝐶2, 𝐶2) = 𝑀𝑁2(𝑀 − 𝑁2𝓁
2). Meanwhile,

𝑙𝑘(𝐶1, 𝐶2) = 𝑀𝑙𝑘(𝐶1, 𝛾2) = −𝑀𝑁1𝑁2𝓁
2.

Thus, the intersection form of the cobordism is proportional to(
𝑁1(𝑀 − 𝑁1𝓁

2) −𝑁1𝑁2𝓁
2

−𝑁1𝑁2𝓁
2 𝑁2(𝑀 − 𝑁2𝓁

2)

)
.

This has characteristic polynomial

𝑡2 +
(
𝓁2(𝑁2

1 + 𝑁
2
2) − (𝑁1 + 𝑁2)𝑀

)
𝑡 +

(
𝑀𝑁1𝑁2(−𝓁

2(𝑁1 + 𝑁2) +𝑀)
)
.

The roots of the characteristic polynomial are simultaneously negative if and only if their sum is
negative and their product is positive; that is,

𝓁2(𝑁2
1 + 𝑁

2
2) − (𝑁1 + 𝑁2)𝑀 > 0 and 𝑀𝑁1𝑁2(−𝓁

2(𝑁1 + 𝑁2) +𝑀) > 0,

as desired. □

In our situation, we will be interested in large positive surgery on 𝐽𝐾,𝜇, as 𝑉0(𝐽𝐾,𝜇) is (up to
an overall shift) given by the 𝑑-invariant of such a manifold. We thus assume that𝑀 is positive.
Suppose in addition that 𝓁 ≠ 0. Then we have:

Lemma 3.4. Let𝑀 > 0 and 𝓁 ≠ 0. Then for any𝑁1 ≫ 0 and 𝑁2 < 0 with𝑁2 small in magnitude
compared to𝑁1, the cobordism𝑊 is negative definite.

Proof. Under the hypotheses of the lemma, the conditions of Lemma 3.3 are equivalent to

𝑁2
1 + 𝑁

2
2 − (𝑁1 + 𝑁2)

𝑀

𝓁2
> 0 and 𝑁1𝑁2

(
−(𝑁1 + 𝑁2) +

𝑀

𝓁2

)
> 0.

The first condition is clearly satisfied as long as at least one of 𝑁1 and 𝑁2 is sufficiently large in
magnitude. In addition, if 𝑁1 is sufficiently positive compared to the magnitude of 𝑁2, then the
factor −(𝑁1 + 𝑁2) +𝑀∕𝓁

2 in the second condition is negative. As 𝑁1 > 0 and 𝑁2 < 0, this gives
the claim. □

Remark 3.5. Let 𝑃 be any pattern with winding number zero. The meridian 𝜇 of 𝑃 lies on the
boundary of the solid torus 𝑆1 × 𝐷2 for 𝑃 and thus inherits a normal framing as a curve on 𝜕(𝑆1 ×
𝐷2). Lifting this normal framing to the branched double cover defines a pushoff of 𝜇, which we
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 26 of 40

denote by 𝜇′. In [32], the authors consider the rational linking number 𝑙𝑘(𝜇, 𝜇′) and impose the
condition 𝑙𝑘(𝜇, 𝜇′) ≠ 0 as a hypothesis of [32, Theorem 3]. In our context, 𝜇′ may be obtained
by taking the Seifert framing of 𝜇 before surgering along 𝐽 in Figure 13; the quantity 𝑙𝑘(𝜇, 𝜇′) is
the rational linking number of 𝜇 and 𝜇′ in the surgered manifold. It is easily checked that this is
nonzero if and only if 𝓁 = 𝑙𝑘(𝜇, 𝐽) is nonzero. Thus, the linking number requirement we impose
in this paper is the same as that of [32]; moreover, this characterization shows that the condition
𝓁 ≠ 0 depends only on 𝑃 (and not the choice of unknotting tangle replacement).

3.3 Completion of proof

We now finally conclude the proof of Theorem 1.9. We recall the statement for the convenience of
the reader:

Theorem 1.9. Let 𝑃 be a proper rational unknotting number one pattern with nonzero linking
number and 𝑝∕𝑞 > 0. If {𝐾𝑛}𝑛∈ℕ is any family of knots such that 𝑉0(𝐾𝑛) − 𝑉0(−𝐾𝑛) → ∞ as 𝑛 →
∞, then {𝑃(𝐾𝑛)}𝑛∈ℕ has infinite rank.

Proof. Fix any positive integer𝑀 and integers𝑁1 and𝑁2 satisfying the conditions of Lemma 3.4.
It will be useful to assume that𝑀, 𝑁1, and 𝑁2 are odd. We obtain a negative-definite cobordism
𝑊 from

𝑆3𝑀(𝐽𝑛) = 𝑆3𝑀(𝐽𝐾𝑛,𝜇)

to

𝑆3𝑁1
(𝐾𝑛)#𝑌#𝑆

3
𝑁2
(𝐾𝑛),

where 𝑌 = 𝑌(𝐽, 𝜇,𝑀) is independent of 𝐾𝑛. We claim that there exists a spinc-structure 𝔰 on𝑊
that restricts to [0] on 𝑆3

𝑀
(𝐽𝑛) and [0] on both factors 𝑆3𝑁1(𝐾𝑛) and 𝑆

3
𝑁2
(𝐾𝑛). This can be shown

in many ways. For example, note that as𝑀, 𝑁1, and 𝑁2 are odd, the spinc-structures on 𝑆3𝑀(𝐽𝑛),
𝑆3
𝑁1
(𝐾𝑛), and 𝑆3𝑁2(𝐾𝑛) are parameterized by the Chern classes of their determinant line bundles.

Let 𝔱 be any spinc-structure on𝑊 with determinant line bundle 𝐿. Let

2𝐸 + 1 = 𝑀𝑁1𝑁2.

