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Review 

In vitro dynamics of DNA loop extrusion by structural 
maintenance of chromosomes complexes
Marius Rutkauskas and Eugene Kim

Genomic DNA inside the cell’s nucleus is highly organized and 
tightly controlled by the structural maintenance of chromosomes 
(SMC) protein complexes. These complexes fold genomes by 
creating and processively enlarging loops, a process called loop 
extrusion. After more than a decade of accumulating indirect 
evidence, recent in vitro single-molecule studies confirmed loop 
extrusion as an evolutionarily conserved function among eukaryotic 
and prokaryotic SMCs. These studies further provided important 
insights into mechanisms and regulations of these universal 
molecular machines, which will be discussed in this minireview.
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Introduction
Structural maintenance of chromosomes (SMC) com-
plexes are evolutionarily conserved motor proteins that 
fold genomes into loops through ATP-powered loop 
extrusion. Eukaryotic cells contain three types of SMC 
complexes: cohesin, condensin and Smc5/6 complex 
(Smc5/6). Cohesin organizes interphase chromatin into 
functional domains, regulates gene expression [1–3], and 
is involved in DNA double-strand break repair [4] and 
immunoglobulin gene recombination [5]. Condensin 
plays a major role in mitotic chromosome compaction 
and sister chromatid segregation [6]. Smc5/6 regulates 
chromosomal replication and repair while functioning as 
a viral restriction factor [7–9]. In prokaryotes, widespread 
SMC-ScpAB and MukBEF complexes contribute to 
chromosome organization and segregation during cell 

division [10,11], while Wadjet, present in some bacteria 
and archaea, acts as an anti-plasmid/phage defense 
system [9].

Structurally, all SMC complexes have closely related ar-
chitecture. The core of these complexes is a tripartite ring 
composed of a dimer of SMC proteins and a kleisin. SMC 
protein comprises ∼50 nm long coiled-coil arm that sepa-
rates the ‘hinge’ dimerization domain from the ATPase 
‘head’ domain, which engages/disengages during the 
ATPase cycle. The kleisin that bridges SMC dimers at the 
SMC neck/cap surfaces further recruits additional subunits, 
namely, HEAT repeat proteins associated with kleisin 
(HAWK) proteins (for condensin and cohesin) or kleisin- 
interacting tandem winged-helix element (KITE) proteins 
(for Smc5/6 and bacterial SMCs; Figure 1).

The proposal that SMC complexes may shape genome by 
creating and processively enlarging a loop was first put 
forward more than 20 years ago [12]. Over a decade later, 
this loop extrusion hypothesis was further supported by 
series of in vivo Hi-C studies [13,14] and in silico modeling 
[15,16], yet a direct confirmation was still lacking. It was 
until the recent in vitro experiments, which directly vi-
sualized the process of SMC-driven loop extrusion at the 
single-molecule level [17–25]. These in vitro experiments 
not only established loop extrusion as an evolutionarily 
conserved mechanism across kingdoms of life but also re-
vealed crucial insights into the mechanism underlying loop 
extrusion. Furthermore, more recent experiments in-
cluding complex designs, for example, the interaction be-
tween SMCs [26], the addition of potential roadblocks 
[21,27–31], combination with different DNA topology 
[25,32,33], deletion of subunits [23,34,35] or adding reg-
ulatory partners [36,37], further advanced our under-
standing of these molecular motors in a great detail. Here, 
we therefore mainly focus on these single-molecule studies 
and discuss the latest understanding of loop extrusion and 
its regulation mechanisms for different SMC complexes.

Symmetry of DNA loop extrusion by SMC 
complexes
SMC complexes can reel DNA into loops either bidir-
ectionally or unidirectionally (Figure 2). The bidirec-
tional extrusion can be achieved in two ways: either 
when two physically linked SMCs perform simultaneous 
DNA reeling from opposite sides (two-sided extrusion) 
or in the case of a single one-sided motor that can per-
iodically switch the extrusion direction (Figure 2). The 
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first in vitro loop extrusion visualization experiments 
showed strictly one-sided extrusion by single yeast 
condensin complex [17], whereas a mixture of one-sided 
and two-sided extrusion by condensin is seen for human 
[21] and Xenopus [20]. In the case of cohesin, in contrast 
to an initial work showing two-sided extrusion by dimers 
[18], recent work suggests one-sided but bidirectional 
extrusion by single cohesin [38]. Direction switching of 
one-sided extrusion seems to depend on HAWK sub-
units. Deletion of Ycg1-Brn1 enables Chaetomium ther-
mophilum condensin to be able to switch extrusion 

