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Observation of Hilbert space fragmentation 
and fractonic excitations in 2D

Daniel Adler1,2, David Wei1,2, Melissa Will2,3, Kritsana Srakaew1,2, Suchita Agrawal1,2, 
Pascal Weckesser1,2, Roderich Moessner4, Frank Pollmann2,3, Immanuel Bloch1,2,5 & 
Johannes Zeiher1,2 ✉

The relaxation behaviour of isolated quantum systems taken out of equilibrium is 
among the most intriguing questions in many-body physics1. Quantum systems out  
of equilibrium typically relax to thermal equilibrium states by scrambling local 
information and building up entanglement entropy. However, kinetic constraints in 
the Hamiltonian can lead to a breakdown of this fundamental paradigm owing to a 
fragmentation of the underlying Hilbert space into dynamically decoupled subsectors 
in which thermalization can be strongly suppressed2–5. Here we experimentally 
observe Hilbert space fragmentation in a two-dimensional tilted Bose–Hubbard 
model. Using quantum gas microscopy, we engineer a wide variety of initial states and 
find a rich set of manifestations of Hilbert space fragmentation involving bulk states, 
interfaces and defects, that is, two-, one- and zero-dimensional objects. Specifically, 
uniform initial states with equal particle number and energy differ strikingly in their 
relaxation dynamics. Inserting controlled defects on top of a global, non-thermalizing 
chequerboard state, we observe highly anisotropic, subdimensional dynamics, an 
immediate signature of their fractonic nature6–9. An interface between localized and 
thermalizing states in turn shows dynamics depending on its orientation. Our results 
mark the observation of Hilbert space fragmentation beyond one dimension, as well 
as the concomitant direct observation of fractons, and pave the way for in-depth 
studies of microscopic transport phenomena in constrained systems.

The eigenstate thermalization hypothesis expresses the notion of 
thermalization in closed quantum systems by stating that eigenstates 
produce expectation values for local observables that are consistent 
with those of a thermal ensemble, and thus lose all memory of the 
initial states during relaxation10,11. Recently, several mechanisms have 
been delineated, where systems defy such thermalizing dynamics 
and the eigenstate thermalization hypothesis, such as integrability 
in one-dimensional systems12,13, many-body localization in models 
with quenched disorder14–16 or the emergence of many-body scars 
for specific initial settings5,17. Another mechanism is the emergence 
of kinetic constraints connected with Hilbert space fragmentation 
(HSF)2–5,18–21. In systems showing HSF, a hierarchy of conservation laws 
exists. First, the full Hilbert space can be divided into (polynomially 
many) subspaces characterized by global quantum numbers such as 
particle number or dipole moment. In the corresponding subspaces 
with constant quantum numbers, local kinetic constraints lead to a 
further fragmentation of the Hilbert space into exponentially many 
smaller subsectors, the so-called Krylov subsectors, which cannot be 
characterized by simple quantum numbers. All states in a single Krylov 
sector are, by definition, dynamically connected, that is, they can be 
reached through unitary time evolution with the Hamiltonian2,3. One 
striking consequence of HSF is the possible existence of fragments 

containing specific states that evade thermalization because of the 
underlying kinetic constraints and the small size of the associated 
Krylov sector.

Another particularly interesting consequence of constrained 
dynamics is the potential emergence of fractons that show restricted 
mobility6,7,9. Fractons can either be immobile under local Hamilto-
nian dynamics or show subdimensional dynamics, such as propaga-
tion in an effectively one-dimensional subspace of two-dimensional 
space6–9,22, as well as anomalous diffusion22–24. Previous theoretical 
studies2,3,6,7,21,25 have also related the emergence of fractons to gauge 
theories associated with local conservation laws and to topological 
defects in elasticity theory26. Relaxation of systems showing fractonic 
excitations is expected to be strongly impeded, leading to non-ergodic 
behaviour and strongly temperature-dependent transport dynam-
ics7,24. Subdiffusive transport in the tilted Fermi–Hubbard model 
has recently been observed experimentally27. Related theoretical 
work has connected the emerging subdiffusive hydrodynamic behav-
iour with the presence of kinetic constraints22,28. The kinetic con-
straints underlying HSF have been experimentally probed directly 
in one-dimensional tilted Hubbard chains29,30. These systems show 
dipole-moment conservation for strong interactions, as a conse-
quence of the interplay between interaction and tilt energy2,3,31–33. 
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Recently, state-specific relaxation behaviour in systems with HSF 
was also observed in one-dimensional Rydberg arrays kinetically 
constrained in the facilitation regime34 and quantum ladders realized 
with a superconducting quantum processor35. The evasion of thermali-
zation tends to depend, frequently qualitatively, on the underlying 
dimensionality, particularly for both integrable or disorder-localized 
systems. Consequently, this naturally motivates the study of the hall-
marks of non-ergodicity in higher-dimensional HSF.