Then the tensor product 𝔰 = 𝔱 ⊗ 𝐿𝐸 is a spinc-structure on𝑊 with first Chern class (2𝐸 + 1)𝑐1(𝐿);
this trivially vanishes when restricted to 𝑆3

𝑀
(𝐽𝑛), 𝑆3𝑁1(𝐾), and 𝑆

3
𝑁2
(𝐾). We thus obtain an equality

of 𝑑-invariants:

𝑑
(
𝑆3𝑀(𝐽𝑛), [0]

)
+ Δ(𝑊, 𝔰) ⩽ 𝑑

(
𝑆3𝑁1

(𝐾𝑛), [0]
)
+ 𝑑(𝑌, 𝔰|𝑌) + 𝑑(𝑆3𝑁2(𝐾𝑛), [0]). (1)

Here, Δ(𝑊, 𝔰) is the Heegaard Floer grading shift associated to 𝑊 and 𝔰. Crucially, note that
Δ(𝑊, 𝔰) and 𝑑(𝑌, 𝔰|𝑌) do not depend on the index 𝑛.
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27 of 40 DAI et al.

Now, as𝑀 and 𝑁1 are positive, we have the standard equality

𝑑(𝑆𝑀(𝐽𝑛), [0]) =
𝑀 − 1

4
− 2𝑉0(𝐽𝑛) and 𝑑(𝑆𝑁1(𝐾), [0]) =

𝑁1 − 1

4
− 2𝑉0(𝐾𝑛).

As 𝑁2 is negative, we have

𝑑(𝑆𝑁2(𝐾𝑛), [0]) = −𝑑(𝑆−𝑁2(−𝐾𝑛), [0]) =
𝑁2 + 1

4
+ 2𝑉0(−𝐾𝑛).

Substituting these into our inequality (1) for 𝑑-invariants and collecting terms, we obtain

𝑉0(𝐽𝑛) ⩾ 𝑉0(𝐾𝑛) − 𝑉0(−𝐾𝑛) + 𝐶,

where𝐶 is a constant not depending on 𝑛. Hence, we see that the condition𝑉0(𝐾𝑛) − 𝑉0(−𝐾𝑛) →
∞ in fact guarantees 𝑉0(𝐽𝑛) → ∞. Applying Theorem 3.2 then gives the result. □

Remark 3.6. The reader may wonder whether the condition 𝓁 ≠ 0 is necessary. This is crucial for
the argument: note that if 𝓁 = 0, then the conditions of Lemma 3.3 become

−(𝑁1 + 𝑁2)𝑀 > 0 and 𝑀2𝑁1𝑁2 > 0.

If𝑀 > 0, these conditions are only satisfied when𝑁1 and𝑁2 are both less than zero. In this case,
the resulting inequality bounds 𝑉0(𝐽𝑛) below by a constant plus −2𝑉0(−𝐾𝑛), which is not gener-
ally useful (as 𝑉0 is positive). Similarly, the reader may wonder whether more judicious choices
for𝑁1 and𝑁2might produce different inequalities. For example, if we could choose𝑁1 and𝑁2 to
both be positive, we would bound 𝑉0(𝐽𝑛) below by a constant plus 2𝑉0(𝐾𝑛). Unfortunately, this
is also impossible: if 𝑁1 and 𝑁2 are positive, the conditions of Lemma 3.3 become

𝑁2
1 + 𝑁

2
2 − (𝑁1 + 𝑁2)

𝑀

𝓁2
> 0 and − (𝑁1 + 𝑁2) +

𝑀

𝓁2
> 0.

It is straightforward to verify that this is impossible.

This immediately completes the proof of Theorem 1.7:

Theorem 1.7. Let 𝑃 be a proper rational unknotting number one pattern with nonzero linking num-
ber. Then𝑃 is rank-expanding.More specifically, if𝐾 is any knot such that𝑉0(𝑛𝐾) − 𝑉0(−𝑛𝐾) → ∞

as 𝑛 → ∞, then 𝑃 is rank-expanding along 𝐾.

Proof. Let 𝑃 be a proper rational unknotting number one pattern with 𝓁 ≠ 0. If 𝑃 is positive, then
setting 𝐾𝑛 = 𝑛𝐾 and applying Theorem 1.9 immediately gives the claim. Otherwise, consider the
(mirrored, orientation-reversed) pattern−𝑃. This is also a proper rational unknotting number one
patternwith𝓁 ≠ 0; considering the branched double cover shows that−𝑃 is positive. Again setting
𝐾𝑛 = 𝑛𝐾, Theorem 1.9 implies (−𝑃)(𝑛𝐾) (for 𝑛 > 0) has infinite rank. But this means 𝑃(−𝑛𝐾) (for
𝑛 > 0) has infinite rank. Hence, 𝑃 is certainly rank-expanding along {𝑛𝐾}𝑛∈ℤ. □
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 28 of 40

F IGURE 14 Top left: The knot Floer complex of the thin knot 𝑇2,5; 𝜏(𝑇2,5) = 2. Bottom left: the knot Floer
complex of 𝑇2,5#𝑇2,5 (after a change of basis). Right: The subcomplex of 𝐶𝐹𝐾∞(𝑇2,5#𝑇2,5) spanned by the
staircase generators. We have schematically depicted (𝐴−

𝑠
)′ and (𝐵−

𝑠
)′ for 𝑠 = 2. The generators in (𝐵−

𝑠
)′ are drawn

as dots (i.e., to the left of the vertical axis); the generators in (𝐴−
𝑠
)′ are the subset of these dots lying in the shaded

region.

4 PROOF OF THEOREM 1.10

We now turn to the proof of Theorem 1.10.

Theorem 1.10. Let 𝑃 be a 𝑝∕𝑞-rational tangle pattern with 𝑝∕𝑞 > 0.