direction [34]. For cohesin, the human analog of the Scc2 
subunit (NIBPL) turnover correlates with direction 
switching, while he human analog of the Scc3 subunit 
(STAG1) prevents it [38]. In the case of Wadjet com-
plex, two-sided extrusion by dimeric complexes was 
demonstrated [25]. For Smc5/6, however, conflicting 
evidence exists showing one-sided and bidirectional 
extrusion by single complexes [38] and two-sided ex-
trusion by dimeric complexes [23,39]. The discrepancy 
in the determination of extrusion symmetry observed 
even for the same proteins (cohesin, Smc5/6) suggests 
the possible influence of extrinsic factors as well as the 
exact analysis method employed on the determination of 
symmetry. In fact, recent work from our group shows 
that symmetry of loop extrusion is strongly dependent 
on DNA tension. Two-sided extrusion by dimeric mo-
tors like Smc5/6 and Wadjet can turn to one-sided ex-
trusion upon increasing DNA tension [39].

The topology of DNA and SMC complexes
It is well known that SMC complexes can entrap DNA 
topologically, in other words, encircle DNA within the 
trimeric SMC-kleisin ring (Figure 3A). Cohesin [40], 
Condensin [41], Smc5/6 [42] and SMC-ScpAB [43] can 
topologically load onto chromosomal DNA in vivo. Co-
hesin can also encircle two unreplicated and replicated 
DNA molecules [44]. Topological loading requires 
SMCs to open their trimeric rings. Through which gate 
(s) DNA can enter (and exit) has been therefore one of 
the central questions. In the case of cohesin, although 
both SMC3/kleisin and SMC1/SMC3 hinge can open, 
stabilization of SMC1/SMC3 hinge interactions [45] re-
duces the entry of DNA into cohesin, and mutation of 
hinge leads to defects in cohesion in vivo [46], sug-
gesting that hinge may serve as an entry gate for DNA 
into the ring. Interestingly, recent single-molecule ex-
periments [47] identify the hinge as the weakest inter-
face within the cohesin ring, which can release DNA at 
DNA pulling force of ∼20 pN. This value is significantly 

Figure 1  
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Schematic representation of SMC structure. SMC’s ring is composed of 
two SMC subunits (SMC1/3 for cohesin, SMC2/4 for condensin, SMC5/ 
6 for Smc5/6 complex) that are approximately 50 nm in length on one 
end forming a ‘hinge’ dimerization domain and ATPase ‘head’ domain 
on the other end. SMC dimer is connected by a kleisin subunit. Cohesin 
and condensin have additional HAWK subunits, while Smc5/6 and 
bacterial SMCs contain KITE subunits. Additional subunit names of 
budding yeast are displayed.  

Figure 2  
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Symmetricity of loop extrusion. DNA loops can be extruded unidirectionally or bidirectionally. Bidirectional loop extrusion can take place when a 
dimeric SMC reels DNA simultaneously from both sides of a loop or when a one-sided monomeric SMC switches extrusion direction periodically.
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larger than the stalling force of loop extrusion by cohesin 
(∼0.1 pN [29]) and comparable to the forces exerted by 
other DNA-based motors, for example, RNA polymerase 
II (∼10 pN [48]) and replicating helicases (> 20 pN [49]). 
In the case of Smc5/6, SMC6-Nse4 (kleisin) serves as an 
entry gate of DNA for topological loading, which also 
requires the additional subunit of Nse5/6 [42]. For 
condensin, Shaltiel et al. reported that none of the SMC/ 
kleisin gate opening is required for DNA entrapment in 
vitro. Instead, condensin can be ’topologically’ loaded 
within the two kleisin chambers created by interactions 
of Brn1 and Ycs4/Ycg1, respectively [34].

