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ABSTRACT
The ability to integrate semantic information into the context of a sentence is essential for human communication. Several stud-
ies have shown that the predictability of a final keyword based on the sentence context influences semantic integration on the 
behavioral, neurophysiological, and neural level. However, the architecture of the underlying network interactions for semantic 
integration across the lifespan remains unclear. In this study, 32 healthy participants (30–75 years) performed an auditory cloze 
probability task during functional magnetic resonance imaging (fMRI), requiring lexical decisions on the sentence's final words. 
Semantic integration demands were implicitly modulated by presenting sentences with expected, unexpected, anomalous, or 
pseudoword endings. To elucidate network interactions supporting semantic integration, we combined univariate task- based 
fMRI analyses with seed- based connectivity and between- network connectivity analyses. Behavioral data revealed typical se-
mantic integration effects, with increased integration demands being associated with longer response latencies and reduced 
accuracy. Univariate results demonstrated increased left frontal and temporal brain activity for sentences with higher integration 
demands. Between- network interactions highlighted the role of task- positive and default mode networks for sentence processing 
with increased semantic integration demands. Furthermore, increasing integration demands led to a higher number of behav-
iorally relevant network interactions, suggesting that the increased between- network coupling becomes more relevant for suc-
cessful task performance as integration demands increase. Our findings elucidate the complex network interactions underlying 
semantic integration across the aging continuum. Stronger interactions between various task- positive and default mode networks 
correlated with more efficient processing of sentences with increased semantic integration demands. These results may inform 
future studies with healthy old and clinical populations.

1   |   Introduction

Efficient language comprehension in everyday communication 
requires the integration of context- dependent information into 

sentence meaning, a process known as semantic integration. 
There is consensus that the combination of words into a sentence 
generates expectations about further information (e.g., Kutas 
and Hillyard 1980), and the human brain constantly generates 
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context- dependent predictions about the subsequent input (for 
a review, see Ryskin and Nieuwland  2023). Numerous studies 
have shown that the integration of a final keyword into a sen-
tence is influenced by the preceding context (e.g., Hagoort 2006; 
Hagoort and Indefrey  2014; Obleser and Kotz  2010; Rogalsky 
and Hickok 2009; Zhu et al. 2013). However, expectations about 
subsequent input are frequently violated in everyday commu-
nication, for example, when the less dominant meaning of an 
ambiguous word is processed or when we perceive jokes or 
ironic statements. Such situations require additional integra-
tion processes during lexical access (Franzmeier, Hutton, and 
Ferstl 2012).

At the behavioral level, higher semantic integration demands 
are reflected in increased response latencies and error rates 
(e.g., Baumgaertner, Weiller, and Büchel  2002; Kutas and 
Federmeier  2000; Kutas and Hillyard  1980; Lau, Phillips, 
and Poeppel  2008). At the neurophysiological or neural level, 
integration demands result in increased N400 amplitudes 
(DeLong, Quante, and Kutas 2014; Federmeier 2007; Kutas and 
Federmeier  2000; Kutas and Hillyard  1980; Lau, Phillips, and 
Poeppel 2008) and increased task- related activity in frontal and 
temporal brain areas (Baumgaertner, Weiller, and Büchel 2002; 
Hartwigsen et al. 2017). Previous neuroimaging studies investi-
gating semantic integration in sentence endings with different 
levels of expectancy (cloze probability) showed increased ac-
tivity in key areas of the semantic network, including the left 
anterior inferior frontal gyrus (aIFG), posterior superior tem-
poral sulcus/middle temporal gyrus (pSTS/MTG), and anterior 
superior temporal sulcus/MTG (aSTS/MTG) for sentence end-
ings with high integration demands, such as unexpected and 
anomalous endings (Baumgaertner, Weiller, and Büchel  2002; 
Hartwigsen et al. 2017).

To elucidate the mechanisms underlying semantic integration, 
it is essential to briefly explore the field of semantic cognition 
research. In the current literature, semantic cognition is typi-
cally defined as the effective use of acquired knowledge about 
the world (Badre and Wagner 2002; Hoffman, McClelland, and 
Lambon Ralph 2018; Jefferies 2013; Lambon Ralph et al. 2017). A 
growing body of evidence suggests that successful semantic cog-
nition is based on two interacting components (Jefferies 2013; 
Lambon Ralph et al. 2017): (1) Semantic knowledge representa-
tion refers to the ability to store information about the meaning of 
objects, concepts, and words. (2) Semantic control processes reg-
ulate how aspects of our knowledge are retrieved and used in a 
specific context or during a specific task (Hoffman, McClelland, 
and Lambon Ralph 2018; Yee and Thompson- Schill 2016). All 
semantic tasks require the interaction of knowledge and control 
processes, although the weighting between both components 
may vary depending on the task. Moreover, studies investigating 
semantic cognition in the lesioned (e.g., Jefferies and Lambon 
Ralph 2006) or aging brain (e.g., Hoffman 2018; Hoffman and 
MacPherson  2022) suggest that both aspects can be impaired 
independently and rely on different neural systems. For exam-
ple, older people generally show well- preserved semantic knowl-
edge, whereas semantic control processes deteriorate with age 
(Grady  2012; Hoffman  2018; Hoffman and MacPherson  2022; 
Martin, Saur, and Hartwigsen 2022; Martin et al. 2023; Morcom 
and Johnson 2015; Wu and Hoffman 2022). At the neural level, 
several studies have shown that the anterior temporal lobes 

(ATLs) function as a store of conceptual representations and are 
largely responsible for semantic knowledge through interaction 
with modality- specific association regions (Hoffman et al. 2017; 
Humphreys et al. 2015; Mion et al. 2010; Patterson, Nestor, and 
Rogers 2007; Pobric, Jefferies, and Ralph 2007). The controlled 
use of semantic knowledge, on the other hand, is primarily asso-
ciated with the activation of a neural network that includes the 
inferior frontal gyrus (IFG), the posterior middle temporal gyrus 
(pMTG), and inferior parietal regions including the intraparietal 
sulcus (Noonan et al. 2013; Rodd, Davis, and Johnsrude 2005; 
Thompson- Schill et al. 1997).

Since these brain regions align well with the above discussed 
regions involved in semantic integration under increasing de-
mands, this leads to the assumption that higher semantic in-
tegration demands require enhanced control processes within 
the semantic network. Several studies have investigated net-
work connectivity during the performance of semantic tasks 
using fMRI (e.g., Davey et al. 2016; Jackson et al. 2016) or MEG 
(e.g., Kielar et  al.  2016). However, it is less clear how exactly 
brain areas interact during semantic integration. Hartwigsen 
et al. (2017) explored task- related effective connectivity during 
semantic integration between preselected areas of the semantic 
network. This study revealed task- specific interactions between 
temporal and frontal areas: Relative to sentences with expected 
endings, sentences with unexpected endings increased the in-
hibitory influence of the left aSTS/MTG on left pSTS/MTG. In 
contrast, processing sentences with semantically anomalous 
endings required increased inhibitory connectivity from left 
aIFG to left pSTS/MTG. These results are supported by other 
studies that complemented task- related interactions during se-
mantic processing with resting state connectivity (e.g., Jackson 
et  al.  2016; Mascali et  al.  2018). For example, Wawrzyniak 
et  al.  (2017) revealed a strong interaction between predefined 
areas in the left IFG, aMTG, and pMTG, and a left- dominant 
frontotemporal network of semantic language regions at rest. 
Increased functional connectivity between IFG and pMTG cor-
related positively with task performance under high semantic 
integration demands in the task paradigm. These results em-
phasize the relevance of interactions between the left IFG and 
pMTG in semantic control processes.