(1) Suppose 𝑞 is even. Let {𝐾𝑛}𝑛∈ℕ be any family of thin knots with 𝜏(𝐾𝑛) distinct and greater than⌊(⌊𝑝∕𝑞⌋ + 1)∕4⌋. Then {𝑃(𝐾𝑛)}𝑛∈ℕ is linearly independent and in fact spans a ℤ∞-summand
of .

(2) Suppose 𝑞 is odd. Let {𝐾𝑛}𝑛∈ℕ be any family of thin knots with 𝜏(𝐾𝑛) distinct and less than zero.
Then {𝑃(𝐾𝑛)}𝑛∈ℕ is linearly independent and in fact spans a ℤ∞-summand of .

Proof. Let 𝑃 be a 𝑝∕𝑞-rational tangle pattern with 𝑝∕𝑞 > 0. We start by showing that the surgered
family {𝑆3

𝑝∕𝑞
(𝐾𝑛#𝐾𝑛)}𝑛∈ℕ is linearly independent in Θ3ℤ2 .

We first consider the case when 𝑞 is even. Following the proof of Theorem 1.7, we again analyze
the surgery complex afforded by Theorem 2.13 and compare it to some 𝑋∨

𝑖
. However, because the

knot Floer homology of a thin knot is very simple, in this case we will be able to establish an
explicit local equivalence, rather than just an inequality. This will allow us to utilize Theorem 2.10
rather than Theorem 2.12, and thus conclude linear independence.
As before, write 𝑠 = [𝑝∕2𝑞] and denote 𝐴−𝑠 = 𝐴−𝑠 (𝐾𝑛#𝐾𝑛) and 𝐵−𝑠 = 𝐵−𝑠 (𝐾𝑛#𝐾𝑛), so that

the 𝜄-complex of 𝑆3
𝑝∕𝑞

(𝐾𝑛#𝐾𝑛) is locally equivalent to the complex 𝐴−𝑠 ⊕ 𝐴−𝑠 → 𝐵−𝑠 defined in
Theorem 2.13.
It is a standard fact that if 𝐾𝑛 is thin, then the connected sum 𝐾𝑛#𝐾𝑛 is also thin. Hence, the

knot Floer complex of 𝐾𝑛#𝐾𝑛 consists of a step-length-one staircase, together with a number of
side-length-one boxes, as schematically displayed on the left in Figure 14. The staircase has total
height 2𝜏(𝐾𝑛). The fact that 𝜏(𝐾𝑛) > 0 (together with the fact that 𝜏(𝐾𝑛#𝐾𝑛) = 2𝜏(𝐾𝑛) is even)
shows that the staircase opens toward the south-west, as in Figure 14.
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29 of 40 DAI et al.

We argue that up to local equivalence, we can successively simplify 𝐶𝐹𝐾∞(𝐾𝑛#𝐾𝑛) until
it is the same as some 𝑋∨

𝑖
. The first simplification is as follows. Consider the subcomplex of

𝐶𝐹𝐾∞(𝐾𝑛#𝐾𝑛) spanned by the staircase generators. Let the intersection of this subcomplex with
𝐴−𝑠 be denoted (𝐴

−
𝑠 )
′, and define (𝐵−𝑠 )

′ similarly. (See the right of Figure 14.) This gives an obvi-
ous subcomplex (𝐴−𝑠 )

′ ⊕ (𝐴−𝑠 )
′ → (𝐵−𝑠 )

′ of 𝐴−𝑠 ⊕ 𝐴−𝑠 → 𝐵−𝑠 . The inclusion and projection maps
for this subcomplex are easily checked to be local equivalences, so without loss of generality we
may replace the original complex 𝐴−𝑠 ⊕ 𝐴−𝑠 → 𝐵−𝑠 with (𝐴

−
𝑠 )
′ ⊕ (𝐴−𝑠 )

′ → (𝐵−𝑠 )
′.

An examination of Figure 14 shows that𝐻∗((𝐴
−
𝑠 )
′) and𝐻∗((𝐵

−
𝑠 )

′) are both copies of 𝔽[𝑈]. Thus,
the associated graded complex

𝐻∗((𝐴
−
𝑠 )
′) ⊕ 𝐻∗((𝐴

−
𝑠 )
′) → 𝐻∗((𝐵−𝑠 )

′)

with the induced map 𝑣∗ ⊕ 𝑣∗ is certainly isomorphic to a grading-shifted copy of 𝑋∨𝑉𝑠(𝐾𝑛#𝐾𝑛).It is moreover easy to show that in this case, the associated graded complex is 𝜄-equivariantly
homotopy equivalent to the original. Hence, we obtain the desired local equivalence

𝑋∨
𝑉𝑠(𝐾𝑛#𝐾𝑛)

[−𝑑(𝐶𝑛)] ≃ 𝐶𝑛.

An examination of Figure 14 shows

𝑉𝑠(𝐾𝑛#𝐾𝑛) = ⌈(𝜏(𝐾𝑛#𝐾𝑛) − 𝑠)∕2⌉ = 𝜏(𝐾𝑛) − ⌊𝑠∕2⌋
so long as the right-hand side is positive, and𝑉𝑠(𝐾𝑛#𝐾𝑛) = 0 otherwise. (Consider the copy of the
staircase on the right of Figure 14 that intersects the left-half plane in a single dot. Then𝑉𝑠(𝐾𝑛#𝐾𝑛)
is the number of diagonal translations needed for this staircase to intersect the shaded region.)
Some numerological casework shows that

⌊𝑠∕2⌋ = ⌊[𝑝∕(2𝑞)]∕2⌋ = ⌊(⌊𝑝∕𝑞⌋ + 1)∕4⌋.
The hypotheses of the theorem thus imply that the 𝜄-complexes of the 𝑆3

𝑝∕𝑞
(𝐾𝑛#𝐾𝑛) are locally

equivalent to grading-shifted copies of 𝑋∨
𝑖
, with 𝑖 positive and distinct. As these are linearly

independent in ℑ, this completes the proof.
Wenow turn to the casewhen 𝑞 is odd. ByTheorem2.13, the 𝜄-complex of 𝑆3

