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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Learning and decision-making undergo substantial developmental changes, with adoles-

cence being a particular vulnerable window of opportunity. In adolescents, developmental

changes in specific choice behaviors have been observed (e.g., goal-directed behavior,

motivational influences over choice). Elevated levels of decision noise, i.e., choosing subop-

timal options, were reported consistently in adolescents. However, it remains unknown

whether these observations, the development of specific and more sophisticated choice pro-

cesses and higher decision noise, are independent or related. It is conceivable, but has not

yet been investigated, that the development of specific choice processes might be impacted

by age-dependent changes in decision noise. To answer this, we examined 93 participants

(12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/

NoGo task assessing motivational influences over choices, a reversal learning task captur-

ing adaptive decision-making in response to environmental changes, and a sequential

choice task measuring goal-directed behavior. This allowed testing of (1) cross-task gener-

alization of computational parameters focusing on decision noise; and (2) assessment of

mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to

be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-

dependent increases in more sophisticated choice behaviors and performance gain. Our

findings provide novel insights into the computational processes underlying developmental

changes in decision-making: namely a vital role of seemingly unspecific changes in noise in

the specific development of more complex choice components. Studying the neurocompu-

tational mechanisms of how varying levels of noise impact distinct aspects of learning and

decision processes may also be key to better understand the developmental onset of psy-

chiatric diseases.
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Introduction

Learning and decision-making change considerably from adolescence into adulthood [1–3].

Adolescents have to learn how to navigate a constantly changing environment and to strike a

balance between exploring new outlets and sticking with already known “good” choices [4].

They do so while their brain undergoes substantial maturational changes that particularly

affect cognitive control, value-based learning, and choice [3,5,6]. As yet, the neurocomputa-

tional processes accompanying these developmental challenges remain insufficiently under-

stood [4]. Here, reinforcement learning (RL) models provide a computational framework to

test hypotheses about latent processes underlying the development of learning and decision-

making [7], e.g., learning rates or sensitivity to different outcomes, which are not accessible by

the analysis of overt behavior.

A focus in the RL literature has been on the development of specific learning and choice sig-

natures [3,8–18], especially during adolescence, a period frequently considered to be a “win-

dow of opportunity” for exploring new choice options and outlets [19]. For example, it was

demonstrated that goal-directed behavior (model-based (MB) control over choice), increases

from adolescence to adulthood [8–15]. Reward-based cognitive flexibility, as measured by

reversal learning paradigms, improves with age. Another example is the influence of motiva-

tion on choices [17,20]. Individuals can be strongly biased to respond with behavioral activa-

tion to obtain reward, while punishment tends to facilitate behavioral inhibition [21–24]. This

so-called Pavlovian choice bias has been found to be reduced in adolescence relative to child-

hood and adulthood (i.e., weaker behavioral activation to rewards and lower behavioral inhibi-

tion to punishments), which was suggested to result from an elevated exploration in

adolescents [17].

In the recent past, it was noted that such specific developmental changes in learning and

choice tend to be inconsistent across studies [25] and generalize rather poorly [4]. Likewise,

some key parameters of RL models, e.g., the learning rate, did not generalize across tasks,

which may reflect specific and necessary adaptation to experimental environments [4,26].

Slight differences in experimental environments (e.g., frequency of changes in reward contin-

gencies) impact results, such that performance may be improved or hampered in youths as

compared to older adults (compare results from reversal learning in [16] to [26]). On the other

hand, one very consistent developmental finding across different tasks is that adolescents show

increased levels of decision noise (or choice stochasticity [16,27], for review [4,28]). Decision

noise describes a decoupling of learned values from action selection and leads to increased var-

iability in choice behavior. This leads to the selection of less optimal or lower-valued options

and usually does not optimize reward outcomes. However, such behavior could, in principle,

be regarded as explorative [29]. Yet, in most tasks discussed so far, this noisy or random explo-

ration cannot be clearly distinguished from directed information seeking. The latter aims at

explicit information gain, a hallmark for more sophisticated styles of exploration [30]. Thus,

decision noise has often been regarded as less interpretable, potentially even reflecting incom-

pliance to experimental designs.

One unexplored possibility is that the development of specific and more sophisticated

choice behaviors may be related or even depend on individual levels of decision noise. To

study this unaddressed question, the central aim of this study was to shed light on the role of

developmentally elevated decision noise within and across 3 RL tasks. We collated and (re)ana-

lyzed data from a developmental sample that had completed the 3 RL tasks as part of a larger

study protocol [8,16,23,31–33]. We set the stage by replicating specific developmental effects

from a motivational Go/NoGo task capturing decision biases. Using a modified implementa-

tion of noise in an RL model of the motivational Go/NoGo task, we show that, in line with
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previous work, decision noise may reflect a consistent (rather stable within-subject) signature

characteristic for an individual [26]. Critically, we then set out to test our main novel proposal

of mediating effects of such seemingly unspecific decision noise on developmental changes in

specific choice signatures and corresponding performance readouts from all 3 RL tasks. We

hypothesized that noise levels might mediate the relationship between age and specific devel-

opmental task effects. This expectation was based on previous findings of developmental

changes in noise levels [26,34] as well as evidence suggesting that noise undermines core cog-

nitive processes such as information updating and integration, both crucial for learning and

decision-making [35].

Results

We analyzed data from 93 participants between 12 and 42 years of age (age mean [SD] = 22.65

[7.88], female: 45; male: 48) who completed 3 reinforcement learning tasks as part of a larger

protocol [36]: (1) a modified motivational Go/NoGo task capturing Pavlovian choice and

instrumental learning bias [23,31]; (2) a probabilistic reversal learning task measuring feed-

back-based cognitive flexibility [16] and a modified sequential (“two-step”) decision-making

task to assess model-based control [8,32,37].

Specific age-dependent developmental changes

We employed a recent variant of a motivational Go/NoGo task designed to tease apart a non-

selective Pavlovian influence (i.e., behavioral activation to reward as compared to inhibition to

punishment) from selective instrumental influence (i.e., repetition of selective actions after

reward and a selective avoidance after punishment [23,31] on choice behavior. For an in-

depth task description, refer to the methods and supplement information [SI] (S1 Text and S2

Fig). Using mixed-effects models, we replicated an age-dependent increase of Pavlovian biases

from adolescence into adulthood [17]: age predicted more activation (Go responses) to reward

cues and more inhibition (NoGo responses) to punishment cues (age × valence: ß = 0.107,

SE = 0.05, χ2(1) = 5.25, p = 0.02) (Fig 1D). This was accompanied by overall better perfor-

mance with higher age (rs(91) = 0.24, p = 0.021, overall task accuracy: mean [SD] = 66.24

[0.18], median [SD] = 69.69 [0.18]). Meanwhile, the selective impact of instrumental learning

biases on choices did not relate to age (age × action taken × outcome valence × outcome

salience: ß = 0.033, SE = 0.03, χ2(1) = 1.73, p = 0.2) (Fig 1E) (see S1 Text and S1–S5 Tables for

more details, model statistics and control analyses regarding gender, which did not influence

results).

