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Quantum wires with local particle loss: Transport manifestations of fluctuation-induced effects
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We investigate the transport properties of a quantum wire of weakly interacting fermions in the presence
of local particle loss. We calculate current and conductance in this system due to applied external chemical
potential bias that can be measured in experimental realizations of ultracold fermions in quasi one-dimensional
traps. Using a Keldysh field theory approach based on the Lindblad equation, we establish a perturbative
scheme to study the effect of imbalanced reservoirs. Logarithmically divergent terms are resummed using a
renormalization group method, and a novel powerlaw behavior for the conductance as a function of the potential
bias across the wire is found. In contrast to the equilibrium case of a potential barrier in a Luttinger liquid, the
conductance exhibits a scaling behavior, which depends on the interaction strength and on the loss probability.
Repulsive interactions reduce the conductance of the wire while attractive interactions enhance it. However,
perfect reflectivity and transparency are only reached in the absence of particle loss.
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I. INTRODUCTION

One-dimensional systems provide among the most in-
triguing manifestations of quantum manybody effects. The
interplay between gapless quantum fluctuations and low-
dimensional geometry gives rise to unexpected collective
behaviors: for instance, the quasiparticles are bosonic in
nature, irrespectively of the underlying particle statistics, a
separation of spin and charge degrees of freedom occurs, and
observables exhibit scaling behavior controlled by power laws
[1,2]. This universal behavior of such Luttinger liquids [1,2]
was experimentally observed in a number of platforms, in-
cluding nanotubes [3–5], quantum Hall edges [6], cold atoms
[7–9], quantum circuits [10], antiferromagnetic spin chains
[11], and spin-ladder systems [12,13].

By virtue of the one-dimensional geometry, the most nat-
ural experimental protocol to probe these systems is via
transport measurements. This is achieved by coupling the
ends of the wire to two reservoirs (“leads”), imbalanced in
terms of chemical potentials or temperature [14] while in
ultracold-atomic wires this imbalance is created by directly
changing, for instance, density or temperature in the reservoirs
[15–20]. More recently, ultracold atomic experiments were
performed measuring the current through a superconducting
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quantum point contact [21–23]. In particular, these experi-
ments typically operate outside the regime of linear transport
such that linear response is not sufficient to describe the
observed current-bias characteristics and an explicit nonequi-
librium manybody theory is required.

One of the most striking effects visible in transport exper-
iments concerns the presence of impurities within the wire.
Seminal work by Kane and Fisher [24–26] indeed demon-
strated that the conductance of a quantum wire is dramatically
modified by the presence of an impurity. In fact, gapless
excitations can enhance or suppress the backscattering due
to the impurity, leading to dramatic signatures in the wire’s
conductance. For instance, a small impurity leads to com-
plete suppression of the conductance through the wire, thus
dramatically modifying the Landauer paradigm. Furthermore,
the temperature and voltage dependence of the conductance
follows power laws due to the gapless nature of a Luttinger
liquid.

Quantum wires and quantum dots coupled to external
reservoirs have been intensively studied within the last
decades [27,28]. Experimentally these systems are typically
realized in carbon nanotubes, where the dissipation of energy
plays a crucial role [29–32]. In recent years, a series of ex-
periments in cold atomic systems sparked new interest in the
role of a new type of impurities in one-dimensional geome-
tries. There, highly energetic and spatially narrow beams were
shone on the gases, creating a localized single-particle loss
[18,33–36].

These resulting lossy impurities drive the system out of
thermal equilibrium and unveil novel physical effects, such
as the quantum Zeno effect (QZE), observed in a Bose gas
[33,34] and theoretically described in several works [37–47].
The interplay between lossy impurities and coherent dynam-
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FIG. 1. Illustration of a quantum wire coupled to Fermi liquid
reservoirs with chemical potentials μL and μR. The impurity consists
of a coherent barrier of strength b and a dissipation strength γ , which
controls the local particle loss. The extension of the impurity s is
much smaller than the length L of the interacting wire. The two
currents JL and JR are conventionally defined to be positive when
pointing out of the wire. An imbalance V = μL − μR > 0 generates
a net current Jnet = (JR − JL )/2 flowing from the left to the right.

ics was shown to lead to additional phenomena qualitatively
different from their equilibrium counterparts, or with no
counterpart at all, e.g., fluctuation-induced quantum Zeno
effect [48–50], dynamical phase transitions [51–55], orthog-
onality catastrophe [56,57], and exotic nonequilibrium steady
states [58–67]. Further promising directions were investigated
for mobile [68] and dephasing impurities [69,70].

While interaction effects in an unbiased system [48–50]
and nonlinear transport properties in noninteracting lattice
systems [71–73] have been studied, a study of the interplay
of local particle loss, interactions and an explicit external
voltage bias has only been conducted in the context of super-
conducting quantum point contacts [21–23]. The aim of our
work is to provide a theory for the transport in dissipative and
interacting quantum wires by generalizing a renormalization
group approach for the treatment of junctions of interacting
quantum wires [74–78] to the dissipative case. Note that in
the present work, dissipation actually refers to the loss of
particles.

We investigate the transport properties of a fermionic
quantum wire with a local dissipative impurity coupled to
two imbalanced reservoirs (cf. Fig. 1). To include nonlinear
effects and adequately describe the particle loss of the sys-
tem, we apply the Keldysh formalism solving the Lindblad
equation [79,80]. In this framework, we are able to compute
physical observables in the steady state determined by the
interplay between the reservoir imbalance and the lossy im-
purity. In particular, this allows us to evaluate the currents in
the system, and perturbative corrections thereof, due to the
interparticle interaction.

In previous works [48–50], the renormalized scattering
coefficients of a lossy impurity were calculated at the Fermi
surface. There, fully universal fluctuation-induced phenomena
were retrieved. In this work, on the contrary, we directly
compute physical observables, i.e., the current and conduc-
tance of the wire at imbalanced reservoirs. We show that, in
presence of local particle loss, modes below the Fermi energy
contribute to the transport enabled by the replenishing of holes
deep in the Fermi sea created by the lossy impurity, which
leads to a modified behavior.

Our main result is a renormalization group (RG) analysis of
the transport properties in the presence of the dissipative im-

purity. The RG scaling parameter is given in the limit of small
voltages. We find that a small impurity does not completely
suppress the conductance, in contrast to the equilibrium case.
Instead, the conductance is renormalized to a value depen-
dent on the microscopic losses. Remarkably, this renormalized
conductance exhibits a nonmonotonic behavior as a function
of the impurity strength, realizing a novel manybody incarna-
tion of the quantum Zeno effect.

Furthermore, we derive an algebraic behavior of the con-
ductance in terms of the voltage. As the RG flow of the
conductance depends on more microscopic parameters, also
the powerlaw exponent depends on the details of the lossy
impurity. This is qualitatively different from the equilibrium
counterpart for transport through a potential barrier, where the
scaling form is independent of the microscopic details of the
impurity and is solely determined by the interactions in the
lead.

The modified behavior of the conductance in a dissipative
wire is evoked by the interplay of incoherent particle loss and
particle interactions and therefore provides a way to experi-
mentally characterize the full physics of lossy impurities by
conductance measurements.

This article is structured as follows: In Sec. II we present
our model of a wire with local particle loss connected to two
Fermi-liquid reservoirs. In Sec. III we discuss the transport
properties in the noninteracting case. In Sec. IV we then derive
corrections for the currents to first order in particle-particle
interactions. Higher-order effects are taken into account
by the renormalization group analysis of the conductance,
which we discuss in Sec. V.

II. THE MODEL

We consider a one-dimensional gas of spinless fermions
with mass m, interacting via a short-ranged interaction g(x −
y) over a region |x| < L/2. The system is described by the
Hamiltonian

Ĥwire =
∫

x
ψ̂†(x)

−∂2
x

2m
ψ̂ (x) + 1

2

∫
x,y

g(x − y)n̂(x)n̂(y), (1)

with
∫

x ≡ ∫ L/2
−L/2 dx, n̂ = ψ̂†ψ̂ the density operator, and ψ̂†, ψ̂

the fermionic creation and annihilation operators. Throughout
this paper, we set the natural constants e and h̄ to unity.
The boundaries of the wire are assumed to be adiabatically
connected to particle reservoirs with chemical potentials, μL

and μR causing a chemical potential imbalance V = μL − μR

(also referred to as voltage), but equal temperature T . Under
this assumption, no scattering takes place at the interfaces
between the wire and the reservoirs: while this may not be jus-
tified for solid-state wires [81–83], it captures the geometry of
ultracold quantum wires [16,18,19] The reservoirs determine
the particle density and momentum distribution in the wire,
as discussed in further detail in Sec. III. In general, different
reservoirs may give rise to peculiar phenomena, such as An-
dreev reflection for superfluid reservoirs [83], or anomalous
transport for reservoirs of unitary Fermi gases [19].

In the following, we will consider ideal Fermi gases as
reservoirs, for the sake of simplicity. For vanishing inter-
actions (g = 0) the particles in the wire with a positive
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momentum k > 0 (respectively, negative momentum k < 0),
originating from the left (respectively, right) reservoir, are
populated according to the Fermi distributions fL(k) [respec-
tively, fR(k)], with fi(k) = 1/{1 + exp[(εk − μi )/T ]}, i =
L, R, and the quadratic dispersion relation εk = k2/(2m) of
free particles. The coherent and dissipative impurities are
centered at x = 0, and have arbitrary spatial profiles vanishing
for |x| > s/2, with s � L. The coherent part of the impurity
is modeled by the Hamiltonian

Ĥimp =
∫

x
b(x)ψ̂†(x)ψ̂ (x), (2)

with b(x) a function describing its spatial profile. The dissipa-
tive part of the impurity is, instead, described by Markovian
single-particle loss. To model this, it is convenient to describe
the dynamics of the system by a quantum master equation [84]
for the system’s density matrix ρ̂ as

∂t ρ̂ = −i[Ĥ , ρ̂] + D[ρ̂], (3)

with the total Hamiltonian Ĥ = Ĥwire + Ĥimp and the
dissipator

D[ρ̂] =
∫

x
γ (x)

[
ψ̂ (x)ρ̂ψ̂†(x) − 1

2
{ψ̂†(x)ψ̂ (x), ρ̂}

]
, (4)

The full model is illustrated by Fig. 1. In the rest of this work,
we will assume the system to be in the stationary state deter-
mined by the balance between particles refilled and absorbed
by the reservoirs, and particles lost at the dissipative impurity.

