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Abstract
Quantum systems can not be efficiently simulated classically due to the pres-
ence of entanglement and nonstabilizerness, also known as quantum magic.
Here we study the generation of magic under evolution by a quantum circuit. To
be able to provide exact solutions, we focus on the dual-unitary XXZmodel and
a measure of magic called stabilizer Rényi entropy (SRE). Moreover, we focus
also on long-range SRE, which cannot be removed by short-depth quantum
circuits. To obtain exact solutions we use a ZX-calculus representation and
graphical rules for the evaluation of the required expressions. We obtain exact
results for SRE after short-time evolution in the thermodynamic limit and for
long-range SRE for all times and all Rényi parameters for a particular partition
of the state. Since the numerical evaluation of these quantities is exponen-
tially costly in the Rényi parameter, we verify this numerically for low Rényi
parameters and accessible system sizes and provide numerical results for the
long-range SRE in other partitions.
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1. Introduction

Describing relevant many-body quantum states is a crucial task that is being intensively
investigated. Remarkable headway has been achieved through the application of tensor
networks, which can efficiently describe low entangled states, such as ground states [1].
However, dynamics typically generate entanglement, making this approach inefficient as time
progresses.

Interestingly, the realm of efficiently describable quantum states extends beyond those with
low entanglement. Another compelling example is states that are close to being stabilizer
states, i.e. states prepared with Clifford operations from the trivial state |00 . . .⟩. These states
might have large entanglement. The hardness of this particular expressivity is called nonstabil-
izerness, also calledmagic [2–6]. Note that both entanglement and nonstabilizerness are neces-
sary resources for universal quantum computation and for obtaining a quantum computational
advantage [7, 8]. Typically, we expect that dynamics generate not only entanglement but also
nonstabilizerness. If and how this happens is the motivating question for the present work.

Significant effort has been put into developing tools to quantify nonstabilizerness by magic
monotones [3, 5, 6, 9]. Most of these measures are, however, difficult to compute, especially
for many-body systems. One of the most promising ways to quantify nonstabilizness turned
out to be the stabilizer Rényi entropy (SRE) [10], with its own resource theory [11, 12]. It
is an entropy of the distribution of state coefficients in the Pauli basis. SRE can be relatively
cheaply computed for matrix product states (MPS) [13, 14]. Moreover, it can be measured in
experimental setups [15, 16].

Magic contrasts with entanglement, since one can generate close to maximal density of
magic by a single layer of T gates. This leads to the natural question of long-range magic,
i.e. magic that cannot be removed by short-depth quantum circuits [17–19].

The amount of nonstabilizerness has important physical consequences; in particular, low
nonstabilizerness signals low complexity of the state. This led to investigations of magic and
particularly SRE in ground states [11, 14, 20–25], especially in connection with quantum
phase transitions, where complexity is expected to increase. Another way to observe the
increase of complexity is after a quantum quench, where we start evolving some particular
initial state with low magic [14, 20, 26–30]. All of the results cited above are limited to
numerical results for small system sizes or short times. Therefore, the problem of generation
of magic asks for exact solutions, especially in the context of interacting many-body systems.
Some possible candidates, which proved fruitful in related contexts, are random unitary cir-
cuits [31], dual-unitary circuits [32, 33], and Bethe ansatz integrable models [34]. Here, we
will focus on the intersection of the last two examples, the dual-unitary XXZ model.

In order to obtain exact solutions we will use ZX-calculus, which is a formalism for writ-
ing and transforming tensor diagrams [35, 36]. The graphical transformation rules are use-
ful for simplifying complicated tensor contractions. ZX-calculus has been used, for example,
in quantum circuit optimisation [37], measurement-based quantum computation [38] and
quantum error correction [39].

In this work, we investigate the evolution of long-range nonstabilizerness after a quantum
quench for dynamics given by the dual-unitary XXZ model. Leveraging the ZX-calculus, we
streamline the intricate tensor network contractions yielding insights into the system’s behavior
post-quench. Thus we obtain SRE after one layer of time evolution, and long-range magic at
arbitrary times and Rényi indexes. These findings not only provide new physical insights into
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the generation of magic but also open up a new avenue for studying nonstabilizerness using
the ZX-calculus.

The rest of this manuscript is organized as follows. In section 2 we provide the definitions
of SRE and long-range SRE. In section 3 we introduce the dynamics and states of interest, fol-
lowed by section 4, where we introduce the ZX-calculus and its expressions for our quantities
of interest. Section 5 contains our results, with supporting details relegated to the Appendices.
Finally, we provide conclusions and outlook in section 6.

2. Stabilizer Rényi entropy

We consider a one dimensional chain of N qubits with a Hilbert space H= (C2)⊗N. Given
a pure N-qubit state |ψ⟩ ∈ C2N, its coefficients in the Pauli basis are the Pauli spectrum,
spec(|ψ⟩) = {⟨ψ|P|ψ⟩,P ∈ PN}, where PN = {σα1 ⊗ . . .⊗σαN |σαi ∈ {σ0,σx,σy,σz}} are all
possible Pauli strings of length N. The Pauli spectrum yields two probability distributions, one
over the Pauli strings P ∈ PN, ΞP referred to as the characteristic function [40], and one over
expectation values xP = ⟨ψ|P|ψ⟩ ∈ [−1,1], Π(x) called the Pauli spectrum [41] as well:

ΞP :=
1
2N

⟨ψ|P|ψ⟩2, Π(x) :=
1
4N

∑
xP∈spec(|ψ⟩)

δ (x− xP) . (1)

The Rényi entropy of the characteristic function ΞP
3 gives a measure of nonstabilizerness, or

quantum magic, called stabilizer Rényi entropy (SRE) [10]:

Mn (|ψ⟩) =
1

1− n
log(ζn (|ψ⟩)) ,where ζn (|ψ⟩) :=

1
2N
∑
P∈PN

⟨ψ|P|ψ⟩2n, (2)

and n is the Rényi parameter, which we take to be an integer n⩾ 1. Here ζn(|ψ⟩) is called
the stabilizer purity of state |ψ⟩ [42] and corresponds to the moments of the Pauli spectrum:
ζn = 2N

´
dxΠ(x)x2n [41]. In the thermodynamic limit, we will consider the SRE density [10]

mn (|ψ⟩) = lim
N→∞

1
N
Mn (|ψ⟩) . (3)

SRE has been extended to mixed states ρ for n= 2 [10] as

M̃2 (ρ) =− log

(∑
P∈PN

tr(Pρ)4∑
P∈PN

tr(Pρ)2

)
=− log

(
ζ2 (ρ)

ζ1 (ρ)

)
, ζn (ρ) :=

1
2N
∑
P∈PN

tr(Pρ)2n . (4)

The term
∑

P∈PN
tr(Pρ)2 = tr(ρ2) is the suitable normalization by the purity. When ρ is a

reduced density matrix of a subsystem, M̃2(ρ) measures the SRE in that subsystem.
Next, let us define long-range SRE between two regions A,B. It is the difference between

n= 2 SRE in the joint state ρAB and the product state ρA⊗ ρB [17]:

L(ρAB) = M̃2 (ρAB)− M̃2 (ρA)− M̃2 (ρB) . (5)

Note that L(ρAB) quantifies the amount of magic that can not be removed by short-depth
quantum circuits [17, 43].