These in vivo and in vitro evidence of topological in-
teraction between SMC complexes and DNA raise the 
question of whether such interaction is also needed for 
loop extrusion. Alternatively, loop extrusion may not 
need topological loading and instead occur in a manner 
that SMCs encompass an entire DNA loop within a 
single SMC-kleisin ring (pseudo-topological loading; 
Figure 3B), or do not encircle DNA at all and instead 
bind at the outer interfaces of the ring (nontopological; 
Figure 3C). Cohesin in which all ring interfaces are 
covalently linked and therefore cannot open the ring 

still exhibited loop extrusion activity, thus indicating 
topological loading is not required for loop extrusion 
[19]. Similarly, Smc5/6-mediated loop extrusion does 
not seem to require topological loading. Nse5/6, the 
Smc5/6-specific subunit required for topological 
loading of Smc5/6 [42], is not necessary for Smc5/6’s 
loop extrusion activity but rather inhibits it [23]. 
Furthermore, single molecule experiments showed 
that covalently linked cohesin can still bypass DNA- 
bound obstacles that are larger than the ring size, 
suggesting loop extrusion may occur in a non-
topological fashion [27,50]. It is an interesting future 
question to address how these various topological in-
teraction between SMCs and DNA is regulated and 
how these interaction modes are linked to different 
cellular functionalities.

Extruders can bypass one another and large 
physical roadblocks
DNA in the cell nucleus is covered by a myriad of DNA- 
binding proteins, such as histones, polymerases, tran-
scription factors, and other potential roadblocks for 
SMCs (Figure 4). The question of how SMCs can ex-
trude loops while continually encountering objects in 

Figure 3  
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Possible topology of SMC complexes during cohesion and loop extrusion in simple (top) and detailed (bottom) schematics. Single cohesins, which 
bind two sister chromatids, can entrap two DNA strands topologically (A). To do that, cohesin ring must open, and this can be done either through 
hinge dimerization domain opening or by reversible kleisin detachment. Loop extruding SMCs may bind DNA pseudo-topologically (B), where a loop is 
inserted within the SMC ring, or non-topologically, where DNA is externally bound by electrostatic interaction (C). 
The detailed schematics of loop extrusion model are adapted from Ref. [83].  
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their path was addressed by observing loop extrusion by 
condensin and cohesin on DNA containing various 
roadblocks. Single nucleosomes and RNA polymerases 
bound on DNA pose virtually no impact on the loop 
extrusion activity of condensin [27]. Even obstacles 
(200 nm nanoparticles) larger than the size of the SMC- 
kleisin trimeric ring (∼35 nm [51]) were incorporated 
into the loop extruded by condensin and cohesin. In-
terestingly, however, recent experiments with Wadjet, a 
complex that cleaves DNA through its loop extrusion 
activity [25], indicated that a large physical roadblock 
(∼3 µm) can stall loop extrusion activity of Wadjet [52].

Besides other non-SMC interacting protein and physical 
roadblocks, SMCs can also encounter each other. Kim 
et al. demonstrated that two condensin complexes ex-
truding loops in close proximity can traverse one an-
other, forming a so-called Z-loop structure [26], a finding 
that was corroborated by in vivo studies for B. subtilis 
condensin [53]. This study also raises the interesting 
question of whether this bypassing is a general behavior 
among different SMCs. A recent in vivo analysis in 
combination with polymer simulation indicated that 
during mitotic chromosome formation, condensins re-
move loop-extruding cohesins (or push them away from 
the TAD boundaries), while they bypass cohesive co-
hesins [54]. Further studies are necessary to dissect in-
tricate interactions between different SMCs in shaping 
chromosome structure, especially when they encounter 

one other and more complex DNA structures emerging 
during chromosome condensation.

Barriers to loop extrusion
While condensin and cohesin can bypass single non-
interacting proteins and physical roadblocks with large 
sizes, recent studies identified several other factors that 
act as barriers to loop extrusion (Figure 4). The inter-
action between cohesin and CTCF, a transcription factor 
that has been long known for its orientation-specific 
anchoring function at the boundaries of TADs [55,56]
has been recently studied at the single-molecule level 
[29,30]. These studies confirmed the N-terminal-specific 
loop extrusion blockage of CTCF and that this activity 
requires interaction between the YDF motif of CTCF 
and cohesin’s STAG1 subunit [30]. Furthermore, Da-
vidson et al. showed that CTCF’s blocking ability as 
well as dynamics after blockage (direction switching, 
anchoring, and slippage) depends strongly on DNA 
tension [29]. It remains to be seen how such tension 
dependence relates to CTCF-cohesin-mediated loops 
in vivo.

