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We propose a scheme to perform optical pulses that suppress the effect of photon recoil by three
orders of magnitude compared to ordinary pulses in the Lamb-Dicke regime. We derive analytical
insight about the fundamental limits to the fidelity of optical qubits for trapped atoms and ions.
This paves the way towards applications in quantum computing for realizing > 1000 of gates with
an overall fidelity above 99%.

Introduction.—Ultranarrow optical transitions enable
today’s most accurate clocks due to their long coherence
times and large energy level splitting compared to clocks
based on atomic microwave transitions [1–11]. Can the
same ultranarrow optical transitions be used to define a
qubit for quantum computing applications which is com-
petitive in terms of speed and fidelity with other atomic
qubit implementations [12–15] in trapped ions [16–19]
and neutral atoms [20–27]? The answer is not obvious
since optical qubits and optical clocks work in entirely
different parameter regimes. The most striking example
is the speed of operation. The optical qubit has to be ma-
nipulated on a very short time scale [28], whereas optical
clock transitions are naturally probed over a long period
of time for a higher resolution [1]. This raises the chal-
lenge of how to operate the optical qubit at high Rabi
frequencies while controlling the light shift induced by
the driving laser (so-called probe shift [29, 30]) and sup-
pressing the effect of photon recoil in a regime where the
motional sidebands are not inhibited. The second fun-
damental difference in the requirements is the need for
an optical qubit to operate a universal set of gates from
arbitrary initial states [31], as opposed to optical clocks
for which spectroscopy is performed from a well-defined
initial state [1]. In fact, the optical qubit requires under-
standing and optimizing the quantum process of the gate,
rather than only controlling a particular state evolution
[28]. Thus, the goal for an optical qubit is to implement
arbitrary, fast quantum gates while controlling both re-
coil and probe shift.

The effect of photon recoil has long been studied
[16]. There are two well-established methods to suppress
it. One can work in the regime of low Rabi frequency
(sideband resolved regime), and/or engineer deep traps
(Lamb-Dicke regime), for which the photon recoil is to a
great extent absorbed by the trapping potential instead
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of the atom (Mößbauer effect). Both regimes are natu-
rally approached with increasing trap frequency [32, 33].
However, there are limits to the maximum trapping fre-
quency for ions and especially for neutral atoms, where
for the latter the trapping frequency is limited by the
laser power and by photon scattering of the trapping light
[34]. For neutral-atom quantum computing, efforts have
been made to understand the role of photon recoil [35]
and to mitigate its effects on optical qubits [28]. How-
ever, this problem has not been studied systematically
nor have general solutions for arbitrary gates been found
so far. Other solutions have been proposed to suppress
photon recoil by driving a three-photon transition. This,
however, requires excellent phase coherence between the
three laser beams and precise control of their beam di-
rection and polarization [36–38].

In this paper, we derive a new understanding of the
physics underlying photon recoil, systematically quan-
tify its impact on the gate operations on optical qubits
and, based on the new insights, design a recoil-free pulse
scheme for quantum gates. Leveraging the novel recoil-
free pulse, we develop a composite pulse protocol to drive
arbitrary gates on the optical qubit. The new compos-
ite pulse scheme provides a unifying solution to all three
relevant challenges: (1) we employ recoil-free pulses to

ideal qubit optical qubit ideal qubit optical qubit

(a) (b)

FIG. 1. Ideal qubit vs. trapped optical qubit: (a) An ideal
qubit is driven from |0⟩q to a superposition state, whereas the
optical qubit absorbs the photon momentum when excited.
(b) Instead of realizing the intended superposition of |0⟩q and

|1⟩q states, the photon momentum causes a recoil from the

initial motional state |0⟩m to |rec⟩m for the atom ending in
state |1⟩q, thus producing detrimental entanglement between
internal and external degrees of freedom.
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suppress motional decoherence, (2) we fully parallelize
slow operations on the optical qubit transition while per-
forming local operations through fast σz rotations, (3)
we enhance the recoil-free pulses to what we later call
Mikado pulses in order to be insensitive to probe shift,
and correct systematic unitary errors by acting on the
local operations.

Recoil-free gates.—Optical qubits are fundamentally
different from an ideal two-level system, as illustrated in
Fig. 1: The photon inducing the transition in an optical
qubit carries a momentum ℏk that may not be negligible
compared to the width of the momentum distribution of
the trapped atom. The effect of recoil manifests itself in
two specific ways: entanglement of the qubit state with
the motional state, leading to a direct reduction in the
gate fidelity, and motional heating of the atom reducing
the fidelity of subsequent gates indirectly.

We set the stage by introducing the Hamiltonian gov-
erning the interaction between an optical qubit and a
resonant laser,

Ĥ[φ(t)] =
ℏΩ
2

(eiφ(t)+iη(â†+â)σ̂+ +H.c.) + ℏωâ†â =

ℏΩ
2

[ĥ0+η(a
†+â)ĥ1−

η2

2
(â†+â)2ĥ0]+ℏωâ†â+O(η3), (1)

which acts on the product space Q ⊗M defined by the
qubit (Q) and motional states (M). In Ĥ, we omit terms
dealing with inhomogeneities of the probe shift, which
are discussed later, and only focus on the photon-recoil
effect, which is truly fundamental. The control parame-
ters in the Hamiltonian are the positive Rabi frequency
Ω, the phase φ(t) of the laser field modulated in time
t, and the trap frequency ω. The Hamiltonian also con-
tains the Lamb-Dicke parameter η = kx0 = k

√
ℏ/(2mω)

with x0 being the zero-point width of the atom in the
trap and m its mass, the Pauli matrices σ̂ with stan-
dard index notation, and the annihilation operator â.
In Eq. (1), a series expansion of Ĥ is provided to the

order of η2, where ĥ0 = σ̂x cosφ(t) + σ̂y sinφ(t) and

ĥ1 = σ̂y cosφ(t) − σ̂x sinφ(t) are operators on Q, whose
relevance will become clear in the following.

We obtain a basic understanding of the effect of
photon-recoil by studying the motion of an atom in phase
space. To present our results, we will consider, with-
out loss of generality, the specific case of a π/2 σx-

rotation R̂x(π/2), and first realize it with a constant
phase φ(t) = 0. We call this a Mößbauer pulse because
the transferred momentum in the Lamb-Dicke regime is
suppressed to the order of ℏk (Ω/ω)/

√
6 according to the

Mößbauer effect (Appendix B). This residual recoil effect
can be completely eliminated by introducing recoil-free
gates, which modulate the phase φ(t) to bring the mo-
tional state back to the origin in phase space: a formal
definition of recoil-free pulses and how to compute them
will be provided later. In Fig. 2, we show a comparison of
the Mößbauer and recoil-free gates for a particular initial
qubit state. To the first order of η, the recoil-free pulse

recoil free
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FIG. 2. Phase space representation of the atom’s motional
state. The gate R̂x(π/2) is applied to the initial qubit
state sin(π/8) |0⟩q + i cos(π/8) |1⟩q. Left: Mößbauer pulse

vs. recoil-free pulse for the initial motional Fock state |0⟩m.
Right: recoil-free pulse applied to a coherent state with
αrec. free(0)=0.15. The final state αrec. free(T ) is the same as if
the atom had no pulse applied. The dotted circle with radius
|α(0)| is provided for reference.

not only suppresses the recoil for the particular state in
the figure, but (i) for all initial qubit states, (ii) for mo-
tional Fock states, and (iii) even for coherent states of any
amplitude α. This constitutes one of the main results of
this paper.
To explain the statements (i)-(iii), we derive equations

of motions for the x̂(t) and p̂(t) position and momen-
tum operators in the Heisenberg picture. These are the
Newtonian equations of motion for a driven harmonic
oscillator,

∂tp̂(t) = −mω2x̂(t)− ℏk ∂t
(
σ̂z
2

)
, (2)

∂tx̂(t) = p̂(t)/m, (3)