III. DISSIPATIVE TRANSPORT
IN THE NONINTERACTING CASE

In the absence of interactions (g = 0), the model is exactly
solvable. In this section, we provide an exact expression for
certain observables relevant to experimental platforms.

A. Multiple-wire basis and Green’s functions

To evaluate observables, it is convenient to use a different
basis for the fermionic operators ψ†(x), ψ (x):

ψ̂ (x) =
{

ψ̂L(−x) for x < 0,

ψ̂R(x) for x > 0,
(5)

where ψ̂
†
i , ψ̂i with i = L, R denote the creation and annihila-

tion operators for particles being at the left (respectively, right)
side of the impurity. Note that the arguments x of the operators
ψ̂i are always positive, as they measure the distance from the
impurity.

A central role is played by the retarded, advanced, and
Keldysh Green’s function, defined, respectively, as [85]

GR(1, 2) = −iθ (t1 − t2)〈{ψ̂ (1), ψ̂†(2)}〉, (6a)

GA(1, 2) = iθ (t2 − t1)〈{ψ̂ (1), ψ̂†(2)}〉, (6b)

GK(1, 2) = −i〈[ψ̂ (1), ψ̂†(2)]〉. (6c)

Here, ψ̂ (α) denotes a fermionic operator evaluated at a gen-
eral argument α with corresponding time tα . In particular, GR

and GA describe the single-particle response of the system
to an external perturbation while GK represents correlations.
At equal times, up to the imaginary prefactor, GK describes

the single-particle covariance matrix, whose eigenvalues are
the particle occupation numbers [79,80]. Thus, many physical
observables can be evaluated from the Green’s functions (e.g.,
densities and currents as discussed below). In the stationary
state, the Green’s functions in frequency and real space can be
computed by solving the corresponding Dyson equations (see
Appendices A and B). The closed form of the resulting
Green’s functions in frequency-position representation, i.e.,
GR,A,K

ω (i, x| j, y) with i, j = L, R, is cumbersome and reported
in Appendix B, Eq. (B8). However, a remarkable feature of the
Green’s functions is their dependence on the scattering matrix
S, which encodes the scattering properties of the impurity as

S(k) =
(

rL
k tk

tk rR
k

)
, (7)

with rL
k (respectively, rR

k ) the reflection amplitudes from the
left (respectively, right) side of the impurity and tk the trans-
mission coefficient.

The values of the coefficients rL
k , rR

k , and tk can be
evaluated by solving a non-Hermitian Schrödinger equa-
tion associated with the impurity [48,49]. While rL

k = rR
k

for inversion-symmetric scenarios (i.e., invariant under x →
−x), tk is always direction-independent [86]. Here, solving
a non-Hermitian Schrödinger equation to derive scattering
properties is only justified in the absence of interactions. For
lossy impurities, the scattering matrix S(k), Eq. (7), is not
unitary anymore.

We treat symmetric impurities, i.e., rL
k = rR

k , however, as
outlined below, the interplay of interactions g, dissipation γ

and a finite voltage V renormalizes a symmetric impurity to an
asymmetric one, rL

k �= rR
k as the inversion-symmetry is broken

by the voltage. As an example for the scattering amplitudes,
consider a pointlike impurity, i.e., b(x) = bδ(x) and γ (x) =
γ δ(x), which will also be used later (cf. Sec. V). In this case,
the coefficients of the scattering matrix S are given by

rk = −b + iγ /2

b − iγ /2 − ivk
, tk = −ivk

b − iγ /2 − ivk
. (8)

The dissipative behavior of the impurity is best recognized by
introducing the loss probability ηk ,

ηk = 1 − |rk|2 − |tk|2 = vkγ

b2 + (γ /2 + vk )2
. (9)

The loss probability ηk depends nonmonotonically on the dis-
sipation strengths γ , which is a single-particle manifestation
of the QZE [48,49].

B. Density profile and Friedel oscillations

The density profile in the quantum wire is an experimen-
tally accessible quantity bearing signatures of the underlying
scattering processes. In fact, the presence of an impurity leads
to the emergence of Friedel oscillations, which, through parti-
cle interactions, modify crucially the transmission properties
of the impurity [48,87].

The density profile ni(x) = 〈ψ̂†
i (x)ψ̂i(x)〉 on either side

of the impurity i = L, R can be evaluated directly from the
Keldysh Green’s function [cf. Eq. (A2)]. It is convenient to
decompose it as ni(x) = nback

i + nosc
i (x), with nback

i the average
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FIG. 2. Friedel oscillations for a finite coherent strength b, dis-
sipation strength γ and different voltages V at zero temperature. As
reference scale for the density profiles n(x) we take the background
density for the coherent case n0 ≡ nback (V, b, γ = 0).

constant density, and nosc
i (x) the spatially oscillating parts.

These read

nback
i =

∫
k>0

[(|ri
k|2 + 1

)
fi + |tk|2 fī

]
, (10a)

nosc
i = 2

∫
k>0

Re
[
ri

ke2ikx
]

fi, (10b)

where ī denotes the contrary reservoir index (i.e., L̄ = R
and R̄ = L). For ki x � 1, where ki = √

2mμi is the Fermi
momentum of the left (respectively, right) reservoir, the os-
cillating contribution in Eq. (10b) acquires the simple form
nosc

i (x) ∝ sin(2kix)/x (cf. Fig. 2). This form of Friedel oscilla-
tions relies on the sharp Fermi edge and a smooth momentum
dependence of the reflection coefficient rL,R

k . Remarkably, due
to the different Fermi momenta in the reservoirs, the oscilla-
tion period, given by π/ki, is different on the two sides of the
impurities. Thus, a finite voltage induces an asymmetry in the
density profile. In absence of impurities, i.e., b = 0 = γ , the
Friedel oscillations vanish and the densities nback

L and nback
R are

given by the average of the reservoir populations. Conversely,
nback

L �= nback
R in presence of an impurity, as shown in Fig. 2,

and a finite density imbalance is established in the two wire
sections.

The background density nback
i exhibits a nonmonotonic de-

pendence on the dissipation strength γ , revealing the quantum
Zeno effect, as, for large γ , the background density nback

L,R rises
again toward the value of the coherent system [48,49].

Finally, we notice that Eq. (10), for V = 0, acquires exactly
the same form which was derived in the quasistationary state
for a quench of a localized loss in an isolated quantum wire
[48,49]. This confirms the picture that, in that case, the far
ends of the wire act as reservoirs of particles, balancing the
losses induced by the dissipative impurity.

C. Currents and the quantum Zeno effect

The average current flowing from the wire toward
the reservoir i = L, R (cf. Fig. 1) is given by Ji(x) =
Im〈ψ̂†

i (x)∂xψ̂i(x)〉/m. Following the conventions given in
Eq. (5), the expression for the current Ji(x) is positive when
it is pointing toward the reservoir i and negative when it is
pointing toward the impurity. It can be evaluated directly from
the equal-time Keldysh Green’s function [cf. Eq. (A3)] and
yields

Ji =
∫

k>0
vk

∑
j

(|Si j |2 − δi j ) f j . (11)

Equation (11) is analogous to the Landauer-Büttiker formula
[14]. Note that Ji does not depend on the position x, but just on
the side of the impurity. For an inversion-symmetric impurity,
the currents acquire the simpler form

Ji =
∫

k>0
vk[|tk|2( fī(k) − fi(k)) − ηk fi(k)], (12)

which shows that currents are induced not only by the imbal-
ance between the reservoirs’ chemical potentials but also from
losses induced by the impurity, encoded by ηk [cf. Eq. (9)]. In
particular, the first term in the integral is mainly determined by
states near the Fermi energy, as in the usual Landauer-Büttiker
theory. Conversely, every state below the Fermi energy con-
tributes to the second term in the integral, which is of purely
dissipative nature, as noted in Ref. [36]. This additional term
is relevant for the net transport through the impurity since it
is asymmetric in the presence of a potential bias. This may be
understood in terms of the mechanism illustrated in Fig. 3:
If particles are lost from the side at lower potential, there
emerges a hole in the Fermi sea that can be filled by a particle
tunneling through the impurity, therefore leading to a net flow
of particles which adds to the transport of particles at the
Fermi edge. It is convenient to introduce the loss current as

Jloss = −JL − JR =
∫

k>0
vkηk ( fL + fR), (13)

FIG. 3. Processes contributing to transport through a lossy im-
purity. In addition to the particles at the Fermi edge, described by
the standard Landauer-Büttiker formula, the bulk fermions contribute
following holes in the Fermi sea that emerge due to the loss of
fermions at all momenta. In the absence of particle loss, these pro-
cesses are not possible due to Pauli blocking in a completely filled
Fermi sea.
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FIG. 4. Loss current Jloss as function of the dissipation strength
γ for different coherent strengths b. For large γ the extinction of
the loss current happens due to the single-particle quantum Zeno
effect. A coherent impurity strength does not qualitatively alter the
nonmonotonous behavior of the loss current through the dissipative
impurity.

which quantifies the rate of particles lost from the wire due to
the lossy impurity. It is evident in Eq. (13) that the value of the
loss current takes into account all the momenta, not only those
close to the Fermi surface. As it includes the loss probability
ηk as the only scattering quantity, the loss current Jloss exhibits
a nonmonotonic dependence on the dissipation strength γ .
In particular, for large γ , the loss current Jloss is suppressed
which is understood by means of the single-particle quantum
Zeno effect. This effect was experimentally verified in Bose
gases [33,34]. The typical nonmonotonic behavior as a func-
tion of γ is displayed in Fig. 4. Recently, such a behavior
has also been found in transport through monitored quantum
dots [88].

Let us now introduce the central physical quantity of our
work, namely the differential conductance, which gives a
measure of how the current reacts to a change of the reser-
voirs’ imbalance V = μL − μR:

Gi = ∂Ji

∂V
, (14)

At low temperatures, the Fermi edge is sharp, i.e., fi(k) ≈
θ (μi − εk ), so the derivative of the current Ji, Eq. (12), with

respect to V peaks up the scattering probabilities at the re-
spective Fermi momenta, since ∂ fi/∂V ≈ ∓δ(k − ki )/(2vk ).
Thus, the differentiated conductance acquires the simple form

Gi ≈ ±1

2
(|tī|2 + |ti|2 + ηi ), (15)

where the scattering coefficients tk and ηk are taken at the
Fermi momentum ki of the corresponding reservoirs, i.e., ti ≡
tki and ηi ≡ ηki . Eq. (15) is given in units of the conductance
quantum Gq = e2/h. From now on, we always give conduc-
tances in units of Gq omitting a factor of 2π . If we further
assume that the microscopic scattering coefficients depend

smoothly on momentum, then for small voltages, V = μL −
μR � (μL + μR)/2 ≡ μ, we can omit the difference between
kL and kR in the argument of the scattering amplitudes and
evaluate them at the average Fermi momentum kF = (kL +
kR)/2 with t ≡ tkF and η ≡ ηkF . Then there is only one inde-
pendent conductance, namely, G = |t |2 + η/2 = GL = −GR.
Let us emphasize that eventually we are interested in the
regime of small voltages, V → 0, as there the RG picture
is valid.