Computational modeling

As in previous publications, all models included a learning rate. We iteratively added a Gobias

parameter (capturing individual’s general tendency to make a Go response) and a Pavlovian

bias parameter (capturing effects of reward versus punishment cues on activation Go versus

inhibition NoGo). All models included either 1 noise parameter across all trials or 2 indepen-

dent noise parameters for win versus punishment context. Partially in accordance with our

previous work [16], we added a computational model with 2 separate feedback sensitivity

parameters capturing the degree of noise (i.e., stochasticity) based on positive or negative out-

come valence (ρ +FB and ρ -FB). Of note, feedback sensitivities are very similar to the inverse

temperature parameter known from other RL model implementations [38–40], as they deter-

mine how deterministically or stochastically choices follow from learnt action values. They

also determine how closely an agent follows a win-stay, lose-shift strategy. Also, higher feed-

back sensitivity can be interpreted as less decision noise and vice versa. The outcome-based
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Fig 1. Task set-up motivational Go/NoGo task. (A) Task trial sequence displayed for all 4 cue categories, Go to Win, Go to Avoid, NoGo to Win,

and NoGo to Avoid, but not split up for different Go responses (Go left and Go right). Go left/right responses for Win cues and NoGo responses for

Avoid cues are considered bias-congruent, as the cue’s respective action requirement matches with the stimulus-response coupling facilitated by the

motivational bias. Meanwhile, Go responses for Avoid cues and NoGo for Win cues are considered bias-incongruent response-stimulus couplings.

Each cue was presented for 1,300 milliseconds (ms) and participants had to decide whether to execute a Go Left or Go Right response by pressing the

respective button or selecting a NoGo response by withholding responding. Subsequently, participants were shown a valid or invalid outcome

(reward, neutral, punishment) for 2,000 ms based on the probabilistic feedback schedule (80:20% ratio) and cue valence. The inter-trial-interval

(ITI) was750–1,500 ms, in steps of 250 ms. (B) Response type. For the cues with a go response requirement, cues either required a left or a right

button press. For the NoGo cues there was naturally no distinction. (C) Cue types. Depiction of which cues can be considered bias-congruent (gray

shaded box), while the other cues (white box) are cues with bias-incongruent response requirements. (D) Pavlovian Bias × Age. Depiction of the

PLOS BIOLOGY Decision noise and choice behavior across development

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002877 November 14, 2024 4 / 24

https://doi.org/10.1371/journal.pbio.3002877


implementation of feedback sensitivity was indeed superior to the other tested models accord-

ing to Bayesian model selection (protected exceedance probability (PXP) = 1; model expressed

by 95.63%, see Table 1 for model comparison statistics and parameter estimates). Importantly,

this model could also predict key characteristic behavioral patterns of the observed empirical

data and parameter recovery was excellent (S6 Fig). In line with the mixed models on raw

choice data, there was a positive correlation between age and Pavlovian biases (rs(91) = 0.23,

p = 0.024) and between age and feedback sensitivity to positive outcomes (rs(91) = 0.24,

p = 0.018), thus replicating previous reports of elevated noise in adolescents [4,16]. Other

parameters did not correlate with age (p> 0.2) (Figs 2 and S4).

Noise generalizes across RL tasks

Next, we examined the cross-task generalizability versus context-specificity of noise param-

eters across several RL tasks: the Go/NoGo task, a probabilistic reversal learning task [16],

and the two-step task [8]. For the reversal task, the winning model, as described in [16],

comprised 4 feedback sensitivity parameters accounting for effects of motivational context

(win reward versus avoid punishment) and feedback valence (positive /+FB versus nega-

tive/-FB). For simplicity, we averaged parameter estimates across motivational context,

resulting in 2 estimates based on feedback valence. While ρGo/NoGo +FB from the Go/NoGo

task was positively associated with the reversal feedback sensitivity parameter for positive

outcomes ρReversal +FB [rs(87) = 0.47, p< 0.001], the reversal feedback sensitivity parameter

correlation between the individual slope for the valence term extracted from the mixed effects model capturing Pavlovian biases and age. The

association shows a clear developmental change of Pavlovian biases across age. (E) Instrumental Learning Bias × Age. Depiction of the correlation

(spearman) between the individual slope for the interaction term (taken action × outcome salience × outcome valence) extracted from the second

mixed effects model capturing instrumental learning biases and age. Here, no evidence for age-dependent changes of instrumental learning biases

with age is discernible. Data for figure panels D and E can be found at https://osf.io/mcx36/ together with code for reproducing those parts of the

figure.

https://doi.org/10.1371/journal.pbio.3002877.g001

Table 1. Overview of transformed single hierarchical model parameter estimates (mean/standard error) and full (hierarchical) model comparison metrics and

model frequencies. Protected exceedance probability and model frequency from the full model comparison identified model M7 as winning model. PXP = protected

exceedance probability. The data and statistics presented in this table can be computed using code provided at https://osf.io/mcx36/.

M1 M2 M3 M4 M5 M6 M7

ρ 25.73 [1.59] 24.17 [1.52] 15.37 [1.07] 21.10 [1.44] 15.71 [1.01]

ρ win 21.06 [

1.22]

ρ avoid 12.60

[0.75]

ρ +FB 5.52

[0.24]

ρ -FB 1.03

[0.10]

ε 0.04 [0.01] 0.05 [0.01] 0.08 [0.01] 0.06 [0.01] 0.06 [0.01] 0.06

[0.01]

0.18

[0.01]

b −0.02 [0.06] 0.07 [0.06] −0.001 [0.06] 0.06 [0.06] 0.02

[0.06]

−0.08 [0.03]

π 0.34 [0.09] 0.06 [0.07] 0.72

[0.08]

0.25 [0.03]

κ 2.61 [0.33] 1.68 [0.11]

Full model comparison (M1 –M7)

Model frequency (%) 0 0 4.37 0 0 0 96.63

PXP 0 0 0 0 0 0 1

https://doi.org/10.1371/journal.pbio.3002877.t001
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for negative outcomes correlated negatively with it [ρReversal -FB: rs(87) = −0.3, p = 0.004]

(Fig 3A). Both survived multiple comparison correction with p-value < 0.0125. No correla-

tion between reversal task noise and feedback sensitivity for negative outcomes (ρGo/NoGo

-FB) reached significance (p> 0.1).