3 Up to an offset of −N log(2).
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Let us now survey the computational complexities involved in quantifying magic. First of
all, SRE can be computed more efficiently than other measures of nonstabilizerness [10], as it
does not require costly minimization procedures. Several algorithms have been developed to
compute it exactly and approximately. When |ψ⟩ is an N-qubit MPS of bond dimension χ, its
n-Rényi SRE can be computed exactly with cost O(Nχ6n) [13]. It can also be approximated
by sampling algorithms with a cost O(Nχ3) [11, 20] or by MPSs in the Pauli basis with a cost
O(χ4) [14]. If one is satisfied with stabilizer nullity, it can be done in O(χ3) [44]. Long-range
SRE can be approximated using a sampling algorithm and Tree-Tensor Networks with a cost
O(log(N)χ4) [17].

3. Dual-Unitary XXZ model

In this work, we will be interested in the nonstabilizerness of states produced by the dynam-
ics of the many-body systems. Typically, we will consider the evolution starting from a
simple two-site product states. In particular, we will focus on the product of Bell pairs
|ϕ+⟩= 1√

2

∑1
i=0 |ii⟩:

|ψ (0)⟩= |ϕ+⟩⊗N/2. (6)

They are an example of so-called solvable states in the context of dual-unitary dynam-
ics [45]. The dynamic is given by a brick-wall quantum circuit, i.e. a periodically driven
Floquet time evolution resulting from applying layers of two-qubit unitaries. Even layers
are given by Ue = U⊗N/2

e , where Ue ∈ U(4) is a two-qubit local unitary. Odd layers are
given by Uo =ΠU⊗N/2

o Π†, where Uo ∈ U(4) and Π is an N-periodic shift by one qubit:
Π|i1. . .iN⟩= |i2. . .iNi1⟩. One Floquet time-step consists of an even and an odd layer: UeUo.
Time evolution for positive integer Floquet time t is then given by the following propagator:

U (t) = (UeUo)
t
. (7)

The dynamics, in general, prove to be intricate. To achieve an exact solution for nonstabil-
izerness we must narrow down the scope of the local gates Ue and Uo. Restricting to general
dual-unitary models was not sufficient to compute SRE. This led us to reduce the models even
more and focus on dual-unitary XXZ gates [46–49]:

Ue,o = exp(−iJe,oσz⊗σz) ·SWAP, (8)

where SWAP is the swap gate SWAP|ab⟩= |ba⟩. We show the decomposition of this gate in
terms of standard gates in figure 1.

The above-mentioned dynamic is not only dual-unitary but also Bethe ansatz integrable. It
corresponds to a particular Trotterization of the spin- 12 Heisenberg XXZ chain [50]. Since it is
integrable, it does not exhibit quantum chaos, but it does exhibit operator scrambling [47]. Its
time evolution has only two parameters: the Ising interaction strengths Je,Jo for the odd and
even layers. Our states of interest are:

|ψ (t)⟩= |ψ (Jo,Je, t)⟩ := (Ue (Je)Uo (Jo))
t |ϕ+⟩⊗N/2. (9)
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Figure 1. Dual-unitary XXZ gate in equation (8) corresponding to the even and odd lay-
ers of the Floquet-dual-unitary circuit, up to a global phase. Herewewrote e−iJe,oσz⊗σz =

e−iJe,oCNOT(1⊗Rz(2Je,o))CNOT, where Rz(2Je,o) =

(
e−iJe,o 0

0 eiJe,o

)
.

Figure 2. Partition of N= 12 qubits into regions A,B of 4 qubits each, separated by two
qubits.

4. Methods: ZX-calculus expressions for SRE

Let us now express the (long-range) SRE of the states from equation (9) in a way that allows
us to obtain exact expressions. We will follow the method for computing SRE in MPS states
from [13] and combine it with the tools of ZX-calculus.

The N-qubit state |ψ(t)⟩ is partitioned into three regions: A, B, and the remaining portion,
as illustrated in figure 2. This leads us to define the corresponding reduced density matrices
ρAB = trN\A,B|ψ(t)⟩⟨ψ(t)|,ρA,ρB. Our goal will be to compute the moments:

ζn (ρAB) =
∑
P∈PAB

tr(PρAB)
2n

2N
, ζn (ρA) =

∑
P∈PA

tr(PρA)
2n

2N
, ζn (ρB) =

∑
P∈PB

tr(PρB)
2n

2N
. (10)

In order to find the long-range SRE from equation (5) we only need to compute these expres-
sions for Rényi parameters n= 1,2.

Naively evaluating the expressions in equation (10) is computationally expensive, as there
are exponentially many Pauli strings to sum over. For a partition of the state, we will find
an exact analytic expression for ζn(ρAB), ζn(ρA), ζn(ρB) for all n based on the exact numerical
method in [13] and verify it for small system sizes using the sampling algorithm for mixed
states, as suggested in [20]. See appendix A for details.

The exact numerical method in [13] will be the starting point of our derivations. There,
the authors recast the sum of expectation values of Pauli strings inMn(|ψ⟩) as the expectation
value of a tensor (Λ(n))⊗N for a replica state (|ψ⟩|ψ∗⟩)⊗n:

∑
P∈PN

⟨ψ|P|ψ⟩2n

2N
= (⟨ψ|⟨ψ∗|)⊗n

(
Λ(n)

)⊗N
(|ψ⟩|ψ∗⟩)⊗n

, (11)

5
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where Λ(n) = 1
2

∑3
α=0(σα⊗σ∗

α)
⊗n. Equation (11) can be extended to mixed states ρ

as follows:

ζn (ρ) =
∑
P∈PN

tr(Pρ)2n

2N
= tr

(
(ρ⊗ ρ∗)

⊗n
(
Λ(n)

)⊗N
)
. (12)

Our approach to derive an analytical expression for L(ρAB) involves recasting equations
(10) and (12) as ZX-calculus diagrams and then applying the ZX-calculus rules to streamline
them. Let us now introduce parts of ZX-calculus that we need, with more details available in
appendix B and [51, 52].

We first summarize the building blocks and graphical rules of ZX-calculus, following
closely [53]. The building blocks are Z-spiders and X-spiders, written as white and grey
tensors, with a phase α:

If the phase is zero, we omit it in the diagrams. The spiders comprise many common parts
of a quantum circuit. For example, an X-spider with only one leg is

√
2|0⟩, which is a common

initial state. Pauli matrices can be written in terms of Z- and X-spiders with two legs and a
phase π. In principle, the Hadamard gate can be written in terms of spiders through its Euler
decomposition. But it turns out to be convenient to define it as its own symbol, a box:

Another common gate is the CNOT:

Once a tensor contraction is written using the spiders (and Hadamards) we use the graph-
ical rules from figure 3 to simplify them. For example, using these rules the following useful
identities can be derived:

6
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Figure 3. Graphical transformation rules of the ZX-calculus (reproduced with permis-
sion from [53]). Fusion rule (f): same-colored spiders joined by a leg add their phases.
Hadamard rule (h): applying Hadamards on all gates of a spider changes its color.
Identity removal (id): phaseless spiders with an incoming and an outgoing leg are iden-
tity. Hadamard removal (hh): Hadamard is its own identity. π-commute rule (π): a π-
spider applied on a spider of a different color negates its phase and is applied to the
remaining legs, with a global phase. π-copy rule (c): applying a phaseless state spider
on an opposite-colored spider copies the state on the outgoing legs. Bialgebra rule (b).