The states from the bulk contribute to the individual
currents JL and JR [cf. Fig. 3 and Eq. (12)]; however,
these contributions exactly cancel each other in the net cur-
rent through the wire, Jnet = (JR − JL )/2 = ∫

k>0 vk (|tk|2 +
ηk/2)( fL − fR). This is the reason why the corresponding con-
ductance G, Eq. (15), depends on the scattering probabilities
at the Fermi level as this is sensitive to a change of chemical
potentials. We will argue below that in presence of interac-
tions, Eq. (15) is not applicable anymore. In other words,
interactions renormalize the conductance G in a different way
than the scattering probabilities |ti|2 and ηi when particle loss
is included.

IV. FIRST-ORDER PERTURBATIVE CORRECTION
TO CURRENTS

In this section, we outline the perturbation theory treating
small interactions g in the nonequilibrium steady state, using
the Keldysh formalism [85]. This constitutes one of the main
results of our article, as it provides a systematic framework to
approach transport in a quantum wires with a lossy impurity.
Since in the dissipative case the currents are also carried by
states far below the Fermi energy (cf. Fig. 3), we do not rely on
a linearized theory [74–78], but include the whole quadratic
dispersion relation. The results from first-order perturbation
theory provide the foundation for the RG analysis in Sec. V.
Readers who are not interested in technical details may di-
rectly proceed with that section.

A. Perturbation theory in Keldysh formalism

In Keldysh formalism, one makes use of the fact that the
density matrix ρ̂(t ), which in our case is given by the quantum
master equation (3), evolves along two time strings. These
are conveniently labeled as forward + and backward branch
−. After applying a Trotter decomposition of the partition
function Z = tr[ρ̂(t )], naturally two distinct fields ψ+ and
ψ− evolve from the forward and backward time contours
[79,80]. In the corresponding Keldysh field theory, the ex-
pressions for the three Green’s functions1 are calculated by
the classical and quantum fields ψc = (ψ+ + ψ−)/

√
2 and

ψq = (ψ+ − ψ−)/
√

2 from the expectation values [85]

GR
ω (i, x| j, y) = −i

〈
ψc

i (ω, x)ψ̄q
j (ω, y)

〉
, (16a)

GA
ω (i, x| j, y) = −i

〈
ψ

q
i (ω, x)ψ̄c

j (ω, y)
〉
, (16b)

GK
ω (i, x| j, y) = −i

〈
ψc

i (ω, x)ψ̄c
j (ω, y)

〉
. (16c)

1i = R, L is the respective wire index which can be generalized to
an arbitrary number of wires meeting in a junction.
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FIG. 5. Noninteracting Green’s functions in diagrammatic
representation.

In a diagrammatic notation, classical fields ψc are illustrated
by solid lines while quantum fields ψq are illustrated by
dashed lines. Our diagrammatic convention for the Green’s
function is given in Fig. 5. At first order in the interaction
g(x − y), the corrections of the Green’s functions, G = G0 +
δG, have the following structure:

δGR ∼ i
∫

g GR
0 G<

0 GR
0 , (17a)

δGA ∼ i
∫

g GA
0 G<

0 GA
0 , (17b)

δGK ∼ i
∫

g
[
GR

0 G<
0 GK

0 + GK
0 G<

0 GA
0

]
, (17c)

where the integral is taken over the internal frequency and
position variables. The lesser Green’s function G< = (GK +
GA − GR)/2 in place of a Keldysh Green’s function is needed
to cure the regularization issue for the Keldysh Green’s func-
tion at equal time GK(t, t ), as discussed in Appendix C.

B. First-order corrections to current

Here we show how to obtain the explicit first-order correc-
tion in the interaction g(x − y) to the currents Ji = J0,i + δJi

with i = L, R. For a better readability and in the style of
Refs. [74–78], we use wire indices i, j, l indicating the re-
spective side of the wire. This, in principle, allows for a
generalization to N wires connected to reservoirs i, j, l =
1, 2, ..., N coupled to each other at the center x < s where the
lossy impurity is located. Moreover, we equip the interaction
potential with a wire index gl (x − y) to theoretically allow
for different interactions in each wire since at the end of the
paper we relate our results to those obtained in a Y junction
[74,75].

The average current is related to the equal-time
Keldysh Green’s function (or more precisely, lesser Green’s
function) as

Ji(x) = 1

m

∫
ω

Re[∂xG<
ω (i, x|i, y)]|x=y. (18)

[cf. Eq. (A3)]. To first order in the interaction gl (x − y),
the frequency integrals over the response Green’s functions
vanish due to causality, i.e.,

∫
ω

δGR
ω = ∫

ω
δGA

ω = 0, such that
the only contribution to the lesser Green’s function G< comes
from the first-order correction to the Keldysh Green’s function
δGK which is shown diagrammatically in Fig. 6. There, the
interaction gl (x′ − y′) is represented by a wiggly line between
the points l, x′ and l, y′. The first-order correction to the cur-

FIG. 6. Keldysh diagrams corresponding to the first-order cor-
rection of the current δJi, Eq. (19). Due to the regularization at equal
times, the inner Keldysh Green’s function is replaced by the lesser
Green’s function.

rent δJi takes then the form

δJi = 1

2m

∑
l

∫
ω,ω′,x′,y′

gl (x
′ − y′)

× Im
[−(

∂xGR
0,ω(i, x|l, x′)

)
G<

0,ω′ (l, y′|l, y′)GK
0,ω(l, x′|i, x)

− (
∂xGK

0,ω(i, x|l, x′)
)
G<

0,ω′ (l, y′|l, y′)GA
0,ω(l, x′|i, x)

+ (
∂xGR

0,ω(i, x|l, x′)
)
G<

0,ω′ (l, x′|l, y′)GK
0,ω(l, y′|i, x)

+ (
∂xGK

0,ω(i, x|l, x′)
)
G<

0,ω′ (l, x′|l, y′)GA
0,ω(l, y′|i, x)

]
,

(19)

where the first two terms correspond to the Hartree dia-
grams, while the second two to the Fock diagrams. These
integrals can be explicitly evaluated by using the noninter-
acting Green’s functions of Eq. (B8) (see Appendix D). The
computation shows that all nonvanishing contributions to the
current evaluated at the end of the wires, i.e., δJi(x > L/2),
can be collected in a regular and a singular one with respect to
the voltage V [cf. Eq. (D6)], i.e., δJi = δJi,reg. + δJi,sing., with
the latter displaying a logarithmic behavior for small voltages,
namely,

δJi,sing = −
∑

j,l

∫
k,k′>0

[g̃l (0) − g̃l (k + k′)]

× Re

[
S̄i jSil S̄′

ll f ′
l Sl j f j

k − k′ + i0+

]
, (20)

where g̃(k) is the Fourier transform of the interaction g(x).
To unveil the singular nature of the previous equation, we

assume T = 0, L → +∞ in the wires, and that the momen-
tum dependence of the interaction potential g̃l (k + k′) and
the scattering amplitudes Sjl (k) are smooth near the aver-
age Fermi momentum kF. We then introduce the interaction
parameter αl ≡ [g̃l (0) − g̃l (2kF)]/(2πvF). Furthermore, we
denote the voltage Vl j = μl − μ j between reservoirs l and
j and the average chemical potential μ = (μL + μR)/2. The
scattering amplitudes Si j are evaluated at the average Fermi
momentum kF. We find

δJi,sing � αl

2π

∑
j,l

Re[S̄i jSil S̄ll Sl j]Vl j ln

∣∣∣∣2μ

Vl j

∣∣∣∣. (21)
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FIG. 7. First-order corrections to the net current δJnet = (δJR −
δJL )/2. The current contributions δJsing, Eq. (20), δJreg, Eq. (D6),
and δJtot = δJsing + δJreg are integrated out numerically. A domi-
nance of the term δJsing over δJreg is evident. Moreover, the results
from the numerical integration give rise to the logarithmic scal-
ing V ln V of the analytical approximation Jnet = α

2π
[Re(t2 r̄2) −

|rt |2]V ln |2μ/V |, Eq. (26), which is plotted in comparison (red line).
The negative sign indicates that the corrections for the net currents
reduce the total currents for repulsive interactions α > 0, i.e., the
correction flows into the opposite direction than the noninteracting
net current. For the numerical integration we used 0+ → 10−4, g =
200, d = 0.14 such that α � 0.12 and the parameters b = 1.0 and
γ = 0.1 for the strength of the impurity.

Note that a similar formula was found in the context of Y junc-
tions [74–78]. While the singular contribution in Eq. (21) is
not, strictly speaking, divergent (since it vanishes for V → 0),
it clearly leads to a divergent contribution in the differential
conductance Gi = ∂Ji/∂V , Eq. (14). We furthermore checked
that δJi,sing represents the quantitatively largest correction to
the total current: to do this, we evaluated numerically both
the contributions as a function of V by using a short-range
interaction g(x) = gexp(−2|x|/d ). The resulting voltage de-
pendence, reported in Fig. 7, confirms that δJi,sing exhibits a
logarithmic scaling V log(V ) and represents the leading term.
For these reasons, in the rest of the paper we will only focus
on δJi,sing.