For the two-step task, both noise parameters, ß1 and ß2, were significantly correlated with

Go/NoGo decision noise for positive outcomes (Fig 3B). More decision noise in the Go/NoGo

task was associated with more decision noise from the two-step task (ß1: rs(90) = 0.43, p-

value < 0.001; ß2: rs(90) = 0.52, p-value < 0.001). The association between second stage
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Fig 2. Significant age effects on model parameters extracted from the winning model M7. (A) The feedback sensitivity parameter for positive

outcomes showed a significant age-dependency, such that older individuals were more sensitive to positive outcomes, as depicted in the scatterplots.

(B) The Pavlovian bias parameter showed a significant age-dependency, such that older individuals’ decisions were impacted more by motivational

biases as captured by the Pavlovian bias parameter. Data underlying this figure and the code for reproducing it can be found at https://osf.io/mcx36/

.

https://doi.org/10.1371/journal.pbio.3002877.g002

Fig 3. (A) Depiction of the association between feedback sensitivity for positive outcomes from the Go/NoGo Task and noise

parameters from the reversal task. As expected, all noise parameters which captured noise related to positive outcomes were positively

correlated, while negative correlations could be observed when correlating feedback sensitivity for positive outcomes with feedback

sensitivity parameters from the reversal task capturing feedback sensitivity for negative outcome. (B) Significant cross-task correlation

between both computationally derived noise parameters ß1 and ß2 from the two-step task with the feedback sensitivity parameter for

positive outcomes from the Go/NoGo Task. Results were considered significant with p< 0.05/4 (0.0125), respectively, thereby

correcting for multiple testing. The data underlying this figure and the code for reproducing it can be found at https://osf.io/mcx36/.

https://doi.org/10.1371/journal.pbio.3002877.g003
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decision noise, ß2, and Go/NoGo decision noise for negative outcomes was weaker and barely

survived multiple comparison correction (rs(90) = −0.26, p-value = 0.012). Cross-task correla-

tion for learning rates from each task proved nonsignificant (εGo/NoGo × εReversal: rs(87) = −-

0.027, p = 0.8; εGo/NoGo × εTST alpha1: rs(90) = −0.008, p = 0.94; εGo/NoGo × εTST alpha2: rs(90) =

−0.04, p = 0.74), highlighting the task- or context-specificity of those parameters.

Results of additional correlational analyses of unspecific noise from the motivational Go/

NoGo task with general and more specific task performance indices across all 3 tasks are

reported in the SI (S1 Text and S8 Fig). In short, less decision noise for positive outcomes in

the Go/NoGo task was associated with increased overall accuracy on the Go/NoGo and rever-

sal task (pre-post reversal accuracy) as well as more goal-directed behavior and less switching

after negative outcomes in the reversal task. Meanwhile, less decision noise for negative out-

comes in the Go/NoGo task was associated with decreased task performance in the GoNoGo

task and the reversal task.

Noise mediates developmental changes in decision processes

A key interest of our study was to examine whether decision noise mediates specific develop-

mental changes in decision processes, critically, across tasks. We assessed mediation effects of

noise from the motivational Go/NoGo task (feedback sensitivity for positive feedback) on the

association between age and (1) general task performance and non-selective Pavlovian Bias on

the Go/NoGo task; (2) performance and loose shift behavior on the reversal task; and (3)

model-based behavior on the 2-step task. Given that feedback sensitivity for negative feedback

showed no association with age, this was done specifically for feedback sensitivity for positive

feedback.

Within-task mediation: Motivational Go/NoGo task

We set up a mediation model with the age-dependent noise parameter (sensitivity to positive

feedback) from the computational model of the motivational Go/NoGo task as mediator of the

relationship between age and general performance in the task and Pavlovian bias. We found a

significant partial mediation effect for ρ+FB (p = 0.02), accounting for 83,6% of the total effect

of the relationship between age and overall performance (Indirect effect = 0.004, CI [0.0005–

0.01], p = 0.03; direct effect = 0.0009, CI [−0.001–0.003], p = 0.5; Total effect = 0.005, CI

[0.0008–0.01], p = 0.02). Next, we examined whether the association between age and the score

computed for overall Pavlovian bias [Pcorr(Go2Win)—Pcorr(Go2Avoid) + Pcorr(NoGo2Win)—

Pcorr(NoGo2Avoid)] or the computationally derived parameter capturing the Pavlovian bias

was mediated by positive feedback sensitivity. This association between age and Pavlovian bias

was not significantly mediated by positive feedback sensitivity, neither for the task score (p-

value = 0.3) nor for the computational parameter capturing the effect of Pavlovian biases (p-

value = 0.5).

Cross-task mediation: Reversal task

Two mediation models were computed to determine the mediating effect of feedback sensitiv-

ity for positive outcomes (noise) in the Go/NoGo task on performance parameters derived

from the reversal learning task, namely pre- minus post-reversal accuracy and switching fol-

lowing negative outcomes, both of which have previously been shown to correlate with age

[16]. Assessment of the mediation effect of noise on the association between age and pre-

minus post-reversal accuracy provided evidence for a partial mediation with ρ+FB accounting

for up to 37.1% of the total effect (p = 0.03) (Indirect effect = 0.0016, CI [0.0002–0.004],

p = 0.02; direct effect = 0.003, CI [−0.0004–0.01], p = 0.08; Total effect = 0.005, CI [0.001–
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0.01], p = 0.01) (Fig 4C). In the second mediation model, ρ+FB accounted for up to 26,03% of

the total effect between age and switching after negative feedback (p = 0.02) (Indirect effect =

−0.002, CI [−0.003 –−0.0002], p = 0.02; direct effect = 0.005, CI [−0.007–0.001], p = 0.005;

Total effect = −0.006, CI [−0.009 –−0.003], p< 0.001) (Fig 4A).