Let us now express the local gates of time evolution using ZX-calculus. Writing α := 2Jo,
β := 2Je for brevity, we have:

In the first line we use the fusion rule ( f ) from figure 3. In the second line we move around
the tensors so it is clear we can apply the bialgebra rule (b) and present the diagram in a
clearer way. The last equality says that we can write Uo as a product of a phase gadget and
a SWAP gate. It is instructive to see how the unitary simplification UoU

†
o = 1 happens in the

ZX-calculus:

We first reshape the diagram using the fusion rule ( f ) such that we can apply the bialgebra
rule (b). Then we fuse the α and−α spiders (leaving a 0-phase spider) and apply the copy rule
(c). Finally we apply the fusion ( f ) and identity removal (id) rules.

7
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5. Results

We first present the simpler results on SRE with shallow circuits, to illustrate the techniques
we use. Then we proceed to our main result, which is the exact expression of long-range SRE
for all times and Rényi indices for a specific non-trivial partition.

5.1. Result for half time step SRE

Let us first illustrate the usefulness of ZX-calculus for computing SRE after one layer of
gates and any Rényi index. For translationally invariant systems, the SRE contraction in
equation (10) can be obtained by repeatedly applying a transfer tensor T [13], e.g. see figure 4.
In the thermodynamic limit, if the transfer tensor has a unique leading eigenvector |λ0⟩, the
contraction will converge to the leading eigenvalue λ0:

ζn (|ψ⟩) = tr
(
TN/2

)
≈ tr

(
λ
N/2
0 |λ0⟩⟨λ0|

)
. (20)

Note that T,λ0 depend on n, but we omit it for clarity. Thus we obtain the SRE density:

mn (|ψ⟩) = lim
N→∞

1
N

1
1− n

log(ζn (|ψn⟩)) =
1

2(1− n)
log(λ0) . (21)

In the following result, we show that for the half time-step example from figure 4, with
|ψ(Jo,0, 12 )⟩= Uo(Jo)|ϕ+⟩⊗N/2, we can obtain the leading eigenvector and eigenvalue exactly.
We could not prove its uniqueness, but we checked numerically for n= 2,3 that it is indeed
unique.

Result 5.1. For a half time-step of the dual-unitary XXZ evolution, the density of magic in
the thermodynamic limit is:

mn

(∣∣∣∣ψ(J,0, 12
)〉)

=
1

2(1− n)
log

(
1+ cos2n (2J)+ sin2n (2J)

2

)
.

Here we show the main ideas of the proof, more details can be found in appendix C. The
strategy is to check that the candidate eigenvector, vectorization of Λ(n), satisfies the eigen-
vector equation.

We start by expressing equation (10) for the half-time time-step with state |ψ(Jo,0, 12 )⟩=
Uo|ϕ+⟩⊗N/2 using ZX-diagrams and Λ(n), which we show in figure 4. Next we express the
tensor Λ(n) with spiders. Note that Λ(n) = 2Λ(n)

x Λ
(n)
z , where Λ(n)

x := 1
2 (σ

⊗2n
0 +σ⊗2n

x ),Λ
(n)
z :=

1
2 (σ

⊗2n
0 +σ⊗2n

z ) are commuting projectors. Their ZX-calculus diagrams are:

which we derive in appendix B. In the last equality we introduced the notation The
tensor contraction required to compute SRE, equation (11), requires contracting tensors Λ(n)

with 2n replicas of the state. Drawing all Rényi copies in each diagram would be cumbersome
so with this notation we only write the first Rényi copy, while remembering that the rest of

8
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Figure 4. (a) shows equation (10) for the state |ψ(Jo,0, 12 )⟩= Uo(Jo)|ϕ+⟩⊗N/2, with
Ising interaction Jo = α

2 andRényi parameter n. Only the first (top) Rényi copy is shown.
(b) shows the transfer tensor T showing all 2n Rényi copies, also indicated in blue on
the left.

the copies that are not shown are still connected to and that the even copies are
complex conjugated. We will show all Rényi copies explicitly in the following computation,
but will use the compact notation from equation (22) in section 5.2.

We start by applying the candidate eigenvector, vectorized Λ(n), to the transfer tensor T
from the right:

Since applying two Λ(n) tensors to the same Z-spider is the same as applying only one
(lemma B.3), in the first equation we remove one of the two Λ(n) on the right. Next we write
the diagram completely in ZX-calculus notation and indicate with orange arrows that wewould
like to ‘push’ the Λ(n)

x through the Z-spiders. Using properties of the Λ(n)
x tensor, we arrive at

the diagram on the right, where we managed to moveΛ(n)
x to the top output leg. Since we claim

Λ(n) is the eigenvector, we also need to ‘push’ a Λ(n)
z component to this output leg. First, we

indicate with orange arrows that we try to push the Λ(n)
z on the right through.

9
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Using properties of Λ(n)
z , we arrive at the first diagram, where the rightmost Λ(n)

z ended
up attached to the phase spiders and the leftmost one was moved to the top output leg. The
first equality repackages the Λ(n)

x ,Λ
(n)
z on the top legs into Λ(n) with the appropriate scalar. It

also presents the diagram in a way that makes it clear that the candidate eigenvector Λ(n) is
joined to the rest of the diagram only by Z-spiders on the left side connected by two edges
to X-spiders on the right. Using the Hopf rule (H) from figure 3, all these double connections
split, so we are left with a vector Λ(n) and a subdiagram that has no inputs or outputs, i.e. a
scalar. In the last equality, we use the identity removal rule (id) onΛ(n) to remove the Z-spiders
underneath Λ(n) and vectorize it. We also present the scalar subdiagram in a clearer way. Thus
we obtainΛ(n) multiplied by a scalar, the eigenvalue in its ZX-calculus representation. We find
the numerical representation of the eigenvalue in appendix C.

5.2. Long-range SRE

We proceeded to compute long-range SRE L(ρAB) and moments ζn(ρAB), exactly for all times
and all Rényi parameters n for a specific partition B0 of the state |ψ(t)⟩. Firstly, we derive
an expression, which can be evaluated efficiently numerically for fixed Rényi index n, but
is exponentially costly in n. Secondly, we also evaluate this expression analytically for any
n. Thirdly, we check that both results agree with the numerical sampling algorithm for the
accessible times. Lastly, we discuss other partitions.

In this subsection it is convenient to denote by T= 2t the number of layers of evolution. Let
us now define our first (time dependet) partition of interest. We will always partition N-qubit
state |ψ(t)⟩ into regions A,B of equal number of qubit sites NA = NB and the rest with N−
NA−NB sites. We consider periodic boundary conditions, and regions A and B are separated
by d= (N−NA−NB)/2 sites on both sides.We then trace out the rest of the system and obtain
ρAB = trABc |ψ(t)⟩⟨ψ(t)|.