Here we investigate this question for a two-dimensional tilted 
Bose–Hubbard model, where we study the non-equilibrium dynam-
ics owing to HSF in bulk (2D), interface (1D) and point-like defect 
(0D) dynamics, and find a rich and interrelated phenomenology. Our 
experiments leverage the single-site control achievable in a quantum 
gas microscope to prepare specific initial product states in different 
Krylov sectors and measure their dynamics after a quantum quench. 
We find markedly different relaxation dynamics for a chequerboard 
state and a dimer state (Fig. 1c), which are characterized by the same 
quantum numbers but are part of different Krylov subsectors. Moreo-
ver, we prepare and dynamically track defects on top of the otherwise 
immobile chequerboard state. Our measurements reveal the fractonic 
nature of such defects, which manifests itself as strongly constrained, 
subdimensional motion along a one-dimensional manifold in the 
two-dimensional system. Finally, we prepare an interface between 
a chequerboard state and a dimer state and observe strongly asym-
metric dynamics across the interface consistent with the fractonic 
nature of the excitations.

The tilted Bose–Hubbard model has been studied in a number of 
works theoretically31,33,36 and experimentally, focusing on the interest-
ing ground-state phases32,37 or emerging long-range tunnelling dynam-
ics38. The corresponding Hamiltonian is given by
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i j⟨ , ⟩ runs over all nearest-neighbour sites while n̂i j,  is the number 
operator on site i,j. The tunnel coupling between two sites in the lattice 
is denoted as J, and the interaction energy of two bosons occupying 
the same site is U. Applying a strong tilt along the diagonal of the lat-
tice with Δ ≫ J introduces dynamical constraints. A particularly inter-
esting regime is reached in the limit U/J ≫ 1 with resonant tilt Δ = U. 
Here both particle number N and the sum of tilt and interaction energy, 
E = ∑iΔi + Ui, with Δi and Ui the local values of Δ and U on site i, are 
approximately conserved globally such that sectors with fixed quan-
tum numbers (E, N) emerge8 (Fig. 1a). In addition, atoms can only cou-
ple resonantly to already occupied sites and are thus subject to strong 
dynamical constraints. Retaining only terms up to and including sec-
ond order in J/U, these constraints have been recently shown to result 
in HSF8. In particular, HSF can be observed in first order in this model, 
which experimentally allows access to longer timescales compared 
with other models showing HSF based on second-order processes2,3. 
Two states of a single sector with fixed (E, N) that are expected to show 
markedly different thermalization behaviour are the chequerboard 
state and the dimer state shown in Fig. 1c. In the chequerboard state, 
isolated atoms are not coupled to neighbouring sites, and they are 
expected to remain frozen and retain memory of the initial density 
pattern. This contrasts with the dimer state, which is character-
ized by neighbouring pairs and thus features resonances Δ = U that 
can facilitate dynamics and thus lead to a relaxation of the initial  
density pattern.

We start our experiments by preparing a near-unity-filled Mott 
insulator of about 200 bosonic 87Rb atoms in the F m= 1, = −1⟩F  ground 
state (where F is the total angular momentum and mF is the Zeeman 
sublevel) in a single slice of a vertical optical lattice. In the two- 
dimensional plane, we set the Hubbard parameters by controlling 
the depth of a two-dimensional folded horizontal lattice39. We use a 
digital micromirror device to reduce the harmonic confinement 
induced by the optical lattice beams and realize approximately homo-
geneous trapping conditions40. We then exploit single-site address-
ing41,42 to prepare different initial states in sectors with fixed energy 
and particle number (E, N). Next, we adiabatically ramp up a potential 
gradient using a magnetic field to the resonance condition Δ ≈ U and 
then quench the lattice depth to U/J ≫ 1, initiating dynamics (Methods 
and Extended Data Figs. 1 and 2). After a variable evolution time,  
we rapidly ramp up the lattice to freeze the dynamics and then record 
a fluorescence image of the parity-projected occupation per  
lattice site43.

In a first set of measurements, we aimed to directly show the emer-
gence of HSF through the vastly different dynamics of different initial 
states in our model8. We prepare the chequerboard state, the dimer 
state and also the ‘squares’ state, a chequerboard-like arrangement 
where four atoms and four empty sites, respectively, form the building 
blocks of a larger chequerboard-like structure. For perfect initial-state 
preparation, all of these states have the same energy and particle num-
ber. The chequerboard state is part of a small fragment, dynamically 
disconnected from all other states, and thus frozen, whereas the dimer 
state is part of the largest fragment of the Hilbert space. The squares 
state is expected to lie in-between, that is, it is part of a larger but not 
the largest fragment. To probe the relaxation behaviour for each pat-
tern, we evaluate the imbalance defined as
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Fig. 1 | HSF and schematic of the experiment. a, The Hilbert space consists  
of sectors with fixed energy and particle number (conserved quantities), (E, N) 
(grey squares). Adding dynamical constraints to the system, these sectors 
fragment into decoupled Krylov subsectors (pink squares). b, Our system is 
described by a tilted Bose–Hubbard model with a diagonal tilt (realized using  
a magnetic field B) along the x + y direction tuned to resonance with the 
interactions, Δ = U. Tilt and interaction energy are much larger than the tunnel 
coupling J. c, Dimer (blue points, bottom left) and chequerboard state (orange 
points, top right) and first-order processes exemplifying the presence 
(absence) of density-assisted resonant couplings in the lattice for the dimer 
(chequerboard) state.
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where No and Nu are the parity-projected, detected number of atoms 
on initially occupied and unoccupied sites, respectively. The imbal-
ance captures the degree to which the system retains a memory of the 
initially prepared pattern. Tracking the evolution of the states in Fig. 2, 
we find that for the chequerboard, the imbalance is finite and large even 
for the longest evolution times up to t/τ = 80, where τ = ħ/J denotes the 
timescale associated with tunnelling in our experiment (where ℏ is 
Planck’s constant divided by 2π). We attribute the initial small decay 
of the chequerboard imbalance within a few τ to imperfect preparation 
of the initial state and higher-order processes8. By contrast, the dimer 
state initially decays much faster to a strikingly lower imbalance, which 
then only slowly decays towards zero for the longest evolution times. 
The imbalance of the squares pattern is found to lie approximately 
between the two extremal cases. Interestingly, analysing the density 