∂tσ̂z = Ω[σ̂y cosφ(t)− σ̂x sinφ(t)] +O(η) (4)

where Eqs. (2) and (3) follow from an approximation

of Ĥ[φ] in Eq. (1) to the first order in η, and Eq. (4)
describes the qubit dynamics to zero order in η (Ap-
pendix A). From these equations, an intuitive, semiclas-
sical picture emerges, where the trajectory in phase space
is determined by the interplay between the harmonic os-
cillator force and the recoil force applied to the atom,
which is given by the excitation rate ∂t ⟨σ̂z⟩ /2. In the
following, we sketch a proof of three statements (Ap-
pendix C for details): (i) The temporal phase profile
φ(t) is designed to suppress recoil for the three initial

states: |0⟩, (|0⟩ + |1⟩)/
√
2 and (|0⟩ + i |1⟩)/

√
2. Owing

to the linearity of the Newtonian equations above and
the time-reversal symmetry of Ĥ = −τ̂−1Ĥτ̂ , with τ̂ the
time-reversal operator, if |0⟩ evolves under the gate in a
recoil-free way, so does τ̂ |0⟩ = |1⟩ too. Combining these
results, we conclude that any qubit superposition state
is also recoil free, ⟨x̂(T )⟩ = ⟨p̂(T )⟩ = 0. (ii) Because the
expectation value of x̂ and p̂ vanishes for any Fock state,
and the zeroth-order qubit dynamics is independent of
motion, the driving force is independent of the initial
Fock state. (iii) Given the linear structure of Eqs. (2)
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and (3), the generic trajectory for an initial coherent state
αrec. free(t) can be decomposed into two solutions: the ho-
mogeneous solution αhom(t) when no pulse is applied and
the particular solution with the recoil-free pulse starting
and ending at α = 0. Hence, αrec. free(T ) = αhom(T ).
While the semi-classical picture explains the suppres-

sion of motional excitations, it does not capture the en-
tanglement between the qubit and the motional states,
which ultimately limits the gate fidelity. To advance be-
yond the phase-space representation, we perform quan-
tum process tomography [31] of the unitary Û generated

by Ĥ and use the results to evaluate the fidelity against
a target unitary Ûtar acting on Q. By taking the partial
trace over M, we obtain the operator-sum representation
of Û in Q:

EÛ,ρm
(ρ̂q) = Trm[Û(ρ̂q ⊗ ρ̂m)U†] =

3∑
k=0

χkÊkρ̂qÊ
†
k, (5)

where Êi are the Kraus operators and χi are the probabil-
ities of the different quantum channels, where the domi-
nant channel with index 0 obeys 1−χ0 ≪ 1. In addition,
ρm denotes the initial motional state, which we choose
to be a thermal state with ground state probability p0.
By applying the formalism in Ref. [39], we compute the
fidelity of the process E averaged over the initial qubit

state as ⟨F⟩ =
[
1 + 2

∑
k χk|Tr(Û†

tarÊk)/2|2
]
/3. Impor-

tantly, we find that the infidelity J = 1 − ⟨F⟩ can be
bounded from above by Jent+Juni, with the two contri-
butions,

Jent =
2

3
(1− χ0), (6)

Juni =
2

3
(1− |Tr(Û†

tarÊ0)/2|2), (7)

being interpreted as the infidelity by entanglement and
by systematic deviations from Ûtar. Note that to derive
the bound, we only consider Ê0. While J captures the
process infidelity, it does not account for motional heat-
ing, which, if not suppressed, leads to a lower p0 (i.e.,
higher temperature) for the subsequent gates and, thus,
to a higher infidelity. Hence, we introduce an additional
cost function Jmot defined as the change of ⟨â†â⟩ in ab-
solute value, averaged over the four initial qubit states
used in the process tomography (Appendix D).

To obtain the recoil-free pulses, we modulate φ(t) while
minimizing the weighted sum of the cost terms Juni, Jent
and Jmot for Ûtar = R̂x(π/2). We present in Figs. 3(a-
c) the three terms as a function of the pulse duration T
for different values of Ω. The first relevant observation
is that the three cost terms drop for durations > 2π/ω,
indicating that the quantum speed limit is determined by
the trap frequency. Second, we find that Jmot is increas-
ingly suppressed as we decrease the Rabi frequency, as is
expected in the sideband resolved regime. However, the
same behavior is not observed for the other cost functions
Jent and Juni, which plateau once the recoil (i.e., Jmot)
is suppressed.

plateau
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FIG. 3. Quantum process tomography of recoil-free pulses as
a function of pulse duration T , for ω = 2π×100 kHz, η = 0.22,
p0 = 0.95. (a) Juni, (b) Jmot, (c) Jent. (d) Jent as a function
of the ground state probability p0 for T = 15 µs.

To explain the results above, we expand the unitary
Û acting on Q ⊗ M to the second order in η: Û(T ) =

Û0(T )[1+ ηV̂1(T )+ η2V̂2(T )+O(η3)], with the following
definitions:

Û0(t) =Ûq(t)e
−ia†aωt, (8)

V̂1(t) =V̂
(1)
rec (t) a

†−H.c., (9)

V̂2(t) =
(
V̂ (2)
rec (t) â

†2 −H.c.
)
− i V̂

(2)
ent (t) â

†â. (10)

Here, Ûq(t) is the unitary generated by the

Hamiltonian ℏΩ
2

(
1− η2

2

)
ĥ0(t), which yields the

zeroth-order evolution of the ideal qubit un-
der a renormalized Rabi frequency. In addi-

tion, V̂
(1)
rec (t) = −iΩ2

∫ t

0
Ûq(τ)ĥ1(τ)Û

†
q (τ)e

iωτdτ and

V̂
(2)
rec (t) = −iΩ4

∫ t

0
Ûq(τ)ĥ0(τ)Û

†
q (τ)e

2iωτdτ are respon-
sible for the first- and second-order motional heating
with an exchange of one and two motional quanta,
respectively. They can be understood as the Fourier

transform of ĥ1 and ĥ0 in the rotating frame, evaluated

at frequency ω and 2ω. In contrast, the operator V̂
(2)
ent (t)

does not change the motional state and is responsible for
entanglement, which will be discussed later. To obtain
Jmot = 0+O(η5) (i.e., suppress recoil to the order of η4)

requires the conditions V̂
(1)
rec (T ) = V̂

(2)
rec (T ) = 0. To fulfill

these conditions, T must be larger than one trap period:
T > 2π/ω, since phase-modulated pulses with duration
T can only control the spectrum of the operator at
frequencies larger than 2π/T . Hence, this establishes
the quantum speed limit TQSL of recoil-free pulses.

When the recoil-free condition V̂
(1)
rec (T ) = V̂

(2)
rec (T ) =

0 is held, Jent is only determined by V̂
(2)
ent (t) =

Ω
2

∫ t

0
Ûq(τ)ĥ0(τ)Û

†
q (τ)dτ . Using process tomography, we
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evaluate Jent to the order of η4 for recoil-free pulses (Ap-
pendix G):

J rec. free
ent ≈ 2

3

1− p0
p0

η4
∣∣B⃗(V̂

(2)
ent (T ))

∣∣2 +O(η6), (11)

where B⃗ defines a mapping from a Hermitian operator

Â to a vector: B⃗(Â) = {Tr(Âσ̂x),Tr(Âσ̂y),Tr(Âσ̂z)}/2.
To evaluate this expression, we make the approxima-

tion Ûq(t) ≈ R̂x(Ωt), which holds because V̂
(2)
ent is the

dc component of ĥ0 in the rotating frame and, thus, is
marginally affected by the high-frequency components of
the phase modulation in a recoil-free pulse, whose spec-
trum comprises frequencies above 2π/T . With this ap-

proximation, we obtain Jplateau
ent = π2

24
1−p0

p0
η4, which ex-

plains the plateau in Fig. 3(c), independent of the Rabi
frequency Ω. For sufficiently long durations, however,
the phase modulation allows controlling lower and lower
frequency components and, thus, reducing J rec. free

ent below
the plateau value. We emphasize that such a suppression

of V̂
(2)
ent is only possible because of the modulation of φ

and could not be achieved by modulating Ω alone. In

fact, if the phase is kept fixed, ĥ0 would commute with

Ûq, implying that V
(2)
ent would be proportional to the area

of the pulse, which needs to be greater than π/2 and thus
cannot vanish. Importantly, this fact shows that even
when operating deep in the sideband resolved regime,

constant-phase pulses cannot reduce Jent below Jplateau
ent .

The second important result we obtain from Eq. (11) is
the linear scaling with 1−p0, provided a sufficiently small
temperature, as shown in Fig. 3(d).