C. Current correction in terms of scattering amplitudes

Here, we provide an alternative derivation to obtain the
correction to the current, based on the scattering coefficients
Si j . The latter can be derived by the first-order correction of
the retarded Green’s function Eq. (B8a) [48–50,87,89]

δGR
ω(i, x| j, y) = 1

ivk
δSi j (k)eik(x+y). (22)

The dominating term of the first-order correction for the
scattering amplitude can be extracted from δGR

ω(i, x| j, y) and

FIG. 8. Visualization of the scattering events, which contribute to
the current toward reservoir i. In the noninteracting case, the current
Ji, Eq. (11), is carried by direct scattering from reservoir j to i with
amplitude Si j (marked by green arrow). In first-order perturbation
theory, the dominating current correction δJi,sing, Eq. (21) is charac-
terized by an additional rescattering event in wire l with amplitude
S̄ll . So fermions first scatter from j to l with Sl j and then they scatter
from wire l to i with Sil . In the sketch, we use the abbreviation
α̃(k, k′) = (g̃(0) − g̃(k + k′)/(k − k′ + i0+). Also note that the wire
indices i, j, l = L, R can coincide depending on whether we consider
reflection or transmission.

yields

δSi j (k) = − 1

2vk

∑
l

∫
k′>0

[g̃l (0) − g̃l (k + k′)]

×
[

Sil S̄′
ll Sl j

k − k′ + i0+ + δil S′
llδl j

k′ − k + i0+

]
f ′
l , (23)

by using the integral expression Eq. (D8), we can extract the
logarithmic scaling

δSi j (k) = −
∑

l

αl (k)

2
[Sil S̄ll Sl j − δil Sllδl j] ln

∣∣∣∣ k

k − k j

∣∣∣∣.
(24)

In this expression, the scattering matrices are evaluated at
the respective momentum k, i.e., Si j = Si j (k), as well as the
interaction parameter αl (k) ≡ [g̃l (0) − g̃l (k + ki )]/(2πvk ).

Accordingly, the first-order correction to the scattering
probability |Si j |2, is given by δ|Si j |2 = 2Re[S̄i j · δSi j]. Finally,
by inserting δ|Si j |2 into the generalized Landauer-Büttiker for-
mula (11), we correctly obtain the singular correction δJi,sing

to the current, Eq. (20),

δJi,sing =
∫

k>0
vk

∑
j

δ|Si j |2 f j . (25)

Besides providing a possibly simpler way to evaluate current
contributions, this derivation also offers a more transparent
interpretation of the physical processes underlying these cor-
rections. In fact, from Eq. (23) we observe that interactions
generate an additional scattering for a particle incoming from
the ith terminal and moving toward the jth one: this scattering
event is generated by the inhomogeneous density of particles
in the lth terminal. The factor ∝1/(k − k′), at the root of the
logarithmic corrections, arises from the Friedel oscillations
in the particle density [48,49,87,89]. The physical interpre-
tation of the current term δJi,sing, Eq. (20), flowing toward
reservoir i, is now the following (cf. Fig. 8): fermions from
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reservoir j with momentum k and distributed according to
f j (k) scatter from wire j to wire l with amplitude Sl j (k). Due
to the interactions, in wire l they scatter with the renormal-
ized impurity, i.e., with other fermions of distribution fl (k′).
The corresponding scattering amplitude is proportional to
(g̃(0) − g̃(k + k′))Sll (k′) and diverges when the momenta of
the interacting particles are equal k � k′. Finally, the fermions
scatters from wire l to wire i with amplitude Sil (k). So instead
of directly scattering from wire j to wire i, which is the
only process in the noninteracting case, there is an additional
scattering event in wire l between the particle and the Friedel
oscillations.

To conclude, the singular current correction δJi,sing Eq. (20)
can be equivalently obtained from the first-order correction of
the scattering amplitude Si j (k), via the generalized Landauer-
Büttiker formula (11).

V. RENORMALIZATION OF CONDUCTANCES

In this section we show how the first order-correction of
the current δJi,sing, Eq. (21), gives rise to universal logarithmic
scaling which lead to a resummation of higher-order cor-
rections by a RG treatment of differential conductances [cf.
Eq. (14)]. Our approach is inspired by the RG treatment of
scattering amplitudes pioneered in Refs. [87,89] and by the
RG treatment of conductances in junctions of quantum wires
[74–78].

A. Derivation of the RG equations

As promoted before, we apply Eq. (21) to the case of a
single wire (i.e., two terminals), corresponding to a 2 × 2
scattering matrix S(k) [cf. Eq. (7)], and we assume a symmet-
ric impurity, for which rL

k = rR
k . The voltage V = μR − μL

between the wires thus serves as an infrared cutoff and the
average chemical potential μ = (μL + μR)/2 is assumed to
be large compared to the voltage scale. The resulting current
corrections are thus

δJi � ∓ α

2π
[Re(t2r̄2) − |rt |2]V ln

∣∣∣∣2μ

V

∣∣∣∣. (26)

We recall that here scattering amplitudes are evaluated at
the average Fermi momentum, i.e., t ≡ tkF , r ≡ rkF . As a re-
sult, the logarithmically scaling correction to the differential
conductance δG [cf. Eq. (14)] (in units of the conductance
quantum Gq = e2/h) is given by

δG � α[Re(t2r̄2) − |rt |2] ln

∣∣∣∣2μ

V

∣∣∣∣. (27)

From the previous equation it is evident that the perturbative
approach fails for G(V ), since the perturbative correction δG
diverges for V → 0. The logarithmic nature of the correction
thus calls for a resummation of the perturbative series, which
is done by means of the renormalization group [49,50,74–
77,87,89].

So far, we have only constrained the impurity to the sym-
metric case, i.e., rL = rR. From now on, let us additionally
assume that the impurity is δ-shaped, which allows us to
rewrite Re(r̄2t2) = η2/2 − |rt |2 in terms of the loss probabil-
ity η [cf. Eq. (9)]. Further using the relation |r|2 = 1 − |t |2 −

η, the first-order conductance δG can thus be uniquely related
to the zeroth-order expression G0 = |t |2 + η/2 as

δG = 2α

[
η

2
− G0(1 − G0)

]
ln

∣∣∣∣2μ

V

∣∣∣∣. (28)

Let us comment on how the loss probability η affects
the transport properties. As the two corrections δJL and δJR,
Eq. (26), come with an opposite sign, the correction to the loss
current δJloss = −δJL − δJR [cf. Eq. (13)], does not exhibit
a logarithmic scaling with respect to the voltage V . Thus,
in context of transport properties, the loss probability η ap-
pearing in Eq. (28) for the conductance can be considered as
an input parameter. In the limit V → 0, we finally derive the
RG equation of the scale-dependent conductance G() with
logarithmic RG flow parameter  = ln |2μ/V |,

dG

d
= 2α

[
η

2
− G(1 − G)

]
. (29)

This equation is one of the central results of our work and it
generalizes the results of Refs. [87,89] to the case of wires
with localized particle loss.

In previous works [48–50], the RG analysis was set up in
terms of the perturbative corrections of the scattering param-
eters, whose corrections scale logarithmically near the Fermi
surface, i.e., δSk ∼ ln |k − kF| [cf. Eq. (24)]. On the contrary,
transport phenomena are described by a logarithmic scaling
with respect to the voltage ∼ ln |V | [cf. Eqs. (26) and (28)].
Inserting the corrections of the scattering parameters (scaling
with ln |k − kF|) into Eq. (15) does not yield the correction of
the conductance δG, Eq. (28) (scaling with ln |V |) [see also
discussion in Appendix F]. It is crucial that V → 0 is only
taken when initializing the RG equation (29). This is because
the loss current, which is mainly carried by contributions
from the bulk (cf. Fig. 3), does not exhibit a singular correc-
tion and thus provides η as an additional parameter in the RG
flow of the conductance.

B. Solutions of the RG equation

The RG equation (29) is exactly solvable [cf. Eq. (E1)],
and its flow is depicted in Fig. 9. It predicts two lines of fixed
points depending on the bare loss probability η,

G∗
± = 1

2 (1 ∓
√

1 − 2η). (30)

This is in stark contrast with the result for coherent impurities,
where only two fixed points are allowed, namely G∗ = 0, 1.
Due to the dissipation, the loss probability η is an additional
marginal parameter in the RG analysis. The fixed points are
thus a function of η, which is shown in Fig. 9. The initial
conditions of the RG flow are given by the noninteracting con-
ductance G( = 0) = G0 = |t |2 + η/2. The conditions for a
scattering matrix of a δ-shaped impurity [cf. Eq. (8)] lead to
the boundary condition G(1 − G) � η/2 [cf. Eq. (E3)] which
is exactly bound by the manifold of the fixed points G∗, and is
valid for the whole RG flow G(). Thus, the RG flow reduces
the conductance G for repulsive interactions α > 0 to the
minimally allowed value and enhances it for attractive interac-
tions α < 0 to the maximally allowed value for a certain loss
probability η (cf. Fig. 10). However, ideal reflectivity G∗ = 0
and transparency G∗ = 1, which are found in the Kane-Fisher
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FIG. 9. Visualization of the RG flow for the conductance G in a
two-lead wire including localized particle loss: For a δ impurity, the
allowed range for conductances is within the parabola G(1 − G) =
η/2 which is bounded by the fixed points G∗ and corresponds to
purely dissipative impurities. For repulsive interactions α > 0 the
conductance is decreased to the lower red branch of the parabola,
whereas for attractive interactions α < 0 the conductance is en-
hanced to the upper blue branch of the parabola. The Kane-Fisher
result is only retrieved in the dissipationless case, i.e., η = 0.

problem [24,25], are only reached in the case of a coherent
impurity where η = 0 (cf. Fig. 9).

From the conditions of the δ impurity [cf. Eq. (8)], we
know that the equality G0(1 − G0) = η/2 is valid in the
case of a purely dissipative impurity, where the scattering
amplitudes are real-valued [cf. Eq. (8)]. In this case, the con-
ductance G0 already coincides with the fixed point G∗ and
interactions g do not renormalize it anymore. Interpreting our
results as a renormalization of the impurity, one can state
that interactions maximize the dissipation in such a way that
the system is only affected by the dissipation γ and not by
the coherent barrier strength b. Indeed, the conductance fixed
points G∗, which are driven by the particle interactions g ex-
hibit a nonmonotonic behavior with respect to the dissipation
strength γ (cf. Fig. 10). This is a new incarnation of the
fluctuation-induced quantum Zeno effect [48,49]. We suggest
that such a dependence can be measured in experimental
setups like ultracold fermionic atoms in an optically shaped
quantum point contact [18,36]. We derive a new nonuniversal
conductance scaling by linearizing the RG equations (29)
around the fixed point, i.e., G = G∗

± + δG,

dδG

d
= −2|α|

√
1 − 2η δG (31a)

⇒ δG ∝ |V |2|α|√1−2η. (31b)

Note that the parameter space of δ impurities restricts the
loss probability to η < 1/2 such that the nonuniversal scaling
exponent 2|α|√1 − 2η stays well defined [50].