at the largest evolution times, we observe that the residual imbalance 
for the squares pattern is due to a larger-scale structure in the density 
formed in particular by sites that are inaccessible for the atoms owing 
to the presence of kinetic constraints. For details about the presented 
numerical simulations, see Methods and Extended Data Fig. 7.

The relaxation of the dimer state occurs microscopically through a res-
onant three-site subsystem that is initially connected via first-order tun-
nelling, which effectively allows the dimers to flip their orientation. These 
processes are clearly visible in the time evolution of the density (Fig. 3a),  
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Fig. 2 | Relaxation of the imbalance for different initial states. a, Short-time 
evolution of the imbalance. Imbalance of different initial states as a function  
of evolution time in units of the hopping timescale τ for the chequerboard 
(orange), squares (green) and dimer (blue) initial states with (circles) and 
without (desaturated circles) applied tilt. The imbalance in the case without  
tilt quickly decays to zero regardless of the initial state, whereas the decay 
strongly depends on the initial state once the tilt is applied, a clear signature of 
HSF. Insets: average densities n corresponding to the respective states at the 
indicated times in the 8 × 8 sites region of interest. The shaded, coloured areas 
denote the areas between theoretical calculations under imperfect (dashed 
lines) and perfect (solid lines) conditions. Theoretical data were obtained using 
TeNPy46,47 (for details, see Methods). b, Imbalance for longer evolution times. 
The grey shaded area highlights the data points shown in a. All error bars 
denote the standard error of the mean.
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Fig. 3 | Microscopic study of relaxation. a, Fourier analysis of the average 
densities for the dimer state. The (π, π/2) Fourier component corresponding  
to the dimer state (dark blue) shows a fast decay, whereas the (0, π) Fourier 
component for the CDW along the vertical direction (light blue) increases before 
decreasing again, corresponding to the first hopping processes. b, Fourier 
analysis for the chequerboard state. The (π, π) component decays only slightly 
and remains the dominant component. c, Fourier analysis for the squares state. 
Both the (π/2, −π/2) and the (π/2, π/2) components decay quickly. The (π/2, −π/2) 
component, which describes decay in the direction of the equipotential lines, 
decays to a lower value and quickly becomes indistinguishable from the 
background, whereas the (π/2, π/2) component is above the background even  
at late times. For all initial states, all other components fall in-between the grey 
shaded areas describing the homogeneous background. Insets: the discrete 
two-dimensional Fourier transforms F(k) (orange colourmap) with Fourier 
modes k of the average densities (blue colourmap) for selected times. The 
coloured rectangles highlight the Fourier components shown in the plots. 
Error bars denote the standard error of the mean.
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where the initial dimer pattern evolves into a stripe-like pattern resem-
bling a charge density wave (CDW) before evolving back into the dimer 
pattern. This characteristic relaxation behaviour also becomes appar-
ent in a Fourier analysis of the density. Following a quick initial decay of 
the initial Fourier component (π, π/2) characterizing the dimer state, we 
observe the growth of the (0, π) component corresponding to a CDW 
along the y direction. Subsequently, we also observe a small revival 
of the initial dimer pattern during the relaxation dynamics, both in 
density and Fourier component (Fig. 3a and Extended Data Fig. 3). 
In stark contrast, for the chequerboard state, the (π, π) component 
remains the dominant Fourier component at all times and shows a fast 
initial decay followed by a slow decrease at long times. For the squares 
initial state, two Fourier components with orthogonal orientation are 
relevant. First, a fast relaxation occurs within the squares, whereas the 
coupling between different squares leads to a further slow decay of the 
(π/2, π/2) and (π/2, −π/2) components (as shown in Fig. 3c), consistent 
with the slow relaxation of the imbalance. Here the (π/2, −π/2) compo-
nent shows a faster decay compared with the (π/2, π/2) component and 
becomes consistent with the ‘background’ of all other components at 
late times. By contrast, the (π/2, π/2) component is above the back-
ground level at all times. This is owing to the faster decay of the initial 
state along the direction of the equipotential lines, which corresponds 
to the (π/2, −π/2) component. Orthogonal to this direction, as described 
by the (π/2, π/2) component, the kinetic constraints inhibit this decay, 
as is also visible in the inset in Fig. 2b.