Composite pulse protocol for universal one-qubit
gates.—We show that recoil-free pulses enable fast, arbi-
trary quantum gates for quantum computing with optical
qubits. The purpose is to implement an arbitrary unitary
gate Ûg ∈ SU(2). Naively, this could be implemented

with a Euler decomposition [40], R̂x(θ3)R̂y(θ2)R̂x(θ1),
where each rotation is recoil free. This can be realized
with parallel addressing of the atoms, relying on scalable
opto-electronic solutions [41–44], which is within reach,
but not demonstrated with atoms yet. Instead, we pro-
pose an alternative scheme that avoids addressing the
atoms sequentially and, thus, avoids long execution time
pulses because of the relatively small Rabi frequency,
typical of ultranarrow optical transitions. The proposed
scheme only uses two recoil-free gates per circuit step,
based on a global recoil-free pulse, together with fast, lo-
cal σ̂z-rotations R̂z(θ) implemented by light shift on the
individual atoms; see Fig. 4(a). Inspired by the Euler de-
composition, the composite scheme consists in applying
the following operations:

Ûg =R̂z(θ3)R̂Mik[φ(t) + π]R̂z(θ2)R̂Mik[φ(t)]R̂z(θ1).
(12)

as schematically illustrated in Fig. 4(b). Here, R̂Mik[φ(t)]
is a class of pulses transforming the north pole of the
Bloch sphere to its equator, which we call Mikado after

local
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FIG. 4. (a) Laser configuration with global recoil-free pulses
and local σz-rotations by local light shifts. (b) Compos-
ite pulse scheme based on global Mikado pulses and site-
dependent Rz(θ) rotations. Inset: phase modulation, with
duration 65% longer than zeroth-order quantum speed limit
T 0
QSL = π/(2Ω). (c) Bloch vector trajectory of Mikado pulse

under intensity deviation δI/I = {−0.025, 0, 0.025}. The
dashed lines represent the rotation axis of the effective ro-
tation by the Mikado pulse for the three intensities, respec-
tively. (d) Three cost functions vs. intensity deviation for the
Mikado pulse. In the figure, the Mikado pulse is optimized
for 88Sr atoms; see Appendix I.

the popular children’s game:

R̂Mik[φ(t)] = R̂z(α)R̂x(π/2)R̂z(β). (13)

Mikado pulses are generated like recoil-free pulses by
modulating φ(t) to minimize the three cost functions
JMik
uni , Jent and Jmot, where JMik

uni is adapted from Juni
(Appendix H). Thereby, Mikado pulses inherit the same
recoil-free characteristic. However, they allow for two
loose parameters, α and β, in their optimization, which
serves as additional degrees of freedom. Compared to a
recoil-free fixed rotation R̂x(π/2), Mikado pulses are ro-
bust against spatial inhomogeneities of Ω and detuning
ℏδ σ̂z/2, which in realistic scenarios need to be added to

Ĥ in Eq. (1). An example of inhomogeneous detuning is
the probe shift from the intensity inhomogeneity of the
global pulse. The idea behind Mikado pulses is to map
site-dependent deviations of Ω and δ in Ĥ onto the devia-
tions δα and δβ of the two loose parameters. The robust-
ness of Mikado pulses is exemplified by the three different
Bloch-sphere trajectories shown in Fig. 4(c), correspond-
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FIG. 5. Randomized benchmarking of a sequences of SU(2) gates drawn from the Haar measure, realized with the composite
pulse of Fig. 4(b), for different ground state probabilities p0 (see legend), whereas the gray curves refer to constant-phase
Mößbauer pulses for p0 = 99%. The saturation value of Jent (see text) is shown in both (b) and (c) as a point of comparison
(dotted lines). Representative 1-σ error bars are shown.

ing to three different laser intensities. Figure 4(d) shows
in addition that the recoil-free property (i.e., vanishing
Jent and Jmot) is preserved despite the parameter inho-
mogeneity. Hence, knowing the parameters for each site
allows correcting the deviations α+ δα and β+ δβ in the
Mikado gates by suitable σz-rotation angles.

The composite pulse scheme allows implementing any
gate Ûg preserving comparable values of Jent and Jmot

as for Mikado pulses [Fig. 4(d)], while suppressing Juni
to values below 10−6 owing to the local R̂z rotations;
see Appendix K. Importantly, the high fidelity of single
gates carries over to long sequences, as shown by the ran-
domized benchmarking in Fig. 5. In particular, Jmot in
Fig. 5 (a) shows an improvement by at least three or-
ders of magnitude in heating suppression compared to
Mößbauer pulses. Such a strong suppression is key to
achieve excellent Jent and Juni for a scalable number of
gates, as shown in Fig. 5(b) and Fig. 5(c). Remarkably,
Jent exhibits a saturation effect to (1−p0)/2, derived in

Appendix L. This asymptotic behavior underlines the im-
portance of preparing sufficiently cold atoms to carry out
high-fidelity gates on optical qubits. Remarkably, even
in the conservative scenario of ground-state population
p0 = 90%, the crossover point defined by Juni > Jent is
reached for a number of gates above 1000.
Conclusions.—In this paper, we have shown that our

recoil-free pulses, enhanced by the Mikado scheme, pro-
vide an affirmative answer to the opening question: they
enable applications of optical qubits for quantum com-
puting and entanglement-enhanced quantum metrology
with state-of-the-art fidelities.
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[17] H. Häffner, C. F. Roos, and R. Blatt, “Quantum com-
puting with trapped ions,” Phys. Rep. 469, 155 (2008).

[18] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M.
Sage, “Trapped-ion quantum computing: Progress and
challenges,” Appl. Phys. Rev. 6, 021314 (2019).

[19] C. Monroe, W. C. Campbell, L. M. Duan, Z. X. Gong,
A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M.
Linke, G. Pagano, P. Richerme, C. Senko, and N. Y.
Yao, “Programmable quantum simulations of spin sys-
tems with trapped ions,” Rev. Mod. Phys. 93, 025001
(2021).

[20] M. Saffman, T. G. Walker, and K. Mølmer, “Quantum
information with Rydberg atoms,” Rev. Mod. Phys. 82,
2313 (2010).

[21] M. Saffman, “Quantum computing with atomic qubits
and Rydberg interactions: progress and challenges,” J.
Phys. B: At. Mol. Phys. 49, 202001 (2016).

[22] C. S. Adams, J. D. Pritchard, and J. P. Shaffer, “Rydberg
atom quantum technologies,” J. Phys. B: At. Mol. Phys.
53, 012002 (2020).

[23] A. M. Kaufman and K.-K. Ni, “Quantum science with
optical tweezer arrays of ultracold atoms and molecules,”
Nat. Phys. 17, 1324 (2021).

[24] X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y.-C. Liu,
M. K. Tey, and L. You, “A concise review of Rydberg
atom based quantum computation and quantum simula-

tion,” Chin. Phys. B 30, 020305 (2021).
[25] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang,

S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara,
H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin,
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APPENDIX A: ANALYZING ATOM MOTION IN
PHASE SPACE

In this section, we derive the Heisenberg equations of
motion for a trapped atom subject to an optical drive.
We show that these take the form of semi-classical equa-
tions of motion of a driven harmonic oscillator, providing
us with a tool to intuitively understand the recoil-free
dynamics of quantum gates. Moreover, this also offers a
straightforward explanation for extending the recoil-free
properties of optimized pulses from Fock states to coher-
ent states.

The Hamiltonian of Eq. (1) up to first order in η is:

Ĥ/ℏ =
Ω

2
[σ̂x cosφ(t) + σ̂y sinφ(t)] + ωâ†â

+
ηΩ

2
(â† + â)[σ̂y cosφ(t)− σ̂x sinφ(t)] +O(η2)

(A1)

The Heisenberg equations of motion for the operators σ̂z
and â under this Hamiltonian are:

∂tσ̂z = Ω[σ̂y cosφ(t)− σ̂x sinφ(t)] +O(η),

∂tâ = −iωâ− i
ηΩ

2
[σ̂y cosφ(t)− σ̂x sinφ(t)] +O(η2).

(A2)
By substituting the equation of motion for σ̂z into that
for â, we derive:

∂tâ = −iωâ− iη ∂t

(
σ̂z
2

)
(A3)

From this equation, we directly obtain the equation of
motion for x̂ and p̂:

∂tp̂ = −mω2x̂− ℏk∂t(
σ̂z
2
)

∂tx̂ = p̂/m
(A4)

This equation of motion can be understood as the atom
moving in a harmonic potential while subject to the force,

f̂ = −ℏk∂t
(
σ̂z
2

)
, (A5)

originating from the momentum transfer (i.e., the recoil).
The force is determined by the zeroth-order qubit dynam-
ics, more specifically, by the transition rate between the
two qubit states.