In comparison to the conductance scaling in the Kane-
Fisher problem [24,25], the conductance G of the dissipative
wire now also depends on the loss probability η, which is an

additional marginal parameter in the RG flow, and therefore
on the microscopic values of the coherent strength b and
dissipation strength γ of the impurity.

This result provides an additional perspective to previously
considered setups [48–50] without explicit external particle
reservoirs. There, we neglected the nonequilibrium effect of a
finite voltage V and calculated the renormalization of the lossy
impurity directly on the level of the scattering probabilities
|t |2 and |r|2 at the Fermi momentum. However, here the focus
is on measurable transport properties, which in the dissipative
case, also depend on states inside the Fermi sea. That is why
the dissipative conductance scales differently than predicted
by the scattering amplitudes evaluated at the Fermi momen-
tum. The multiplicative form of the exponent is unusual and
comes from the fact that the dissipation strength acts both as
a marginal coupling in the RG flow and as a cutoff scale. In
that sense, we find agreement with Ref. [50]. We may gain
understanding of that finding by describing the particle loss
by a Y junction with one empty reservoir as discussed in the
next section.

C. Comparison with Y junctions

In this section, we briefly comment how our results are
related to those obtained in a junction of three wires cou-
pled to reservoirs with chemical potentials μ1, μ2, and μ3,
a so-called Y junction (cf. Fig. 11). Using the bosonization
technique, junctions of Luttinger liquids have been studied
at arbitrary interaction strength in the limit of weak hop-
ping between the wires [90]. As we are mainly interested in
the effect of particle loss, we follow Refs. [74–77], where
junctions out of equilibrium are studied in the limit of weak
interactions.

In the noninteracting case, the transport through a dissi-
pative wire can be identified with the transport through a Y
junction [71]. This is because the noninteracting net current
Jnet = (JR − JL )/2 is only carried by states at the Fermi level
[cf. Sec. III]. When interactions are included, however, scat-
tering events with the dissipation-induced holes inside the
bulk (cf. Fig. 3) renormalize the conductance in a way which
depends on the chemical potential μ, i.e., the voltage drop
between the wire and the environment. We will argue that the
identification between a dissipative wire and a Y junction is
valid in the limit μ3 � μ1, μ2.

We refer to the wire between reservoirs with μ1 and μ2

as the main wire which can be identified with our dissipa-
tive wire between the reservoirs μL and μR. The third wire
toward the reservoir with μ3, also considered as secondary
wire, has been absent in our consideration. Instead of this,
we used the theory of an open quantum system. However,
our loss probability η can be identified with the transmission
probability |τ |2 between the main wire and the secondary
wire. Whereas the Y junction is characterized by a unitary
3 × 3-scattering matrix S(k), in our case of a dissipative wire
we consider nonunitary dynamics where particles may only
leave the system at the impurity but not enter such that we
have a nonunitary 2 × 2-scattering matrix [cf. Eq. (7)]. In
a Y junction it is useful to express the transport properties
with respect to the voltage Va = μ1 − μ2 across the main wire
and the voltage Vb = (μ1 + μ2)/2 − μ3 across the secondary
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FIG. 10. Fixed points G∗
± (solid lines) for the conductances in units of the conductance quantum Gq dependent on the dissipation strength

γ for different coherent strengths b for repulsive (left panel) and attractive (right panel) interactions. The corresponding noninteracting values
G0 of the conductances are shown as thin dotted lines. The nature of the of fluctuation-induced quantum Zeno effect is represented in the sense
that for large dissipation strength γ , the conductance is lowered (repulsive case) or enhanced (attractive case); however, ideal reflectivity and
transparency are only retrieved for γ = 0.

wire. With this consideration it makes sense to define two dif-
ferent conductances, namely Ga = ∂ (J2 − J1)/∂ (2Va) along
the main wire and Gb = ∂J3/∂Vb along the secondary wire.
The corresponding noninteracting values for the currents Ji,
Eq. (11), as well as the logarithmically scaling corrections δJi,
Eq. (21), can be determined within the formalism developed
above as it can be extended to a wire index i = 1, 2, 3 (cf.
Appendix G).

The interplay of different voltage scales Va and Vb makes it
ambiguous how to arrange a cutoff scale  to set up a useful
RG equation. Taking the limit of Va,Vb → 0 where a single
cutoff scale  can be identified again [75–77], and assuming
vanishing interactions in the secondary wire, α3 = 0, repro-
duces the universal fixed points (G∗

a, G∗
b ) = (0, 0) and (1,0) of

ideal reflectivity and ideal transparency from the Kane-Fisher

FIG. 11. Relation between the Y junction and the dissipative
quantum wire. In the limit of two small voltages Va,Vb → 0 of a Y
junction, we end up in the one-dimensional system where the Kane-
Fisher fixed points of ideal reflectivity and transparency are found.
In the limit of Vb � Va, we arrive at the dissipative wire between two
leads. There we find the RG flow of a dissipative conductance where
ideal reflectivity and transparency are not reached anymore.

problem [24,25]. Hence, the secondary wire does not qual-
itatively alter the conduction properties of the primary wire
through a potential barrier.

However, here we consider a different limit: a dissipa-
tive wire is realized in the limit of V = Va � Vb = μ, i.e.,
μ3 → 0. Here the average chemical potential μ of the main
wire introduces an additional macroscopic scale which is fixed
and thus only one scale parameter  = ln |2μ/V | remains
logarithmically divergent for small voltages V . In this physical
scenario, there is only one scaling conductance Ga left which
can be identified with the dissipative conductance G discussed
before. Besides that, the macroscopic chemical potential dif-
ference ensures the third wire to be effectively noninteracting
due to the absence of particles, leaving the dissipation Marko-
vian. We know from the previous section that in this scenario
unitarity of the reduced scattering matrix is lost because the
loss probability, as an additional nonuniversal parameter, pre-
vents the RG flow from reaching the case of ideal reflectivity
and transparency, respectively. This is the reason why in our
consideration of a dissipative quantum wire we end up in a
new nonuniversal power law for the dissipative conductance
G [cf. Eq. (31)]. The problem still exhibitis scaling, but the
scaling exponent depends on a microscopic parameter of the
system, η. This is similar to the behavior found in critical
phases, such as the Berezinskii-Kosterlitz-Thouless phase in
low temperature systems with U (1) symmetry [91].

We conclude that a Y junction where one of the reservoirs
is kept empty acts just like a two-terminal junction with a
localized particle loss in terms of the conduction properties.
Hence, such a Y junction is a potential way of experimentally
realizing a lossy impurity and measuring conductance through
such a conductance. This might be the way to go in solid
state setups, while in ultracold atoms the setup described with
two reservoirs and a loss induced by other mechanisms may
be more natural. An overview of the relation between a Y
junction and the dissipative wire with a finite voltage is given
in Fig. 11.
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VI. CONCLUSION

In this article, we develop a theory to compute observables
in a quantum wire featuring a localized particle loss and
attached to imbalanced reservoirs. We distinguish between the
loss current, which gives rise to the particles moving out of the
system, and the net current through the wire.

Whereas in previous works [48,49] we analyzed scatter-
ing properties, here, our focus is on the transport properties
through a lossy impurity including imbalanced reservoirs us-
ing a RG scheme in terms of the voltage. In presence of
particle loss, the RG scaling behavior of the conductance
cannot be solely understood in terms of the system’s scattering
properties at the Fermi edge since the loss current is also car-
ried by states far below the Fermi energy. When interactions
are taken into account, this affects the net current as well.
We find a logarithmically scaling behavior for the net current
at first-order to the interactions in terms of the voltage, but
not for the loss current. As a result, the conductance of the
dissipative wire scales logarithmically with respect to the volt-
age, but the loss probability appears as an additional marginal
parameter to the conductance’s RG flow. Consequently, the
conductance’s fixed points depend on the loss probability and
the renormalized values inherit information on the strength
and shape of the potential in addition to the strength of the
interactions.

In particular, the conductance never renormalizes to zero
(ideal reflectivity for repulsive interactions) or to the conduc-
tance quantum (ideal transparancy for attractive interactions),
but rather to finite values, which depend nonmonotonically on
the strength of the impurity, realizing an incarnation of the
fluctuation-induced quantum Zeno effect. Moreover, we find
that the conductance’s dependence on the interaction occurs
with a different power law compared to the equilibrium case,
which not only depends on the strength of the interactions,
but also on the bare loss probability. This is similar to the
modified power law of a dissipative impurity of a finite size
[50]. We conclude that the combination of localized parti-
cle loss and finite parameters like voltage or impurity shape
modifies the universal scaling properties around ideal reflec-
tivity and transparency, which was retrieved in previous works
[24,25,48,49,87,87,89].

Additionally, the localized particle loss in a quantum wire
can also be mimicked by a third reservoir with a large voltage
drop. Our results can be retrieved by the conductance scaling
in a so-called Y junction, i.e., the connection of wires coupled
to three reservoirs [74–78], when one of the voltages is kept
large leading to a more nonuniversal behavior.