Fig 4. (A) Probabilistic reversal task design. In this task, participants had to adapt their behavior according to the changing outcome probabilities across the reversal

learning task. Image of task design modified from Waltmann and colleagues [16]. (B) Task design of sequential decision-making task. In this 2-step task, a choice on the

first stage led to one of 2 possible second stages. Here, participants had to make a second choice, upon which participants received a reward or neutral outcome (rewards

were replaced by punishments in the punishment context). The probability of receiving a reward/punishment was determined by constantly changing probabilities, i.e.,

based on Gaussian random walks, while transition probabilities to transfer from stage 1 to stage 2 were fixed. They were either considered common transitions (70%) or

rare (30%). Image modified from Scholz and colleagues [8]. (C) Mediation analysis reversal task indicating a significant mediation effect of noise from positive outcomes

on the association between age and pre minus post reversal accuracy. (D) Mediation analysis 2-step task showing the significant mediation effect of feedback sensitivity

for positive outcomes on the relationship between age and model-based control. P-values below 0.025 were considered significant thereby correcting for multiple testing.

https://doi.org/10.1371/journal.pbio.3002877.g004
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Cross-task mediation: 2-step task

Assessment of the mediation effect of feedback sensitivity for positive outcomes in the Go/

NoGo task on the association between age and model-based control provided evidence of a

partial mediation with ρ+FB accounting for up to 44,01% of the total effect of the relationship

of age and model-based control (p = 0.02) (Indirect effect = 0.002, CI [0.0004–0.004], p = 0.02;

direct effect = 0.003, CI [−0.0003–0.01], p = 0.08; Total effect = 0.005, CI [0.002–0.01],

p = 0.004) (Fig 4D). Rerunning the same mediation model using the computationally derived

parameter omega (weight parameter capturing the balance between model-free and model-

based control) indicated a similar, though somewhat weaker mediation effect (19.75%, p-

value = 0.017) (see Fig 4B).

Discussion

In this study, we relied on computational modeling across 3 distinct RL tasks to assess a novel

mediating role of decision noise—known to be elevated in adolescents—on age-dependent

increases in more sophisticated choice behaviors and performance gain. This mediating role

referred to model-based control, switching after negative outcomes on the reversal task and

performance gain in both the Go/NoGo and reversal task. A choice heuristic like the Pavlovian

bias was not mediated by decision noise. In line with this mediating role of decision noise, we

also confirm previous findings indicating decision noise as a rather stable characteristic across

tasks and contexts.

Using computational modeling, we assessed decision noise as latent feature of the decision

process during development. We show an age-dependent increase of feedback sensitivity spe-

cifically for positive outcomes, as did [16] in a different task from the same sample. This is in

line with well-known decreases of noise with higher age [27,41] and previous reports of more

random “noisy” choice behavior in adolescents [4,16,27]. Consistent with previous work

[4,26,42], we show stable cross-task generalization of decision noise by means of strong corre-

lations of noise parameters across tasks. This reinforces the notion of decision noise as a task-

independent feature with substantial interindividual differences. In contrast, cross-task corre-

lations of learning rates indicated a lack of generalizability, much in accord with previous stud-

ies showing task-specificity of learning rates [4,26]. One tentative explanation for this is that

learning per se, unlike decision noise, may be highly context dependent [26]. This might

explain why specific developmental effects appear more inconsistent across (RL) tasks: while

Rosenbaum and colleagues (2022) reported specific developmental effects on punishment

learning rates in the absence of effects on reward learning rates, Pauli and colleagues (2023)

described elevated reward learning rates [43]. Thus, even subtle difference in a task’s design

may considerably impact the way adolescents learn and thus result in the detection of distinct

effects, while individual differences in noise seem more robust against such differences in task

design [4].

Critically, the central novel finding of our study indicated a mediating effect of this seem-

ingly “unspecific” but stable noise on age-dependent increases in specific and more sophisti-

cated choice signature across different task settings. Here, mediation analyses revealed that a

substantial part of the variances between age and MB control, switching behavior after nega-

tive outcomes as well as overall task performance on the reversal and Go/NoGo task were

accounted for by age-related developmental differences in noise levels. Thus, “unspecific”

noise mediates the development of highly specific functions or strategies.

One reason for these mediation effects could be a limited availability of cognitive resources

in adolescents [44–47] due to the ongoing development of brain areas related to cognitive con-

trol [1,48,49]. Having fewer cognitive resources might make adolescents more prone to rely on
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computationally cheaper decision strategies, rendering them more susceptible to emotional,

motivational, and social influences [28,50,51]. Still, other work has shown adolescents to

employ more complex strategies relative to adults when mentalizing and processing social

emotions [52]. The exertion of cognitive control as value-based choice, i.e., the willingness to

allocate and exert control in certain situations [53–58] might be another possible explanation.

Here, cognitive control is a choice, governed by a cost-benefit tradeoff, where people choose to

exert control whenever this will result in a large enough increase in expected reward. Individu-

als can thus learn to selectively exert control, when this returns additional reward, but refrain

from it if costs outweigh the benefits [59,60]. More noisy choice behavior, i.e., rather random-

like exploration, may thus constitute a somewhat “rational” choice by adolescents to not mobi-

lize control to reduce effort expenditure while achieving higher levels of control, may seem too

costly. Alternatively or in addition, Ma and colleagues (2022) suggested that elevated explor-

ative (or noisier) behavior might serve the development of central social behavior in adoles-

cence [61], such that choice uncertainty (comparable to decision noise) predicts contagion

effects of peer’s choices, which may be beneficial for social integration [62].

Of note, decision noise can reflect distinct underlying processes, such as random or more

sophisticated directed exploration [30]. For example, directed exploration leads individuals to

occasionally stray from selecting the optimal choice to deliberately choose less known options

to gather information [44,45] to maximize long-term outcomes. Meanwhile, random explora-

tion refers to randomly choosing options, a pattern resulting in more frequent choices of the

non-optimal option, rather than deliberately choosing the worse option [45]. According to

Findling and colleagues (2019) [45], the majority of choices that seemingly do not optimize

reward values, appear to originate from so called learning noise. The locus-coeruleus-norepi-

nephrine system has been proposed as potential neural correlate underlying learning noise

[44,45] and using psychopharmacological manipulation, has been implicated in computation-

ally “cheaper,” value-free exploration strategies [44,45]. Meanwhile, more elaborate explora-

tion strategies appear to rely on other systems, like the dopaminergic system [63,64]. Future

studies may disentangle such distinct noise components and its neurochemical correlates

more precisely.

Interestingly, in our data no age effect was evident for decision noise for negative outcomes.

Speculatively, this could be linked to relatively stronger effects of development on the reward

versus punishment domain [8,16,43]. Alternatively, the parameter for decision noise for nega-

tive outcomes might capture different aspects of noise that are less affected by developmental

changes, though we cannot make any more specific claims about this, as our Go/NoGo task

cannot dissect distinct subcomponents of noise such as decision from learning noise.