APPENDIX B: MÖßBAUER PULSES

We refer to pulses with constant phase φ as Mößbauer
pulses for the reasons provided in the text. These pulses
provide a useful reference to be compared with the recoil-
free gate. In this section, we compute the phase space
dynamics associated with the atomic motional state dur-
ing a Mößbauer pulse. The computation makes use of the
equations of motions derived in Appendix A, which give

an approximation of the dynamics in the Lamb-Dicke
regime to the first order of η.
We parametrize the Bloch vector of the initial qubit

state with spherical coordinates {θ, ϕ}:

⟨σ̂x(0)⟩ = cos θ, (B1)

⟨σ̂y(0)⟩ = sin θ sinϕ, (B2)

⟨σ̂z(0)⟩ = sin θ cosϕ, (B3)

with the x-axis defining the zenith direction. For the
evaluation of the driving force in Eq. (A5), we compute
⟨σ̂z(t)⟩ under the application of a Mößbauer gate (φ(t) =
0):

⟨σ̂z(t)⟩ = sin θ cos(ϕ− Ωt). (B4)

Using this expression in Eq. (A4), we derive

ẍ(t) + ω2x(t) = f(t)/m, (B5)

where x(t) is the expectation value ⟨x̂⟩ and f(t) = ⟨f̂⟩ is
the expectation value of the driving force.

With the initial condition x(0) = 0 and ẋ(0) = 0, the
solution of Newton’s equation (B5) is:

x(t) = −x0η sin θ
[

ωΩ

ω2 − Ω2
[sin(Ωt− ϕ)

+ sinϕ cos(ωt)− Ω

ω
cosϕ sin(ωt)

]
, (B6)

p(t) = −p0η sin θ
ωΩ

ω2 − Ω2

[
Ω

ω
cos(Ωt− ϕ)

− sinϕ sin(ωt)− Ω

ω
cosϕ cos(ωt)

]
. (B7)

where p(t) = mẋ(t).
We specialize the solution to the case considered in the

text of a π/2 pulse defined by T = π/(2Ω). The motional
state at the end of the pulse is:

x(T )

x0
= −η sin θ 1

ξ2 − 1

[
ξ cosϕ

+ξ sinϕ cos(
πξ

2
)− cosϕ sin(

πξ

2
)

]
(B8)

p(T )

p0
= −η sin θ 1

ξ2 − 1

[
sinϕ

−ξ sinϕ sin(πξ
2
)− ξ2 cosϕ cos(

πξ

2
)

]
, (B9)

where ξ = ω/Ω.
Using these solutions of the motion equation, we com-

pute the amplitude of the coherent state average over
the four qubit states considered in the quantum process
tomography:

⟨|α(T )|2⟩ =
⟨x(T )⟩2

(2x0)2
+

⟨p(T )⟩2

(2p0)2
(B10)

=
3

16

ξ2 − 2ξ sin
(

πξ
2

)
+ 1

(ξ2 − 1)
2 η2. (B11)
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Neglecting in this expression the small oscillating term,
the order of magnitude of the transferred momentum can
be approximated as 2p0

√
⟨|α(T )|2⟩ = ℏk ξ/

√
6, which is

given in the text.

APPENDIX C: SYMMETRIES OF PHASE SPACE
DYNAMICS

We use the semiclassical equations of motion in
Eqs. (2) and (3) (see Appendices A and B for the deriva-
tion) to prove the claims (i), (ii), and (iii) in the text,
namely: the recoil-free pulse condition obtained for se-
lected qubit states and the Fock state |0⟩m extends di-
rectly to all qubit states and motional Fock and coherent
states. These claims are based on the same assumptions
used to derive the semiclassical equations of motion in
Eq. (B5), notably retaining in the equations of motions
only first-order terms in η. We also use the same nota-
tion introduced in Appendix B to denote the expectation

value of x̂ and f̂ with x(t) and f(t).
Firstly, we prove claim (i): if the recoil-free condition

is held for the initial qubit state |0⟩q, (|0⟩q + |1⟩q)/
√
2

and (|0⟩q + i |1⟩q)/
√
2, then it is held for all initial qubit

states. The proof relies on the linearity of the Newtonian
equation Eq. (B5) and of the Schrödinger equation. In
fact, by the linearity of Eq. (B5), if xi(t) is the solution
for the force fi(t), then x(t) =

∑
i cixi(t) is the solution

for the sum of the forces, f(t) =
∑

i cifi(t). Therefore, if
under the force fi(t), the system is recoil-free at the end
of the pulse (i.e., x(T ) = 0 and ẋ(T ) = 0), then under an
arbitrary linear superposition of force the system is also
recoil-free. We also notice that the force f(t) is solely
determined by the zero-order dynamics in Eq. (4), repre-
senting the Schrödinger equation for the qubit. Thus, if
the initial density matrix ρi results in the force fi(t), then
the superposition of density matrices

∑
i ciρi(t) yields

the sum of the forces, f(t) =
∑

i cifi(t). Therefore, if ρi
produces a force fi with recoil-free dynamics, then the
superposition of density matrices also produces a force
with recoil-free dynamics, according to the argument pro-
vided above. Based on this result, we conclude that if the
system is recoil-free for the complete basis set of qubit
density matrices, that is, for the four density matrices
defined by the pure states |0⟩q, |1⟩q (|0⟩q + |1⟩q)/

√
2 and

(|0⟩q+ i |1⟩q)/
√
2, then it is recoil-free for all initial qubit

states.
Moreover, we can relax the previous requirements by

imposing the recoil-free condition on only three of the
four qubit states defined above: in fact, if the pulse is
recoil free for the initial state |0⟩q, we can show that it

is as well for the initial state |1⟩q. This follows from

the symmetry of the Hamiltonian, τ̂−1Ĥτ̂ = −Ĥ, under
the time-reversal operation τ̂ = iσyK, where K is the
complex conjugation operator in the basis where σ̂z is
diagonal. In turn, the antisymmetry of Ĥ implies that
the unitary evolution operator Û is invariant under τ ,

τ̂−1Û τ̂ = Û . Based on this, if a pair of initial qubit states
are time-reversal conjugated, τ̂ |0⟩q = |1⟩q, then the two
states are also time-reversal conjugated after time evolu-
tion, τ̂ Û |0⟩q = Û |1⟩q. Hence, the forces f0(t) and f1(t)

associated with the two initial states |0⟩q and |1⟩q are

directly related, f1(t) = −f0(t), because of the definition
of the force in Eq. (A5) and τ̂−1σ̂z τ̂ = −σ̂z. Since f0(t)
is recoil-free, f1(t) is as well.

We prove claim (ii): if the recoil-free condition is full-
filled for the ground motional state |0⟩m, it is also full-
filled for arbitrary motional Fock states |n⟩m. This di-
rectly follows from the fact that all Fock states give
the same initial condition in the semi-classical picture:
x(0) = ⟨n| x̂ |n⟩ = 0, ẋ(0) = ⟨n| p̂ |n⟩ /m = 0. There-
fore, according to the semiclassical equation of motion,
the trajectory in phase space goes back to the origin for
all initial Fock states because they share the same initial
conditions.

Finally, we prove claim (iii): if a pulse satisfies the
recoil-free conditions for the ground motional state |0⟩m,
its effect on a coherent motional state |α⟩m is equiva-
lent to a free propagation for a pulse duration T . The
phase space trajectory for an atom prepared in |0⟩m rep-
resents a particular recoil-free solution of the inhomoge-
neous Eq. (B5), satisfying xground(0) = xground(T ) = 0,
ẋground(0) = ẋground(T ) = 0. The phase space trajec-
tory for an atom prepared in |α⟩m is also determined
by Eq. (B5), with the same driving force f(t) but with
different initial conditions xcoh(0) = 2x0Re(α), ẋcoh(0) =
2p0Im(α)/m. The solution of the motion equations of the
coherent state can be expressed as the sum of the particu-
lar solution xground and a solution xfree(t) of the homoge-
neous equation defined by the non-driven (i.e., f(t) = 0)
harmonic oscillator: xcoh(t) = xground(t)+xfree(t). Thus,
at the end of the pulse, the motional state of the atom
is xcoh(T ) = xground(T ) + xfree(T ) = xfree(T ), since
the ground state dynamics is assumed to be recoil free,
xground(T ) = 0. This represents the same point in phase
space that is reached by the coherent state after evolving
for a time T in the harmonic trap, free of any drive.