Among other proteins that also contain cohesin-binding 
motif (YxF) like CTCF, the human minichromosome 
maintenance (MCM) complex, a part of the replication 
machinery, was shown to impede cohesin-mediated 
loops in vivo and diffusion on DNA in vitro [28]. The 
pausing time upon MCM/cohesin encounter increased 

Figure 4  
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Roadblocks tested for loop extruding SMC complexes. Loop-extruding SMCs on DNA can encounter other SMCs that are either loop-extruding in cis 
or holding DNA strands in trans. Multiple roadblocks tested in in vitro experiments so far are shown: nucleosomes, RNA polymerases, CTCF, MCM 
complexes, R-loops, telomere protein arrays, and artificial roadblocks like nanoparticles attached to DNA that are bigger than SMC ring diameter.  
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in the presence of the YDF motif [28], likely due to 
specific cohesin/MCM interaction. Another system that 
has been indicated as a loop extrusion barrier is RNA 
polymerase. Computational modeling of Hi-C maps 
from by B. subtilis condensin [57] and human cohesin 
[58] suggest that active RNA polymerases act as 
permeable barriers for loop extrusion, while in the pre-
sence of single inactive RNA polymerases, loop extru-
sion seems to be not impacted in vitro [27]. The nascent 
transcript during transcription might be responsible for 
the active RNA polymerase-specific loop extrusion 
blockage. In fact, Zhang et al. showed that R-loops, a 
structure composed of DNA-RNA hybrid and single- 
stranded DNA, can efficiently block cohesin-mediated 
loops in vitro [30]. Similarly, recent single-molecule ex-
periments showed specific recruitment and stabilization 
of Smc5/6 on both ssDNA and junctions of ssDNA and 
dsDNA [59,60], suggesting the possibility of DNA 
structure-specific stalling of SMCs.

Although loop extruders seem to be able to bypass single 
roadblocks with varying sizes, it is still an open question 
how extrusion behavior would be influenced by multiple 
proteins densely populated along the pathway of loop- 
extruding SMCs (e.g. nucleosome arrays). Interestingly, a 
recent study showed that the dense array of Rap1, DNA- 
binding proteins specific to telomere regions can block 
loop extrusion by condensin with near 100% efficiency 
[31]. Reduction in array density by increasing gaps be-
tween Rap1 significantly reduced blocking efficiency.

DNA supercoiling (over-/under-winding of 
DNA) and loop extrusion
Cellular DNA undergoes torsional stresses generated by 
processes like transcription and replication [61,62]. As a 
result, DNA adopts overwound or underwound struc-
tures, known as positive or negative supercoiling. Su-
percoiling also leads to the formation of plectonemes in 
which the DNA helix is coiled onto itself. Although 
earlier studies reported different DNA supercoiling- 
specific interactions of SMC complexes [63–67], direct 
visualization of loop-extruding SMCs on supercoiled 
DNA has been only recently demonstrated [32,33]. 
Yeast condensin and Smc5/6 have been shown to pre-
ferentially bind the tips of positive supercoils and ex-
trude loops on them [32,33]. During extrusion, multiple 
plectonemes are absorbed into a single plectonemic loop 
stabilized by SMCs. In vivo analysis shows Smc5/6 ac-
cumulates and links transcription-induced positive su-
percoil-rich genomic regions [33]. Interestingly, recent in 
vitro studies [68–70] show that eukaryotic SMCs induce 
a negative twist on DNA during loop extrusion. This 
negative supercoiling occurs upon ATP binding [68–70], 
specifically during DNA clamping for cohesin [69], and 
does not involve the Ycg1 subunit in the case of yeast 
condensin [68]. It remains to be understood the relation 

between negative supercoiling generated by SMCs and 
their preferential loading and interactions with positively 
supercoiled DNA.

Regulation of SMCs and loop extrusion
Although loop extrusion is a general mechanism shared 
among different SMC complexes, its regulation me-
chanisms are specific to individual complexes. So far, 
several regulatory processes have been identified mainly 
for cohesin and condensin, which leads to modulation of 
the proteins’ residence time on chromatin, activation or 
repression of the complexes, or their subcellular locali-
zations. At the molecular level, these regulations are 
achieved through interactions between the SMCs’ sub-
units and regulatory factors, or interactions within the 
subunits of SMCs.