One avenue of future research is distinct patterns of decision noise in developmental psy-

chopathology. Indeed, elevated decision noise was reported across a wide range of psychiatric

disorders [65–69]. Developmentally, a particular interesting condition associated with noisy

behavior is attention-deficit hyperactivity disorder (ADHD). Some reports show elevated

noise and exploration in ADHD patients [69–71] and non-clinical samples reporting ADHD

symptoms [72,73]. Further assessment of the computational phenotype of ADHD leading to

the characteristic profile of undirected explorative behavior, rapid task switching, and inatten-

tion might be key [30,74]. Such assessment would be particularly exciting given the implication

of dopaminergic and noradrenergic pathways not only in decision noise and the exploration/

exploitation trade-off [29,63,64,75] but also in the psychostimulant treatment of ADHD symp-

toms [76–81]. It remains unknown whether decision noise could serve as predictor for clinical

outcomes like individual differences in response to psychostimulant treatment.

With respect to Pavlovian biases, we replicate a reduction during adolescence [17,20] but

alongside increasing task performance from adolescence into adulthood. The latter finding on
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performance conflicts with previous work, where lower Pavlovian biases presented with

improved task performance, especially when participants had to actively “overcome” inherent

Pavlovian responding [17]. This discrepancy might be explained by different task versions

such as different number of Go responses, outcome types, and cued valence. We extend previ-

ous work [17,20] by showing that instrumental learning biases in this type of task do not

undergo significant developmental changes.

As for limitations, a sample including younger children would have been superior by mak-

ing our sample more comparable to previous work [17]. As data was collected as part of a

larger study, this was not feasible. Still, we were able to partially replicate findings by showing a

linear trend based on the particular age range available to us. While our study had a cross-sec-

tional between-subject design, a longitudinal, within-subject design with multiple measure-

ment points could have better captured developmental changes in the examined RL processes.

In sum, using computational modeling and mediation analysis, we showed that decision

noise had a significant mediating effect on age-dependent increases in higher-level cognitive

processes such as model-based control, switching after negative outcomes in the reversal task

and overall performance in the motivational Go/NoGo and the reversal task. Cross-task analy-

ses also emphasized decision noise as representing an interindividually more stable parameter,

maybe even a trait-like feature. Future work may unravel the neural basis as well as the devel-

opmental and clinical real-life relevance of decision noise for neurodevelopmental disorders

such as ADHD to bridge the gap between observed symptom-level behavior and neurobiologi-

cal mechanisms. Moreover, given that many of the cognitive processes we measure appear to

be at least in part impacted by noise, future studies should attempt to quantify the degree of

noise relative to the central cognitive processes under investigation.

Material and methods

Sample

We recruited 103 participants as part of a larger developmental study, all of whom were

screened for current psychiatric diagnosis. Participants completed several RL tasks, such as a

reversal learning task capturing behavioral flexibility [16], a 2-step task measuring model-

based control [8] and a well-established motivational Go/NoGo task assessing motivational

biases in decision-making [23,31] (for a more detailed study description refer to the preregis-

tered study protocol at https://doi.org/10.17605/OSF.IO/FYN6Q [36]). Of those 103, 99 partic-

ipants completed the Go/NoGo task, of which 93 were subsequently analyzed (n = 93: age

mean [SD] = 22.65 [7.88], age range 12 to 42 years, female: 45; male: 48), as n = 5 participants

did not meet a rudimentary performance check (see SI) and one was an age outlier; 40%

(n = 37) of our final sample were adolescents (18 years of age or below). The age distribution

was not uniform but right-skewed (S1 Fig), as participants had been initially recruited as

matched controls for a clinical sample in terms of age and gender. Participant reimbursement

was 9 Euro per hour for study participation. Study proceedings were in agreement with the

declaration of Helsinki and approved by the ethics board of the medical faculty at the Univer-

sity of Leipzig (385/17-ek). All participants were informed about the study proceedings and

provided informed written consent before participating in the study.

Motivational Go/NoGo task

For this study, we used a well-established probabilistic reinforcement learning task known to

experimentally measure motivational biases by examining the impact of valence (gain win ver-

sus avoid punishment contexts signaled by cues) on behavioral activation or inhibition (Go

versus NoGo action) [23,31]. Here, on each trial, study participants were shown a cue for
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which they had to decide whether to execute one of 2 Go responses (make a right or left button

press) or abstain from it (NoGo, no button press) to either win a reward (Win cues) or avoid a

punishment (Avoid cues) (Fig 1). Importantly, participants were aware whether they were playing

for rewards or avoiding punishments, as cue valence was cued using a colored frame around each

cue (green = Win cue; red = Avoid Cue). However, despite showing the correct response for a

cue, participants could still receive invalid feedback 20% of the time (versus 80% valid feedback)

according to probabilistic feedback. Participants could show a correct left Go response for a Win

cue requiring a left Go response and still receive neutral feedback, the non-favorable outcome for

a Win cue, on this trial. They heart a specific sound for receiving a reward, neutral feedback, or

punishment. The task comprised 320 trials in total and each one of the 8 cues was presented 40

times. Before starting the main task, participants completed practice trials to guarantee that partic-

ipants had understood task requirements such as the possibility of a NoGo response.

The impact of choice biases is operationalized by how well participants learn to show or

omit a response when facing a reward or punishment cue requiring a Go or NoGo choice as

optimal response. Consecutive choices represent learning of optimal choices and are guided

by probabilistic feedback (rewards/neutral feedback for reward cues; punishment/neutral

feedback for punishment cues). Importantly, bias-congruent responding (Go response for a

Go-to-Win cue; NoGo for Avoid Punishment cue) should be facilitated, i.e., participants

show better performance on these trials, while bias-incongruent performance should be

impeded.

To tease apart differences in Pavlovian choice from instrumental learning biases, this task

version had 2 Go responses, Go Left and Right [23,31,82]. This manipulation discerns whether,

for example, a previously rewarded optimal Go response (e.g., Go Left) will be specifically rein-

forced and repeated or omitted more frequently in subsequent trials with the same cue [23,31].

This specificity for the optimal (Go) response reflects an instrumental learning bias, which will

increase throughout the task while participants learn the optimal cue response, while the

impact of Pavlovian choice bias recedes across the task [23]. Overall, instrumental learning

biases are more selective when compared with Pavlovian biases.

Unlike the instrumental learning bias, the Pavlovian bias does not distinguish between the

type of Go response, here Go Left or Go Right, in its facilitation effect, so any Go response fol-

lowed by a reward will increase the likelihood that a Go response will be selected on the next

trial this cue is presented. Also, Pavlovian biases usually do so as early as the first trial [23].

They are also characterized by a nonspecific tendency to show more Go responses for Win ver-

sus Avoid Punishment cues.