The arguments provided above for (ii) and (iii) prove
that for a recoil-free pulse, the final motional state in
phase space (i.e, the centroid of the motional state dis-
tribution) is not affected by the pulse. This leaves open
the possibility that the motional state distribution is dis-
torted by the pulse, while its centroid follows the pre-
diction by the semiclassical equation Eq. (B5). However,
the terms that distort the distribution are of the order of
η2 and higher. These terms are true quantum mechanical
effects, which are not captured by the trajectory in phase
space and relate to higher-order recoil effects and qubit-
motion entanglement, both discussed in Appendices E
and F.
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APPENDIX D: NUMERICAL OPTIMIZATION
FOR A RECOIL-FREE PULSE

We present the method used for optimizing recoil-free
pulses in Fig. 2 and Fig. 3. The cost function is defined
as the contribution of three different terms:

J = wentJent + wuniJuni + wmotJmot, (D1)

where went, wuni and wmot are the weight of correspond-
ing cost function terms, whereas Jent is the infidelity orig-
inating from qubit-motion entanglement and Juni is the
systematic error from the target unitary, with their defi-
nition being provided in Eq. (6) and Eq. (7). The third
contribution in Eq. (D1) is Jmot, representing the change
of a†a in absolute value, averaged over the four initial
qubit states used in the process tomography:

Jmot =
1

4

4∑
k=1

∞∑
n=0

pn
∣∣Tr[(Û ρ̂knÛ† − ρ̂kn)â

†â]
∣∣, (D2)

where ρkn = |ψk
n⟩ ⟨ψk

n| defines the density matrix of the
initial state |ψk

n⟩ = |ψk⟩q ⊗ |n⟩m in the space Q ⊗ M.

Here, |ψk⟩q represents one of the four qubit states, |0⟩,
|1⟩, (|0⟩+ |1⟩)/

√
2, (|0⟩+ i|1⟩)/

√
2, whereas |n⟩m denotes

the n-th Fock state. The coefficients pn = p0(1 − p0)
n

represent the occupation probability of the nth motional
Fock state under the Boltzmann distribution. We use the
weights went = 100, wuni = 1 and wmot = 100 for Fig. 2,
and went = 100, wuni = 1 and wmot = 10 for Fig. 3.
The phase-modulation pulse is constructed as the

product of a Fourier series and a regularization mask:
φ(t) = u(t)µ(t), where

u(t) =

Nc∑
n=1

an cos
(
nπ t

T

)
+ bn sin

(
nπ t

T

)
, (D3)

while Nc is the cut-off number of Fourier coefficients,
which is chosen between 40 and 60. The regulation mask
avoids abrupt discontinuities in φ(t) and is defined by:

µ(t) =


1− cos

(
10πt
T

)
2

if t < T/10,

1 if T/10 ≤ t ≤ 9T/10,

1 + cos
(
10πt
T

)
2

if t > 9T/10.

(D4)

All the Fourier coefficients an, bn are numerically op-
timized to minimize the cost function in Eq. (D1) and,
thus, to obtain the recoil-free pulse.

APPENDIX E: PERTURBATIVE EXPANSION
OF UNITARY UNDER RECOIL

In this section, we give a general perturbation expan-
sion up to the second order in η of the unitary Û gener-
ated by the Hamiltonian in Eq. (1). This perturbation

expansion provides the basis for the analysis provided
in Fig. 3. The expansion of the Hamiltonian up to the
second order in η is

Ĥ(t) = Ĥ0(t) + ηĤ1(t) + η2Ĥ2(t) +O(η3), (E1)

where

Ĥ0(t) =
ℏΩ
2

(1− η2

2
)ĥ0(t) + ℏωâ†â, (E2)

Ĥ1(t) =
ℏΩ
2

(â† + â)ĥ1(t), (E3)

Ĥ2(t) = −1

2

ℏΩ
2

(â†2 + â2)ĥ0(t)−
ℏΩ
2
â†âĥ0(t),(E4)

and

ĥ0(t) = σ̂x cosφ(t) + σ̂y sinφ(t),

ĥ1(t) = σ̂y cosφ(t)− σ̂x sinφ(t).
(E5)

To understand the effect of recoil, we need to calculate
the series expansion of Û generated by this Hamiltonian.
For simplicity, we firstly discuss the first-order perturba-
tion of the Hamiltonian in Eq. (E1), rewriting it in the

form Ĥ(t) = Ĥ0(t)+ηĤ
′(t) with Ĥ ′(t) = Ĥ1(t)+ηĤ2(t).

The expansion of the unitary to the first order in η is:

Û(T ) = T

[
exp

(
−i
∫ T

0

Ĥ(t)dt

)]
= Û0(T )[Î + ηV̂ ′(T )] +O(η2). (E6)

where we factorized the zeroth-order unitary evolution
Û0(T ) and its first-order correction, described by V̂ ′(T ).

From the Schrödinger equation, i∂tÛ(t) = Ĥ(t)Û(t), we

get the propagation of each order of Û(T ).

The zeroth order term Û0(t) satisfies:

i∂tÛ0(t) = Ĥ0(t)Û0(t), (E7)

whose solution is:

Û0(T ) = Ûq(T )⊗ exp(−iωT â†â), (E8)

Ûq(T ) = T

[
exp

(
−iΩ

2
(1− η2

2
)

∫ T

0

ĥ0(t)dt

)]
, (E9)

is the propagation of an ideal qubit under the pulse with
dressed Rabi frequency Ω̃ = Ω(1 − η2/2) [16]. From the

expression of Û0(T ), we recognize that at the zeroth or-
der in η, the qubit and motion are decoupled and both
of them propagate as if there were no coupling between
them. For the convenience in the later computation of
the higher-order dynamics, we introduce the operators:

ĥI0(t) = Û†
q (t)ĥ0(t)Ûq(t),

ĥI1(t) = Û†
q (t)ĥ1(t)Ûq(t),

(E10)
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which represent ĥ0(t) and ĥ1(t) in the interaction picture

defined by Ûq(t).

The propagation of V̂ ′(t) is defined by:

i∂tV̂
′(t) = Û†

0 (t)Ĥ
′(t)Û0(t). (E11)

By integrating Eq. (E11) and using the definitions in
Eqs. (E3) and (E4), we obtain a solution in the form:

V̂ ′(T ) = [â†V̂ (1)
rec (T )−H.c.]

+ η[â†2V̂ (2)
rec (T )−H.c.]− iηâ†âV̂

(2)
ent (T ), (E12)

where the operators V̂
(1)
rec , V̂

(2)
rec , and V̂

(2)
ent (T ) are defined

below. We note that both operators V̂
(1)
rec and V̂

(2)
rec are

responsible for changes of motional states, and we refer

to them as recoil terms, whereas the operator V̂
(2)
ent (T )

maintains the same motional state and is responsible for
pure entanglement of the qubit with the motion.

The expression of the first order recoil operator is:

V̂ (1)
rec (T ) = −iΩ

2

∫ T

0

dt eiωtĥI1(t), (E13)

which can be understood as a Fourier transform of ĥ1 in
a rotation frame at frequency ω. The effect of the second-

order recoil term V̂
(2)
rec is described by the operator:

V̂ (2)
rec (T ) = −iΩ

4

∫ T

0

dt e2iωtĥI0(t), (E14)

which can be understood as the Fourier transform of
the operator ĥ0 in the rotating frame at frequency 2ω.
The effect of the qubit-motion entanglement due to re-
coil comes from the operator:

V̂
(2)
ent (T ) =

Ω

2

∫ T

0

dt ĥI0(t), (E15)

which is the dc component of ĥ0 in the rotating frame.
These results justify the series expansion provided in the
text.

APPENDIX F: RIGOROUS TREATMENT OF
SECOND-ORDER TERMS

We note that the unitary computed in Eq. (E6) is
strictly valid only to the first order in η, whereas the ex-

pression of V̂ ′(t) introduces terms, V̂
(2)
ent (T ) and V̂

(2)
ent (T ),

which are of second order in η. In the previous section,
the justification for keeping these higher-order terms in
the expression of Û(T ) is based on physical intuition.

Below, we provide a rigorous derivation of Û(T ) to the
second order in η.
We extend the procedure used to derive Eq. (E6) to

the second order in η, and obtain the expansion:

Û(T ) = T

[
exp

(
−i
∫ T

0

Ĥ(t)dt

)]
= Û0(T )[Î + ηV̂1(T ) + η2V̂2(T )] +O(η3).

(F1)

The zeroth order dynamic Û0(t) is same as provided in
the previous section in Eq. (E8). The first-order term

V̂1(t) obeys:

i∂tV̂1(t) = Û†
0 (t)Ĥ1(t)Û0(t) =

Ω

2

[
eiωtâ†ĥI1(t) + H.c.