After establishing the strong dependence of the observed dynam-
ics on the initially prepared state, we aimed to study the dynam-
ics of excitations on top of the fragmented states. Owing to the 
kinetically constrained dynamics, defects prepared on top of the 
chequerboard state are expected to show fractonic behaviour8. To 
prepare ‘positive’ (‘negative’) defects, we displace one atom in the 
chequerboard state by one site such that its energy with respect to 
the tilt is increased (decreased). As shown in Fig. 4a for the positive 
defect, the displacement leads to the emergence of new resonant 

processes, rendering the defect mobile with a subsequent dynami-
cal evolution. We make two striking observations when tracking the 
dynamics of positive and negative defects following a quench to finite 
tunnelling. First, both types of defect are confined to movements 
in a one-dimensional subspace along the equipotential lines on the 
lattice grid, as shown in Fig. 4c, left (see Methods and Extended Data 
Fig. 4 for the negative defect). Second, within this one-dimensional 
subspace, the positive defect propagates asymmetrically to only one 
side, which can be understood from the presence of the hole asso-
ciated with the defect, which results in a blocked site in the direct 
vicinity of the prepared defect (Fig. 4c, right). Only for the positive 
defect, this hole is immobile to first order and, for the times studied 
here, remains at the site where it was originally created (Methods and 
Extended Data Fig. 5). The combination of blocked site and immobile 
hole observed in our experiment thus directly explains the asym-
metric expansion. We can observe the (asymmetric) propagation 
in the one-dimensional subspace also directly in the average occu-
pation as a reduction of the chequerboard contrast in the direction 
where the defect can move (Fig. 4b; see Methods and Extended Data 
Fig. 4 for the negative defect). The subdimensional propagation for 
both the positive and the negative defects and the unidirectional 
motion of the positive defect are strong indications that the pre-
pared defects indeed show the expected fractonic properties. For 
details about the presented numerical simulations, see Methods and  
Extended Data Fig. 6.

In a final set of measurements, we studied the relaxation of an inter-
face between the mobile dimer state and the immobile chequerboard 
state. Such a measurement directly probes the impact of kinetic con-
straints for the underlying defects on transport characteristics in 
systems showing HSF. Interestingly, we observe strikingly different 
dynamics depending on the alignment of the interface along or orthog-
onal to the equipotential surfaces. If the interface is aligned with the 
equipotential surface, the chequerboard state remains stable, whereas 
the dimer rapidly decays. Importantly, the interface stays intact, which 
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indicates that—consistent with the subdimensional character of the 
defects—no transport occurs across the boundary. Conversely, if the 
interface is oriented orthogonal to the equipotential lines, a chequer-
board structure starts building up even on the sites initially prepared 
with a dimer pattern. These observations can be directly explained by 
the type and location of defects initially injected into the system, in 
combination with the strongly asymmetric fractonic character of single 
defects (Fig. 5a). In the vicinity of the interface, the mobile atom in each 
initially prepared dimer will propagate into the chequerboard region. 
The remaining atoms in these dimers form a chequerboard pattern, 
effectively increasing the overall area of the then immobile chequer-
board. This is evidenced by the increase of the chequerboard imbalance 
evaluated in the half of the system initially prepared in the dimer state 
(Fig. 5c). Simultaneously, as shown in Fig. 5d, the chequerboard imbal-
ance within the other half of the system drops significantly lower than 
for an independent reference chequerboard measurement without an 

interface or for the interface orientation parallel to the equipotential 
lines, owing to the influence of the mobile defects.

In summary, we have demonstrated the emergence of HSF in a 
two-dimensional tilted Bose–Hubbard model as a consequence of 
strong kinetic constraints. Our measurements provide a comprehensive 
study of HSF in two-dimensional systems through their thermalization 
properties, which differ strikingly for different initial states. Our results 
immediately raise follow-up questions, such as whether the tilted Bose–
Hubbard model is weakly or strongly fragmented. Such a study would 
require measurements for much larger system sizes and a finite-size 
scaling analysis of the final imbalance, or the preparation of a number of 
other initial states from one (E, N) subsector. It would also be interesting 
to study the predicted diffusive and subdiffusive behaviour of negative 
and positive defects8, which would be possible in larger systems with 
longer coherence times. Furthermore, the detailed understanding of 
the complex dynamics emerging at the interface between states from 
different fragments remains open and is left for further work, stressing 
that numerical simulations are limited to evolution times much smaller 
than those accessible in our experiment. In future work, it may also be 
interesting to study HSF in open systems experimentally by adding 
controlled dissipation44, or explore quantum HSF, where the Hilbert 
space fragments are characterized by entangled substates45.
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Methods

Experimental details
Here we briefly describe the initial-state preparation common to all 
measurements. Experiments were performed in a single plane of a 
vertical one-dimensional optical lattice. For the in-plane lattice, we used 
the folded lattice described in ref. 39. As the in-plane lattice is subject 
to disorder and harmonic confinement, we used a digital micromirror 
device to shape the horizontal on-site potential, allowing us to achieve 
approximately homogeneous trapping depths and tunnelling energies 
throughout the system. Using a second digital micromirror device, 
we additionally projected a tapered, rectangular box in the centre of 
this corrected system, to achieve reliable loading and high filling in a 
central area of about 15 × 15 lattice sites.

Starting from these Mott insulators, to prepare the initial states of 
interest, we then performed local addressing over the entire area41,42, 
whereas the data analysis was performed in a smaller region of interest 
(ROI) of either 8 × 8 or 10 × 10 lattice sites at the centre of the system. In 
addition, working with larger systems than the size of the ROI minimizes 
the influence of finite-size and boundary effects. With this preparation 
sequence, we achieved a filling of 0.88(2) per site on the addressed sites 
and a filling of 0.04(2) on the non-addressed sites in the ROI. These 
values were averaged over all datasets and initial configurations.