Previous research has shown that, in addition to a function-
ally specialized core network, domain- general networks are 
also crucial for successful language processing (e.g., Fedorenko 
and Thompson- Schill 2014). Indeed, tasks with high semantic 
control demands led to increased activation in areas that par-
tially overlap with the multiple demand network (MDN)—a 
network activated in response to increased executive control 
demands across various cognitive domains, which includes 
brain regions in the prefrontal and parietal cortex as well as 
the pre- supplementary motor area and adjacent dorsal anterior 
cingulate (preSMA/ACC) (Duncan  2010; Fedorenko, Duncan, 
and Kanwisher 2013). FMRI studies suggest that semantic con-
trol can be divided into semantic- specific and domain- general 
components that activate adjacent brain regions in the left in-
ferior prefrontal cortex (Badre et al. 2005; Hoffman 2018; Nagel 
et al. 2008). Controlled retrieval appears to be semantic- specific, 
a mechanism that comes into play when automatic activation 
of semantic knowledge is insufficient, for example, when a 
less dominant or unexpected word meaning must be accessed 
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(Badre and Wagner 2007). This controlled retrieval is associated 
with increased activation in the anterior ventral part of the left 
inferior prefrontal cortex (Brodman Area 47 [BA47]) (Badre 
et al. 2005; Dobbins and Wagner 2005; Gold et al. 2006; Jackson 
et al. 2016; Krieger- Redwood et al. 2015). Studies of the struc-
tural and functional connectivity of BA47 support this hypothe-
sis, as BA47 has close connections to anterior temporal regions, 
that is, the region where semantic knowledge is stored (Jackson 
et al. 2016; Jung et al. 2017; Von Der Heide et al. 2013). In con-
trast, semantic selection between competing representations 
seems to be controlled more by a domain- general executive se-
lection system (Hoffman 2018). Here, increased brain activation 
has been found primarily in the posterior part of the left inferior 
prefrontal cortex (BA 44/45) (Badre et al. 2005; Gold et al. 2006; 
Thompson- Schill et  al.  1997). Therefore, the interaction be-
tween domain- specific semantic regions and domain- general 
networks likely contributes to semantic integration. As the pre-
vious study by Hartwigsen et  al. has primarily focused on ef-
fective connectivity between pre- selected areas of the semantic 
network during semantic integration, it is unclear how varying 
semantic integration demands modulate functional connectivity 
between large- scale cognitive networks at the whole- brain level. 
The present study aims to address this gap. Specifically, we were 
interested in whole- brain interactions during the processing of 
sentences with unexpected and anomalous endings.

Using a previously established auditory semantic integration 
paradigm (Hartwigsen et  al.  2017), we combined univariate 
task- related functional magnetic resonance imaging (fMRI) 
analyses with seed- based connectivity and between- network 
connectivity analyses. This allowed for a comprehensive char-
acterization of semantic integration at the whole- brain level. 
We expected that semantic integration demands should modu-
late the task- specific interaction between frontal, temporal, and 
potentially parietal areas. More specifically, we hypothesized 
that processing sentences with increased semantic integration 
demands, that is, sentences with unexpected and anomalous 
endings, would lead to a stronger interaction between brain re-
gions involved in semantic control in the frontal and temporal 
cortex. We assumed that while processing unexpected sentence 
endings requires the suppression of the expected word, semantic 
integration generally succeeds. In contrast, for anomalous sen-
tence endings we hypothesized that, while lexical word retrieval 
should be possible, semantic integration would require restruc-
turing attempts. Consequently, we expected to find an even more 
pronounced interaction with frontal control regions during the 
processing of anomalous sentence structures compared to un-
expected ones. Additionally, we examined the processing of 
sentences with pseudoword endings, where neither lexical word 
retrieval nor semantic integration of the pseudoword into the 
sentence context should be feasible. Here, we also anticipated 
a significant interaction with control regions, even though this 
condition likely leads to less pronounced recruitment of the se-
mantic system compared to sentences with real word endings. 
In addition to the increased interaction between regions of the 
semantic network, we hypothesized that the interaction with 
domain- general networks, particularly during the processing 
of sentences with increased integration demands, is crucial. We 
expected that the interaction between task- positive networks 
increases as semantic integration demands rise. Conversely, we 
expected a stronger interaction with the default- mode network 

during the more automated processing of predictable sentence 
endings. At the behavioral level, increased semantic integration 
demands should be reflected in increased response latencies and 
probably also decreased accuracy. Specifically, we expected an 
increase in response speed from expected to unexpected, anom-
alous and pseudoword endings. Furthermore, we assumed that 
behavioral performance might benefit from a stronger coupling 
between task- positive networks and a decreased coupling with 
task- negative networks such as the default mode network.

2   |   Methods

2.1   |   Participants

Thirty- three healthy participants were recruited via post-
ings at the University Hospital Halle (Saale) and the database 
of the Max Planck Institute for Human Cognitive and Brain 
Sciences in Leipzig. One participant was excluded because of 
left- handedness. The final sample included 32 participants 
(mean age: 55.7 years, SD: 13.2, range: 30–75 years, 15 females). 
For a visualization of the age distribution, see Figure S1. On av-
erage, the participants had 16 years of education (SD: 2.4). All 
participants were native German speakers and, according to the 
Edinburgh Handedness Inventory (Oldfield 1971), right- handed 
(mean LQ: 91.5, SD: 9.0). They had normal hearing, normal or 
corrected- to- normal vision, and no history of neurological or 
psychiatric conditions or contraindications to magnetic reso-
nance imaging (MRI). The study was approved by the local eth-
ics committee of the University of Halle (Saale) and conducted in 
accordance with the Declaration of Helsinki. Participants gave 
written informed consent prior to the experiment. They received 
10 Euro per hour for participation.

2.2   |   Neuropsychological Assessment

To assess cognitive functioning, all participants performed 
a comprehensive neuropsychological test battery. They were 
screened for cognitive impairments using the Mini Mental State 
Examination (MMSE; Folstein, Folstein, and McHugh 1975; all 
≥ 26/30 points) and for depression with the Beck Depression 
Inventory (BDI- II; Beck et al. 1996; all ≤ 13 points). Furthermore, 
participants performed the Digit Span Test (Wechsler and De 
Lemos 1981) to assess their working memory capacity. The par-
ticipants also underwent the subtests Alertness, Go/No- go 1 of 
2, and Go/No- go 2 of 5 of the Test of Attentional Performance 
(TAP; Zimmermann and Fimm  2002). This battery evaluates 
different aspects of attention, including vigilance, response in-
hibition, and sustained attention. Demographic data and neuro-
psychological test results are shown in Table S1.