𝑝∕𝑞
(𝐾𝑛#𝐾𝑛) is locally

equivalent to the large surgery complex (𝐴−
0
(𝐾𝑛#𝐾𝑛), 𝜄𝐾). We attempt to understand𝐴−0 (𝐾𝑛#𝐾𝑛)

explicitly. Much of this computation follows from [27, section 8], so we will be brief.
In [27, section 8], Hendricks and Manolescu calculate the 𝜄𝐾-complex of all thin knots. Their

result shows that up to local equivalence, the 𝜄𝐾-complex of a thin knot is locally equivalent either
to a staircase or a staircase plus a single side-length-one box. These possibilities are displayed in
Figure 15; note that we now assume 𝜏(𝐾𝑛#𝐾𝑛) is negative. In the former case, the action of 𝜄𝐾 is the
obvious reflection map on the staircase generators. In the latter, we have the slight modification
(in the notation of Figure 15):

𝜄𝐾𝑑 = 𝑑 + 𝑏, 𝜄𝐾𝑏 = 𝑏 + 𝑒, 𝜄𝐾𝑐 = 𝑐′ + 𝑎′, and 𝜄𝐾𝑐
′ = 𝑐 + 𝑎,

with 𝜄𝐾 acting by reflection on all other generators. We abuse notation and write 𝐴−
0
for this

simplified representative of the local equivalence class of 𝐴−
0
(𝐾𝑛#𝐾𝑛).
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 30 of 40

F IGURE 15 Left: Staircase with no box, with generators 𝑎, 𝑎′ and 𝑏 labeled. We have also labeled
sums-of-generators Σ and Σ′. To define these, consider the first copy of the staircase contained in the lower-left
quadrant. Note that there are an odd number of noncycle generators in this staircase. Let Σ be the sum of such
generators in the (strict) upper-half of this staircase and Σ′ be the reflection of Σ. Right: Staircase with a single box;
several further generators labeled. (The generators labels on the left are meant to carry over in the obvious way.)

F IGURE 16 Left: An 𝜄-complex with three generators. The dashed arrow represents the action of 𝜔 = 1 + 𝜄;
here 𝜔𝑥1 = 𝑥0 and otherwise vanishes. The solid arrow represents 𝜕; here 𝜕𝑥1 = 𝑈|𝜏(𝐾𝑛)|𝑥2 and otherwise
vanishes. Right: An 𝜄-complex with five generators. Here 𝜔𝑥1 = 𝑥0 and 𝜔𝑥3 = 𝑥2. The differential is given by
𝜕𝑥1 = 𝑈|𝜏(𝐾𝑛)|𝑥2 and 𝜕𝑥3 = 𝑈𝑥4.

We show that for a staircase with no box, (𝐴−
0
, 𝜄𝐾) is homotopy equivalent to (a grading-shifted

copy of) 𝑋∨|𝜏(𝐾𝑛)|. For this, consider the subcomplex 𝑆 of 𝐴−0 spanned over 𝔽[𝑈] by 𝑎, 𝑎′, and 𝑏,
together with the sums-of-generators Σ and Σ′. The reader may check that this is a 𝜄𝐾-equivariant
subcomplex of 𝐴−

0
which is homotopy equivalent to the original. Moreover, we claim that 𝑆 is

homotopy equivalent to the complex on the left in Figure 16. One direction of this homotopy
equivalence is given by the map

𝑓(𝑥0) = Σ + 𝑈|𝜏(𝐾𝑛)|𝑏 + Σ′, 𝑓(𝑥1) = Σ, and 𝑓(𝑥2) = 𝑎.
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31 of 40 DAI et al.

This does not intertwine 𝜄𝐾 with the 𝜄-action in Figure 16 on the nose, but if we set

𝐻(𝑥0) = 0, 𝐻(𝑥1) = 0, and 𝐻(𝑥2) = 𝑏

then 𝑓𝜄 + 𝜄𝐾𝑓 = 𝜕𝐻 + 𝐻𝜕. We leave it to the reader to produce the homotopy equivalence in the
other direction. A quick change-of-basis shows that up to grading shift, the left-hand complex in
Figure 16 is precisely 𝑋∨|𝜏(𝐾𝑛)|, giving the claim. For further discussion, see [14, Example 2.6].We now turn to understanding the case of a staircase with box. In this case, it turns out that
the (𝐴−

0
, 𝜄𝐾) is not locally equivalent to a copy of 𝑋∨𝑖 . However, it is still possible to understand

its local equivalence class. To see, this we modify our subcomplex 𝑆 from before by additionally
including the generators 𝑐, 𝑐′, 𝑑, and 𝑒, as displayed on the right in Figure 16. Once again, the
reader can check that 𝑆 is a subcomplex of 𝐴−

0
which is homotopy equivalent to the original. We

further claim that 𝑆 is homotopy equivalent to the complex on the right in Figure 16. To see this,
map

𝑓(𝑥0) = Σ + 𝑈|𝜏(𝐾𝑛)|𝑏 + Σ′, 𝑓(𝑥1) = Σ, 𝑓(𝑥2) = 𝑎, 𝑓(𝑥3) = 𝑐′, and 𝑓(𝑥4) = 𝑒.

Setting

𝐻(𝑥0) = 𝑈|𝜏(𝐾𝑛)|−1𝑐, 𝐻(𝑥1) = 0, 𝐻(𝑥2) = 𝑏, 𝐻(𝑥3) = 𝑑, and 𝐻(𝑥4) = 0,

exhaustive evaluation on each generator gives 𝑓𝜄 + 𝜄𝐾𝑓 = 𝜕𝐻 + 𝐻𝜕. We leave it to the reader to
produce the map in the other direction.
After a change-of-basis, the complex on the right of Figure 16 is locally equivalent (up to grading

shift) to

𝑋∨|𝜏(𝐾𝑛)| ⊗𝑋∨
1
.