Magnetic-field gradient calibration
The potential tilt in our experiments was realized by global magnetic 
fields, which allowed us to induce the most homogeneous gradients. 
We calibrated the magnitude and the orientation of the magnetic gra-
dient using spatially resolved microwave spectroscopy on the 
magnetic-field-sensitive transition between the F m= 1, = −1⟩F  and the 
F m= 2, = −2⟩F  hyperfine ground states.

To this end, we prepared a large Mott insulator with all atoms in the 
F m= 1, = −1 ⟩F  state. We then adiabatically ramped up the magnetic 
field to its target configuration and performed narrow microwave 
sweeps at variable centre frequencies. As a consequence, atoms were 
addressed resonantly within a narrow stripe subjected to the same 
magnetic-field strength and  flipped into the F m= 2, = −2⟩F  state,  
which were then removed before imaging. We fitted a two-dimensional 
Gaussian to these stripes of missing atoms, which allowed us to map 
the field strength and gradient orientation versus their position 
(Extended Data Fig. 1a).

To be able to continuously vary the applied gradient strength, we 
used a combination of coils: a single vertical gradient coil and a pair 
of vertical offset coils in Helmholtz configuration with reversed field 
polarity to realize a quadrupole field near the plane of the atoms. For 
the initial calibration, we worked with a fixed gradient coil setpoint 
and tuned the vertical offset and additional in-plane offset fields such 
that the magnetic zero point was at the location of the atoms; subse-
quently, we shifted the zero point by a fixed amount using the in-plane 
offset fields, resulting in an in-plane gradient at the correct angle. We 
then proceeded to calibrate the gradient strength for various gradient 
coil setpoints as described above; for technical reasons, we tuned the 
gradient coil instead of the offset coils. We interpolated between the 
calibrated values by fitting them with the function

g B
g r

g r B B
(Δ ) =

+ (Δ + )
, (3)

0
2

0
2 2
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where r is the displacement of the magnetic field zero to the atoms, g0 
is the maximal gradient strength, B0 describes background fields and 
ΔB is the change of the setpoint of the gradient coil. As we changed ΔB 
by only a few per cent, we can assume g0(B) = constant, which is also 
supported by the fact that the fit function describes the data well, as 
shown in Extended Data Fig. 1b.

On the basis of this curve, we can then rescale the x axis in Extended 
Data Fig. 2 and obtain an absolute value for the gradient strength.

Hubbard parameters
To extract the Hubbard parameters of our folded optical lattice39, we 
made use of two methods. First, we performed amplitude modula-
tion spectroscopy to calibrate the lattice depth. The results were then 
compared with a band-structure calculation to obtain the values for 
the on-site interaction U and the tunnelling energy J. Here we found 
U/J = 21(2) with U = h × 275(5) Hz and J = h × 13(1) Hz. The error bars arise 
from the uncertainty of the lattice-depth calibration itself as well as the 
slightly anisotropic hopping along the two lattice axes39. Second, we 
can independently calibrate the Hubbard parameters using the quench 
dynamics of isolated dimers (see Extended Data Fig. 3 and below). As a 
result, we extracted τ = ħ/J = 10.0(3) ms, equivalent to J = h × 16.0(5) Hz. 
Comparing again with our band-structure calculation, this corresponds 
to U/J = 17(1) with U = h × 260(5) Hz. We attribute the deviations between 
these two calibrations to day-to-day drifts of the lattice beam alignment 
over the entire data-taking period.

For data evaluation, we used τ = 11 ms for all datasets, motivated by 
the long data-taking period of several days for a given dataset. Theory 
calculations (see below) were performed for U/J = 18, which was chosen 
as an intermediate value between the two calibrations.

Tuning the gradient to resonance
For the presented studies, it is important that the applied gradient 
matches the on-site interaction, that is, Δ = U. We benchmarked the 
resonance location by measuring the dimer imbalance as a function 
of the gradient strength for various tunnelling times, as illustrated in 
Extended Data Fig. 2. Here we expected the strongest decay of the dimer 
imbalance, as defined in the main text, when the resonance condition is 
fulfilled. For smaller gradients, we expected a slower drop in imbalance, 
whereas for much stronger gradients, we expected all processes to be 
off-resonant and no dynamics to occur at all, leading to high imbalance 
even at later times.

Our experimental results match the described expectation quali-
tatively. To confirm that we were not accidentally probing at a time 
where the imbalance shows any Δ-dependent oscillations, we probed 
for multiple fixed evolution times (up to t/τ = 40), observing consistent 
behaviour for all of the chosen evolution times. The resonance width 
is inherently limited by the finite tunnelling bandwidth and residual 
potential disorder. Our chosen operation point was located at the 
centre of the resonance and showed the strongest decay, as marked 
by the vertical dashed line in Extended Data Fig. 2. On the basis of our 
gradient calibration presented above and in Extended Data Fig. 1b, this 
point corresponds to a value of Δ = h × 238(3) Hz.

Comparing with our independent band-structure calculation, we 
found a qualitative agreement within 15% to the value of U for both 
calibration methods of the Hubbard parameters described above. In 
particular, U changes only very slowly with the lattice depth and var-
ies by less than J for our calibrations. As such, this gradient setpoint 
remains valid throughout all measurements.