2.3   |   Experimental Design and Stimuli

Our study employed an auditory cloze probability paradigm as 
previously described (Hartwigsen et al. 2017). This paradigm al-
lows for modulating the demands of semantic integration by vary-
ing the predictability of the last word in a sentence across four 
different experimental conditions. The final word can either be 
(1) expected (e.g., “The pilot flies the plane.”), (2) unexpected (e.g., 
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“The pilot flies the kite.”), or (3) semantically anomalous (e.g., “The 
pilot flies the book.”). Additionally, pseudoword endings (e.g., “The 
pilot flies the kirst.”), make successful semantic integration impos-
sible. Participants had to perform a lexical decision task (word or a 
pseudoword) on the sentence's final words. Stimuli consisted of 60 
sentences for each word condition (expected, unexpected, anoma-
lous words), and 120 sentences for the pseudoword condition (i.e., 
60% word endings vs. 40% pseudoword endings, 300 sentences in 
total). To ensure that the context matched between the four condi-
tions, the same sentence stems (subject + verb phrase) were used, 
with only the last word (object phrase) being varied accordingly. In 
addition to the 300 experimental trials, a separate set of 50 practice 
sentences was used for training outside of the scanner. All sen-
tences were recorded by a female, professional German speaker. 
For details regarding stimulus creation, please refer to Hartwigsen 
et al. (2017).

2.4   |   Experimental Procedure

The data were collected in a single session of 3 h for each partic-
ipant. After the participants provided informed consent, they 
completed the neuropsychological assessment, followed by a short 
training of the experimental task outside the scanner. The subse-
quent MRI measurement lasted about 1 h and included the acqui-
sition of a T1- weighted anatomical dataset as well as several fMRI 
scans (resting state, semantic integration paradigm, language lo-
calizer, breath hold task). Here, we focus on the results of the se-
mantic integration task, as the other measures were performed to 
collect control data in the context of an ongoing patient study. The 
semantic integration task was implemented in two event- related 
fMRI runs and had a total duration of 27 min. During the exper-
iment, participants looked at a black screen with a white fixation 
cross in the center. All 300 stimuli were presented auditorily via 
MR- compatible over- ear headphones. Sentence duration ranged 
from 1.5 to 2.6 s, with a jittered inter- trial interval of 1.5–4.4 s. 
Both runs contained the same number of stimuli for each condi-
tion (30 expected, 30 unexpected, 30 anomalous, 60 pseudowords). 
The distribution and order of stimuli across both runs were gen-
erated for each participant individually as a pseudo- randomized 
list, ensuring that a maximum of three sentences from the same 
condition could occur consecutively. Subjects performed a lexical 
decision task (Is the last word a real word or a pseudoword?) by 

responding via button press with their left middle (pseudoword) 
or index finger (word), and reaction times and accuracy data were 
collected. Note that the left hand was used to avoid button- press 
related left- hemispheric motor activity. Presentation of the stimuli 
and triggering of the scanner was conducted through PsychoPy 
(Peirce et al. 2019). For a visualization of the experimental design 
see Figure 1.

2.5   |   Data Acquisition and Preprocessing

Functional imaging was performed on a human whole body 3- 
Tesla scanner (Magnetom Skyra, Siemens, Erlangen, Germany) 
equipped with a 32- channel head coil. For the acquisition of 
fMRI data during the semantic integration task, a gradient echo- 
planar imaging (EPI) sequence was used (TR/TE = 2.24 s/0.03 s, 
flip angle 90°, field of view (FOV): 100 mm, matrix: 76 × 76 
pixel, voxel size: 3 × 3 × 3 mm). A total of 360 image stacks con-
sisting of 40 transversal slices each were acquired continuously 
during each session. Additionally, T1- weighted anatomical im-
ages were acquired with an MPRAGE sequence in sagittal ori-
entation (voxel size = 1 × 1 × 1 mm; TR = 2.53 s; TE = 0.00267 s). 
Preprocessing was performed using fMRIPrep 23.0.0 (Esteban 
et  al.  2019), which is based on Nipype 1.8.7 (Gorgolewski 
et al. 2011). In summary, preprocessing comprised skull strip-
ping, co- registration, slice timing correction, and calculation 
of several confounding time- series for each of the two func-
tional runs per participant. Anatomical T1- weighted images 
were skull- stripped, segmented, and spatially normalized to the 
MNI152NLin6Asym template. For details on the preprocessing 
pipeline, see Note  S1 and fMRIPrep's documentation (https:// 
fmrip rep. org/ en/ 23.0. 0/ workf lows. html). Finally, functional 
images were smoothed with a 6 mm FWHM Gaussian kernel 
using SPM12 implemented in MATLAB R2022b (9.13; The 
Mathworks Inc., Natick, MA, USA).

2.6   |   Behavioral Data Analysis

The statistical analysis of reaction times and error rates was 
conducted using R 4.2.2 via RStudio (R Core Team 2021). We 
utilized the packages lme4 (Bates et  al.  2014) and ggeffects 
(Lüdecke 2018) for mixed models and ggplot2 (Wickham 2016) 

FIGURE 1    |    Experimental design of the semantic integration task. The figure illustrates two fMRI trials. Sentences were presented in an event- 
related fashion with a variable stimulus onset asynchrony between 3 and 7 s. Sentence duration varied between 1.5 and 2.6 s. After the auditory 
presentation of the sentence, subjects had to indicate via button press whether the final word represented a word or pseudoword (lexical decision). 
Reaction times (from the last word onset) and error rates were measured.
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for visualizations. Reaction times were measured from 
the onset of the last word in a sentence to the button press. 
Incorrect responses, omissions, and trials in which the button 
was pressed before the onset of the last word were excluded 
from the analysis of reaction times. Reaction times were cor-
rected for outliers (based on the individual means by subject 
and condition +/− 2 SDs). For the analysis of reaction time 
data (Equation  S1), a linear mixed- effects model with the 
log- transformed data was computed. As fixed effects, we in-
cluded condition, age, and their interaction term. Intercepts 
for participants and stimuli were defined as random effects. 
Additionally, we entered education as a covariate of no in-
terest to account for a potential effect on performance in the 
semantic integration task. p values were calculated using like-
lihood ratio tests comparing the full model with the effect in 
question against the model without the effect in question. The 
emmeans package (Lenth 2020) was applied for post hoc com-
parisons, using Bonferroni–Holm correction. For the analy-
sis of error rates, a generalized linear mixed- effects logistic 
regression was used to account for the binary nature of the 
response variable (Equation S2). However, since the model in-
cluding an interaction of condition and age failed to converge, 
we defined the model without this interaction.

We used deviation (simple) coding for our categorical predictor 
“condition.” The purpose of simple coding is to create numeric 
variables that capture deviations from the overall mean of a con-
tinuous variable or the baseline level in case of categorical vari-
ables, thereby allowing for comparisons in terms of deviations 
from a central reference point across different levels of a vari-
able. The numeric variables “education” and “age” were mean- 
centered and scaled to have unit variance.

2.7   |   Univariate fMRI Analysis

For the statistical analysis of fMRI data, a two- level approach 
was implemented using SPM12. On the first level, a general lin-
ear model (GLM) with a flexible factorial design was created 
for each participant. Each run was modeled separately in this 
design. The GLM included regressors for the onsets and dura-
tions of the four stimulus conditions, as well as a regressor of no 
interest for incorrect trials (wrong button presses). Nuisance re-
gressors, consisting of the six motion parameters and individual 
regressors for strong volume- to- volume movement, as indicated 
by framewise displacement (FD) values > 0.9, were also defined. 
Additionally, age was included as a covariate in the model. A 
high- pass filter with a cut- off of 128 s was applied to the data 
before model estimation. Statistical parametric maps of the t- 
statistic were generated by estimating the contrast of each condi-
tion against rest and the direct contrasts between the individual 
conditions. Additionally, the contrasts “sentences with word 
endings > sentences with pseudoword endings” and “sentences 
with pseudoword endings > sentences with word endings” were 
estimated by combining the trials of the three word- conditions.