If d⩾ 2T, the light cones of regions A and B will not intersect, so ρAB = ρA⊗ ρB and thus
L= 0. This leads us to define a partition B0 with separation d= 2(T− 1). We further specify
the partition by

10



J. Phys. A: Math. Theor. 57 (2024) 475301 J A Montañà López and P Kos

B0 : NA = NB = 2T, d= 2(T− 1) , N= 8T− 4. (25)

In this case, ρA = 1
2NA 1, so M̃(ρA) = M̃(ρB) = 0 and the only contribution to long-range magic

is from the joint state, M̃(ρAB):

LB0 (α,β, t) = M̃(ρAB (α,β, t)) . (26)

For B0, using ZX-calculus we can simplify the contraction of ζn(ρAB) in equation (12) to

Result 5.2.

Here we provide the main steps of the derivation, shown for T = 6. The result is derived by
first using unitarity and then using ZX-calculus rules to simplify further. These often involve
keeping track of global scalars. We omit them here for clarity, but can be found in appendix D.
Thus, the following diagrams are equivalent up to a global scalar.

We start by writing out the expression for ζn(ρAB) in equation (12) as a tensor diagram:

11
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Using unitarity in the regions between A and B, we simplify two backwards light cones:

We highlight in blue someΛ(n) that will be simplified toΛ(n)
z . Along each blue loop there is

only one Λ(n) and by lemma B.5, the Λ(n)
x component is projected out and only Λ

(n)
z remains.

Not all Λ(n) are simplified like this, in orange we show a loop where we can not apply lemma
B.5. Using the ZX-calculus representation for Λ(n),Λ

(n)
z gives:

We indicate with an orange arrow that we slide aΛ(n)
z outside of region A. This makes use of

one of the key properties of the dual-unitary XXZ gate: it is a product of a term that is diagonal
in the computational basis, the phase gadget or Ising interaction, and a SWAP. Thus we slide

12
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Λ
(n)
z along the SWAPs, commute it with the phase gadgets and slide it outside of region A.

Doing this for all Λ(n)
z that are not multiplying a Λ(n)

x gives:

The bulk qubits in regions A,B are now connected to their conjugates through identities.
Therefore, we can use unitarity as in equation (19) in the regions A,B to simplify a backwards
light cone.

The blue and orange highlights indicate the legs of a diagonal of phase gadgets. Along the
highlighted legs there are only Z-spiders, so we can use unitarity to simplify each phase gadget
with its conjugate. See appendix D for details on this step. This allows us to simplify all phase
gadgets except for those connected to their conjugates via Λ(n)

x .

13
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We highlight in blue a loop that only contains Z-spiders, so the right half of the loop can be
contracted to a phaseless Z-spider. See appendix D for details. Doing this for all loops that do
not contain a Λ(n)

x we get:

Along the blue lines we can remove two pairs ofΛ(n)
x ,Λ

(n)
z using lemmas B.1 and B.2. Then,

removing the identities with (id) and reshaping the diagram for clarity we obtain:

The middle sections of the diagram are dependent on time: more time-steps correspond to
making the middle section longer. It can be efficiently contracted numerically as a quantum

14
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channel with complexity linear in t 4. The left and right endcaps are independent of t, so the
complexity to contract the endcaps with the middle sections is independent of t. Since the
contraction for a givenRényi parameter n requires contracting 2n-Rényi copies that are coupled
through Λ(n),Λ

(n)
z , the tensor that needs to be stored to perform the contraction has a size that

grows exponentially in n. This limits numerical results to low n= 2,3.
Nevertheless, we can find an analytical expression for the diagram for all n, as detailed in

appendix D, to obtain our main result:

Result 5.3. For partition B0 : NA = NB = 2T,d= 2(T− 1),T= 2t, the long-range SRE is:

LB0 (Jo,Je,T) = M̃2 (ρAB)− 2M̃2 (ρA) =− log

(
ζ2 (ρAB)

ζ1 (ρAB)

)
, (36)

where we exactly evaluate all of the moments ζn(ρAB) as:

ζn (ρAB) =
1

24T−2

(
1+ 2( fn (Jo) fn (Je))

T
+ gn (Jo,Je)( fn (Jo) fn (Je))

2T−4
)
, (37)

and we have defined

fn (J) := cos2n (2J)+ sin2n (2J) ,

gn (Jo,Je) :=
1
22n

4∑
k=0

(
4
k

) 1∑
m=0

(
cos(2Jo + 2Je)

4−k sin(2Jo + 2Je)
k

+ (−1)m cos(2Jo − 2Je)
4−k sin(2Jo − 2Je)

k
)2n

. (38)

We plotted this result and checked its correctness with numerical methods in the accessible
regimes in figures 5–7. In figure 5 we show long-range SRE versus parameters of the gate J=
Jo = Je (J= α/2= β/2). Both the analytical expression from result 5.3 and the exact efficient
numerical contraction of result 5.2 agree with the results obtained via the sampling algorithm
for the accessible times and sizes (T= 2,3, i.e. N= 12,20). At long times, the long-range SRE
for partition B0 saturates to a constant 2 log(2) for all J= Jo = Je except J= 0 (corresponding
to the XX model) and J= π

4 (corresponding to SWAP gates), which are both Clifford circuits
and thus generate no magic. From the analytical expression in result 5.3 we see that for J ̸=
0, π4 , the long-range SRE approaches equilibrium in the form− log(22(1+ a · bT+ c · b2T−4)),
where a,b,c> 0 and b< 1, as can be seen in figure 6. Note also that small nonzero values of
J take longer to equilibrate. Recall that in partition B0, as T grows so does the system size N,
so this plot does not show the equilibration of L for a particular state after long time.

In figure 7 we look at the SRE of ρAB:

M̃n (ρAB) =
1

1− n
log

(
ζn (ρAB)

ζ1 (ρAB)

)
, (39)

which is defined for all Rényi parameter n. Plotting the analytical expression in result 5.3, we
show equilibration for Rényi parameters n= 2,3,4. Moreover, we show the decrease of the
equilibration value for higher n in the inset.

Let us now discuss what happens for other partitions, more concretely for smaller separa-
tions d between regions. As d gets smaller, the overlap between light cones becomes bigger

4 For fixed t it can actually be reduced to log(t) if necessary via exponentiation by squaring.
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Figure 5. Long-range magic between regions A,B of the dual-unitary XXZ time evol-
ution of the state |ϕ+⟩⊗N/2 with periodic boundary conditions for partition B0 defined
in equation (25). The analytical result (line), result 5.3, and the efficient numerical con-
traction of result 5.2 (crosses) agree up to numerical precision. For T= 2,3 we also
approximate it via sampling algorithm (dots) with 20 000 samples.

Figure 6. Equilibration of the long-range SRE for partition B0 at J= Jo = Je =
0.4,0.2,0.1,0.05 for T= 2, . . .,1000, from result 5.3.

and L can attain larger values. The diagrams can still be simplified, but the end result is expo-
nentially costly in 2T− d to numerically evaluate. In figure 8 we keep NA = NB = 2T for T = 3
and decrease the distance between regions d= 4,3,2,1, seeing an increase in L.