Data analysis
All data, unless specified differently, were analysed as explained in the 
following: we calculated the quantity of interest (imbalance, Fourier 
components, diagonal sums) on the individual experimental shots, 
then averaged over these results to obtain the data shown in the figures. 
For the reference-subtracted defect occupations (Fig. 4b, middle, and 
Extended Data Fig. 4b), we subtracted the densities averaged over all 
shots. To calculate the imbalances in Fig. 5c,d, we chose the boundary 
of the respective ROIs such that atoms close to the interface boundary 
that could be part of either the chequerboard or the dimer were counted 
as belonging to the dimer part of the system. As such, we obtained the 
same number of atoms for both halves of the system and the imbalance 



can, in principle, reach its typical limits of ±1; this explains the perhaps 
unintuitive shape of the ROIs shown in Fig. 5b.

Fourier analysis
To analyse the Fourier components of the average densities, we calcu-
lated the discrete Fourier transform according to
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value at (kx, ky) = (0, 0) is just the sum of the signal; it contains no addi-
tional relevant information and is thus neglected (white rectangles in 
the insets of Fig. 3).

It is noted that the discrete Fourier transform obeys point reflection 
symmetry, that is, F(k) = F(−k). Therefore, in the main text, we plot only 
the parts of the momentum space (kx, ky) that contain non-redundant 
information.

Isolated dimer dynamics
To further understand and investigate the decay of the dimer pat-
tern on a microscopic level, we prepared isolated dimers and tracked 
their evolution after a sudden quench. We isolated the dimers by 
adding empty columns between the atom pairs, as illustrated in the 
inset of Extended Data Fig. 3. For this configuration, the dimers were, 
including only first-order processes, completely decoupled from 
one another, allowing us to study the formation of the horizontally 
oriented dimers described in Fig. 3a. The change in orientation can 
be understood intuitively. Starting from a dimer, the upper atom 
can tunnel onto the neighbouring site by forming a doublon, as 
illustrated in the middle inset of Extended Data Fig. 3. From there, 
the atoms can either rearrange into the original dimer or into the 
flipped dimer, which is energetically degenerate to the original dimer  
configuration.

Extended Data Fig. 3 shows the time evolution of the isolated dimers. 
Here we plot the populations of the three possible states: the vertical 
dimer, the doublon and the horizontal dimer. Although the dimer states 
can be detected unambiguously, we assigned the doublon if all three 
sites were empty. To correct, on average, for cases where no atoms 
were initially prepared, we subtracted the value obtained analogously 
from a reference measurement tracking the initial-state preparation. 
We observed a clear oscillation between the two cases of vertically and 
horizontally oriented dimers, which quickly dephases owing to residual 
potential disorder. We compared the measured data with a numerical 
simulation of a three-state model given by
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where δi, δj, δk describe the disorder strength between adjacent sites. 
For the calculation, we sampled δi, δj, δk from a normal distribution 
around zero and averaged over N = 100 such realizations. The additional 
factor of 2  for the hopping has to be taken into account owing to the 
bosonic enhancement characteristic for indistinguishable bosons. We 
then fitted the calculations to the measured occupation of the vertical 
and horizontal dimers to generate the solid lines in Fig. 3b. Here we 
allowed for the disorder strength, the difference U − Δ, an overall ampli-
tude (which respects normalization) as well as the timescale as free fit 

parameters. The initial time offset was kept fixed at zero. It is noted 
that the doublon occupation was not included in the fits, instead the 
solid line in Extended Data Fig. 3 is given by the model expectation 
using the fit values obtained from fitting the two other curves. We 
observed good agreement between the doublon occupation as 
obtained from our measured data and the numerical model using the 
fit parameters for the two other curves, validating our method of 
extracting the doublon occupation.

From the fit, we extracted the standard deviation of the disorder 
distribution σ = 1.2(1) × J, a deviation from resonance of U − Δ = 0.0(3) × J 
and a timescale of τ = 10.0(3) ms. The latter can serve as a secondary 
way to calibrate the Hubbard parameters of our system (see above).

Negative defect and additional analysis
Here we present our measurements on the negative defect and describe 
the data presented in Fig. 4 and Extended Data Fig. 4 in more detail. We 
also present an alternative way of evaluating the data for the positive 
defect and directly compare the spreading of the defect holes for both 
the negative and the positive defects.