For the second- level analysis, the contrast images of the pooled 
parameter estimates were entered into a random effects model. 
A one- sample t- test was performed for within- group compari-
sons. Contrasts were thresholded at p < 0.05 and corrected for 
multiple comparisons using the family- wise error method at the 

cluster level (FWEc). The SPM anatomy toolbox (version 3.0; 
Eickhoff et al. 2005) was used for the anatomical localization of 
activation peaks.

2.8   |   Functional Connectivity Analysis

2.8.1   |   Generalized Psychophysiological 
Interaction Analyses

To investigate task- related changes in functional connectivity 
during semantic integration, we conducted a generalized psy-
chophysiological interaction (gPPI) analysis using the gPPI 
toolbox for SPM12 (version 13.1; McLaren et al. 2012). Since we 
were mainly interested in the functional connectivity underly-
ing challenging but successful semantic integration processes, 
we defined our seed regions for areas that showed greater acti-
vation for unexpected and anomalous sentence endings relative 
to expected sentence endings. To this end, we ran a conjunction 
analysis: “unexpected > expected ∩ anomalous > expected” (see 
Figure S2). Subsequently, seed regions were defined for all global 
maxima within this conjunction (FWEc, p < 0.05) (see Table S2). 
A spherical ROI with a radius of 10 mm was created around each 
peak coordinate, using the MarsBaR toolbox (version 0.45; Brett 
et al. 2002). Within this boundary, we searched for the top 25% 
active voxels (positive) in each participant and defined them 
as our subject- specific ROIs. All participants had active voxels 
within the spherical masks. Next, we conducted the standard 
two- level approach by performing a whole- brain random- effects 
group analysis based on the GLM. At the first level, individual 
participant data were modeled separately using the gPPI tool-
box. The first level GLM included: (1) “Psychological” regressors 
for all four experimental conditions convolved with the canon-
ical hemodynamic response function (HRF), (2) a “physiolog-
ical” regressor consisting of the deconvolved time series of the 
first eigenvariate of the BOLD signal from the respective seed 
ROIs, (3) PPI regressors for each experimental condition, which 
were calculated by multiplying the deconvolved BOLD signal 
of the respective seed ROIs with the condition onsets and con-
volving with the canonical HRF (McLaren et al. 2012), (4) nui-
sance regressors, consisting of the six motion parameters and 
individual regressors for strong volume- to- volume movement, 
as indicated by FD values > 0.9. Resulting participant level con-
trast images were entered into t- tests on the group level. To test 
for functional coupling during semantic integration, we com-
pared the connectivity for all our task contrasts by using paired 
t- tests. For all group- level analyses, a gray matter mask (SPM12 
tissue probability map) was applied, restricting statistical tests 
to voxels with a gray matter probability > 0.3. All activation 
maps were thresholded at a voxel- wise p < 0.001 and a cluster- 
wise p < 0.05 FWE- corrected for multiple comparisons. We also 
tested the gPPI analysis using seed regions defined by the peak 
coordinates of the individual contrasts unexpected > expected 
and anomalous > expected (instead of the conjunction of both). 
However, no significant results were found for this approach.

2.8.2   |   Independent Component Analysis

To further assess which large- scale networks are active during 
the semantic integration task, we conducted a groupwise 
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spatial independent component analysis (ICA; Calhoun, Liu, 
and Adalı 2009). ICA decomposes fMRI time series into mul-
tiple source components in a data- driven manner. While arti-
factual components can be removed (Griffanti et al. 2014), the 
remaining independent components (ICs) correspond to func-
tionally connected neural networks.

The preprocessed, normalized, and smoothed data were ana-
lyzed using the Group ICA of fMRI Toolbox (GIFT v4.0c), which 
initially intensity- normalized the data before implementing the 
ICA. Data dimensions were reduced with a two- step expectation 
maximization principal component analysis (PCA) procedure. 
To this end, PCA was first performed at the run level, with di-
mensions being reduced from the full time- course- length (360 
timepoints) to a participant- specific number of components as 
determined by the Minimum Description Length (MDL) crite-
rion (Rissanen 1978). Second, data were concatenated to further 
reduce dimensionality on the group level, again using the MDL 
criterion to determine the number of ICs. The MDL approach 
allows for an adaptive determination of the optimal number of 
components based on the data characteristics, providing a more 
tailored analysis compared to a fixed number of components 
(Rissanen  1978; Schwartz  1978). ICA was implemented using 
the Infomax algorithm (Calhoun et  al.  2002). To ensure the 
reliability of the decomposition, Icasso was repeated 50 times 
with a cluster size determined by the MDL- derived number of 
components (Himberg and Hyvarinen  2003). In the last step, 
the back- reconstruction of group- level ICs to the subject level 
was performed using the GICA3 algorithm in GIFT (Calhoun 
et al. 2001). For the remaining analyses, the components were 
scaled to Z- scores within each component. The resulting 36 
ICs were visually inspected following the established criteria of 
Griffanti et al. (2014). After discarding components attributable 
to artifacts and noise, we identified a total of 11 network com-
ponents. The spatial extent of these 11 components at the group 
level was determined using a one- sided t- test on the spatial maps 
of the participants. Results were corrected for multiple compar-
isons using a cluster- level threshold at p < 0.05 with the family- 
wise error (FWE) method.

2.8.3   |   Brain Network Identification

To guide visual inspection in determining network labels for 
the 11 resulting component maps, we relied on the Jaccard sim-
ilarity coefficient (J; Jaccard  1912). The Jaccard similarity co-
efficient computes spatial similarity in the form of overlapping 
voxels between two binary spatial network masks (i.e., a compo-
nent map A and a template map B), compared to all other voxels 
in the brain. This spatial similarity measure results in values 
between 0 and 1, where 0 indicates no similarity, and 1 indicates 
a complete match. It should be noted that different definitions 
and naming conventions for neural networks currently coex-
ist in the literature. We selected the template images from the 
17- network functional connectivity- based parcellation scheme 
by Yeo et  al.  (2011), which is based on resting- state data and 
provides a well- established basis for functional parcellation of 
the brain, increasing the comparability and reproducibility of 
the results. However, this scheme does not include the MDN, 
a network we hypothesized to be relevant for semantic and do-
main general control. Instead, in the parcellation scheme of Yeo 

et al. (2011), the typical regions of the MDN are mainly covered 
by the frontoparietal control networks (Co).

2.8.4   |   Network Activity

To investigate the activity of networks during various conditions 
of the semantic integration task, we used the temporal sorting 
utility in GIFT. Multiple regression analyses were performed 
between the time courses of the selected components and the 
design matrix from the GLM at the subject level. Through this 
analysis step, beta values for each network and each condition 
were obtained per run, representing the activity of a network for a 
given task predictor (11 ICs × 4 conditions × 32 subjects × 2 runs).

Initially, we examined the FDR- corrected network activity for 
each individual task condition compared to the rest condition. 
We decided to retain only those networks that exhibited signif-
icant (de/) activation (p < 0.05) for at least one condition versus 
rest for further analysis. This resulted in a selection of seven 
networks and ensured that our subsequent analysis of differ-
ences in network activity between conditions focused only on 
networks that seemed to be task relevant.