]
,

(F2)
with the solution being:

V̂1(T ) = â†V̂ (1)
rec (T )−H.c., (F3)

which describe the first-order recoil effect appearing in
Eq. (E12). As expected, both zeroth- and first-order

terms, Û0(T ) and V̂1(T ), obtained here coincide with
those derived from the calculation in the previous sec-
tion, which is rigorous to the first order in η.
The second-order term V̂2(t) in the unitary follows the

equation:

i∂tV̂2(t) = Û†
0 (t)Ĥ2(t)Û0(t) + Û†

0 (t)Ĥ1(t)Û0(t)V̂1(t)
(F4)

Combining this expression with Eq. (F2), we obtain:

i∂tV̂2(t) = Û†
0 (t)Ĥ2(t)Û0(t)

+
i

2
∂t[V̂1(t)

2] +
i

2
[∂tV̂1(t), V̂1(t)], (F5)

with the solution being:

V̂2(T ) = −i
∫ T

0

dtÛ†
0 (t)Ĥ2(t)Û0(t)

+
1

2
V̂1(T )

2 +

∫ T

0

dt[∂tV̂1(t), V̂1(t)] (F6)

The first line in Eq. (F6) includes the second-order re-
coil term and the atom-motion entanglement term in
Eq. (E12). The second line in Eq. (F6) contains terms to
the second order in η that are not contained in the pre-
vious section. However, we show below that these terms
do not change the physical picture presented in the text.
The first term, V̂1(T )

2/2, simply vanishes when the

recoil-free condition, V̂1(T ) = 0, is fulfilled to the first
order in η. The second term in Eq. (F6) is:∫ T

0

dt [∂tV̂1(t), V̂1(t)] =

− iδV̂ (2) − iâ†âV̂
(2)′

ent + (â†2V̂ (2)′

rec (T )−H.c.), (F7)

where we recognize three contributions associated with
the following operators: δV̂ is a motion-independent cor-

rection to the unitary, V̂
(2)′

ent is a purely motion-qubit en-

tanglement term, and V̂
(2)′

rec (T ) is a recoil term.
The motion-independent correction contribution is:

δV̂ (2)′(T ) = i
Ω2

4

∫ T

0

dt2

∫ t2

0

dt1

× (e−iω(t2−t1)ĥI1(t2)ĥ
I
1(t1)−H.c.). (F8)
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The purely motion-qubit entanglement term is:

V̂
(2)′

ent (T ) = −iΩ
2

2

∫ T

0

dt2

∫ t2

0

dt1

cos(ω(t1 − t2))[ĥ
I
1(t1), ĥ

I
1(t2)]. (F9)

The recoil term is:

V̂ (2)′

rec (T ) =
Ω2

4

∫ T

0

dt2

∫ t2

0

dt1

e−iω(t1+t2)[ĥI1(t1), ĥ
I
0(t2)]. (F10)

Importantly, all three terms in Eqs. (F8), (F9) and
(F10) are the Fourier transforms at frequency ω of the

two-point correlators obtained from ĥI0(t) and ĥ
I
1(t). Fol-

lowing the same argument presented in the text, all these
terms can be suppressed for gate durations T above the
quantum speed limit TQSL = 2π/ω.

APPENDIX G: THERMAL QUANTUM
OPERATION

When the recoil-free condition is held: V̂
(1)
rec (T ) =

V̂
(2)
rec (T ) = 0, the propagator Û(T ) to the order of η2

can be simplified as:

Û(T ) ≈ Û0(T )[1− iη2â†âV̂
(2)
ent (T )] +O(η3)

≈ Û0(T ) Ûent +O(η3).
(G1)

The term Ûent is a motion-dependent unitary rotation on
the qubit and generate entanglement between qubit and
motion:

Ûent = exp[−iη2â†âV̂ (2)
ent (T )] (G2)

To understand the entanglement generated by Ûent,
without loss of generality, we consider a motion-
dependent unitary acting on the qubit of the following
form:

Ûth = exp

(
i
θ

2
â†âσ̂n

)
=
∑
n=0

V̂ n ⊗ |n⟩⟨n|, (G3)

where V̂ is a unitary on the qubit and is parametrized
as V̂ = exp (iθσ̂n/2), with the Hermitian operator σn =
nxσx + nyσy + nzσz and |n| = n2x + n2y + n2z = 1. The

operator V̂ produces a rotation of the qubit on the Bloch
sphere by an angle θ around the axis n. When applying
this unitary on a trapped atom with thermal motional
state: ρ̂q ⊗ ρ̂m, where ρ̂m =

∑
n p0δp

n|n⟩⟨n| represents
the thermal motional state with ground state probability
p0 = 1−δp. We note that δp is the probability to occupy
a higher motional state and is typically a small number.
From Ûth, we can derive the quantum process by tracing
out the motional states:

Eth(ρ̂q) = Trm(Ûth ρ̂q ⊗ ρ̂m Û†
th)

=
∑
n=0

p0δp
nV̂ nρqV̂

†n. (G4)

Note that V̂ n = cos(nθ/2)σ̂0 + i sin(nθ/2)σ̂n includes
only two orthogonal terms: the qubit identity operator
σ̂0 and σ̂n. Therefore, quantum process in Eq. (G4) can
be represented as

Eth(ρ̂q) =
2∑

i,j=1

χijÊiρ̂qÊ
†
j , (G5)

where we recognize two Kraus operators Ê0 = σ̂0 and
Ê1 = σ̂n, with χ being a 2× 2 matrix defined by:

χ =
p0
2

∑
n

(
1 + cos(nθ) −i sin(nθ)
i sin(nθ) 1− cos(nθ)

)
δpn

=
1

2
+
p0
2

(
Re( 1

1−δpeiθ
) −iIm( 1

1−δpeiθ
)

iIm( 1
1−δpeiθ

) −Re( 1
1−δpeiθ

)

)
. (G6)

The diagonalization of the matrix χ gives the two eigen-
values

χ± =
1

2

(
1± p0

∣∣∣∣ 1

1− δp eiθ

∣∣∣∣) (G7)

with (χ+ + χ−) = 1 and (1 − χ+) ≪ 1 for δp ≪ 1.
Following the definition of Jent in Eq. (6), we obtain:

Jent =
1

3

(
1− p0

∣∣∣∣ 1

1− δp eiθ

∣∣∣∣) (G8)

≈ 1

6

δp

p0
θ2 +O(δp2θ3) (G9)

≈ 2

3
sin2

(
θ

2

)
δp+O

(
δp2
)

(G10)

≈ 1

6
(δp)θ2 +O

(
δp2
)
+O

(
δp2θ3

)
. (G11)

where the approximations in Eqs. (G9) and (G10) find
applications in later expressions.
To obtain an explicit expression for Jent, we evalu-

ate θ = −2η2|B⃗(V̂
(2)
ent (T ))|, where B⃗ defines the map-

ping from a Hermitian operator Â to a vector: B⃗(Â) =

{Tr(Âσ̂x),Tr(Âσ̂y),Tr(Âσ̂z)}/2. Therefore, we have ob-
tained the important result that the entanglement infi-

delity of a recoil-free pulse depends solely on p0 and V̂
(2)
ent

through the expression:

J rec. free
ent =

1

3

(
1−p0

∣∣∣∣∣ 1

1− δpe2iη
2|B⃗(V̂

(2)
ent (T ))|

∣∣∣∣∣
)

+O(δp2η6)

=
2

3

δp

p0

∣∣∣B⃗(V̂
(2)
ent (T ))

∣∣∣2η4 +O(δp2η6)

(G12)
where the second equation is obtained from a series ex-
pansion neglecting terms of order of δp2η6.
To develop an intuition about Jent in Eq. (G12), we

consider the simple example of a constant-phase pulse
(Mößbauer pulse) for a total duration T . In this case,
the zeroth-order ideal qubit dynamics is described by a
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rotation on the Bloch sphere, Ûq(t) = R̂x(Ωt), and the
corresponding entanglement operator is:

V̂
(2)
ent (t) =

Ω

2

∫ t

0

dτ eiΩσ̂xτ/2σxe
−iΩσ̂xτ/2 = σ̂x

Ωt

2
, (G13)

with the vector length |B⃗(V̂
(2)
ent (T ))| = ΩT/2. There-

fore, the contribution to the entanglement infidelity from

V̂
(2)
ent (t) is

Jent =
1

6

δp

p0
η4(ΩT )2 + Jent,rec. (G14)

where Jent,rec stands for the contribution to Jent from

V̂
(1)
rec and V̂

(2)
rec . In fact, it should be noted that a

Mößbauer pulse is in general not recoil free, meaning that

that both motional heating operators V̂
(1)
rec and V̂

(2)
rec are

nonzero and, thus, contribute to Jent. For the π/2-pulse
scenario considered in the text, we obtain:

Jent =
π2

24

δp

p0
η4. (G15)

Importantly, this expression is an approximation of the
plateau value in Fig. 3(c).