Mixed model analysis of Go/NoGo task

To examine Pavlovian choice biases, we assessed whether the probability of making a Go

response, subsequently termed P(Go), was impacted by the within-subject factors required

action (Go versus NoGo) and valence (Win versus Avoid Punishment) while also including

age (z-standardized) as additional covariate of interest. We expected a linear age effect for Pav-

lovian biases based on previous reports, such that adolescents would display lower levels of

Pavlovian biases relative to adults [17,20]. We were therefore particularly interested in the

2-way interaction valence × age indicating whether Pavlovian biases change with age, along-

side the main effects of (1) required action representing whether individuals actually learn to

make the correct response; (2) the main effect of valence capturing the presence of a motiva-

tional bias on choice behavior.

P(Go) ~ required action* cue valence*age + (required action* cue valence + 1|Subject)
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To examine developmental effects on instrumental learning biases, we set up a second

model based on previous work [31]. Here, we tested whether the probability of repeating

the previous response P(repeat), changed depending on 3 within-subject factors, namely the

response selected on the previous trial (Go versus NoGo response), the outcome valence

(positive: reward for reward cues; neutral feedback for avoidance cues versus negative: pun-

ishment for avoidance cues; neutral feedback for reward cues) and outcome salience

(salient: reward/punishment feedback, non-salient = neutral feedback). Importantly, in this

model, the presence of an instrumental learning bias is indicated by a significant 3-way

interaction: action taken × outcome valence × outcome salience. As we were specifically

interested in the presence of age-dependent effects, the model also included a linear age

term (z-standardized) as covariate of interest (also see S1 Text for an alternative model

implementation). Prior behavioral and neural work [83–85] has reported age-dependent

differences in feedback-based, instrumental learning processes, for instance heightened

negative (relative to positive) learning rates during adolescence [85]. Consequently, we

expected to observe reduced selective response facilitation of the correct response for a

reward cue during adolescence.

P(repeat) ~ action taken t-1 * outcome valence t-1 * outcome salience t-1 *age + (action taken t-1

* outcome valence t-1 * outcome salience t-1 + 1|Subject)

Given previous evidence of differences in age of onset of puberty [86], we also ran models

including gender as additional control variable, thereby assessing potential effects of gender on

choice behavior and biases.

All generalized logistic mixed effects models were computed using the lme4 package, ver-

sion 1.1–31 in R 4.2.2 with the optimizer bobyqa and the maximal number of iterations set to

n = 1e+9. Statistical significance was determined using p-values with α< 0.05, two-sided.

Computational modeling of Go/NoGo task and age-dependent changes

To dissect the computational mechanisms sub-serving Pavlovian action biases and instrumen-

tal learning, we fitted several hierarchically nested RL (M1-M7). For this, we relied on the cbm

toolbox implemented in matlab [87], which is based on hierarchical Bayesian inference (HBI)

and treats the model itself as a random effect [88,89]. Models M1–M5 have been previously

employed and outlined in much detail by Swart and colleagues [23]. In brief, model M1 repre-

sented a Rescorla Wagner model [90] comprising a learning rate (ε) and a second parameter

capturing feedback sensitivity, to learn value of each respective action (a: Go left, Go right,

NoGo) for each stimulus (s) on each trial t:

Qtðat; stÞ ¼ Qt� 1ðat; stÞ þ εðrrt � Qt� 1ðat; stÞÞ ð1Þ

M2 is an extension of M1 with an additional “Gobias” parameter b capturing an overall ten-

dency to give a Go response. Model M3 extended model M2 with another parameter operatio-

nalizing the Pavlovian tendency π to show more Go responses for Win relative to Avoid

Punishment cues. Both bias parameters were integrated with the learnt Q values into the action

weights w:

wtðat; stÞ ¼
Qtðat; stÞ þ bþ VpðsÞ if a ¼ Go

Qtðat; stÞ else
ð2Þ

(
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Model M4 included an instrumental learning bias parameter κ instead of the Pavlovian

parameter π to assess whether the choice behavior could have been solely produced by a learn-

ing bias. For this, κ was included as a modification of the learning as follows:

ε ¼

εo þ k if rt ¼ 1 and a ¼ Go

εo � k if rt ¼ � 1 and a ¼ NoGo

εo else

ð3Þ

8
><

>:

Importantly, to ensure a symmetric impact of κ, the following requirements were imple-

mented depending on the size of the learning rate

ε ¼

εo ¼ inv:logitðεÞ

εpunished NoGo ¼ inv:logitðε � kÞ if εo < :5

εrewarded Go ¼ εo þ ðεo � εpunished NoGoÞ if εo < :5

εrewarded Go ¼ inv:logitðεþ kÞ if εo > :5

εpunished NoGo ¼ εo þ ðεo � εrewarded GoÞ if εo > :5

ð4Þ

8
>>>>>>><

>>>>>>>:

For all models, V denoted the cued valence (Vwin = + 0.5; Vavoid = −0.5). Consequently, a

positive π lead to an increased action weight for Go responses for Win cues, while resulting in

a reduced action weight for Go responses on Avoid cues. Action weights were transformed to

action probabilities using a softmax function:

p atjstð Þ ¼
expðwðat; stÞÞP
aexpðwða0; stÞÞ

ð5Þ

Model M5 included both bias parameters κ and π. Due to previous reports of distinct learn-

ing and processing of positive and negative feedback in adolescents [8,16], we aimed to exam-

ine whether feedback sensitivity parameters for each motivational context (ρwin and ρavoid) or

feedback sensitivity parameters for positive versus negative feedback (ρ+FB or ρ-FB; present in

win and avoid motivational context) would provide a better account of the data (see Table 1

for an overview of the model space). This was motivated by rather noisy behavior seen in ado-

lescents in similar RL tasks [4,16,27]. Information of parameter transformation can be found

in the SI.

We performed extensive model simulation based on the established models to rigorously

compare the observed relative to the simulated data (S5 Fig). This revealed that the model only

including an instrumental learning bias parameter κ captured the observed behavioral data

very poorly. In the same veine, model M5 including both motivational bias parameters, π and

κ, did not perform better compared to model M3, which only included the Pavlovian bias

parameter π (see S1 Text, S5 and S6 Figs for details on simulations, model validation, and

parameter recovery). Hence, for the purpose of parsimony, we focused on 2 additional model

extensions, model M6 and M7, which implemented 2 feedback sensitivity parameters for cue

valence (Win and Avoid Punishment) or for positive and negative outcome valence together

with a single learning rate, a Gobias and a Pavlovian bias parameter (see S1 Text for full model

space).