To determine how the seven networks responded during indi-
vidual conditions, pairwise comparisons of activity estimates 
for the respective conditions were conducted. Since this study 
focused on investigating semantic integration under challenging 
conditions, we were particularly interested in network activity 
during unexpected and anomalous compared to expected sen-
tence endings. Additionally, we examined network activity for 
the two most opposing conditions: pseudoword endings (which 
cannot be semantically integrated into the overall meaning of 
the sentence) compared to expected sentence endings (which 
can be most easily integrated). To this end, the primary beta 
values for each network were initially averaged across runs. 
Subsequently, the utility in GIFT, “Stats on Beta Weights,” was 
used to conduct paired t- tests on the subject level for the chosen 
conditions (unexpected vs. expected, anomalous vs. expected, 
pseudoword vs. expected). The results were FDR- corrected, and 
the significance threshold was set at p < 0.05.

2.8.5   |   Network Interactions

To investigate task- related interactions between the seven net-
works that showed significant network activity in the task versus 
rest comparison, we applied a correlational psychophysiological 
interaction (cPPI) analysis (Fornito et al. 2012). CPPI computes 
pairwise partial correlations between ROIs and produces an 
output in the form of undirected, symmetrical connectivity ma-
trices. To examine network interactions for the tasks reflecting 
increased semantic integration demands, we performed cPPI 
for the contrasts “sentences with unexpected vs. expected end-
ings” and “sentences with anomalous vs. expected endings.” 
Additionally, we were interested in contrasting sentences with 
semantically nonintegrable pseudoword endings and sentences 
with easily integrable, expected word endings.

During cPPI analyses, the deconvolved time series of each net-
work were multiplied with the task time course from the design 
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matrix of the first- level analysis and convolved with a canon-
ical HRF to create a PPI term. Subsequently, pairwise partial 
correlations between the PPI terms and two networks were es-
timated, while controlling for all remaining regressors in the 
GLM, the noise regressors, and the activity of the 10 remaining 
networks. Task- specific network interactions were assessed by 
contrasting the above- mentioned conditions of interest. As a re-
sult, a symmetrical 7 × 7 connectivity matrix was obtained for 
each subject and contrast. Finally, the correlation coefficients 
were Fisher- transformed into z- values and the full matrices, 
including positive and negative correlation weights, were sta-
tistically tested at the group level. Interactions were considered 
significant at p < 0.05. Additionally, we used the Network- Based 
Statistic (NBS) Toolbox (Zalesky, Fornito, and Bullmore  2010) 
to investigate potential differences in the coupling of networks 
between the task contrasts. However, no significant results were 
found in this analysis.

2.8.6   |   Behavioral Performance and Network 
Interactions

For the contrasts “unexpected vs. expected sentence endings,” 
“anomalous vs. expected sentence endings,” and “pseudoword 
vs. expected sentence endings,” we investigated the effects 
of the interaction among networks on participants' reaction 
times and error rates by fitting linear mixed- effects models 
(Equations  S3 and S4). Models included fixed effects for the 
corresponding mean- centered network measure, condition, 
their interaction term, age, education, and by- participant ran-
dom intercepts.

Additionally, we investigated the performance of the partici-
pants in the neuropsychological tests with regard to a potential 
correlation with the connectivity values of the networks. For this 
purpose, a sum score from all neuropsychological test results 
was calculated for each participant. Subsequently, a correlation 
analysis between the sum scores and the connectivity values of 
the networks for the respective task contrasts was conducted. 

However, after removing an outlier, no significant correlations 
were observed here.

3   |   Results

3.1   |   Semantic Integration Demands Are Reflected 
in Behavioral Responses

Analyses of reaction times revealed a significant two- way- 
interaction of condition and age ( χ2 = 24.3249, p < 0.001). Post 
hoc tests showed significant differences in reaction times 
between all three word conditions (all p < 0.001), with the 
shortest reaction times observed for sentences with expected 
endings, followed by sentences with unexpected and anoma-
lous endings. The longest reaction times were measured for 
sentences with pseudoword endings. However, reaction times 
for anomalous versus pseudoword sentence endings did not 
differ significantly (Figure 2, left). For error rates, we found 
main effects of condition ( χ2 = 71.793, p < 0.001) and age 
( χ2 = 8.018, p < 0.001). Post hoc tests revealed significant dif-
ferences in error rates between all conditions (all p < 0.001), 
except for the contrast of unexpected vs. expected sentence 
endings (p = 1.0). The highest error rate was found for sen-
tences with anomalous endings, followed by sentences with 
pseudoword endings and unexpected endings. The lowest 
error rate was observed for sentences with expected sentence 
endings (see Figure  2, right). Complete model outputs are 
reported in Table  S3. Furthermore, both reaction times and 
error rates, particularly for conditions with increased seman-
tic integration demands, showed an increase with advancing 
age (see Figure S3).

3.2   |   Semantic Integration Demands Increase 
Task- Related Activity in Left Fronto- Temporal Areas

Our goal was to investigate the neural correlates underlying se-
mantic integration under varying conditions. For all examined 

FIGURE 2    |    Behavioral results. Differences in reaction times (left panel) and error rates (right panel) between task conditions. *p < 0.05, 
Bonferroni–Holm corrected.
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8 of 19 Human Brain Mapping, 2024

contrasts, we observed the expected brain activation in a pre-
dominantly left- lateralized fronto- temporo- parietal language 
network (Figure 3 and Table S4).

Increased semantic integration demands were generally re-
flected by a frontal activation pattern. Specifically, the contrasts 
of unexpected, anomalous and pseudoword sentence endings 
versus expected sentence endings all showed activation in the 
IFG, the orbitofrontal cortex (OFC), and the preSMA. For the 

“unexpected sentence endings > expected sentence endings” 
contrast, additional activation was found in the right precentral 
gyrus (PrG), the right cerebellum (VI), and the left inferior tem-
poral gyrus (ITG). A similar, although even more pronounced 
activation pattern emerged for the “anomalous sentence end-
ings > expected sentence endings” contrast. Here we found ad-
ditional brain activation in the right cerebellum (VI), the left 
superior temporal gyrus (STG) and the right cerebellum Crus 
II. Finally, for sentences with pseudoword endings compared to 

FIGURE 3    |    FMRI results on the group level from the univariate analysis for our semantic contrasts of interest. Results are FWE- corrected at 
p < 0.05 at the cluster level. (a)MTG: (anterior) middle temporal gyrus; ATL: anterior temporal lobe; FP: frontal pole; IFG: inferior frontal gyrus; IPL: 
inferior parietal lobe; ITG: inferior temporal gyrus; OFC: orbitofrontal cortex; PreSMA: presupplementary motor area; PrG: precentral gyrus; STG: 
superior temporal gyrus; STS: superior temporal sulcus.

FIGURE 4    |    Task- dependent changes in functional connectivity for seeds in the left inferior frontal gyrus (IFG) and the contrast unexpected 
sentence endings > expected sentence endings (left) as well as the presupplementary motor area (preSMA) and the contrast expected sentence end-
ings > anomalous sentence endings (right). All results are FWE- corrected at p < 0.05 at cluster level.
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expected endings we observed additional activation in the mid-
dle frontal gyrus (MFG).

In contrast, the processing of sentences with expected endings 
was associated with predominantly temporo- parietal brain ac-
tivity. We also examined blood- oxygen- level- dependent (BOLD) 
signal differences during the processing of sentences with word 
endings (encompassing the conditions expected, unexpected, 
and anomalous) > sentences with pseudoword endings. We 
found the largest differences in brain activation in the left infe-
rior parietal lobe (IPL), the left frontal pole (FP), the left middle 
temporal gyrus (MTG), the left parahippocampal gyrus, and the 
right MTG. Additional contrasts between the individual task 
conditions are included in Figure S4. No significant effect of age 
was found in our univariate analysis.