On the experimental side, our results provide concrete pre-
dictions, such as the impact of the impurity strength on the
exponent in the scaling of the conductance through the im-
purity or the value of the conductance for different interaction
strengths. We suggest that our theory could be tested in current
experimental setups with cold atoms [15–23]. Furthermore,
our results confirm that the presence of the localized particle
loss modifies the critical properties of the corresponding equi-
librium theory, implying that the setting of lossy impurities
in quantum wires is an ideal setting to study quantum critical
behavior out of equilibrium that is clearly different from its
equilibrium counterpart.
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APPENDIX A: SIMPLIFICATION OF REGULARIZATION
ISSUES INSIDE THE GREEN’S FUNCTIONS

In the absence of interactions and the impurity (g, b, γ =
0), the Hamiltonian, Eq. (1), takes the simple form Ĥ0 =∫

dx ψ̂† ∂x
2m ψ̂ and the fermionic operators are stationary, i.e.,

ψ̂ (t ) = e−ik2/(2m)(t−t ′ )ψ̂ (t ′). The corresponding noninteracting
Green’s functions are then obtained as

GR
0,ω(x, y) =

∫
t
eiωt (−i)θ (t )〈{ψ̂ (t, x), ψ̂†(0, y)}〉 =

∫
k

eik(x−y)

ω + i0+ − k2/(2m)
�

√
2m

2i

ei
√

2mω|x−y|
√

ω
, (A1a)

GK
0,ω(x, y) =

∫
t
eiωt (−i)〈[ψ̂ (t, x), ψ̂†(0, y)]〉

=
∫

k
eik(x−y) −2i0+

(ω − k2/(2m))2 + (0+)2
[θ+(k)hL(k2/(2m)) + θ+(−k)hR(k2/(2m))]

�
∫

k
eik(x−y)(−2π i)δ(ω − k2/(2m))[θ+(k)hL(k2/(2m)) + θ+(−k)hR(k2/(2m))]. (A1b)

In the last step, we neglect the regularization 0+ which results from solving the time integrals. The fermionic distribution
functions are defined as hi(ω) = 1 − 2 fi(ω) and originate from the expectation values in momentum space 〈ψ̂†(k)ψ̂ (k′)〉 =
δkk′ [θ+(k) fL(k2/(2m)) + θ+(−k) fR(k2/(2m))] with the strict Heaviside function θ+(k > 0) = 1, θ+(k � 0) = 0. This means,
fermions with a positive (respectively, negative) momentum come from the left (respectively, right) reservoir with chemical
potential μL (respectively, μR).
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In the stationary state, the particle density n and current J are formulated as frequency integrals of the lesser Green’s function
G<

ω (x, y) = −i〈ψ̂†(ω, y)ψ̂ (ω, x)〉:
n(x) = 〈ψ̂†(t, x)ψ̂ (t, x)〉 =

∫
ω

〈ψ̂†(ω, x)ψ̂ (ω, x)〉 = −i
∫

ω

G<
ω (x, x), (A2)

J (x) = 1

m
Im〈ψ̂†(t, x)∂xψ̂ (t, x)〉 = 1

m
Im

∫
ω

〈ψ̂†(ω, x)∂xψ̂ (ω, x)〉 = 1

m

∫
ω

Re(∂xG<
ω (x, y))|x=y. (A3)

The lesser Green’s function fulfills the identity G< = 1
2 (GK +

GA − GR). As the difference of the response Green’s func-
tions,(

GA
0 − GR

0

)
ω

(x, y) �
∫

k
eik(x−y)2π i δ(ω − k2/(2m)), (A4)

and the Keldysh Green’s function GK contain a momentum
integral over δ(ω − k2/(2m)) the relevant frequencies are au-
tomatically related to the on-shell condition ω = k2/(2m) and
therefore are reduced to nonnegative values. Consequently,
the frequency integral over the Keldysh Green’s function can
be rewritten as∫

ω

GK
0,ω(x, y)

� −i
∫

k>0
[eik(x−y)hL(k2/(2m)) + e−ik(x−y)hR(k2/(2m))]

=
∫

ω>0

√
2m

2i
√

ω
[ei

√
2mω(x−y)hL(ω) + e−i

√
2mω(x−y)hR(ω)].

(A5)

By use of the momentum k = √
2mω and velocity vk = k/m,

let us rewrite the Green’s functions as

GR
0,ω(x, y) = 1

ivk
eik|x−y|, (A6a)

GK
0,ω(x, y) = 1

ivk
[eik(x−y)hL + e−ik(x−y)hR]. (A6b)

In these expressions, the frequencies ω are restricted to posi-
tive values.

Finally, it is useful to change into the notation where the
position variables on the two sides of the impurity are re-
stricted to positive values x > 0 [cf. Eq. (5)] and the Green’s
functions GR,A,K

0,ω (x, y) of Eq. (A) are translated to 2 × 2-

matrix expressions GR,A,K
0,ω (i, x| j, y) depending on which side

of the impurity i, j = L, R the two position variables x, y
belong to

GR
0,ω(i, x| j, y) = 1

ivk
[δi je

ik|x−y| + σi je
ik(x+y)], (A7a)

GK
0,ω(i, x| j, y) = 1

ivk

[
δi jh je

−ik(x−y) + σ 1
jihie

−ik(x+y)

+ σ 1
i jh je

ik(x+y) +
∑

l

σ 1
jlσ

1
il hle

ik(x−y)

]
,

(A7b)

with the x-Pauli matrix σ 1.

APPENDIX B: DYSON EQUATIONS
FOR IMPURITY ACTION

The contribution of the impurity to the Keldysh action
Simp is calculated by a Trotter decomposition of the quantum
master equation (3) [79,80] and takes the following form:

Simp =
∫

x,t

(
ψ̄c, ψ̄q

)( 0 −ū(x)
−u(x) iγ (x)

)(
ψc

ψq

)
, (B1)

with the impurity potential function defined as u(x) = b(x) −
i
2γ (x). Whenever the Keldysh action takes the quadratic form:

S =
∫

ω,x,y

(
ψ̄c, ψ̄q

)
ω,x

(
0 PA

PR PK

)
ω,x,y

(
ψc

ψq

)
ω,y

, (B2)

the corresponding Green’s functions are often exactly solv-
able. The matrix P inside the action is the inverse of the matrix
of Green’s functions G [85], i.e.,

P =
(

0 PA

PR PK

)
=

(
GK GR

GA 0

)−1

= G−1. (B3)

Note that the advanced Green’s function is the adjoint of
the retarded one, i.e., GA

ω (x, y) = [GR
ω (y, x)]∗. We start from

the Green’s functions GR
0 ,GA

0 ,GK
0 in Eqs. (A7) belonging to

the unperturbed quadratic Hamiltonian Ĥ0 and thus to the
action components PR

0 , PA
0 , PK

0 , i.e., P0 · G0 = 1. The impact
of the additional action term Simp, evoked by the impurity
with the components PR

imp = −u = (PA
imp)† and PK

imp = iγ [cf.
Eq. (B1)], onto the Green’s functions can be taken into ac-
count by the following Dyson equations:

1 = (
PR

0 + PR
imp

)
GR ⇒ GR = GR

0 − GR
0 PR

impGR, (B4a)

1 = (
PA

0 + PA
imp

)
GA ⇒ GA = GA

0 − GA
0 PA

impGA, (B4b)

GK = −GRPKGA

= GK
0 − GRPK

impGA − GRPR
impGK

0 − GK
0 PA

impGA

+ GRPR
impGK

0 PA
impGA. (B4c)

As an example for an asymmetric impurity, we ex-
plicitly calculated the impurity Green’s functions for to
different δ peaks with u(x) = uLδ(x + s) + uRδ(x − s) and
γ (x) = γLδ(x + s) + γRδ(x − s). In the notation with two
wires i = L, R, this is translated to potential terms ui(x) =
uiδ(x − s) and γi(x) = γiδ(x − s). In this particular case, the
Dyson equations (B4) are exactly solvable by the following
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matrix expressions:

GR
ω (x, y) = (

GR
0

)
ω

(x, y) + (
GR

0

)
ω

(x, s)u
(
1 − (

GR
0

)
ω

(s, s)u
)−1(GR

0

)
ω

(s, y), (B5a)

GK
ω (x, y) = (

GK
0

)
ω

(x, y) − GR
ω (x, s)

i

2
γGA

ω (s, y) + GR
ω (x, s)u

(
GK

0

)
ω

(s, y) + (
GK

0

)
ω

(x, s)u†GA
ω (s, y)

+GR
ω (x, s)u

(
GK

0

)
ω

(s, s)u†GA
ω (s, y), (B5b)

where the impurity matrices are defined as

u =
(

uL 0
0 uR

)
, γ =

(
γL 0
0 γR

)
. (B6)

The components of the corresponding scattering matrix S(k) [cf. Eq. (7)] are

tk = v2
k

uLuRe4iks − (uL − ivk )(uR − ivk )
, (B7a)

rL,R
k = e−2iks[uLuR(1 − e4iks) − ivk (uL,R + e4iksuR,L )]

uLuRe4iks − (uL − ivk )(uR − ivk )
. (B7b)

These can be explicitly read off in the expressions obtained from Eq. (B5). The resulting impurity Green’s functions are
given as

GR
ω (i, x| j, y) = 1

ivk

[
δi je

ik|x−y| + Si je
ik(x+y)

]
, (B8a)

GK
ω (i, x| j, y) = 1

ivk

[
δi jh je

−ik(x−y) + S̄ jihie
−ik(x+y) + Si jh je

ik(x+y) +
(

�i j +
∑

l

S̄ jl Sil hl

)
eik(x−y)

]
, (B8b)

where we introduced the Hermitian matrix � = 1 − SS† as
indicator for nonunitarity of the scattering matrix S. Note that
for ideal transmission, i.e. tk = 1 and rL

k = rR
k = 0 = �i j , the

scattering matrix coincides with the Pauli matrix Si j = σ 1
i j

and we obtain the Green’s functions of Eqs. (A7). Due to the
regularization issues discussed in Appendix A, the frequency
ω is viewed as positive. Equations (B8) are thus general
expressions for the Green’s functions in presence of a lossy
impurity with nonunitary scattering matrix S.

In Fig. 12 we illustrate how the terms of the retarded
Green’s function can be understood in terms of scattering
processes.

We finally emphasize that the results illustrated here can be
readily extended to a junction of N > 2 wires by allowing in-
dices i, j = 1, 2, ..., N [74–78], which represents the building
block for networks of quantum wires [92].

APPENDIX C: REGULARIZATION IN FIRST-ORDER
PERTURBATION THEORY

In this section, we briefly want to justify why time-
local Keldysh Green’s functions have to be replaced by the
lesser Green’s function GK(t ′, t ′) → 2G<(t ′, t ′) in perturba-
tive Keldysh field theory. To our knowledge, this issue is not
discussed sufficiently in the common literature.

In the basis of the fermionic fields ψ+, ψ− of the plus
and minus time contour [85], the Keldysh action which cor-
responds to the Hamiltonian of quartic interactions Hint =

∫
x,y gψ†ψ†ψψ takes the form

iSint = − i

2

∫
x,y,t

g(x − y)[−ψ̄+(x, t )ψ̄+(y, t )ψ+(y, t )ψ+(x, t )

+ ψ̄−(x, t )ψ̄−(y, t )ψ−(y, t )ψ−(x, t )].