Another partition that is accessible to exact numerics is

B1 : NA = NB = 2(T+ 1) , d= 2(T− 1) , N= 8T. (40)

The distance between regions A,B is the same as in partition B0, so the backwards light cones
of NA,NB still only intersect at two Bell pairs, but unlike B0 in this case ρA is nontrivial. The
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Figure 7. Magic in the joint state ρAB for different n= 2,3,4 given by the analytic
expression in result 5.3. The state is a product of dual-unitary XXZ circuit applied to
|ϕ+⟩⊗N/2 with periodic boundary conditions. We take partition B0 and number of layers
T= 2,4,16. The case n= 2 corresponds to L in figure 5. The inset shows the dependence
of SRE on n for Jo = Je = π

8 and T = 16.

Figure 8. Long-range magic between regions A,B of the dual-unitary XXZ time evol-
ution of the state |ϕ+⟩⊗N/2 with periodic boundary conditions for T = 3 and partitions
with NA = NB = 2T and separations d= 2T− 1,2T− 2,2T− 3,2T− 4. We provide
sampling results for 20000 samples and analytical results for d= 2(T− 1) aswell. In the
inset we show convergence results for T= 3,d= 2T− 4,J= π

8 up to 5 · 105 samples.

contraction of equation (12) can again be simplified to efficiently contractible 1D tensor net-
work, see figure 9. We plot the results in figure 10, checking these computations with the
sampling algorithm for the accessible time, T = 2.
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Figure 9. Tensor contractions required to compute equation (12) for partition B1 and
T = 6, for the (a) joint state of regions A,B, ρAB, and (b) reduced state of region A, ρA.
The simplifications follow similar steps as the one for the partition B0 presented in the
main text. The final expressions can be numerically efficiently contracted for any T and
small n.

Figure 10. Long-range magic between regions A,B of the dual-unitary XXZ time evol-
ution of the state |ϕ+⟩⊗N/2 with periodic boundary conditions for partition B1 and times
T= 2,4,6,10. The numerical tensor contraction (cross) agrees with the sampling result
(dot) with 105 samples for T = 2. We consider the number of qubits of regions A,B to
be NA = NB = 2(T+ 1) and the distance between regions d= 2(T− 1).

6. Conclusions and outlook

In this work we provided exact solutions for the generation of (long-range) magic by many-
body dynamics. Moreover, we were able to compute the moments of the Pauli spectrum
ζn(ρAB(α,β,T)) for all α,β,T and all Rényi parameters n. In principle, they allow us to deduce
the Pauli spectrum [41], Rényi-2 mutual information [17] and their dynamics in time for par-
tition B0. This was possible due to three reasons: firstly, by restricting to a dual-unitary and
integrable Floquet XXZmodel; secondly, focusing on a specific partition; and thirdly by adapt-
ing the techniques of ZX-calculus to the novel setting presented here.

Nonetheless, we expect that our results can be straightforwardly generalized, to more gen-
eral gates, partitions and observables. In particular, the derivations are expected to apply also
for any gate which is a combination of a diagonal gate in the computational basis followed by
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a SWAP gate, see appendix E. In addition to SRE, we can compute correlations between any
local observables with supports in the before-mentioned partitions.

Moreover, the graphical rules for Λ(n) open new avenues for the study of magic using the
ZX-calculus. So far, ZX-calculus rules have been used to optimize the number of T-gates in
a quantum circuit [37, 54, 55]. Apart from SRE, there are additional measures of magic that
can be computed using Λ(n): the stabilizer linear entropy of a state, which is a strong magic
monotone [42], and the nonstabilizing power of a unitary, which provides a lower bound on the
number of T-gates [10]. We hope that the graphical rules forΛ(n) will simplify the contractions
required to compute them.

A plethora of open questions remains. So far, we did not succeed in computing long-range
SRE using only the dual-unitary property, which would provide exact solutions for all dual-
unitary models, including chaotic examples. This raises an important question on whether the
generation of magic is similar in chaotic models. To tackle this question, it would be worth-
while to try obtaining exact solutions in other models, such as random unitary circuits [31],
k-doped random circuits [56], or generalizations of dual unitarity [57, 58].Maybe an evenmore
interesting question is the status of magic in localized models. How much magic is generated?
What happens with long-range magic? One could try numerically studying many-body loc-
alized systems [59]. For analytical progress other models are more suitable, such as strongly
localized models [60, 61] and Floquet quantum east model [62].
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Appendix A. Sampling algorithm for mixed states

We implement the SRE sampling algorithm for mixed states from [20], which is a slight modi-
fication of their algorithm 1 for pure states.

Given a mixed state ρ we want to estimate the quantity qn =
∑

P∈PN
ΞP(ρ)

n , where for

mixed states the probability distribution ΞP(ρ) =
1

tr(ρ2)
tr(ρP)2

2N is normalized by the purity, and
use the following estimators q̃n, as detailed in [20]:

qn =

{∑
P∈PN

ΞP (ρ) logΞP (ρ) , n= 1∑
P∈PN

ΞP (ρ)
n
, n> 1

, q̃n =

{
1
N
∑N
µ=1 logΞPµ

(ρ) , n= 1
1
N
∑N
µ=1ΞPµ

(ρ)
n−1

, n> 1
. (41)
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Figure 11. Convergence of the q̃2 estimator for the partition B0 at T = 2 and J=
0.29,0.39, for 500000 samples. The exact result is obtained from result 5.3.

The convergence of q̃n to qn in a polynomial number of samples N = O( 1
ϵ2χ

3N) is only
guaranteed for n= 1, which would correspond to computing the von Neumann stabilizer
entropy; analogous convergence results for higher n are not known [11]. Nevertheless in
practice we see convergence for any n. For example, in figure 11 we can see that for 5 · 105
samples the estimator q̃2 converges to within 4 decimal digits of the exact value obtained from
result 5.3:

qn =
1

tr(ρ2)n 2N(n−1)
ζn. (42)

Appendix B. ZX-calculus for computing SRE

In this section we introduce the representation of the tensorΛ(n), used to compute SRE in [13],
in terms of the ZX-calculus. We show that it has a simple representation and prove several
lemmas about the graphical rules it satisfies, following the thesis [51].

Let us start by proving the ZX-calculus diagrams for the Λ(n)
x ,Λ

(n)
z tensors from the main

text:
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Recall that we want to evaluate equation (12), which involves contractions of the form
tr((ρ⊗ ρ∗)⊗n(Λ(n))⊗N). Writing the 2n Rényi copies on each diagram would be cumbersome,

so we use the notation for conciseness, which we introduced in the main text in
section 5. In this notation, Λ(n) can be written as:

For example, if we wanted to compute the n-SRE of the state |ψ⟩= Rz(α)⊗1|ϕ+⟩, the
rightmost expression below is clearer. The scalar factors account for Λ(n) and the Bell pairs:

In the following lemmas we prove graphical transformation rules for Λ(n),Λ
(n)
x ,Λ

(n)
z . Any

time we prove an identity for Λ(n)
z , we can obtain an analogous result for Λ(n)

x by conjugating
it with Hadamards.