We concluded this analysis using random effects model comparison [88,89], which com-

putes the Laplace approximation of model evidence based on the individual level [38,91], from

which group model evidence is derived to establish which model best captured the behavioral

data. Model evidence was examined by comparing the PXP [87]. PXP assesses the most fre-

quently expressed model [88] while accounting for the possibility of chance results. We then
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extracted hierarchical model parameter estimates from the winning model and examined age-

dependent effects using spearman correlations.

As we were particularly interested in the developmental changes underlying decision noise

and biases in choice behavior [16,17,26,92], we evaluated these associations for the respective

computational parameters from the winning model with age using spearman correlation coef-

ficients. Given our specific hypotheses regarding the developmental pattern of those three

parameters, we considered these confirmatory analyses for which we did not apply multiple

comparison correction. For completeness, we also report associations for age with the remain-

ing 2 parameters, namely the learning rate and the Gobias in the supplement.

Cross task generalizability of unspecific decision noise

Given our primary interest in the cross-task generalizability of decision noise, we subse-

quently assessed whether feedback sensitivity parameters from the motivational Go/NoGo

task would be associated with related parameters from 2 other RL tasks, detailed results for

which have been published elsewhere [8,16]. Apart from the motivational Go/NoGo task,

we had access to data from a probabilistic reversal learning task capturing cognitive flexibil-

ity and a sequential probabilistic decision-making task assessing model-based control (see

S1 Text for task details).

We first examined the association between computationally modeled noise parameters

across the Go/NoGo task (ρ +FB and ρ -FB) and the probabilistic reversal learning task using

spearman correlations. For the reversal task, noise parameters were extracted from the win-

ning computational model that had contained 4 noise parameters accounting for both out-

come and cue valence, namely, ρ Win +FB, ρ Win -FB, ρ Loss +FB and ρ Loss -FB [16]. Those

estimates were further simplified by averaging parameters on the dimension of cue valence,

thereby creating 2 parameter estimates, namely, ρ Reversal +FB, ρ Reversal -FB. In total, this meant 4

correlations were computed across both tasks. Second, we assessed cross-task associations for

noise parameters from the Go/NoGo task (ρ +FB and ρ -FB) and the 2-step task, for which noise

parameters ß1 and ß2 were extracted from a well-established hybrid model (see [38] for an

extensive model description).

Associations between unspecific noise with specific cognitive functions

Next, we also assessed the relationship between the 2 feedback sensitivity parameters (decision

noise) extracted from the winning model for the Go/NoGo task and the index capturing MB

control from the modified 2-step RL task (reported in [8]). Given that we did not find signifi-

cant valence differences for MB control in our previous developmental work [8], we only

assessed associations for noise parameters and overall MB control. Furthermore, we computed

correlation between the Go/NoGo task noise parameters with the behavioral indices from the

reversal learning task, namely pre-post reversal accuracy and switching after negative

outcomes.

To determine the specificity of findings, we evaluated the cross-task association between

learning rates from the Go/NoGo task, the 2-step and reversal learning task. Here, based on

prior work suggesting considerable variation in learning rates based on situational context

[4,26], we did not expect cross-task learning rates to show significant correlations.

Results were considered significant with a p-value< 0.0125 for associations between Go/

NoGo and the reversal task parameters (0.05/4) and a p-value < 0.025 for the associations

between the Go/NoGo task and the 2-step task parameters (0.05/2) to correct for multiple test-

ing. This was done separately for each task, as both tasks were considered independently.
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Decision noise as a mediator for higher-level cognitive processes?

To address our second aim for this paper, we also computed several mediation analyses. All

included feedback sensitivity as mediator variable and assessed its significance for age related

changes on specific cognitive functions or decision processes, namely MB control, decision

biases, and markers of cognitive flexibility. The mediation package in R was used for all media-

tion analysis. Results are reported based on nonparametric bootstrap confidence intervals

based on the percentile method (simulations n = 10.000).

The impact of decision noise on Go/NoGo task performance and Pavlovian

biases

We first assessed whether the noise parameter for positive outcomes extracted from our win-

ning computational model M7 (ρ +FB) exerted a mediating effect on the relationship between

age and overall task performance (P(correct)), on a previously employed score computed for

the overall impact of Pavlovian biases on choice behavior [Pcorr(Go2Win)—Pcorr(Go2Avoid)

+ Pcorr(NoGo2Win)—Pcorr(NoGo2Avoid)] [23] as well as the computational parameter cap-

turing Pavlovian biases.

The role of decision noise for the association between age and cognitive

flexibility

Based on [16], the difference between pre and post reversal accuracy as well as the degree of

switching behavior after negative feedback showed significant correlations with age. Hence,

we examined whether these parameters were mediated by the noise parameters for positive

outcomes from the motivational Go/NoGo task.

The impact of decision noise on the association between age and MB

control

Finally, given previous reports linking age and MB control [8], we also assessed whether this

association might be (partially) mediated by the extracted noise parameter for positive out-

comes from our winning model M7, namely ρ +FB. MB control was operationalized in 2 differ-

ent ways, namely, the computationally derived parameter omega extracted from a well-

established hybrid model [38] as well as effect estimates extracted from a mixed-effects model

characterizing MB control (details reported in [8]).

Supporting information

S1 Text. Supplemental material. File providing additional information on data analysis and

results including mixed and computational models as well as correlational analysis and the

employed tasks.

(PDF)

S1 Table. Age-dependent changes in Pavlovian biases. Table displaying the ß estimates, the

standard error (SE) as well as statistics for the main and interaction effects from the mixed-

effects model computed to assess the impact of age on Pavlovian biases as well as general learn-

ing of the task. Here, the dependent variable was the probability of making a go response P

(Go). Data and code to compute the statistics presented in this table is available at https://osf.

io/mcx36/.

(PDF)
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S2 Table. Age-dependent changes in accurate task performance. Table displaying the ß esti-

mates, the standard error (SE) as well as statistics from the mixed-effects model computed to

assess the impact of age on Pavlovian biases as well as general learning of the task. Here, the

dependent variable was the probability of making a correct response P(Correct). Data and

code to compute the statistics presented in this table is available at https://osf.io/mcx36/.

(PDF)

S3 Table. Age-dependent changes in instrumental learning biases. Table displays the ß esti-

mates, standard errors (SE) as well as statistics from the mixed-effects model computed to

assess the impact of age on instrumental learning biases. Here, the dependent variable was the

probability of repeating the same response for a given cue P(repeat). Data and code to compute

the statistics presented in this table is available at https://osf.io/mcx36/.