The spreading of the defects can be observed directly in the average 
occupations (Fig. 4b and Extended Data Fig. 4b, leftmost column), 
through a reduced contrast of the (background) chequerboard on sites 
accessible to the defect atoms. This is owing to the following processes. 
First, the defect atoms can move to initially empty sites of the chequer-
board, thereby increasing the average density on these sites. The defect 
atoms can also move onto initially occupied sites of the chequerboard, 
where we then observe a reduced average density owing to parity pro-
jection. Finally, nearby atoms from the background chequerboard can 
become mobile owing to the presence of the defect and move onto the 
site occupied by the defect atom, thus reducing the average density 
on their original sites as well as on the site of the defect atom owing to 
parity projection. For the negative defect in particular, the motion of 
the hole can be observed by an increase of the average occupation on its 
initial site (see also Extended Data Fig. 5b in the following), and a simul-
taneous decrease of the average occupation on the neighbouring sites 
on its equipotential line. By contrast, the hole site for the positive defect 
remains unoccupied. These effects are highlighted by subtracting the 
occupation of a chequerboard state without deterministically created 
defects. Initially empty sites accessible to the defect atoms will feature 
a positive, reference-subtracted value, whereas initially occupied sites 
accessible to the defect atoms will show negative values. The latter, as 
explained above, is due to either parity projection, atoms becoming 
mobile owing to the defect or, for the case of the negative defect, also 
the spreading of the defect hole. When comparing with theory, we 
observed good agreement, especially for the negative defect (Extended 
Data Fig. 4b,c). For the simulations, we did not include any experimental 
imperfections such as disorder and initial-state preparation fidelities. 
We further quantified the directional spreading of the defects by sum-
ming along the diagonals of the reference-subtracted occupations. 
When summing parallel to the equipotential lines, the occupation is 
only different from zero on the diagonals on which the defect atom and 
hole were initially placed. The growth by one additional diagonal for 
times t/τ > 0 can be explained by the above-mentioned processes, that 
is, the defect’s influence on the neighbouring atoms. As an additional 
characterization of the positive defect, we also studied the spreading 
on the zigzag-shaped equipotential line (Extended Data Fig. 5a, inset) 
instead of summing the reference-subtracted signal along the ROI 
diagonals. The result of this analysis is shown in Extended Data Fig. 5a. 
Here we again observe that the spread occurs along only one direc-
tion, as the immobile hole prevents the spread in the opposite direc-
tion. The latter is expected, as the hole can only move by second-order 
processes8. This is also evidenced by the density on the site of the hole 
remaining nearly unchanged.

Looking at this further, by comparing the increase of the densities 
on the sites initially occupied by the defect holes, we can also clearly 
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observe the difference between the positive and the negative defects 
(Extended Data Fig. 5b). For the positive defect, the density increased 
only slightly, whereas for the negative defect we observed an immedi-
ate, fast increase, as here the hole is mobile in first order. Specifically, 
the hole of the negative defect can move in processes where neighbour-
ing particles located on the equipotential line above the defect atom 
hop onto the defect atom and then to the site of the hole (Extended 
Data Fig. 4a, bottom right). The hole’s motion is restricted to its initial 
equipotential line. As for all other measurements on the spreading of 
defects on top of the chequerboard background, we attribute devia-
tions from the theoretical expectations to disorder in the system and 
imperfect initial-state preparation, that is, the presence of additional, 
non-deterministic defects.

Numerical methods for defects
The underlying physics in the Bose–Hubbard model is described by an 
effective Hamiltonian derived in ref. 8, which features HSF. In Extended 
Data Fig. 6, we compare the time evolution of the positive defect under 
this effective Hamiltonian with the time evolution of the original Bose–
Hubbard model. We show the parity-projected on-site occupation 
and have subtracted a perfect chequerboard state (at t/τ = 0, that is, 
without time evolution) to better highlight the differences. It is noted 
that in Fig. 4 and Extended Data Figs. 4 and 5a, we instead subtract the 
theory calculations with a time-evolved version of the chequerboard 
for better comparison with the experimental data. In contrast to the 
effective model, the background chequerboard state is not completely 
frozen under time evolution with the Bose–Hubbard model. Neverthe-
less, this additional dynamics of the background does not strongly 
influence the dynamics of the mobile defect compared with the effec-
tive model. Therefore, we conclude that the underlying physics of the 
Bose–Hubbard model in the chosen limits are well captured by the 
effective model featuring HSF.

Numerical methods for convergence
The data were obtained using tensor-network methods and exact diago-
nalization. All data were calculated by matrix-product-operator time 
evolution using the TeNPy package46,47, except for the time evolution 
with the effective model in Extended Data Fig. 6, which was performed 
with exact diagonalization. In Extended Data Fig. 7, convergence in 
the bond dimension and in the Trotter step is studied. In Extended 
Data Fig. 7a, the evolution of the imbalance for the chequerboard and 
dimer states shows perfect overlap for bond dimensions χ = 256 and 
χ = 300. For both curves, a Trotter step size of dt = 0.001 was used. 
In Extended Data Fig. 7b, the imbalance is compared for Trotter step 
sizes of dt = 0.001 and dt = 0.0005 at a fixed bond dimension of χ = 256.

Numerical methods for imbalance
In Extended Data Fig. 7c, we compare the imbalance of the perfect case 
to the time evolution under imperfect conditions, similar to those of the 

experiment. For the latter, we have included deviations of all relevant 
quantities away from optimum, fidelities for state preparation and an 
additional random on-site potential (see the caption of Extended Data 
Fig. 7 for details). Each time step is averaged over Nav,dimer ∈ [29, 100], 
Nav,squares ∈ [17, 100], Nav,CHB ∈ [10, 100] different preparations. We find 
that the effect of state-dependent dynamics is still clearly visible also 
for experimental conditions. For the dimer state, the impact of experi-
mental conditions is the strongest, which we attribute to the highest 
sensitivity to imperfect state preparation. In the case of the dimer state, 
all atoms have only one nearest neighbour. Removing this neighbour 
directly leads to a decrease in mobility and can induce frozen particles. 
By contrast, the squares state does not suffer from this effect on the 
same level. Each atom has three nearest neighbours, and therefore one 
missing neighbour does not lead to frozen sites.