3.3   |   Functional Connectivity Results

3.3.1   |   Semantic Integration Demands Increase 
Task- Related Interactions Between Frontal 
and Subcortical Areas

We ran gPPI analyses for seeds derived from the conjunction of 
the tasks with increased semantic integration demand, that is, 
unexpected and anomalous sentence endings. Results revealed 
significant task- specific interactions for the seeds in the left IFG 
and preSMA. For unexpected > expected words, we found in-
creased functional connectivity between left IFG and the thal-
amus (Figure  4, left). For the contrast expected > anomalous 
words, left preSMA showed increased coupling with the right 
cerebellum (Figure 4, right). We also performed gPPI analysis 
for regions with increased activation for individual contrasts 
of unexpected and anomalous conditions relative to expected 
words. Results did not indicate significant changes in functional 
connectivity for these seeds.

3.3.2   |   Semantic Integration Is Characterized by 
Distributed Large- Scale Networks

We defined functional networks for the semantic integration 
task by performing spatial ICA at the group level. After filter-
ing out noise components from a total of 36, we identified 11 
network components encompassing 10 cortical components and 
one component in the cerebellum.

To assign the 11 ICs to cognitive networks, we calculated the 
Jaccard similarity coefficient between our binarized and thresh-
olded ICs and template masks of neural networks from Yeo 
et al. (2011). With the exception of IC16 and IC33, all ICs showed 
a similarity coefficient above the threshold recommended by 
Jackson et al. (2019) (J = 0.15) for at least one network template. 
The Jaccard indices for individual ICs and network templates 
are listed in Table S5. IC16 exhibited predominantly cerebellar 
connectivity and was thus not represented in the cortical tem-
plates of Yeo et al. (2011). Consequently, we labeled IC16 as the 
cerebellum. For all other ICs, we chose the label according to the 
highest Jaccard similarity coefficient. We found two control net-
works: ContA (IC25, J = 0.241) and ContB (IC17, J = 0.159), two 
default mode networks: DefaultA (IC11, J = 0.225) and DefaultB 

(IC35 = 0.273), as well as two somatomotor networks: SomMotA 
(IC12, J = 0.274) and SomMotB (IC04, J = 0.288). IC13 showed 
the highest similarity to the salience/ventral attention network 
A (SalVentAttnA, J = 0.240). IC18 showed the highest Jaccard 
similarity coefficient for the central visiual network (VisCent, 
J = 0.197). Two networks showed the highest agreement with 
the peripheral visiual network (IC21, J = 0.286; IC33, J = 0.122). 
Figure  5 shows the thresholded maps (FWE- corrected at the 
cluster level with p < 0.05) with their original component num-
bers. Please note that the figure only includes the selected non-
noise components that showed significant (de/) activation for 
at least one task condition, since we decided to focus on those 
components in our further analysis. Details will be explained in 
the next paragraph.

3.3.3   |   Semantic Integration Demands Differentially 
Modulate Network Activity

To focus subsequent analyses on networks relevant to the se-
mantic integration task, we examined network activity for each 
task condition compared to rest. In total, seven of the 11 net-
works showed significant (de/) activation in at least one task 
condition (see Figure 6, top panel). A detailed summary of the 
beta and p values of all 11 networks can be found in Table S6. 
Both somatomotor networks (SomMotA and SomMotB) showed 
significant positive activation for all four task conditions. The 
two control networks revealed a more complex picture: While 
ContA showed significant positive network activity for the three 
conditions with increased integration demands (unexpected, 
anomalous and pseudoword), ContB was significantly deacti-
vated for the sentences with unexpected word endings. The two 
default mode networks showed overall more deactivation, which 
was significant for all four conditions in the DefaultA network, 
but only for the pseudoword condition in the DefaultB network. 
Finally, the cerebellum showed positive network activity that 
reached significance for the anomalous condition. All other 
networks (IC13, IC18, IC21, IC33) showed no significant (de/) 
activation and were thus excluded from the following analysis.

Next, we examined the activity of the remaining seven networks 
during the semantic integration task for three contrasts reflect-
ing increasing integration demands (“unexpected vs. expected 
sentence endings,” “anomalous vs. expected sentence endings,” 
and “pseudoword vs. expected sentence endings”). The differ-
ences in beta values between conditions are depicted in Figure 6 
(bottom panel) and described in Table S6 for each network. No 
significant (de/) activation was found for the “unexpected vs. 
expected sentence endings” contrast. However, a significant 
positive activation of ContA was detected for the more challeng-
ing task contrasts “anomalous vs. expected sentence endings” 
and “pseudoword vs. expected sentence endings.” Furthermore, 
DefaultA showed significant deactivation for “pseudoword vs. 
expected sentence endings.”

3.3.4   |   Semantic Integration Demands Mainly Increase 
Interactions Between Task- Positive Networks

To investigate how the seven ICA- derived networks interact 
with each other during different conditions of the semantic 

 10970193, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70113 by M
PI 374 H

um
an C

ognitive and B
rain Sciences, W

iley O
nline L

ibrary on [14/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 19 Human Brain Mapping, 2024

integration task, a cPPI analysis was conducted, resulting in 
a 7 × 7 correlation matrix for each task contrast (Figure  S5B). 
Significant network interactions for our contrasts of interest 
(“unexpected vs. expected sentence endings,” “anomalous vs. 
expected sentence endings,” and “pseudoword vs. expected sen-
tence endings”) are shown in Figure 7 (left column). Additional 
results are visualized in Figure S5A.

Networks typically classified as task- positive (ContA and 
ContB) as well as somatomotor networks predominantly exhib-
ited increased positive interactions with one another across all 
three task contrasts. Conversely, these task- positive networks 
displayed increased negative interactions with default mode 
networks. Exceptions were the positive interactions between 
DefaultB and SomMotB, DefaultA and ContA, and DefaultA 
and ContB, the last pair only for the two semantic contrasts 
(unexpected vs. expected and anomalous vs. expected), but not 
for the contrast between pseudowords and expected sentence 
endings. Furthermore, we found a negative interaction between 
the two control networks ContA and ContB for all three task 
contrasts. The cerebellum showed a predominantly positive 
network modulation with SomMotA and ContB, and a weak 
negative interaction with ContA. Interestingly, however, this 
cerebellar interaction pattern differed for the anomalous versus 
expected contrast. In this case, an increased negative interaction 
with DefaultB was predominant, a pattern not observed in the 
other two contrasts. Furthermore, the results show that for the 

two semantic contrasts (unexpected vs. expected and anoma-
lous vs. expected), more network interactions reached statistical 
significance (n = 18) than for the contrast between pseudoword 
and expected endings (n = 11).