APPENDIX H: OPTIMIZATION OF MIKADO
PULSES

We discuss the optimization of the Mikado pulses,
which are robust against deviations of the Hamiltonian
parameters. Such pulses have been studied for nu-
clear magnetic resonance (NMR) applications (composite
pulses of type B3 [45]) to transform one particular ini-
tial state to a statistical mixture of Bloch vectors whose
azimuthal angle is not fixed, but rather depends on the
local imperfection. Note that in contrast to NMR ap-
plications, controlling the azimuthal angle is crucial to
realize quantum gates. Such a control of the azimuthal
angle is possible with the sequence introduced in Eq. (12).

The error in the Mikado pulse is defined by the distance
between the Mikado unitary RMik, which is affected by
deviations in the Rabi frequency and detuning, and a
family of unitaries:

R̂(α, π/2, β) = R̂z(β)R̂x(
π

2
)R̂z(α), (H1)

which generalize the simple π/2 pulse by including arbi-
trary rotations around z-axis. Each unitary in this fam-
ily transforms the north pole of the Bloch sphere to a
point on the equatorial plane. We quantify the above-
mentioned error with the infidelity measured as:

JMik
uni = min

α,β

[
2

3
(1− |Tr(R†

MikR̂(α, π/2, β))/2|
2)

]
, (H2)

which is obtained by generalizing the definition of Juni in
Eq. (7) to the Mikado family in Eq. (H1).

The infidelity JMik
uni can be further simplified if

we parametrize the Mikado unitary as R̂Mik =
R̂z(β

′)R̂x(π/2 + δθ)R̂z(α
′), which relies on Euler’s de-

composition. In this parametrization, the error in the
Mikado pulse arises from δθ. Thus, R̂(α′, π/2, β′) is the

nearest unitary in the Mikado family to R̂Mik, resulting
in:

JMik
uni =

2

3
sin2

(
δθ

2

)
=
δθ2

6
+O(δθ4). (H3)

In the optimization of Mikado pulses, we minimize the
cost function JMik, which is obtained by replacing in
Eq. (D1) the contribution from Juni with its generalized
form JMik

uni in Eq. (H2).
Static deviations of the Hamiltonian parameters arise

from spatial inhomogeneities of the laser intensity. These
inhomogeneities contribute to site-dependent deviations
of both the Rabi frequency Ω and detuning δ (so-called
probe shift). To make Mikado pulses robust against such
laser intensity inhomogeneities, we minimize

⟨JMik⟩ = 1

N

N∑
i

JMik(δIi), (H4)

where JMik(δI) represents the Mikado infidelity for a
given intensity deviation δI from the nominal intensity.
In the numerical optimizations presented in the text, we
choose N=11 relative intensity deviations, uniformly dis-
tributed in [−0.025, 0.025].

APPENDIX I: STRONTIUM-88 SETUP

The examples provided in the text are based on 88Sr
optical qubits. In general, the results apply to any other
trapped atom or ion with an ultranarrow transition. The
example of 88Sr is special because intensity deviations
induce a stronger probe shift compared to other atoms
and, thus, testing the recoil-free Mikado gates with this
atom highlights their relevance and impact.
The atom is driven at a Rabi frequency Ω = 2π ×

20 kHz, assuming that a homogeneous magnetic field of
B = 350G is applied to the atom to enable the transition
[29]. The probe shift is δ∆ = 11.7Ω (δI/I). We note that
even small relative intensity deviations in the range of few
percent induce significant probe shifts on the scale of Ω.
The Mikado pulse has a duration of T = 0.825π/Ω, which
is 65% longer than the zeroth-order quantum speed limit
T 0
QSL for a π/2 pulse. The cost function used in the nu-

merical optimizations has weights went = 100, wmot = 10,
wuni = 1, which is designed to strongly penalize entan-
glement and motional heating to achieve the recoil free
condition. The unitary error is suppressed by optimiza-
tion of the σz-rotation angles discussed in the text. Av-
eraging over the optimization interval [−0.025, 0.025] of
relative intensity deviations, we obtain the average cost
functions ⟨JMik

uni ⟩ = 5.61 × 10−5, ⟨JMik
ent ⟩ = 5.02 × 10−5,



14

⟨JMik
mot ⟩ = 2.47 × 10−7 for the optimal Mikado pulse. It

should be noted that while both ⟨JMik
uni ⟩ and ⟨JMik

ent ⟩ are
of the same order of magnitude, JMik

ent is nearly indepen-
dent of the intensity deviation δI, whereas JMik

uni displays
a strong variation, as shown in Fig. 4(c). To the purpose
of quantum computing, it is key that all qubits (i.e., all
sites) perform with comparably low value of the infidelity.

APPENDIX J: THE COMPOSITE PULSE
SCHEME

We discuss the composite pulse scheme, which uses
site-dependent σz rotations in combination with the
Mikado pulses to achieve consistently low unitary infi-
delities Juni for all qubits.

We consider an arbitrary target unitary Ûg for the
qubit and parametrize it using Euler’s decomposition as
follows:

Ûg = R̂z(θ
g
3)R̂y(θ

g
2)R̂z(θ

g
1), (J1)

where {θg1 , θ
g
2 , θ

g
3} are the gate angles in this parametriza-

tion. Noting R̂y(θ) = R̂x(−π/2)R̂z(θ)R̂x(π/2), we
rewrite the parametrized target unitary as:

Ûg = R̂z(θ
g
3)R̂x

(
−π
2

)
R̂z(θ

g
2)R̂x

(π
2

)
R̂z(θ

g
1). (J2)

Importantly, the R̂x rotations in this expression can be
substituted by unitaries in the Mikado family:

R̂x(±
π

2
) = R̂z(−β)R̂

(
α,±π

2
, β
)
R̂z(−α). (J3)

Hence, we obtain the composite pulse scheme Ûg de-
scribed in in the text:

Ûg = R̂z(θ3)R̂
(
α,−π

2
, β
)
R̂z(θ2)R̂

(
α,
π

2
, β
)
R̂z(θ1),

(J4)
where

θ1 = θg1 − α, θ2 = θg2 − α− β, θ3 = θg3 − β. (J5)

As discussed in Appendix H, the actual Mikado pulse
R̂Mik displays deviations from the unitaries R̂(α, π/2, β)
in the Mikado family because of deviations in the Hamil-
tonian parameters; these deviations are responsible for
the unitary infidelity JMik

uni . The static error in the actual
Mikado pulse can be accounted for by the parametriza-
tion:

R̂Mik[φ(t)] = R̂(α+ δα,
π

2
+ δθ, β + δβ) (J6)

R̂Mik[φ(t) + π] = R̂(α+ δα,−π
2
− δθ, β + δβ).(J7)

where we introduce the deviation angles δα, δβ and δθ.
We note that δθ is the same error angle appearing in
JMik
uni in Eq. (H3). To minimize the unitary infidelity

introduced by δα, δβ and δθ, the σ̂z-rotation angles
{θ1, θ2, θ3} are replaced by {θ̃1, θ̃2, θ̃3} defined as follows:

θ̃1 = (θg1 − α)− δα+ s arctan

 sin

(
θg
2

2

)
sin(δθ)√

cos2
(

θg
2

2

)
−sin2(δθ)

+ π
2 (s− 1)

θ̃2 = 2s arctan

 sin

(
θg
2

2

)
√

cos2
(

θg
2

2

)
−sin2(δθ)

− α− δα− β − δβ

θ̃3 = (θg3 − β)− δβ + s arctan

 sin

(
θg
2

2

)
sin(δθ)√

cos2
(

θg
2

2

)
−sin2(δθ)

− π
2 (s− 1)



if JMik
uni <

2

3
cos2

(
θg
2

2

)
, (J8)

θ̃1 = θg1 − α− δα+ π
2

θ̃2 = π − α− δα− β − δβ

θ̃3 = θg3 − β − δβ + π
2

 if JMik
uni ≥ 2

3
cos2

(
θg
2

2

)
. (J9)

which can be derived using standard trigonometry. Here,
s = ±1 can be freely chosen.

For sufficiently small unitary infidelities JMik
uni of the

Mikado pulse, the condition in Eq. (J8) applies. When
this is the case, the unitary infidelity Juni of the compos-

ite pulse gate completely vanishes. In other words, the
error induced by actual Mikado pulse can be fully cor-
rected with σ̂z-rotations. On the other hand, for larger
infidelities JMik

uni , Eq. (J9) applies. In this case, the error
is only partially corrected, and Juni can be significantly
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FIG. 6. Color map showing the cost functions contributions
Jmot (top), Jent (middle), Juni (bottom) as a function of the
rotation angle θg (x-axis) and relative intensity deviation (y-
axis) for Mikado (left) and Mößbauer (right) composite pulses.

reduced below JMik
uni ; however, it will not entirely vanish.