The relevant computation follows from [18, Lemma 5.2]; see also [14, Theorem 8.1]. Thus, for each
𝑛, we have that the 𝜄-complex of 𝑆3

𝑝∕𝑞
(𝐾𝑛#𝐾𝑛) is locally equivalent to a grading-shifted copy of

either 𝑋∨|𝜏(𝐾𝑛)| or 𝑋∨|𝜏(𝐾𝑛)| ⊗𝑋∨
1
. As the 𝜏(𝐾𝑛) are distinct, this gives the claim.

Finally, we may upgrade the statement of linear independence to the spanning of a
ℤ∞-summand using the work of [14]. In [14], the authors construct an infinite family of lin-
early independent homomorphisms from Θ3

ℤ2
to ℤ, factoring through the homomorphism

ℎ∶ Θ3
ℤ2
→ ℑ. More precisely, they construct an algebraically defined auxiliary group ℑ̂ with a

homomorphism ℎ̂ ∶ ℑ → ℑ̂ and define a family of linearly independent homomorphisms

𝜙𝑛 ∶ ℑ̂ → ℤ.

Composing everything with the double branched cover homomorphism, we obtain a linearly
independent family of homomorphisms


Σ2
qq→ Θ3

ℤ2

ℎ
q→ ℑ

ℎ̂
q→ ℑ̂

𝜙𝑛
qq→ ℤ.

Moreover, in [14] it is shown that 𝜙𝑖(ℎ̂(𝑋𝑗)) = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker delta. This suffices
to establish the claim. □
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RANK-EXPANDING SATELLITES, WHITEHEAD DOUBLES, AND HEEGAARD FLOER HOMOLOGY 32 of 40

F IGURE 17 The knot Floer complexes of 𝑇2,3 and 𝑇3,4.

5 THIN KNOTS AND L-SPACE KNOTS

We now turn to some applications and examples of Theorems 1.7 and 1.9. The first order of busi-
ness is to understand the general condition 𝑉0(𝐾𝑛) − 𝑉0(−𝐾𝑛) → ∞ of Theorem 1.9. In practice,
𝑉0(−𝐾𝑛)may often be known to be bounded, or even zero; for example, if 𝐾 is a positive L-space
knot, or𝐾 is a thin knotwith 𝜏(𝐾) > 0. Moreover, if𝐾1 and𝐾2 have𝑉0(−𝐾1) = 𝑉0(−𝐾2) = 0, then
by the sub-additivity of 𝑉0 their connected sum has this property also. Thus, if we assume that
the family {𝐾𝑛}𝑛∈ℕ is drawn from the monoid generated by positive L-space knots, or the monoid
of thin knots with 𝜏(𝐾) > 0, then the hypothesis of Theorem 1.9 simplifies to 𝑉0(𝐾𝑛) → ∞.
It is also natural to search for related conditions that do not explicitly reference any Floer-

theoretic invariants. For the class of thin knots, this is straightforward: if 𝐾 is thin, then 𝑉0(𝐾) =
max{0, ⌈𝜏(𝐾)∕2⌉}. Moreover, for all known examples of thin knots (including all alternating
and quasi-alternating knots), we have 𝜏(𝐾) = −𝜎(𝐾)∕2. In this case we may thus re-write the
hypothesis of Theorem 1.9 as 𝜎(𝐾𝑛) → −∞.
In the setting of L-space knots, finding a topological condition is slightly more involved. For

this, it will be helpful for us to recall the work of Borodzik and Livingston [1] concerning the
calculation of the 𝑉0-invariant of a connected sum of positive L-space knots. We describe their
algorithm below. Let 𝐶1, … , 𝐶𝑛 be a sequence of positive staircase complexes corresponding to
positive L-space knots 𝐾1,… , 𝐾𝑛. For each 𝑖, place 𝐶𝑖 in the first quadrant and let 𝑆 represent the
set of all generators of the form 𝑎1 ⊗ 𝑎2 ⊗⋯⊗ 𝑎𝑛 ∈ 𝐶1 ⊗ 𝐶2 ⊗⋯⊗𝐶𝑛, where each 𝑎𝑖 varies
among the generators of 𝐶𝑖 withMaslov grading zero. Let 𝑆 be the set of pairs of integers obtained
from the bigradings of the generators in 𝑆. From [1, Proposition 5.1], we have:

𝑉0(𝐾1#𝐾2#⋯#𝐾𝑛) = min
(𝛼,𝛽)∈𝑆

{max(𝛼, 𝛽)}.

For the convenience of the reader, we include a sample computation:

Example 5.1. Let𝐾 = 𝑇2,3#𝑇2,3. Placing the knot Floer complex of𝑇2,3 in the first quadrant, as in
Figure 17, we see that there are two generators withMaslov grading 0. Let us denote the generator
in bigrading (1,0) by 𝑎 and the generator in bigrading (0,1) by 𝑏. The elements of 𝑆 are then given
by {𝑎 ⊗ 𝑎, 𝑎 ⊗ 𝑏, 𝑏 ⊗ 𝑎, 𝑏 ⊗ 𝑏}. Hence, we get

min
(𝛼,𝛽)∈𝑆

{max(𝛼, 𝛽)} = min
(𝛼,𝛽)∈𝑆

{2, 1, 1, 2} = 1.

 17538424, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70008 by M
PI 345 M

athem
atics, W

iley O
nline L

ibrary on [27/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



33 of 40 DAI et al.

Thus, 𝑉0(𝐾) = 1.