(C1)

Quantum-quantum correlations always vanish, i.e., 〈ψqψ̄q〉 =
0, and the time-local response functions add up to zero, i.e.,
GR(t, t ) + GA(t, t ) = 0, because of causality. In first-order
perturbation theory of the interactions, there are consequently
one Hartree and one Fock diagram for each of the response
Green’s functions GR and GA and two Hartree and Fock
terms for the Keldysh Green’s function GK (cf. Fig. 13).
The first-order corrections of the Green’s functions have the
form

δGR ∼ i

2

∫
g GR

0 GK
0 GR

0 , (C2a)

δGA ∼ i

2

∫
g GA

0 GK
0 GA

0 , (C2b)

δGK ∼ i

2

∫
g
[
GR

0 GK
0 GK

0 + GK
0 GK

0 GA
0

]
. (C2c)

However, it turns out that the time-local Keldysh Green’s
function GK(t ′, t ′) showing up in the center of the first-order
diagrams (cf. Fig. 13) is a pathology of the field theory.
Keeping track of the regularization δt from the Trotter de-
composition in the +/− time contour basis inside the Keldysh
action cures this artifact. The more precise interaction term of
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the Keldysh action Sint, Eq. (C1), is

iSint = − i

2

∫
x,y,t

g(x − y)[−ψ̄+(x, t + δt )ψ̄+(y, t + δt )

× ψ+(y, t )ψ+(x, t )

+ ψ̄−(x, t )ψ̄−(y, t )ψ−(y, t + δt )ψ−(x, t + δt )].

(C3)

Similar to before, one can write down the first-order correction
of the Green’s functions Gσσ ′ = −i〈ψσ ψ̄σ ′ 〉 in the basis of
+/− fields while keeping the time regularization δt . Only at
the end, δt is neglected again by the identifications:

G++(t ′, t ′ + δt )
δt→0−→ G<(t ′, t ′),

G−−(t ′ + δt, t ′)
δt→0−→ G<(t ′, t ′). (C4)

Finally, one arrives at the corrected expressions for the
first-order Green’s functions given in the main text [cf.
Eq. (17)]. To conclude, time-local Keldysh Green’s func-
tions have to be replaced by the lesser Green’s function
GK(t ′, t ′) → 2G<(t ′, t ′) to handle regularization issues in
Keldysh field theory properly.

FIG. 12. The scattering processes belonging to the retarded
Green’s function GR, Eq. (B8a), can be understood in a clear physical
way: The probability amplitude of a particle traveling from position
y to position x inside the same wire i = j is e±ik(x−y) where the sign
depends on the direction of motion: toward the impurity for y > x
and away from the impurity for x > y (dark blue). For processes
involving a scattering event at the central impurity from wire j to
wire i, the scattering amplitude Si j is further taken into account. Thus,
there is an overall amplitude e+ik(x−0)Si je−ik(0−y) = Si jeik(x+y) (light
blue).

FIG. 13. First-order Green’s functions in diagrammatic
representation.

APPENDIX D: CALCULATION DETAILS FOR DERIVING
THE CURRENT CORRECTION

Here, we provide some details how to derive the explicit
dominating part of the first-order current correction δJi,sing,
given in the main text [cf. Eq. (20)], by starting with Eq. (19).

For a structured analysis of δJi, Eq. (19), we introduce the
following notation of the noninteracting Green’s functions,
Eq. (B8):

G�
ω (i, x| j, y) = 1

ivk

∑
σi,σ j

C�
σiσ j

(ω, x, y)eik(σix−σ j y), (D1)

where the sign factors σi, σ j = ± indicate the direction of
the annihilated/created fermion in the corresponding scatter-
ing process (cf. Fig. 12), and � = R, A, K. The coefficients
C�

σiσ j
(ω, x, y) are specific for each Green’s function and de-

pend on both the scattering matrix Si j (k) and the Fermi
distributions fi(k) of the Fermi liquid reservoirs. The values
for these coefficients C�

σiσ j
are listed in Table I.

Due to the definitions of velocities, i.e., vk = ∂ω/∂k, vk′ =
∂ω′/∂k′, the frequency integrals over ω,ω′ inside the current
formula δJi, Eq. (19), can be easily substituted to momentum
integrals over k, k′ such that the term is rewritten as

δJi = −1

4

∑
l

∫
k,k′

Im[I (x, i, l, k, k′)], (D2)

where the inner term I (x, i, l, k, k′) includes the integrals over
the inner positions x′, y′ and the different products over three
Green’s functions (∂xG�1 )G�2G�3 . Each of the three inte-
grated Green’s functions (∂xG�1 )G�2G�3 contains two sign
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TABLE I. Coefficients C�
σiσ j

inside the four noninteracting
Green’s functions in Eq. (D1). For each sign of momentum direc-
tion σi, σ j = ± of the annihilated/created fermion and the specific
Green’s functions � = R, A, K, <, there is an implicit sum over
repeated indices l .

σiσ j CR
σiσ j

CA
σiσ j

CK
σiσ j

C<
σiσ j

+− Si j 0 Si jh j −Si j f j

++ δi jθ (x − y) −δi jθ (y − x) �i j + S̄ jl Sil hl −S̄ jl Sil fl

−− δi jθ (y − x) −δi jθ (x − y) δi jh j −δi j f j

−+ 0 −S̄ ji S̄ jihi −S̄ ji fi

factors σi, σ j such that in total 26 = 64 terms arise for each
product of Green’s functions due to the six sign factors
σ1, ..., σ6 = ±1. We are interested in the current corrections
at the end of the wire, i.e., outside of the interacting region
δJi(x > L/2). The causal structure of the Green’s functions
(cf. Table I) yields to vanishing contributions for half the terms
as CR

−+ = 0 = CR
−− and CA

+− = 0 = CA
−− for x > L/2 > x′, y′.

Further terms vanish as they sum up to a real number before
taking the imaginary part Im[(∂xG�1 )G�2G�3 ]. Finally, only
the 8 terms with σ1 = σ6 = +1 survive, which is a quarter of
the before-mentioned 64 terms. Physically this corresponds
to the fact that outside of the interacting region x > L/2 the
incoming part of the current is not affected by the interactions
inside the wires such that only the outgoing part of the current
is renormalized.

The integrals over the inner position variables x′, y′ are
executed by the following three steps:

1. We transform the position variables x′, y′ into a
center-of-mass X = 1

2 (x′ + y′) and a relative coordinate ξ =
x′ − y′ such that we get an integral expression of the
form: ∫ L/2

s
dX

∫ l (X )

−l (X )
dξ gl (ξ )ei(Kξ+2K̃X ), (D3)

where the boundaries ±l (X ) depend on the center-of-mass
coordinate X and K = K (k, k′), K̃ = K̃ (k, k′) are linear com-
binations of the momenta k, k′.

2. As the interaction potential gl (ξ ) is short-ranged, we can
expand the limits l (X ) → ∞ and solve the integral over the
relative coordinate ξ by making use of the Fourier transform
g̃l (K ) = ∫

ξ
gl (ξ )e−iKξ .

3. The integral over the center-of-mass coordinate X can
be approximated as follows:∫ L/2

s
dX e2iK̃X = eiK̃L − e2iK̃s

2iK̃
K̃L→∞,K̃s→0−→ − 1

K̃ + i0+ .

(D4)

TABLE II. Momentum terms K̃ and Hartree and Fock potentials
corresponding to different inner sign factors σ2, ..., σ5.

σ2σ3σ4σ5 K̃ g̃(K ) Fock g̃(K ) Hartree

− + −+ k + k′ g̃(0) g̃(k − k′)
− + −− k′ g̃(k) g̃(−k′)
− + ++ k g̃(k′) g̃(k)
− + +− 0 g̃(k + k′) g̃(0)
− − −+ k g̃(−k′) g̃(k)
− − −− 0 g̃(k − k′) g̃(0)
− − ++ k − k′ g̃(0) g̃(k + k′)
− − +− −k′ g̃(k) g̃(k′)
+ + −+ k′ g̃(−k) g̃(−k′)
+ + −− −k + k′ g̃(0) g̃(−k − k′)
+ + ++ 0 g̃(−k + k′) g̃(0)
+ + +− −k g̃(k′) g̃(−k)
+ − −+ 0 g̃(−k − k′) g̃(0)
+ − −− −k g̃(−k′) g̃(−k)
+ − ++ −k′ g̃(−k) g̃(k′)
+ − +− −k − k′ g̃(0) g̃(−k + k′)

The regularization 0+ is caused by physical infrared cutoffs
like a finite length L or a finite temperature T . An overview of
the resulting values of K and K̃ for the different values of the
sign factors σ2, ..., σ5 [cf. Eq. (D1)] in the products of Green’s
functions (∂xG�1 )G�2G�3 inside the Eq. (19) for the correction
of the current δJi is provided in Table II.

The eight nonvanishing terms correspond to the following
combinations of sign factors:

(σ2, σ3, σ4, σ5) = (+,+,+,−), (+,+,−,−), (+,−,−,−),

× (+,−,+,−), (−,−,−,+),

× (−,−,+,+), (−,+,+,+),

× (−,+,−,+). (D5)

By using the definition of the Hermitian loss matrix �li

and the distribution function h j = 1 − 2 f j we have �li +∑
j S̄i jSl jh j − δlihl = −∑

j (S̄i jSl j − δi jδl j )2 f j . With further
manipulations according to Im(z) = −Im(z̄) and g̃(k) =
g̃(−k), the terms (− − ++) and (+ + −−) can be com-
bined to δJi,sing (D6a), (− + −+) and (+ − +−) to δJi,reg,1,
Eq. (D6b), and finally (− + ++), (− − −+), (+ + +−), and
(+ − −−) to δJi,reg,2, Eq. (D6c). So all the nonvanishing
current contributions are summarized in the following three
contributions:

δJi,sing = −
∑

j,l

∫
k,k′

(g̃l (0) − g̃l (k + k′))Re

[
Sil S̄

′
ll (S̄i jSl j − δi jδil )

f ′
l f j

k − k′ + i0+

]
, (D6a)

δJi,reg,1 = −
∑

j,l

∫
k,k′

(g̃l (0) − g̃l (k − k′))Re

[
Sil S

′
ll (S̄i jSl j − δi jδil )

f ′
l f j

k + k′ + i0+

]
, (D6b)

δJi,reg,2 = −
∑
j,l,n

∫
k,k′

(g̃l (k
′) − g̃l (k))(|S′

ln|2 + δln)Re

[
Sil (S̄i jSl j − δi jδil )

f ′
n f j

k + i0+

]
. (D6c)
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For the sake of clarity in notation, we omitted the momen-
tum dependence of the scattering matrix and the population
functions, i.e., Si j = Si j (k), S′

i j = Si j (k′) and fi = fi(k), f ′
i =

fi(k′).
In the first term, Eq. (D6a), the contribution proportional

to δi jδil vanishes which can be seen from interchanging the
momentum variables k ↔ k′. Consequently, we have the ex-
pression given in the main text [cf. Eq. (20)].