The first identity, which we will use extensively, states that with the correct scalar Λ(n)
z is a

projector.

Lemma B.1.
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Proof. In the first step we fuse the Z-spiders. In the second step we unfuse Z- and X-spiders
so that we can apply the generalized bialgebra rule in equation (16) in the next step. We then
use the copy rule in the fourth step. Collecting the scalars and using the fusion rule yields the
desired result.

Lemma B.2.

Proof. In the first step we use the bialgebra rule to remove the ‘loop’, then we fuse the Z-
spiders. Applying this identity to each Rényi copy gives us the second to last equation. Fusing
all the Z-spiders into one gives us the final result.
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Lemma B.3.

Proof. The first step is to rewrite the identity in ZX-calculus language with the correct scalars.
We then slide the Λ

(n)
z up through the Z-spider at the top, to remove it from the ‘loop’. The

top part of the circuit can be simplified with lemma B.1 and the bottom part with lemma B.2,
arriving at the final result.

Lemma B.4.

Proof. The first step is to unfuse the necessary spiders to shape the diagram in a way so that
we can use the bialgebra rule in the next step. After that we apply the copy rule to split the
diagrams and fuse the remaining grey spiders.
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Lemma B.5.

Proof. In the first step we write the Λ(n) in ZX-calculus and indicate in orange that we want
to slide Λ(n)

z up. In the next step we fuse the Z-spiders so it is clear that they are connected to
the X-spiders at the bottom by two edges. We can thus use the Hopf rule to split them in the
second equality of the second line. Using the copy rule we find the value of the scalar diagram
on the bottom, obtaining the desired result.
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The following lemma says that if we have a 3-legged X-spider with Λ
(n)
z on two of its legs,

we can slide one of them to the third leg.

Lemma B.6.

Proof. In the first equality we use the bialgebra rule, indicated with orange arrows. In the
second equality we use lemma B.4 to split the resulting Λ

(2n)
z .

Appendix C. SRE in the thermodynamic limit for short time

Here we repeat the result from section 5.1 and provide a complete proof of it. Recall from
section 5.1 that in order to find the SRE of the state time evolved with only one layer of gates,
|ψ(J,0, 12 )⟩, it is sufficient to find the largest eigenvalue of the transfer matrix T [13], from
figure 4. In result 5.1, which we repeat here, we find it exactly.

Result C.1. For a half time-step of the dual-unitary XXZ evolution, the density of magic in
the thermodynamic limit is:

mn

(∣∣∣∣ψ(J,0, 12
)〉)

=
1

2(1− n)
log

(
1+ cos2n (2J)+ sin2n (2J)

2

)
.

Proof. We can obtain this result by noticing that vectorized Λ(n) also denoted by |Λ(n)⟩ is the
leading eigenvector of the transfer matrix, and obtaining its eigenvalue.
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The first diagram shows the transfer matrix for half a time step being applied the vectorized
|Λ(n)⟩ as an input on the right. Notice that the Λ(n) in the middle has the same ordering of the
legs as the Λ(n) on the right. However, from the ZX-representation of Λ(n) we see that only
connectivity matters, i.e. the corresponding top–bottom indices ofΛ(n) need to match, but how
we arrange them horizontally does not matter. Therefore, in the second step we rearrange the
legs such that the connectivity is easier to understand. Since we have two Λ(n) applied to the
same Z-spiders, in the third step we remove one of them using lemma B.3. The last step is just
writing the ZX-calculus representation of Λ(n). Moreover, we indicate in orange lines that we
will try to ‘push’ the left Λ(n)

x through the white Z-spider on top, using the bialgebra rule.

In the first diagram we are left with a Λ(2n)
x that has half of its legs on the top–left output

legs of the transfer tensor and half of them across the right hand side. Since there is already a
Λ(n) on the right legs, in the second step we apply lemma B.4 to split the top Λ

(2n)
x , such that

one Λ(n)
x remains in the top–left output legs. We will do the same thing with the Λ(n)

z on the
right half: as signaled in orange, we push it through the X-spider that has a phase at the end
using the bialgebra rule. Again, it now has twice the original number of legs, but half of them
are on the left, where there is already a Λ(n)

z . Thus using lemma B.4 we can split it so that only
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the half connected to the α Z-spiders remains. In the last step, as indicated in orange we just
move the left Λ(n)

z up through the Z-spider into the top–left output leg.

First note that we have Λ(n) on the top-left output legs. It is still connected to the rest of
the diagram, but if it is indeed an eigenvector, there must be some way to split it away, with
the remaining diagram giving the scalar λ(n)0 . Indeed, in the third step we prepare for the split

by moving the Λ(n)
x on the right up through the X-spider on the top. We also move the bottom

X-spider up through the top X-spider. This results in the left part of the circuit, which contains
Λ(n), to be connected to the rest of the circuit only by Z-spiders, and the right part of the circuit
to be connected toX-spiders. Since the Z-spiders andX-spiders are connected by pairs of edges,
we can apply the Hopf rule to split away the Λ(n) from the rest of the circuit. The remaining
diagram has no inputs or outputs, so it is a scalar, and together with the scalar prefactors we
had accumulated it will give us the eigenvalue λ(n)0 ,

The last step is to compute the scalar diagram to obtain the eigenvalue. We write Λ(n)
z ,Λ

(n)
x

as sums of their terms and compute them individually. In each of the resulting terms we apply
the phase fusion rule and the π-copy rule. Notice that since we have the same number of α
and −α, the global phases cancel. We end up with a sum of powers of Z-spiders, which give
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us each of the terms in the final equation, since they evaluate to = 22 cos2(α),

= 2, = 0,

Plugging the value of the scalar diagram and collecting the 1
2n factor with the bent Λ(n) to

get |Λ(n)⟩, finishes the proof.

Appendix D. Long-range SRE for partition B0

In this appendix we repeat the full exact solution of long-range magic for partition B0 from
result 5.3 and provide its proof. We mentioned it in section 5.2 and used it for figures 5–8
and 11. The following result is for even T, but a similar expression can be obtained for odd T.
In the figures we only plot the section Jo = Je, where even and odd expressions match.