(PDF)

S4 Table. Effects of gender on Pavlovian biases. Table providing an overview of the ß esti-

mates, standard errors (SE) as well as statistics from the mixed-effects model computed assess-

ing the impact of gender on the measured task effects. Here, the dependent variable was the

probability of making a Go response P(Go). Data and code to compute the statistics presented

in this table is available at https://osf.io/mcx36/.

(PDF)

S5 Table. Effects of gender on instrumental learning biases. Table providing an overview of

the ß estimates, standard errors (SE) as well as statistics from the mixed-effects model com-

puted assessing the impact of gender on the instrumental learning bias. Here, the dependent

variable was the probability of repeating the same response for a given cue P(repeat). Data and

code to compute the statistics presented in this table is available at https://osf.io/mcx36/.

(PDF)

S1 Fig. Distribution of Age and gender. (A) Age distribution (age between 12 and 43 years)

with the solid line indicating the mean age of 22.65 for this sample (n = 93). (B) Gender distri-

bution of sample. (Female = 45, Male = 48).

(EPS)

S2 Fig. (A) Conceptualization of motivational choice biases. (B) Probability of P(Go) as a

function of required action and cue valence. Learning is apparent from the increased fre-

quency of Go responses for Go cues. The impact of motivational biases is evident from the

decreased probability of Go responses for Avoid cues and the increased frequency of Go

responses towards Win cues independent of the actually required action. (C) Probability of P

(Repeat) as a function of the action taken and outcome valence. Here, outcome valence is

additionally split up by salience, i.e., whether participants received an actual reward or punish-

ment or neutral feedback. Probability of repeating an action depicted as a function of outcome

received on the previous trial and its salience. Cue categories are abbreviated as follows:

G2W = Go to Win, G2A = Go to Avoid Punishment, N2W = NoGo to Win, N2A = NoGo to

Avoid Punishment. The data underlying the figure panels B and C as well as the code for plot-

ting it can be found at https://osf.io/mcx36/.

(EPS)

S3 Fig. Depiction of age effects on the interaction action x valence. (A) Scatterplot depicting

the association between age and model estimates for interaction term valence × action

extracted from the mixed-effect model with PGo as dependent variable. (B) Scatterplot show-

ing the correlation between age and the approach bias computed based on the raw data PGo

(G2W - G2A). (C) Scatterplot showing the correlation between age and the avoid component
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of the Pavlovian bias computed based on the raw data PGo (NG2W - NG2A). Data and code

necessary to replicate this figure can be found at https://osf.io/mcx36/.

(EPS)

S4 Fig. Age effects on computational model parameters. Scatterplots depicting significant

age effects on feedback sensitivity for positive outcomes and Pavlovian biases, while showing

age independent trajectories for the remaining computational parameters, namely, feedback

sensitivity for negative outcomes, the learning rate parameter and the go bias, for which

(spearman) correlation coefficients were all non-significant (p-value > 0.5). The code with

which the data underlying this figure was produced and for plotting this figure can be found at

https://osf.io/mcx36/.

(EPS)

S5 Fig. Posterior predictive model simulations. (A–C) Panels A–C depict the aggregated

results of model simulations computed for models M3-M5 (colored lines) compared to the

actually observed data (gray colored lines) to determine whether those models can capture the

basic patterns seen for the actual observed behavioral data. Here, simulations (n = 100) com-

puted new choices and outcomes according to response probabilities that were based on the

optimal parameter estimates generated for the respective model and which were subsequently

averaged across all subjects. Here, key elements of the behavioral pattern are for instance

whether participants learnt the task (i.e., showed the correct Go and NoGo responses for the

respective Go vs. NoGo cues) and whether a strong valence effect characteristic for the influ-

ence of Pavlovian biases, such as an increased frequency of Go responses for Win cues relative

to Avoid Punishment cues, could be detected. (Panel A–C) Trial by trial estimates of the prob-

ability of showing a Go response for models M3–M5. Here, M3 only contains a Pavlovian bias

parameter alongside one overall feedback sensitivity parameter, a learning rate and a gobias

parameter, M4 exchanged the Pavlovian bias parameter (π) with a learning bias parameter,

while model M5 contained both bias parameters. It becomes evident that only model M3 con-

taining a Pavlovian bias parameter only is able to capture the observed behavioral patterns,

while both M4 and M5 show major divergence from the behavioral data indicating strong

effects of over- and underestimation of the observed data. (Panel D–F) Depiction of the differ-

ence score between the probability of repeating the same choice shown on the previous trial

for the same cue on the next trial [P (Repeat)] with the predicted choices based on the simula-

tion runs being subtracted from the originally observed choices and subsequently averaged

across participants. Here, choice patterns are split up by valence (Win and Avoid Punishment)

and Salience (reward vs. punishment, no reward vs. no punishment). Again, model M3 includ-

ing only 1 parameter capturing the impact of Pavlovian biases appears to outperform the other

2 models M4 and M5 given the smaller rate of over- and underestimation of actual perfor-

mance indicated by the smaller difference bars overall. The data underlying this figure and the

plotting code can be found at https://osf.io/mcx36/.

(EPS)

S6 Fig. Overview of parameter recovery. (A) Scatterplots depicting the correlation (spearman

coefficient) between the parameter estimates of the winning model M7 comprising 2 feedback

sensitivity parameters for positive and negative outcomes, a learning rate as well as a Go and a

Pavlovian bias computed for observed data as well as simulated data (parameter estimates aver-

aged across n = 100 simulations). (B) Density distributions of parameter estimates of model M7

for observed data (green) and recovered data (blue). Dashed line indicates the mean of the dis-

tribution. (C) Scatterplot depicting the correlation (spearman) between the observed and aver-

aged, simulated probability of making a go response, P(Go), and the probability of making a
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correct response (left Go response for a Go cue requiring a left button press, a right Go response

for cues with a right button press as optimal response, and NoGo response for NoGo cues). The

data underlying this figure and the plotting code can be found at https://osf.io/mcx36/.

(EPS)

S7 Fig. Mediation effect of positive feedback noise on task performance. Mediation analysis

indicated a significant partial mediation effect of feedback sensitivity for positive outcomes

(rho +FB) on P(correct), i.e., the overall response accuracy when performing the task. Data

and code to complete the mediation analysis are available at https://osf.io/mcx36/.

(EPS)

S8 Fig. Cross-task association for noise parameters from the Go NoGo and Reversal learn-

ing task. The scatterplots depict the association between feedback sensitivity for negative out-

comes from the motivational Go NoGo task and the 2 noise parameters for positive and

negative outcomes from the reversal task. Both correlation coefficients were nonsignificant

(p-value> 0.1). The data underlying this figure and the plotting code can be found at https://

osf.io/mcx36/.

(EPS)
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