We introduce the following two (rather trivial) lemmas:

Lemma 5.2. Let𝐾 be a positive L-space knot and 𝑛 be the number of nonzero terms in the Alexander
polynomial Δ𝐾 . Then

𝑉0(𝐾) ⩾ ⌊(𝑛 − 1)∕4⌋.
Proof. As is well-known to experts in Floer theory, it is straightforward to determine the knot
Floer complex of 𝐾 (and thus the value of 𝑉0) from Δ𝐾 in the case that 𝐾 is an L-space knot [50].
Let

Δ𝐾 = (−1)𝑚 +

𝑚∑
𝑖=1

(−1)𝑚−𝑖(𝑡𝑛𝑖 + 𝑡−𝑛𝑖 )

for 0 < 𝑛1 < 𝑛2 <⋯ < 𝑛𝑚. Then (as is recorded in [27, section 7]),

𝑉0(𝐾) = 𝑛𝑚 − 𝑛𝑚−1 +⋯ + (−1)𝑚−2𝑛2 + (−1)
𝑚−1𝑛1.

As each pair 𝑛𝑘 − 𝑛𝑘−1 is at least one, we of course have 𝑉0(𝐾) ⩾ ⌊𝑚∕2⌋ = ⌊(𝑛 − 1)∕4⌋. □

Lemma 5.3. Let 𝐾1,… , 𝐾𝑛 be any collection of positive L-space knots. Then

𝑉0(𝐾1#⋯#𝐾𝑛) ⩾ max{[𝑛∕2], 𝑉0(𝐾1), … , 𝑉0(𝐾𝑛)}.

Proof. It is easy to check that

𝑉0(𝐾1#⋯#𝐾𝑛) ⩾ 𝑉0(𝐾𝑖)

for each 𝑖. Indeed, by sub-additivity,

𝑉0(𝐾𝑖) − 𝑉0(−𝐾1#⋯# − 𝐾𝑖−1# − 𝐾𝑖+1#⋯# − 𝐾𝑛) ⩽ 𝑉0(𝐾1#⋯#𝐾𝑛),

but the second term is zero. The claim that 𝑉0(𝐾1#⋯#𝐾𝑛) is at least ⌊𝑛∕2⌋ follows from work
of Borodzik and Livingston [1]. Indeed, take an arbitrary element 𝑎1 ⊗ 𝑎2 ⊗⋯⊗ 𝑎𝑛 ∈ 𝑆 and
assume that the (𝑖, 𝑗)-coordinates of 𝑎𝑙 is (𝑥𝑙, 𝑦𝑙). Let 𝑘 be the number of times the 𝑖-coordinate of
(𝑥𝑙, 𝑦𝑙) is 0. Now observe that

𝑛∑
𝑙=1

𝑥𝑙 ⩾ 𝑛 − 𝑘 and

𝑛∑
𝑙=1

𝑦𝑙 ⩾ 𝑘.

Hence, we obtain

max

{
𝑛∑
𝑙=1

𝑥𝑙,

𝑛∑
𝑙=1

𝑦𝑙

}
⩾
[
𝑛

2

]
.
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As the choice of the element 𝑎1 ⊗ 𝑎2 ⊗⋯⊗ 𝑎𝑛 ∈ 𝑆 was arbitrary, we obtain,

𝑉0(𝐾1#𝐾2#⋯#𝐾𝑛) ⩾ [𝑛∕2].

completing the proof. □

Now suppose the family {𝐾𝑛}𝑛∈ℕ in Theorem 1.9 is drawn from the monoid generated by posi-
tive L-space knots. By Lemmas 5.2 and 5.3, it follows that {𝑃(𝐾𝑛)}𝑛∈ℕ has infinite rank so long as
either:

(1) the number of summands in 𝐾𝑛 is unbounded as 𝑛 → ∞; or
(2) the set of Alexander polynomial lengths (that is, number of nonzero terms in each Alexander

polynomial) occurring among summands of the 𝐾𝑛 is unbounded as 𝑛 → ∞.

This leads to the following:

Corollary 5.4. Let 𝑃 be a proper rational unknotting number one pattern with 𝓁 ≠ 0. Let  be
the monoid of positive linear combinations of (right-handed) torus knots. If {𝐾𝑛}𝑛∈ℕ is any infinite
subset of, then {𝑃(𝐾𝑛)}𝑛∈ℕ has infinite rank.

Proof. As is a submonoid of themonoid generated by positive L-space knots, it suffices to show
that any infinite family of elements ofmust satisfy either (1) or (2) above. Suppose {𝐾𝑛}𝑛∈ℕ does
not satisfy (1). Then the set of distinct individual torus knots 𝑇𝑝,𝑞 that appear as summands in the
𝐾𝑛 must be infinite, and in particular have unbounded indices. (That is, either 𝑝 is unbounded or
𝑞 is unbounded.)
In [56], it is shown that the number of nonzero terms inΔ𝑇𝑝,𝑞 is given by 𝑣𝑥 + 𝑢𝑦, where 𝑥, 𝑦, 𝑢,

and 𝑣 are positive integers such that 𝑣𝑥 − 𝑢𝑦 = 1, 𝑝 = 𝑥 + 𝑦, and 𝑞 = 𝑢 + 𝑣. As 𝑢 and 𝑣 are at least
one, we certainly have 𝑣𝑥 + 𝑢𝑦 ⩾ 𝑥 + 𝑦 = 𝑝. Similarly, 𝑣𝑥 + 𝑢𝑦 ⩾ 𝑣 + 𝑢 = 𝑞. Hence, any infinite
family of torus knots has unbounded Alexander polynomial length (as measured by number of
nonzero terms). □

For the patterns considered in [32], it follows from the proof [32, Theorem 3] that any infinite
family of distinct torus knots has infinite-rank image. In Corollary 5.4, we extend this by allow-
ing the family of companion knots to be drawn from sums of torus knots, rather than individual
torus knots.
We now prove the applicability of Theorem 1.7 to the following three families of knots discussed

in the introduction.

(1) 𝐾 is any L-space knot, such as a torus knot or algebraic knot, or any linear combination of
such knots of the same sign/handedness.