We can draw important insight from the previous re-
sults. The condition for vanishing unitary gate fidelity
Juni can no longer be satisfied when cos2(θ22/2) goes
to zero. This is the case for θg = π. Thus, we con-
clude that the unitary infidelity Juni of π pulses depends
more prominently on JMik

uni . One straightforward way to
achieve vanishing values of the Juni even in the case of π
pulses consists in applying twice a composite pulse gate
targeting a π/2 gate instead π gate; the price to pay is a
doubling of the execution time.

APPENDIX K: MIKADO VS. MÖßBAUER
GATES FOR COMPOSITE PULSES

We analyze the infidelity of the composite pulse scheme
for an arbitrary gate Ûg as defined in Eq. (J2). For the

global gates, R̂x(π/2) and R̂x(−π/2), which occur in the
composite pulse scheme, we consider either an implemen-
tation with Mikado gates, R̂Mik[φ(t)] and R̂Mik[φ(t)+π],

or with Mößbauer gates, defined by a constant phase
φ(t) = 0 and φ(t) = π. To make a fair comparison, we
improve the fidelity of the Mößbauer gates by rescaling
the duration T to account for the dressed Rabi frequency
Ω̃, which is slightly smaller than the bare Rabi frequency
Ω.
Without loss of generality, we restrict the analysis to

the family of target gates Ûg = R̂y(θg), corresponding to
a rotation by an arbitrary angle θg around the fixed y-
axis. In fact, according to Eq. (J1), any arbitrary SU(2)
gate can be expressed as the product of three rotations
around the z-, y-, and z- axes. Such an arbitrary gate can
be realized by adjusting the σ̂z-rotation angles θ̃1 and θ̃3
in the composite pulse scheme implementing R̂y(θg).

For each rotation R̂y(θ), we vary the relative intensity
deviation δI/I ∈ [−0.025, 0.025], and optimize the three
σz-rotation angles for both the Mikado and Mößbauer
pulse schemes. The results of the analysis are pre-
sented in Fig. 6, showing the three cost function terms
for both composite pulse schemes in the (θ, δI/I) plane.
The comparison shows that the composite pulses rely-
ing on Mikado gates outperform the corresponding pulses
derived from Mößbauer gates. More specifically, the
Mikado gates provide an average improvement by nearly
three orders of magnitude in Jmot, i.e., in suppressing
the photon recoil. The recoil-free pulses not only sup-
press motional excitations, but also provide a important
improvement in Jent, which on average is around a fac-
tor 15. This improvement becomes even bigger for small
θg. The infidelity associated with deviations from the
target unitary, Juni, also improves for the Mikado pulses,
being on average lower by a significant factor 6. This
improvement is attributed to the Mikado pulses, which
are computed using optimal control and optimized to be
robust against deviations of the Hamiltonian parameters.

APPENDIX L: SATURATION OF
ENTANGLEMENT INFIDELITY IN
RANDOMIZED BENCHMARKING

We derive the asymptotic limit of the entanglement
infidelity Jent in the randomized benchmarking scheme
presented in the text.
Each random circuit is defined by a sequence of random

unitaries acting on Q,

Û c(N) = Û (N)
g Û (N−1)

g ...Û (1)
g , (L1)

where each Û
(n)
g is sampled from SU(2) according to

the Haar measure. In the simulations, the individual

gates Û
(n)
g are implemented based on the composite pulse

scheme discussed in the text and illustrated in Fig. 4(b).
Like in Appendix K, for the global gates appearing,
R̂x(π/2) and R̂x(−π/2), which occur in the composite
pulse scheme, we consider either an implementation with
Mikado gates, R̂Mik[φ(t)] and R̂Mik[φ(t) + π], or with
Mößbauer gates, defined by a constant phase φ(t) = 0



16

and φ(t) = π. Note that the implementation of Û
(n)
Mik

and of its counterpart Û
(n)
Möß are simulated in the larger

space Q⊗M space, which includes the motional states,
throughout the entire circuit. Correspondingly, we de-
note the circuits realized by these pulses as:

Û c
Mik(N) = Û

(N)
Mik Û

(N−1)
Mik . . . Û

(1)
Mik, (L2)

Û c
Möß(N) = Û

(N)
MößÛ

(N−1)
Möß . . . Û

(1)
Möß, (L3)

also acting on Q ⊗ M. Note that the simulation of
the quantum circuit keeps track of the motional states
throughout the whole quantum circuit and is not reduced
to Q in the intermediate steps. Hence, the quantum pro-
cess tomography is carried out on the entire simulated
quantum circuit, using the same procedure developed in
the text for the individual gates ÛMik. This approach
allows us to quantify the evolution of the three figures of
merit, Jent, Juni, and Jmot, as a function of the number
of gates sequentially applied in the circuit. The results
are presented in Fig. 5 in the text.

To obtain a quantitative expression for the asymptotic
limit of Jent in the randomized benchmarking, we use the
results derived in Appendix G. We make the assumption
that we can focus on the first two motional states |0⟩
and |1⟩ and neglect the higher ones. This assumption is
justified by the fact that the initial motional ground state
probability is high, 1 − p0 ≪ 1, and that the recoil-free
Mikado pulses preserve the probability of occupying the
motional ground state. With this assumption, we can
simplify Û(T ) in Eq. (G1), which describes the evolution
of a recoil-free Mikado pulse in Q⊗M, to the following
expression:

ÛMik = R̂Mik ⊗ |0⟩m⟨0|+ R̂MikR̂ent ⊗ |1⟩m⟨1| , (L4)

where R̂Mik represents an ideal pulse (i.e., an ideal
Mikado pulse transforming the north pole to the equa-
tor of the Bloch sphere) acting on Q and R̂ent =

exp [−iη2V̂ (2)
ent (T )] is derived from Eq. (G2) after express-

ing the entangling unitary as Ûent = (R̂ent)
â†â. The

process described in Eq. (L4) can be interpreted as fol-
lows: The Mikado pulse is perfectly implemented when
the atom is in the motional state |0⟩m, while it suffers

from a small unitary error R̂ent when the atom is in the
state |1⟩m.

The unitary in Eq. (L4) shows that there are no mo-
tion changing terms in the dynamics of recoil-free Mikado
pulses. If we assume, as in the rest of this paper, that
the σ̂z-rotations are ideally implemented for all relevant
motional states, the motion-preserving dynamics of ÛMik

allows us to easily calculate how the atomic state evolves
for an increasing number of gates N : When the atom is
in |0⟩m state, the target circuit U c(N) is perfectly im-
plemented. On the other hand, when the atom is in
|1⟩m state, due to the accumulation after each circuit
step of an error caused by Uent conjugated with random

σ̂z-rotations, the final qubit state is expected to be fully
random with respect to the state evolved under the ideal
circuit U c(N). Numerical simulations corroborate this
assumption.
Thus, the evolution of the entire quantum circuit can

be represented as:

Û c
Mik(N) = Û c(N)

[
I ⊗ |0⟩m⟨0|+ Ûr ⊗ |1⟩m⟨1|

]
, (L5)

where Ûr is a random unitary sampled from the Haar
measure. By tracing out M, the effect on Q of the uni-
tary above is the channel E(ρq) = Û c(N)Er(ρq)Û c(N)†,
where

Er(ρq) = p0ρq + (1− p0)ÛrρqÛ
†
r . (L6)

To derive the entanglement infidelity, we follow the pro-
cedure developed to compute Jent in Eq. (G10) from

Ûent in Eq. (G2). For this purpose, it is convenient to

parametrize the random unitary as Ûr = exp(−iθσ̂n/2),
with the rotation axis n and rotation angle θ being ran-
domly chosen. With this parametrization, we thus find
that the entanglement infidelity in the asymptotic limit
of a large number of gates be expressed as

Jent(θ) =
2

3
(1− p0) sin

2

(
θ

2

)
. (L7)

This expression can be further simplified by considering
the distribution of θ, which according to the Haar mea-
sure on SU(2) behaves as p(θ) = sin2(θ/2)/π. By aver-
aging Jent with this probability distribution, we obtain
the following expression,

⟨Jent(θ)⟩ =
1

2π

∫ 2π

0

Jent(θ)p(θ) dθ =
1

2
(1− p0), (L8)

which is the saturation level of Jent shown in Fig. 5.
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