Result D.1. For partition B0 : NA = NB = 2T,d= 2(T− 1),T= 2t, the long-range SRE is:

LB0 (Jo,Je,T) = M̃2 (ρAB)− 2M̃2 (ρA) =− log

(
ζ2 (ρAB)

ζ1 (ρAB)

)
, (51)

where the moments ζn(ρAB) are exactly:

ζn (ρAB) =
1

24T−2

(
1+ 2( fn (Jo) fn (Je))

T
+ gn (Jo,Je)( fn (Jo) fn (Je))

2T−4
)
, (52)

and we have defined

fn (J) := cos2n (2J)+ sin2n (2J) ,

gn (Jo,Je) :=
1
22n

4∑
k=0

(
4
k

) 1∑
m=0

(
cos(2Jo + 2Je)

4−k sin(2Jo + 2Je)
k

+ (−1)m cos(2Jo − 2Je)
4−k sin(2Jo − 2Je)

k
)2n

. (53)

These satisfy fn(0) = 1,gn(0,0) = 1, so we can easily check that LB0(0,0,T) = 0.
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Proof. We start with equation (12):

ζn (ρAB) = tr

(
(ρAB⊗ ρ∗AB)

⊗n
(
Λ(n)

)⊗N
)

(54)

We depicted the case of T = 6. The denominator comes from the scalar 1√
2
associated to

each initial Bell pair, which is unnormalized in the ZX-calculus. There are N
2 Bell pairs in the

initial state |ϕ+⟩⊗N/2, and counting the conjugate and the 2n Rényi copies we end up with
2N2 · 2n normalization factors. The numerator comes from the scalar

√
2 associated to each

gate, from equation (18). There are as many gates per layer as Bell pairs, and there are T lay-
ers, so we obtain 2N2 T · 2n. We can simplify the overall factor to 2N(T−1)n = 2(8T−4)(T−1)n =

2n(8T
2−12T+4). In what follows, we will keep track of the global scalar with a variable ci asso-

ciated to the diagram i, and display diagrams that are equivalent up to a scalar. Thus, for
equation (55) the scalar is c(55) = 2n(8T

2−12T+4).

Next we apply the ZX-calculus simplification for unitarity, as in equation (19), to the qubits
that are connected to their conjugate with an identity, in between regions A,B. Each backward
light cone that we simplify contains (T− 1) T2 gates. Simplifying an unnormalized gate with
its conjugate yields a factor of 1

2 , as in equation (19), and there are 2 lightcone pairs (between
A−B and B−A) and 2n Rényi copies, so we get a factor of 2−2nT(T−1). The global scalar is
c(56) = c(55) · 2−2nT(T−1) = 2n(8T

2−12T+4) · 2−2nT(T−1) = 2n(6T
2−10T+4).
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We highlighted in blue some of the loops where there is a single Λ(n). These can be simpli-
fied toΛ(n)

z using apply lemma B.5. In orange we highlight someΛ(n) that cannot be simplified
in this way, since there are two Λ(n) in the loop. The global scalar remains c(57) = c(56).

In the next diagram we will write Λ
(n)
z ,Λ(n) using the ZX-calculus. By equations (43)

and (44), each Λ
(n)
z contributes 2n−1 and each Λ(n) contributes 22n−1. Since there are 2(NA−

2) = 2(2T− 2) = 4(T− 1) Λ(n)
z tensors and 4 Λ(n) tensors in diagram (57), the global scalar is

c(58) = c(57) · 24(T−1)(n−1)+4(2n−1) = 2n(6T
2−10T+4)24(T−1)(n−1)+4(2n−1) = 2n(6T

2−6T+8)−4T.

We now slide the Λ
(n)
z outside the regions A,B as indicated by an orange arrow. The fact

that the dual-unitary XXZ gates are a product of a term that is diagonal in the computational
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basis and a SWAP is the key to doing this: we can slide Λ(n)
z along the SWAP and commute it

with the phase gadget. The global scalar is the same c(59) = c(58).

Since most of the qubits in regions A,B are now connected to their conjugates with an
identity, we can use equation (19) to simplify a lightcone of gates in regions A,B. There are
(T− 2) T−1

2 pairs of gates that get simplified in regionA, and asmany inB. Thus, the new global

scalar is c(60) = c(59) · 2−2n(2(T−2) T−1
2 ) = 2n(6T

2−6T+8)−4T2−2n(2(T−2) T−1
2 ) = 24n(T

2+1)−4T.

We will use equation (19) to simplify gates along all diagonals that have only identity or
gates that are diagonal in the computational basis (Z-spiders) connected to their conjugate, as
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an example see the blue and orange highlights. To make this step clearer, we provide a close-up
of one of the simplifications:

We first slide the tensor proportional to Λ(n)
z along the orange arrow. In the second step, we

move the middle±β Ising interaction terms through the SWAP and the next layer of gates. It is
now clear that it is connected to its conjugate only by identity, so we can apply equation (19),
obtaining a factor of 1

2 from each Rényi copy. Next we slide back the tensor proportional to

Λ
(n)
z and highlight with a dashed circle that the desired Ising interactions are gone, leaving

only the SWAPs behind. Applying this simplification to diagram (60) we can remove all gates
that are not connected to their conjugate with a tensor proportional to Λ

(n)
x :

The number of pairs of gates that have been simplified is 2(2(T− 1) T2 − 1) = 2(T2 −T− 1)
and each contributes 1

2 , for each Rényi copy. The global scalar becomes c(62) = c(60) ·
2−2n(2(T2−T−1)) = 24n(T

2+1)−4T2−2n(2(T2−T−1)) = 24nT+8n−4T. We highlight in blue a loop what
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contains only Z-spiders. The right half of the loop can be contracted and fused to one of the
Z-spiders. Here is an example of this simplification, which uses identity removal (id):

Applying this simplification to all loops without a Λ(n)
x , diagram (62) becomes:

The global scalar remains the same: c(64) = c(62) = 24nT+8n−4T. We highlight in blue that

we can use lemmas B.5 and B.2 to remove two pairs of Λ(n)
x ,Λ

(n)
z , obtaining a scalar 1

(22n−1)2 .

The global scalar is then c(65) = c(64) · 2−4n+2 = 24nT+8n−4T · 2−4n+2 = 24nT+4n−4T+2. We now
reshape the remaining diagram in a more compact way:
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For the rest of the proof, it will be more convenient to move both endcaps to the same side.
Since they are connected to the middle section via Z-spiders, they commute, so we can slide
the right endcap through to the left:

We will evaluate this diagram by expanding the terms proportional to Λ(n)
x into sums, com-

puting each diagram, and summing at the end:

The first term (I) is the simplest. We highlight below in blue that the Ising interactions with
phase±α are connected only by Z-spiders. Therefore, we can use equation (19) on the top and
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bottom sections to simplify them. Since all±α,±β cancel, the resulting scalar is independent
of α,β.

The second term (II) has a phase-π X-spider on the top half. As we show below, we slide
it through the top as indicated by the orange arrow, changing all the − phases into + by the
π-copy rule (π). This happens as well on the rest of the Rényi copies, so the e−iα from the odd
copies cancels with the eiα from the even copies, and similarly for β. The bottom half does
not have a π X-spider, so we can use equation (19) as in case (I) above to simplify to:

The bottom half of the diagram above is a scalar independent of α,β. We fuse the tensors
proportional to Λ(n)

z to the top diagram. In the first equality below we highlight in blue that we
can use equation (19). Since the phases add up to 2α,2β instead of 0, the phase gadget with
the updated phases remain in the second equality:

In the next diagram, we fuse the phaseless Z-spiders along the orange arrow.
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We will apply the following simplification to each of thee phase spiders in diagram above.
First we unfuse a Z-spider ( f ). We indicate with an arrow that we will slide the Λ

(n)
z on the

branch with the phase 2α Z-spider using lemma B.6. We then use the copy rule (c) to split
away a scalar from the rest of the diagram:

Applying this to diagram (71) and simplifying the resulting number using diagram (74)
below yields the value of the second term (II).