Data availability
The data shown in the main text and Extended Data figures are available 
from the Edmond repository of the Max Planck Society at https://doi.
org/10.17617/3.FPKWEQ.

Code availability
The code underlying the numerical simulations is available from 
the Edmond repository of the Max Planck Society at https://doi.
org/10.17617/3.FPKWEQ. 
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Extended Data Fig. 1 | Magnetic field gradient calibration. a Fitted center 
positions of the spatial profiles; gradient calibration (strength and 
orientation). Insets show exemplary single shots of the microwave (MW) 
resonances for different centre frequencies. These shots are averaged and 
fitted with a 2D Gaussian to extract the gradient strength and orientation.  
b Gradient strength from the analysis in Extended Data Fig. 1a at different 
gradient coil settings. The magnetic field is interpolated using Eq. (3). The  
inset shows that the angle does not change significantly even when tuning the 
gradient. The vertical, dashed lines indicate the operating point chosen based 
on the measurement in Extended Data Fig. 2.



Article

Extended Data Fig. 2 | Dimer imbalance for different gradient strengths. 
Imbalance of the dimer at t/τ = 2 (dark blue circles) and t/τ = 5 (light blue circles) 
for different gradient strengths. The vertical line indicates the operating point 
chosen for all other measurements. Insets illustrate our expectations about the 
functional shape of the imbalance (see text) based on the possible processes. 
Error bars denote the standard error of the mean (s.e.m.).



Extended Data Fig. 3 | Dynamics of isolated dimers. Preparing an initial  
state of dimers with additional free sites, we can study the dynamics of isolated 
dimer pairs and clearly resolve the oscillatory behavior between the initially 
prepared vertical (dark blue) and the flipped, horizontal (light blue) dimers. 
The blue solid lines are fits to the data according to a three state model. 
Additionally, we can also resolve the occupation of the (grey) doublon state. 
The grey solid line is the expected doublon occupation for the ideal fit 
parameters and serves as a guide to the eye. All error bars denote the s.e.m.
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Extended Data Fig. 4 | Dynamics of fractonic excitations (negative defect). 
a Schematic of the spreading of the defect atom (filled red circle) to first order, 
which can move by forming doublons (dark red shaded area). The defect hole 
(dashed circle) can also move, facilitated by the defect atom (light red shaded 
area). b Anisotropic spreading of the defect analyzed in analogy to Fig. 4. 

c Sums over the reference-subtracted occupations, analyzed and compared to 
theory (red solid lines) in analogy to Fig. 4. Compared with the positive defect, 
the negative defect exhibits symmetric propagation on the sub-dimensional 
manifold. All error bars denote the s.e.m.



Extended Data Fig. 5 | Additional defect data. a Positive defect on 
equipotential surface. Spreading of the defect on the zigzag-shaped 
equipotential line bounded by the black lines shown in the inset. The defect 
atom can move, but only in one direction, whereas the hole remains immobile. 
Grey lines are guides to the eye, based on the points (sampled every 0.25 t/τ) 
where the absolute value of the theory calculation (green solid lines) is larger 
than 0.03. Error bars are on the order of the marker sizes. b Density on the site 
initially occupied by the defect hole. For the negative defect (red), the hole  
can move in first order, whereas the hole of the positive defect (green) is stuck. 
Solid lines are theory calculations. Error bars denote the s.e.m.
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Extended Data Fig. 6 | Dynamics of the positive defect. All figures show  
the parity projected number of particles over time subtracted by a perfect  
(at t/τ = 0) chequerboard state. a Time evolution with the effective Hamiltonian 
derived in ref. 8 using ED. The background chequerboard pattern is completely 
frozen, and only the defect is mobile along the diagonal. b MPO time-evolution 
with the full Bose-Hubbard model shows great agreement with the effective 
time-evolution. In contrast to the effective model, the background 
chequerboard is not completely frozen. Parameters used: dt = 0.0005, χ = 256, 
Nmax = 2.



Extended Data Fig. 7 | Convergence analysis and experimental versus 
“clean” time evolution. a Comparison of the time evolution for variable  
bond dimension χ for identical dt = 0.001. We find perfect agreement between 
χ = 256 and χ = 300, demonstrating the convergence of our code, assuming the 
experimental parameter regime J = 1, U = Δ = 18. b Similar analysis as in Extended 
Data Fig. 7a for χ = 256, yet with variable Trotter step size dt. We again observe 
excellent agreement. c Comparison of clean and imperfect system. Including 
experimental imperfections (circles) leads to a less pronounced decrease of 

the imbalance in comparison to the clean case (solid lines). Even with modified 
parameters, the effect of state-dependent dynamics is still clearly visible. 
Parameters used: Jx = 1, Jy = 1.1 × Jx, U = Δx = Δy = 18 × Jx, δ = [−2 × Jx, 2 × Jx], Nav,dimer ∈ 
[29, 100], Nav,squares ∈ [17, 100], Nav,CHB ∈ [10, 100], fidelity empty = 0.97, fidelity 
filled = 0.87. For all simulations, we have assumed a maximal filling of Nmax =  
2 per site. The on-site potential δ is sampled from a uniform distribution of the 
given width. Note that this is the same data as shown in Fig. 2a in the main text.
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