We are interested in the limit where the voltage is the small-
est energy scale and serves as a physical infrared cutoff. We
assume T = 0 so that fl (k) = θ (kl − k), and infinite system
size L → +∞.

The universal behavior of the integral expression for the
current δJi,sing can be discussed in the limit of small voltages
V = μL − μR � μ between the two reservoirs, i.e., similar
Fermi momenta on the two sites of the impurity kL � kR.

We assume that the momentum dependence of the interac-
tion potential g̃l (k + k′) and the scattering amplitudes S jl (k) is
smooth near the average Fermi momentum kF = (kL + kR)/2
so that their values can be well approximated at the Fermi
momentum as the integral is dominating there. The double
momentum integral can then be approximated by the follow-
ing form: ∫ k j

0
dk

∫ kl

0
dk′ 1

k − k′ + i0+

� −iπkF + (k j − kl ) ln

∣∣∣∣ kF

k j − kl

∣∣∣∣. (D7)

By extracting only the logarithmic part, we obtain the current
correction δJi,sing given in the main text [cf. Eq. (21)].

The derivation of the correction for scattering amplitudes
δSi j , Eq. (23), from the correction of the retarded Green’s
function δGR, Eq. (22), works in an analogous way to the
derivation of the current δJi,sing, Eq. (20), from the Keldysh
Green’s function δGK and has been extensively discussed in
the literature [48–50,87,89]. Similar to the integral expression
(D7), the logarithmic scaling for the scattering amplitude,
Eq. (24), can be extracted by the following approximation:∫ k j

0
dk′ S(k′)

k − k′ + i0+ � S(k) ln

∣∣∣∣ k

k − k j

∣∣∣∣. (D8)

APPENDIX E: CONDUCTANCE RG EQUATION

The exact solution of the conductance RG equation (29) for
the noninteracting conductance value G0 = |t |2 + η/2, which
is valid for a δ-shaped impurity, yields

G() =
√

1 − 2η

2
tanh

[
artanh

2G0 − 1√
1 − 2η

− α
√

1 − 2η

]

+ 1

2
. (E1)

From the condition t = 1 + r of a δ impurity [cf. Eq. (8)], we
have η = −2Re(r̄t ), and thus

η2 = 4Re(r̄t )2 = 4|rt |2 cos(2(φr − φt ))

� 4|rt |2 = 4|t |2(1 − |t |2 − η), (E2)

where φr and φt are the phases of the scattering amplitudes r
and t , respectively. Inserting the noninteracting conductance
G0 = |t |2 + η/2 yields

G0(1 − G0) � η

2
, (E3)

which allows only initial values G0 inside the parabola given
by the fixed points G∗. Thus, the inequality (E3) is valid for
the renormalized conductance G(), too.

APPENDIX F: RENORMALIZATION OF SCATTERING
AMPLITUDES

Let us write down the first-order corrections for the scat-
tering amplitudes δSi j (k), Eq. (23), of a single wire with
a dissipative impurity and 2 × 2 scattering matrix S(k),
Eq. (7). For zero voltage, there is only one distinct Fermi
momentum kF and the first-order corrections of the scattering
amplitudes are

δtk = −α

2

(
rL

k r̄Ltk + tk r̄RρR
k

)
ln

∣∣∣∣ kF

k − kF

∣∣∣∣, (F1a)

δrL,R
k = −α

2

(
rL,R

k r̄L,RrL,R
k + tk r̄R,Ltk − rL,R

)
ln

∣∣∣∣ kF

k − kF

∣∣∣∣.
(F1b)

These terms can be nicely understood by the occurring
scattering processes visualized in Fig. 6.

At the Fermi momentum kF, i.e., t ≡ tkF and rL,R ≡ rL,R
kF

,
the following RG equations are derived by setting the RG
scale parameter  = ln |kF/(k − kF)|:

dt

d
= −α

2
(|rL|2 + |rR|2)t, (F2a)

drL,R

d
= −α

2
(|rL,R|2rL,R + t2r̄R,L − rL,R). (F2b)

For a symmetric impurity rL = rR, one obtains the RG flow
equations for the transmission |t |2 and loss probability η =
1 − |r|2 − |t |2 of a dissipative δ impurity:

d|t |2
d

= −2α|t |2(1 − |t |2 − η), (F3a)

dη

d
= α

(
|t |2 + 3

2
η − 1

)
η. (F3b)

These equations were broadly analyzed in our previous
work [48,49]. There it was shown that the renormalized loss
probability vanishes at the Fermi momentum η = 0 for both
kinds of interactions. In particular, for repulsive interactions
α > 0 the vanishing of the loss probability is understood by
the fluctuation-induced quantum Zeno effect.

Now let us write down the RG flow of the combination of
the zeroth-order conductance, namely |t |2 + η/2:

d

d

(
|t |2 + η

2

)
= −2α

[η

2
−

(
|t |2 + η

2

)(
1 − |t |2 − η

2

)]

− α

[
η

2
(|t |2 − 1) + 11

4
η2

]
. (F4)

This RG equation is valid for the scattering probabilities
at the Fermi momentum, where the scale parameter  =
ln |kF/(k − kF)| was introduced after the voltage was set to
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zero. Equation (F4) is not equivalent to the RG equation (29)
of the conductance G as that was derived from the current
and in terms of a scale parameter  = ln |V/μ|. To describe
dissipative transport properties properly, one cannot exclu-
sively rely on the scattering probabilities renormalized at the
Fermi energy as the loss current is also governed by states far
below that.

APPENDIX G: FLUCTUATION-INDUCED
QZE IN A Y JUNCTION

This section mainly summarizes and comments the dis-
cussion given in Refs. [74–77]. The Y junction, consisting
of three wires i = 1, 2, 3 coupled to each other at a central
impurity, is characterized by the following unitary scattering
matrix:

S(k) =
⎛
⎝rk tk τk

tk rk τk

τk τk ρk

⎞
⎠. (G1)

The transmission probability |τk|2 plays the role of the loss
probability ηk of a dissipative wire and fulfills the same con-
ditions, i.e., |τk|2 = 1 − |tk|2 − |rk|2 = −2Re(r̄ktk ) = ηk .

In the case of a noninteracting third wire, i.e., α3 = 0, from
Eq. (21) the logarithmically scaling parts of the three currents
pointing toward the reservoirs are given by

δJ1,sing = α

(
2|rt |2 − 1

2
|τ |4

)
Va ln

∣∣∣∣2μ

Va

∣∣∣∣
+α|rτ |2V13 ln

∣∣∣∣ 2μ

V13

∣∣∣∣ − α

2
|τ |4V23 ln

∣∣∣∣ 2μ

V23

∣∣∣∣, (G2a)

δJ2,sing = α

(
−2|rt |2 + 1

2
|τ |4

)
Va ln

∣∣∣∣2μ

Va

∣∣∣∣
−α

2
|τ |4V13 ln

∣∣∣∣ 2μ

V13

∣∣∣∣ + α|rτ |2V23 ln

∣∣∣∣ 2μ

V23

∣∣∣∣, (G2b)

δJ3,sing = α|τ |2
(

1

2
|τ |2 − |r|2

)(
V13 ln

∣∣∣∣ 2μ

V13

∣∣∣∣ + V23 ln

∣∣∣∣ 2μ

V23

∣∣∣∣
)

.

(G2c)

With the translation of voltages V13 = Vb + 1
2Va, V23 = Vb +

1
2Va, the definition of the logarithmic scales

a = ln

∣∣∣∣2μ

Va

∣∣∣∣, b+ = ln

∣∣∣∣∣ 2μ

Vb + 1
2Va

∣∣∣∣∣,
b− = ln

∣∣∣∣∣ 2μ

Vb − 1
2Va

∣∣∣∣∣, (G3)

and the structure of the currents 1
2 (J2 − J1) = GaVa + GabVb,

J3 = GbaVa + Gb, the corrections for the conductances can
be obtained as specific coefficients in Eq. (G2). With the
noninteracting conductances G0,a = |t |2 + |τ |2/2, G0,b = 2η

and G0,ab = 0 = G0,ba, the corrections for the conductances

can be brought into self-consistent expressions [74,75]:

δGa = 2α

[
G0,b

4
− G0,a(1 − G0,a)

]
a

−α
G0,b

8
(1 − G0,a)(b− + b+), (G4a)

δGb = α
G0,b

2

[
G0,b

2
− (1 − G0,a)

]
(b+ + b−),

(G4b)

δGab = −α
G0,b

4
(1 − G0,a)[b− − b+], (G4c)

δGba = α
G0,b

2

[
G0,b

2
− (1 − G0,a)

]
(b+ − b−).

(G4d)

Note that in the limit of a large bias voltage from the main
wire to the third reservoir Vb → μ ⇒ b± → 0, the conduc-
tance Gb along the secondary wire does not renormalize and
we are left with the conductance δGa of the main wire which
can be identified with the conductance δG in the main text [cf.
Eq. (28)] as Gb corresponds to 2η in that case.

However, in the limit Va,Vb → 0 where the logarithmic
scales can be roughly identified with each other, i.e.,  ≡
a � b+ � b−, we receive the RG flow equations exten-
sively discussed by Aristov and Wölfle [75]:

dGa

d
= 2α

(
Gb

4
− Ga(1 − Ga)

)
− α

Gb

4
(1 − Ga),

(G5a)

dGb

d
= α Gb

(
Gb

2
− (1 − Ga)

)
, (G5b)

dGab

d
= 0 = dGba

d
. (G5c)

In that case, the corresponding RG flow recovers the fixed
points (G∗

a, G∗
b ) = (0, 0), (1, 0) of ideal reflectivity and trans-

parency from the Kane-Fisher problem [24,25]. Our new
insight is that the RG equations of conductances in a Y
junction with small voltages Va,Vb, Eq. (G5) are equivalent
to the RG equation of a dissipative impurity at zero voltage,
Eq. (F3). As long as the voltage Vb between the main wire and
the third reservoir is kept small, indeed, we can identify the
renormalized values of the Y junction conductances with the
scattering probabilities:

dGa

d
= d

d

(
|t |2 + 1

2
η

)
, (G6a)

dGb

d
= d

d
2η. (G6b)

Consequently, the fluctuation-induced quantum Zeno ef-
fect of a dissipative impurity is also found in a Y junction
with small voltage biases.

The identification of conductances and scattering proba-
bilities, Eq. (G6), is broken in a truly dissipative wire as
discussed in the main text.
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