Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Temperature-Dependent Electronic Spectral Functions From Band-Structure Unfolding

MPG-Autoren
/persons/resource/persons301234

Quan,  J.       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons294671

Zhang,  Min-Ye
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21413

Carbogno,  Christian       
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2411.04951.pdf
(Preprint), 1013KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Quan, J., Zhang, M.-Y., Scheffler, M., & Carbogno, C. (in preparation). Temperature-Dependent Electronic Spectral Functions From Band-Structure Unfolding.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-4383-E
Zusammenfassung
The electronic band structure, describing the periodic dependence of electronic quantum states on lattice momentum in reciprocal space, is a fundamental concept in solid-state physics. However, it's only well-defined for static nuclei. To account for thermodynamic effects, this concept must be generalized by introducing the temperature-dependent spectral function, which characterizes the finite-width distributions of electronic quantum states at each reciprocal vector. Many-body perturbation theory can compute spectral functions and associated observables, but it approximates the dynamics of nuclei and its coupling to the electrons using the harmonic approximation and linear-order electron-phonon coupling elements, respectively. These approximations may fail at elevated temperatures or for mobile atoms. To avoid inaccuracies, the electronic spectral function can be obtained non-perturbatively, capturing higher-order couplings between electrons and vibrational degrees of freedom. This process involves recovering the representation of supercell bands in the first Brillouin zone of the primitive cell, a process known as unfolding. In this contribution, we describe the implementation of the band-structure unfolding technique in the electronic-structure theory package FHI-aims and the updates made since its original development.