3.3.5   |   Higher Integration Demands Result in an 
Increased Number of Behaviorally Relevant Network 
Interactions

Finally, we examined the behavioral relevance of these signif-
icant network interactions for the task contrasts “unexpected 
vs. expected sentence endings,” “anomalous vs. expected sen-
tence endings,” and “pseudoword vs. expected sentence end-
ings” (see Figure  7, right column; Tables  S7–S9 for details). 
We did not detect any significant effect of network coupling 
on error rates. However, results revealed interactions between 
reaction times in the respective semantic conditions and net-
work interactions. Remarkably, we found more behaviorally 
relevant network interactions for higher integration demands. 
For the “unexpected vs. expected sentence endings” contrast, 
we found a significant interaction between SomMotA and 
DefaultA. Increased coupling between these networks was 
associated with faster reaction times, especially for unex-
pected trials. For sentences with anomalous endings versus 
expected endings, significant network interactions were ob-
served between SomMotB and ContA as well as SomMotB and 

FIGURE 5    |    Spatial ICA- derived networks during the semantic integration task. Networks are shown as binary masks, created from the T- scores 
from 1- sided t- tests (FWE- corrected p < 0.05 at cluster level). Network labels were chosen according to the spatial similarity analysis. ContA/B: 
Control network A/B; DefaultA/B: Default mode network A/B; SomMotA/B: Somatomotor network A/B.
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11 of 19

FIGURE 6    |    Network activity during semantic integration. Top Panel: Network activity (beta weights ± SD) for the conditions expected, unex-
pected, anomalous and pseudoword compared to rest. Bottom Panel: Network activity calculated from differences between mean beta weights (±SD) 
for the contrasts of unexpected, anomalous and pseudoword versus expected trials. Asterisks indicate significance for a given network's contrast 
t- test (FDR- corrected, p < 0.05). ContA/B: Control network A/B; DefaultA/B: Default mode network A/B; SomMotA/B: Somatomotor network A/B.
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12 of 19 Human Brain Mapping, 2024

DefaultB. While a stronger interaction between SomMotB and 
ContA was reflected in slower reaction times for anomalous 
trials, coupling led to faster reaction times in the expected 

condition. The interaction between SomMotB and DefaultB 
instead promoted faster reaction times for sentences with 
anomalous endings. Regarding reaction times for sentences 

FIGURE 7    |     Legend on next page.
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with pseudoword endings compared to expected endings, 
we identified significant network interactions between 
DefaultA and ContA, SomMotA and Cerebellum, DefaultB 
and ContB, SomMotB and ContB, SomMotB and DefaultA 
as well as SomMotA and DefaultB. A stronger coupling be-
tween SomMotA and Cerebellum, SomMotB and ContB, and 
SomMotB and DefaultA resulted in faster reaction times in 
both conditions. The opposite pattern was found for DefaultB 
and ContB, as well as SomMotA and DefaultB, since a stronger 
coupling led to slower reaction times in both task conditions. 
Finally, a stronger interaction between DefaultA and ContA 
was associated with slower reaction times in the pseudoword 
condition and faster reaction times in the expected condition.

4   |   Discussion

The within-  and between- network dynamics underlying context- 
dependent, semantic integration are still poorly understood. 
Here, we addressed this issue by combining an auditory se-
mantic integration paradigm with univariate task- related fMRI 
analyses, seed- based within- network analyses, and ICA- based 
between- network connectivity analyses. On the behavioral 
level, we reproduced the typical semantic integration effects, 
characterized by increased reaction times and reduced accuracy 
for sentences with higher integration demands (Baumgaertner, 
Weiller, and Büchel 2002; Hartwigsen et al. 2017). These changes 
were underpinned by increased task- related activity in brain 
areas of the semantic control network. Likewise, seed- based 
functional connectivity analysis revealed a significant interac-
tion between frontal regions involved in cognitive control and 
subcortical or cerebellar areas. Finally, we identified seven neu-
ral networks active during semantic integration. While increas-
ing integration demands promoted activation of task- positive 
networks, the default- mode networks showed more deactivation 
as semantic integration demands increased. As a main novel 
finding, between- network analyses revealed a dynamic inter-
play between task- positive networks associated with control and 
somatomotor functions and the default mode network, support-
ing the processing of sentences with increased semantic integra-
tion demands. Increased integration demands lead to a higher 
number of behaviorally relevant network interactions, suggest-
ing that between- network coupling becomes more relevant for 
successful task performance as integration demands rise.

The gradual increase in response times with higher semantic 
integration demands in our data is in agreement with previous 
studies (Baumgaertner, Weiller, and Büchel  2002; Hartwigsen 
et al. 2017; Wawrzyniak et al. 2017) and likely reflects the sup-
pression of the expected word as well as restructuring attempts. 
Likewise, a similar pattern for accuracy, but with highest error 
rates for anomalous trials, is supported by the same previous 

studies. However, unlike the previous studies that selectively 
included young participants, we did not find a significant differ-
ence in reaction times for sentences with anomalous compared 
to pseudoword endings. This could be explained by the fact that, 
in our study, older age was associated with longer reaction times 
and higher error rates, especially for sentences with anomalous 
endings.

As expected, univariate results revealed a left- dominant, 
frontal activation pattern, including IFG, OFC, and preSMA, 
which increased with higher semantic integration demands (cf. 
Hartwigsen et al. 2017; Wawrzyniak et al. 2017). These regions 
are associated with cognitive control functions. While the IFG is 
linked to domain- specific semantic integration (e.g., Hartwigsen 
et al. 2017; Zhu et al. 2013) and semantic control (Jefferies 2013), 
the preSMA and OFC appear to be involved in domain- general 
control processes (Brockett and Roesch  2021; Fedorenko, 
Duncan, and Kanwisher 2013; Jackson 2021). The gradual in-
crease in activation in these regions during the processing of 
sentences with unexpected, anomalous, and pseudoword sen-
tence endings suggests that the higher the semantic integration 
demands, the more control is required to inhibit the expected 
word. In addition to frontal regions, temporal regions were also 
involved in processing sentences with increased integration 
demands. Specifically, we found significant activation in the 
posterior STG/STS. This finding was expected, as the pMTG/
STS region has been implicated in the storage of lexico- semantic 
information (Lau, Phillips, and Poeppel 2008; Price et al. 1997) 
as well as lexical retrieval and selection under increased exec-
utive demands (Whitney et al. 2011, 2012). For sentences with 
expected endings, as well as for the contrast between word and 
pseudoword endings, we observed a predominantly temporo- 
parietal activation pattern, especially in the left IPL/AG. This 
is not surprising given that this region is a multimodal conver-
gence zone, linking various semantic features of concepts and 
information from different modalities (Seghier  2013). In addi-
tion, previous studies confirm the critical role of this region in 
the processing of more predictable sentences (e.g., Humphries 
et al. 2007).

The gPPI analysis revealed significant task- specific interactions 
for the left IFG and the preSMA. Specifically, the IFG showed 
increased interactions with the thalamus for unexpected > ex-
pected endings. The thalamus acts as a hub region for many 
cognitive functions (e.g., Hwang et al. 2017) including language 
processing and is responsible for the transfer of lexical informa-
tion to cortical regions (Fritsch, Rangus, and Nolte 2022; Nadeau 
and Crosson 1997). Accordingly, patients with thalamic lesions 
often show aphasia with mainly lexical- semantic deficits (e.g., 
Fritsch, Rangus, and Nolte 2022; Radanovic and Almeida 2021). 
Interestingly, the thalamus seems to be involved especially 
when automated mechanisms such as semantic priming are not 