(2) 𝐾 is any thin knot with 𝜏(𝐾) ≠ 0, such as a (quasi-)alternating knot of nonzero signature.
(3) 𝐾 is any linear combination of genus one knots such that the overall connected sum satisfies

𝜏(𝐾) ≠ 0.

The first and second families are immediate from the discussion of this section; note that if 𝐾
is a positive L-space knot, then 𝑉0(𝑛𝐾) ⩾ [𝑛∕2] by Lemma 5.3. Thus, the only nontrivial case is
the third claim.
Using the concordance invariant 𝜈+ introduced byHom andWu in [33], Hom [31] and Kim and

Park [34] defined an equivalence relation on the set of knot Floer complexes called 𝜈+-equivalence.
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35 of 40 DAI et al.

The 𝜈+-equivalence class of a knot is a concordance invariant that is well-defined with respect to
connected sums/tensor products. Moreover, the numerical invariants 𝑉0(𝐾) and 𝜏(𝐾) may both
be computed from the 𝜈+-equivalence class of 𝐶𝐹𝐾(𝐾). (Note that 𝜈+-equivalence is the same as
the stable equivalence of [31].) In [54], Sato determined the 𝜈+-equivalence class of all genus one
knots. According to [54, Theorem 1.2], if 𝐾 is a genus one knot, then

𝐶𝐹𝐾∞(𝐾) ∼𝜈+

⎧⎪⎨⎪⎩
𝐶𝐹𝐾∞(𝑇2,3) if 𝜏(𝐾) = 1

𝐶𝐹𝐾∞(𝑈) if 𝜏(𝐾) = 0

𝐶𝐹𝐾∞(−𝑇2,3) if 𝜏(𝐾) = −1.

This implies that if𝐾 is a linear combination of genus one knots, then𝐶𝐹𝐾∞(𝐾) ∼𝜈+ 𝑐𝑇2,3, where
𝑐 = 𝜏(𝐾). Hence, for the purposes of calculation𝑉0(𝑛𝐾), we may assume that𝐾 is 𝑐𝑇2,3. But 𝑐𝑇2,3
is a thin knot, for which we have already established the desired claim.

6 WHITEHEAD DOUBLES

We close by proving the applications to Whitehead doubles mentioned in the introduction. First,
note that Corollary 1.4 is an immediate consequence of Theorem 1.10:

Proof of Corollary 1.4. We have 𝜏(𝑛𝑇2,2𝑘+1) = 𝑛𝑘; applying Theorem 1.10 gives the claim. □

We thus turn to Corollary 1.6. This is a particularly simple case of the setup of Section 3, in the
sense that

Σ2(𝐷(𝐾)) = 𝑆3
1∕2
(𝐾#𝐾𝑟)

for any 𝐾. The same application of Theorem 2.13 as in the proof of Theorem 3.1 shows that up to
an overall grading shift, the 𝜄-complex 𝐶 of Σ2(𝐷(𝐾)) thus satisfies

𝐶∨ ⩽ 𝑋𝑉0(𝐾#𝐾𝑟).

Note that here, [𝑝∕(2𝑞)] = [1∕4] = 0. In contrast to the proof of Theorem 1.9, we forego the
negative-definite cobordism of Subsection 3.2 and instead utilize 𝑉0(𝐾#𝐾𝑟) directly.

Proof of Corollary 1.6. This is a special case of Theorem3.1. Let {𝐾𝑛}𝑛∈ℕ be any family of companion
knots and let 𝐶∨𝑛 be the 𝜄-complex of Σ2(𝐷(𝐾𝑛)). Up to overall grading shift, we have

𝐶∨𝑛 ⩽ 𝑋𝑉0(𝐾𝑛#𝐾𝑟𝑛)

for each 𝑛. If𝑉0(𝐾𝑛#𝐾𝑟𝑛) → ∞, then by Theorem 2.12 there exists an infinite linearly independent
subset of {𝐷(𝐾𝑛)}𝑛∈ℕ. It thus suffices to find a family of companion knots with 𝑉0(𝐾𝑛#𝐾𝑟𝑛) → ∞

but each 𝜏(𝐾𝑛) ⩽ 0. This is provided in Example 6.3. □
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The above discussion can also be used to answer a conjecture of the second author and Pinzón-
Caicedo [32], who asked whether there is a knot 𝐾 such that the Whitehead doubles 𝐷(𝐾) and
𝐷(−𝐾) are nonzero in concordance. We prove the following general condition:

Corollary 6.1. Let 𝐾 be any knot with 𝑉0(𝐾#𝐾𝑟) > 0 and 𝜏(𝐾) < 0. Then 𝐷(𝐾) and 𝐷(−𝐾) are
linearly independent.

Proof of Corollary 6.1. If 𝑉0(𝐾#𝐾𝑟) > 0, then a trivial application of the proof of Theorem 2.12
shows that the 𝜄-complex 𝐶 of Σ2(𝐷(𝐾)) is nontorsion. Hence, 𝐷(𝐾) is nontorsion in . As 𝜏(𝐾) <
0, [20, Theorem 1.4] implies that 𝜏(𝐷(𝐾)) = 0 and 𝜏(𝐷(−𝐾)) = 1. As 𝜏 is a homomorphism, this
shows that 𝐷(−𝐾) is also nontorsion in  and that it is linearly independent with 𝐷(𝐾). □

We now give several infinite families of knots for which𝑉0(𝐾#𝐾𝑟) > 0 and 𝜏(𝐾) ⩽ 0. This con-
dition turns out to be fairly common; we give a flexible recipe for constructing a wide class of
examples below. Let 𝐴 and 𝐵 be a pair of knots such that

𝑉0(2𝐴) > 𝑉0(2𝐵) and 𝜏(𝐴) ⩽ 𝜏(𝐵).