Here we compute the value of the diagram used above. We only use the fusion rule ( f ) and
write the numerical value for each expression

The third term (III) can be obtained from the second term (II). We first exchange the indic-
ated parts of the diagram in orange arrows, since they are connected by Z-spiders, so they
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commute. Then we move the top half of the diagram underneath the bottom half, arriving
at (II),

The fourth term (IV) has a phase-π X-spider on top and bottom halves. We slide them as
indicated by orange arrows, making all the −α,−β into α,β by the π-copy rule (π). Again,
the global phase contributions from the odd and even Rényi copies cancel,

We follow the same procedure as in part (II) to slide the Λ(n)
z onto the phase spiders using

lemma B.6,

We apply the copy rule (c) to split away the subdiagrams (74), as in part (II). In the first
equality, we introduce new projectorsΛ(n)

z . In the second step, we use lemmaB.1. The resulting
ZX-diagram is simplified below,
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We now compute the value of the last diagram in equation (78). In the first equality, we
slide the Λ(n)

z in the middle section onto the phase spiders using lemma B.6. Then we use the
fusion rule ( f ) to reshape the diagram

We can now use the bialgebra rule (b) in the next two steps to simplify the diagram. In the
last diagram we indicate that we will use lemma B.6 to slide one of the Λ(n)

z along the orange
arrows,

In the first equality we use the copy rule (c) to split away one of theΛ(n)
z . In the last equality

we signal that we will use lemma B.6 along the orange arrows,

Below, we first use lemma B.1 to remove one of the Λ
(n)
z . Then we reshape the diagram

using the fusion rule ( f ),
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Next, we provide an expression for a useful tensor. It can be obtained by writing out the
equation for each tensor and multiplying,

We use this to compute the value of the last diagram in equation (82), using the notation
r= cos(α+β),s= cos(α−β),u= sin(α+β),v=−sin(α−β):

=
1
24n

tr

([(
[r|0⟩⟨0|+ s|1⟩⟨1|]⊗2n

+ [u|0⟩⟨0|+ v|1⟩⟨1|]⊗2n
)(
σ⊗2n
0 +σ⊗2n

z

)]4)
(85)

=
1
24n

tr
([(

[r|0⟩⟨0|+ s|1⟩⟨1|]⊗2n+ [u|0⟩⟨0|+ v|1⟩⟨1|]⊗2n
)4 (

σ⊗2n
0 +σ⊗2n

z

)4)
. (86)

We used that σ0,σz commute with |0⟩⟨0|, |1⟩⟨1|. Next we expand the powers of 4 and multiply
them out,

=
1
24n

tr

((
4
0

)[(
[r4|0⟩⟨0|+ s4|1⟩⟨1|]⊗2n+

(
4
1

)
[r3u|0⟩⟨0|+ s3v|1⟩⟨1|]⊗2n (87)

+

(
4
2

)[
r2u2|0⟩⟨0|+ s2v2|1⟩⟨1|

]⊗2n
+

(
4
3

)[
ru3|0⟩⟨0|+ sv3|1⟩⟨1|

]⊗2n
(88)

+

(
4
4

)[
u4|0⟩⟨0|+ v4|1⟩⟨1|

]⊗2n )(
σ⊗2n
0 +σ⊗2n

z

)
23
)

(89)

=
1
24n

tr

((
4
0

)
((r4 + s4)2n+(r4 − s4)2n)+

(
4
1

)
((r3u+ s3v)2n+(r4 − s4)2n) (90)

+

(
4
2

)((
r2u2 + s2v2

)2n
+
(
r2u2 − s2v2

)2n)
+

(
4
3

)((
ru3 + sv3

)2n
+
(
ru3 − sv3

)2n)
(91)

+

(
4
4

)
((u4 + v4)2n+(u4 − v4)2n)

)
(92)

=
1

24n−3

4∑
k=0

(
4
k

) 1∑
m=0

(
r4−kuk+(−1)m s4−kvk

)2n
(93)

=
1

24n−3

4∑
k=0

(
4
k

) 1∑
m=0

(
cos(α+β)

4−k sin(α+β)
k
+(−1)m cos(α−β)

4−k sin(α−β)
k
)2n

.

(94)
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We absorbed the (−1)k from v into the sum over m. Collecting the scalars from equation (78)
we obtain the fourth term (IV):

Gathering the terms (I)–(IV) we obtain:

=
1

2n(4T+4)

(
1+ 2

(
(cos2n(α)+ sin2n(α))(cos2n(β)+ sin2n(β))

)T
+

1
22n

( 4∑
k=0

(
4
k

) 1∑
m=0

(
cos(α+β)4−k sin(α+β)k+(−1)m cos(α−β)4−k sin(α−β)k

)2n)
·
(
(cos2n(α)+ sin2n(α))(cos2n(β)+ sin2n(β))

)2T−4
. (97)

Thus, together with the global scalar c(65) = 24nT+4n−4T+2, we obtain ζn(ρAB):

ζn(ρAB) =
1

24T−2

(
1+ 2

(
(cos2n(α)+ sin2n(α))(cos2n(β)+ sin2n(β))

)T
+

1
22n

( 4∑
k=0

(
4
k

)
1∑

m=0

(
cos(α+β)4−k sin(α+β)k+(−1)m cos(α−β)4−k sin(α−β)k

)2n)
·
(
(cos2n(α)+ sin2n(α))(cos2n(β)+ sin2n(β))

)2T−4
. (98)

Appendix E. Diagonal+SWAP gates

In this appendix we show that all two-qubit gates that can be written as a product of a SWAP
and a termD diagonal in the computational basis are dual-unitary XXZ gates with single-qubit
Z-rotations. Any unitary two-qubit gate D that is diagonal in the computational basis is of the
form:

D=
(
eia|00⟩⟨00|+ eib|01⟩⟨01|+ eic|10⟩⟨10|+ |11⟩⟨11|

)
eid, (99)
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where a,b,c,d ∈ [0,2π]. We claim that D can be written as:

D= exp
(
−i
α

2
σz⊗σz

)(
|0⟩⟨0|+ eiβ |1⟩⟨1|

)
⊗
(
|0⟩⟨0|+ eiγ |1⟩⟨1|

)
eiν (100)

= eiν
(
e−iα2 |00⟩⟨00|+ ei(

α
2 +γ)|01⟩⟨01|+ ei(

α
2 +β)|10⟩⟨10|+ ei(−

α
2 +β+γ)|11⟩⟨11|

)
(101)

= ei(ν−
α
2 +β+γ)

(
e−i(β+γ)|00⟩⟨00|+ ei(α−β)|01⟩⟨01|+ ei(α−γ)|10⟩⟨10|+ |11⟩⟨11|

)
,

(102)

where α,β,γ,ν ∈ [0,2π]. Choosing α= b+c−a
2 ,β = c−a−b

2 ,γ = b−a−c
2 ,ν = d−β− γ+ α

2
we see that any gate that is a product of a SWAP and a diagonal gate in the computational
basis, D, is a dual-unitary XXZ gate U(J), as in equation (8), with single-qubit Z-rotations:

D ·SWAP= U(J)RZ (β)⊗RZ (γ)e
iν . (103)
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