One of the well-studied regulatory factors for cohesin is 
WAPL, a helical repeat protein that removes cohesin 
from DNA through interaction with cohesin’s HAWK 
subunits STAG and PDS5 [71,72]. This WAPL-induced 
release of cohesin is counteracted in multiple ways. 
Acetylation of SMC3 subunit by acetyltransferase 
ESCO1/ESCO2 and recruitment of sororin protect co-
hesive cohesin from WAPL during DNA replication 
[73,74]. CTCF also competes with WAPL by binding 
cohesin’s STAG2 subunits via its YxF motif, thus sta-
bilizing interphase chromatin loops formed by cohesin at 
CTCF sites [75]. Protection of cohesin at centromeres is 
achieved by the interaction between STAG2 and SGO1 
protein through its YxF motif, which allows for main-
taining sister chromatid cohesion in mitosis [76].

While the activity of condensin is clearly cell cycle 
regulated, the mechanisms underlying this cell cycle–-
specific activation have remained elusive. Recent in vitro 
studies revealed the condensin’s HAWK subunit, 
NCAPG/CAP-G2 (the human analog of the Ycg1), plays 
a major function in the regulation of condensin. The 
binding of NCAPG/CAP-G2 to the N-terminal of kleisin 
NCAPH/CAP-H2 or to the C-terminal of NCAPD/CAP- 
D3 (the human analog of the Ycs4) leads to the self- 
suppression of condensin [35,77–79]. Inhibiting these 
interactions in vitro by entire or partial deletion of these 
subunits or via phosphorylation activates condensin’s 
chromatin loading and compaction [78,79]. Furthermore, 
two recently identified condensin activators, KIF4A (for 
condensin I [36,80]) and M18BP1 (for condensin II [37]), 
as well as condensin II inhibitor MCPH1 [81] seem to 
also achieve their function through competitive binding 
for NCAPG/CAP-G2 subunit.

Limitation of in vitro studies and future 
outlook
Thanks to the recent surge of in vitro and single-mole-
cule experiments overviewed here, we are rapidly 
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advancing our understanding of SMC complexes and 
their working principles. While these experiments are 
optimal for dissecting molecular mechanisms of SMCs, 
they intrinsically lack the cellular complexity. Thus, 
their in vivo relevance is often a primary question. For 
example, most of the studies mentioned here use bare 
DNA as a substrate, whereas in vivo loop extrusion must 
be performed on chromatin or nucleoid DNA and in the 
presence of myriads of chromatin (nucleoid) associated 
proteins. Therefore, it is possible that some of the major 
conclusions from in vitro studies are subject to change 
once the complexity of the system increases. Recently 
demonstrated ∼10-fold lower loop extrusion rate for 
cohesin in vivo (∼0.1 kb/s [82]), compared to the rate 
determined from in vitro experiments (∼ 1 kb/s [19]), 
may arise from such in vivo versus in vitro differences.

In the future, it will be therefore important to precisely 
characterize the dynamics of loop extrusion on native 
chromatin in vitro and revisit the major findings from the 
previous in vitro experiments. This includes for instance 
determining stoichiometry of loop-extruding complexes, 
extrusion rate, symmetry and directionality, as well as 
SMC loading and loop initiation preferences. This will 
not only allow us to understand the possible regulatory 
role of chromatin on loop extrusion but also provide a 
basis for addressing more complex questions, such as 
influence of chromatin modifications, chromatin re-
modeling, and transcription on loop extrusion.

Having stated that, increasing complexity of in vitro 
experiments similar to in vivo–like conditions would be a 
nearly impossible quest. Therefore, cross-validating the 
findings from in vitro experiments using in vivo assays, 
such as live-cell imaging or genomic analysis, would be 
another ideal direction to increase the in vivo relevance. 
In this regard, recent combined studies of Hi-C and 
single-molecule experiments [28,33] would be excellent 
examples.

We believe that these in vitro experiments will continue 
to provide us with ever more detailed insights of SMC- 
mediated chromosome dynamics. Looking further, 
bringing these mechanistic understandings at the pro-
tein structural level will allow us to build more accurate 
model, which will in turn provide a better prediction of 
the role of SMCs on chromatin organization and genome 
function. These multiscale and integrative approaches 
will enable us to further challenge, develop, and refine 
the current still largely incomplete understanding of 
these fascinating molecular machines.
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