Then we claim that𝐾 = 𝐴# − 𝐵 is a knot with the desired properties. To see this, first note that as
(noninvolutive) knot Floer homology is insensitive to orientation reversal, we may replace 𝐾#𝐾𝑟
with 2𝐾. Subadditivity of 𝑉0 then gives the lower bound

0 < 𝑉0(2𝐴) − 𝑉0(2𝐵) ⩽ 𝑉0(2𝐴# − 2𝐵) = 𝑉0(2𝐾),

while 𝜏(𝐾) = 𝜏(𝐴) − 𝜏(𝐵) ⩽ 0. The advantage of the ansatz𝐾 = 𝐴# − 𝐵 is that if𝐴 and𝐵 are sums
of positive L-space knots (or are locally equivalent to such sums), then the quantities 𝑉0(2𝐴) and
𝑉0(2𝐵) are easily computed via the algorithm of [1, Proposition 5.1] (described in the proof of
Lemma 5.3).

Example 6.2. As a first example, we illustrate the above procedure for the example𝐾 = 5𝑇2,3# −

2𝑇3,4 of Lewark and Zibrowius [42, Corollary 1.13]. In this case, 𝐴 = 5𝑇2,3 and 𝐵 = 2𝑇3,4. The
knot Floer complexes of 𝑇2,3 and 𝑇3,4 are displayed in Figure 17. Applying the algorithm of [1,
Proposition 5.1] easily shows that 𝑉0(2𝐴) = 𝑉0(10𝑇2,3) = 5. (Alternatively, one can use the fact
that 10𝑇2,3 is thin.) Similarly, the algorithmof [1] shows that𝑉0(2𝐵) = 𝑉0(4𝑇3,4) = 4. On the other
hand, 𝜏(𝐴) = 𝜏(5𝑇2,3) = 5 while 𝜏(𝐵) = 𝜏(2𝑇3,4) = 6.

Many similar examples can be constructed by forming the difference of sums of torus knots
in the style of Example 6.2; for instance, {𝑛(𝑛 − 1)𝑇2,3# − 2𝑇𝑛,𝑛+1}𝑛⩾2 or {𝑇2,2(𝑛2−𝑛−1)+1# −
𝑇𝑛,𝑛+1}𝑛⩾2. We also provide an example of an infinite family where the companion knots are
topologically slice.

Example 6.3. Let 𝐷 = 𝐷(𝑇2,3) be the Whitehead double of 𝑇2,3. For any 𝑛 ⩾ 2 and nonnegative
integers 𝑝 and 𝑞, let

𝐾𝑛,𝑝,𝑞 = 𝑝(𝑇2,2𝑛+1 − 𝐷2,2𝑛+1) + 𝑞𝐷.
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37 of 40 DAI et al.

F IGURE 18 The knot Floer complexes of 𝑇2,2𝑛+1 and (𝑇2,3)2,2𝑛+1. The longer vertical arrows on the right
have length three, while all other arrows have length one; note that 𝑛 ⩾ 2. Here we have drawn the case of 𝑛 = 5.

We claim that 𝐾𝑛,𝑝,𝑞 is topologically slice. To see this, note that 𝐷 is topologically concordant to
the unknot; hence its (2, 2𝑛 + 1)-cable 𝐷2,2𝑛+1 is topologically concordant to 𝑇2,2𝑛+1. Thus, both
of the summands 𝑝(𝑇2,2𝑛+1 − 𝐷2,2𝑛+1) and 𝑞𝐷 above are topologically slice.
We fit the family 𝐾𝑛,𝑝,𝑞 into our ansatz by setting

𝐴 = 𝑝𝑇2,2𝑛+1 + 𝑞𝐷 and 𝐵 = 𝑝𝐷2,2𝑛+1.

Although the knots 𝐷 and 𝐷2,2𝑛+1 are somewhat complicated, their knot Floer complexes are
locally equivalent to L-space complexes. Indeed, [54, Theorem 1.2] implies that for the purposes of
computing𝑉0, wemay replace𝐷 with 𝑇2,3, both in𝐴 and in the cable𝐷2,2𝑛+1. (For an explanation
of the latter, see [29, Proposition 4].) The complexes of 𝑇2,2𝑛+1 and (𝑇2,3)2,2𝑛+1 are displayed in
Figure 18. To compute the complex of (𝑇2,3)2,2𝑛+1, we use [21, Theorem 1.10], which implies that
(𝑇2,3)2,2𝑛+1 is an L-space knot. The computation then follows from the behavior of the Alexander
polynomial under cabling.
Applying the algorithm of [1, Proposition 5.1] shows that

𝑉0(2𝐴) = 𝑉0(2𝑝𝑇2,2𝑛+1 + 2𝑞𝑇2,3) = 𝑝𝑛 + 𝑞 and 𝑉0(2𝐵) = 𝑉0(2𝑝(𝑇2,3)2,2𝑛+1) = 𝑝𝑛.

Hence, 𝑉0(2𝐴) − 𝑉0(2𝐵) = 𝑞. On the other hand,

𝜏(𝐴) = 𝜏(𝑝𝑇2,2𝑛+1 + 𝑞𝑇2,3) = 𝑝𝑛 + 𝑞 and 𝜏(𝐵) = 𝜏(𝑝(𝑇2,3)2,2𝑛+1) = 𝑝(𝑛 + 2),

showing that 𝜏(𝐾1) − 𝜏(𝐾2) = 𝑞 − 2𝑝. We may thus choose any infinite family of (𝑝, 𝑞) with
0 < 𝑞 ⩽ 2𝑝 and 𝑞 unbounded to guarantee an infinite linearly independent subset and complete
the proof of Corollary 1.6. If strict inequality 𝑞 < 2𝑝 holds, then 𝐷(𝐾𝑛,𝑝,𝑞) and 𝐷(−𝐾𝑛,𝑝,𝑞) are
moreover linearly independent in each case. Note that if𝐾𝑛,𝑝,𝑞 satisfies the above properties, then
any positive multiple of 𝐾𝑛,𝑝,𝑞 does as well; hence we obtain rank-expansion along such 𝐾𝑛,𝑝,𝑞.
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