FIGURE 7    |    Functional coupling between task- relevant networks and their behavioral relevance. Left panels: Chord diagrams show significant 
results of functional coupling between ICA- derived networks. Connectivity values are partial correlations. The color intensity and width of a con-
nection indicate its correlational strength. Higher correlation values (r) indicate positive coupling, and negative values indicate decoupling between 
networks. Right panels: Correlations between network interactions and task efficiency. Plots show significant 2- way interactions between task con-
ditions and the respective network pair for response time data. Connectivity values were mean- centered for interaction analyses. Results were FDR- 
corrected for multiple comparisons at p = 0.05. ContA/B: Control network A/B; DefaultA/B: Default mode network A/B; SomMotA/B: Somatomotor 
network A/B.
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effective (Friederici 2006; Ketteler et al. 2008) or during difficult 
language tasks (Alain et al. 2005; Assaf et al. 2006). The lexical- 
semantic nature of our task, and the fact that we found a sig-
nificant interaction between the IFG and the thalamus only for 
sentences with increased integration demands fits well into the 
bigger picture of current research. Furthermore, the preSMA 
showed increased interactions with the right cerebellum (Crus 
I- IV and Crus VI) for expected > anomalous sentence endings. 
An increasing number of studies suggest that the cerebellum 
is involved in language processing and often exhibits a crossed 
activation pattern with the left- dominant cortical language net-
work. Areas Crus I- IV and Crus VI have been associated with 
semantic and phonological processing (Turker et al. 2023). Since 
both functions are crucial for the performance of our auditory 
lexical decision task, the involvement of the cerebellum is not 
surprising here. Consequently, the gPPI results emphasize the 
importance of subcortical and cerebellar regions in semantic in-
tegration, especially under increased demands.

Using spatial ICA, we characterized 11 higher order large- 
scale functional networks active during semantic integration. 
Cortical networks included two control networks: A left hemi-
spheric network (ContA) as well as a right hemispheric network 
(ContB). Additionally, we identified the “classical” default mode 
network (DefaultA) and a subnetwork of the default mode net-
work (DefaultB) which is thought to facilitate access to semantic 
knowledge (Smallwood et al. 2021). We also found two somato-
motor networks: SomMotA likely reflects primarily motor as-
pects, such as button presses (Feis et al. 2015), and SomMotB, 
which—consistent with the auditory nature of our task—
showed pronounced activation in the auditory cortex. Another 
network was primarily characterized by cerebellar connectivity. 
Furthermore, we identified a cortical network that best matched 
the salience/ventral attention network A (SalVentAttnA), a 
central visiual network (VisCent), and two networks that best 
aligned with the peripheral visual network (VisPeri). Overall, 
these results confirm our hypothesis that both task- positive and 
task- negative networks are involved in semantic integration. 
The fact that we found both default mode and control networks 
is consistent with the observation that networks which are typ-
ically anticorrelated during resting state become functionally 
integrated during semantic tasks (Krieger- Redwood et al. 2016; 
Martin, Saur, and Hartwigsen 2022; Martin et al. 2023).

By examining the response of the networks to increasing se-
mantic integration demands, we identified distinct patterns of 
activation and deactivation across task conditions. Since we 
were primarily interested in networks that were relevant for 
successful performance of the semantic integration task, we 
excluded all networks that did not show significant (de/) acti-
vation for at least one task condition compared to rest from fur-
ther analysis. Consequently, we explored task- related activity 
and between- network interactions for seven task- relevant net-
works (Cerebellum, ContA and ContB, DefaultA and DefaultB, 
as well as SomMotA and SomMotB). Our main finding was that 
increased semantic integration demands were associated with 
task- positive activation of the left hemispheric control network 
(ContA) and both somatomotor networks but led to deactivation 
of the default mode networks. We found the strongest positive 
activation across all conditions for SomMotB. This result was 

expected as the network is mainly characterized by connectiv-
ity in the auditory cortex and thus likely reflects the auditory 
nature of the task. The fact that sentences with pseudoword 
endings elicited slightly more activity in this network than 
the other three conditions supports this hypothesis and could 
be explained by increased listening effort for pseudowords. 
Accordingly, Kotz (2002) showed that lexical status modulates 
the hemodynamic response in cerebral regions responsible for 
auditory word recognition. SomMotA also showed significant 
network activity for all four conditions, likely reflecting motor 
response (e.g., Feis et al. 2015) caused by the button presses. The 
slightly lower activity for sentences with pseudoword endings 
could be due to the imbalance between word and pseudoword 
trials. Both default mode networks showed stronger deactiva-
tion with higher semantic integration demands, although for 
DefaultB, this effect only reached significance for sentences 
with pseudoword endings. This result was expected, as the de-
fault mode network is known to play a role in self- referential 
information processing and monitoring the internal mental 
landscape (Greicius et al. 2003; Qin and Northoff 2011). These 
processes are particularly suppressed during cognitive tasks in-
volving external stimuli with increased demands (e.g., Menon 
and D'Esposito  2022), such as sentences with unexpected, 
anomalous or pseudoword endings. Furthermore, evidence 
suggests that the default mode network activates during more 
“automatic” retrieval and conceptual combination tasks (Davey 
et al. 2016; Lanzoni et al. 2020; Price et al. 2016), such as when 
processing predictable sentences. The observation that DefaultB 
showed significant deactivation exclusively for sentences with 
pseudowords (which do not possess a semantic- lexical entry) is 
consistent with the assumption that this network contributes 
to semantic processing (Smallwood et al. 2021). The significant 
network activity of the left- dominant ContA for unexpected, 
anomalous, and pseudoword sentence endings, but not for ex-
pected sentence endings, likely reflects an increased level of 
cognitive control under increasing integration demands. ContA, 
together with ContB, constitutes the FPCN, a network that acts 
as a flexible hub for cognitive control (Dosenbach et  al.  2007; 
Marek and Dosenbach 2018; Spreng et al. 2010). It is associated 
with phasic control and attention (for a review, see Menon and 
D'Esposito  2022) as well as error- related activity (Dosenbach 
et  al.  2007). These skills are relevant to semantic integration 
under increased demands. The fact that we found activity 
mainly in the left- dominant ContA was expected given the se-
mantic language task and may indicate semantic- specific control 
mechanisms. In contrast, the right- dominant ContB showed an 
opposite trend with its significant negative activation for unex-
pected sentence endings. Although this condition is associated 
with increased integration demands, it still allows for success-
ful semantic integration (unlike the anomalous or pseudoword 
condition). Therefore, a possible interpretation could be that this 
condition relies less on right- dominant, domain- general control 
compared to sentences with anomalous or pseudoword end-
ings. Additionally, the cerebellum showed significant positive 
network activity for sentences with anomalous endings. This 
finding is consistent with our gPPI results, where we found an 
interaction between the control region preSMA and the cerebel-
lum for the contrast between expected and anomalous sentence 
endings. Thus, the cerebellum may play a supporting role in se-
mantic processing under increased control demands.
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Finally, for a direct comparison between network activity under 
increased integration demands and more automated semantic 
integration, we also examined network activity for the con-
trasts “unexpected vs. expected sentence endings,” “anomalous 
vs. expected sentence endings,” and “pseudoword vs. expected 
sentence endings.” Positive network activity survived for ContA 
when processing sentences with anomalous and pseudoword 
endings compared to expected endings, highlighting the im-
portant role of the left- dominant control network in semantic 
integration under increased demands. DefaultA showed the 
only significant negative activity for sentences with pseudoword 
endings compared to expected endings. This result is consistent 
with our hypothesis that activity in the default mode network 
decreases with increasing integration demands.

Finally, cPPI analysis unraveled the dynamic interaction be-
tween cognitive networks under varying semantic integration 
demands. Overall, the results reveal distinct interaction pat-
terns among task- positive networks and the default mode net-
works across varying semantic integration demands. Notably, 
task- positive control and somatomotor networks exhibited in-
creased positive interactions across all task contrasts, whereas 
interactions with default mode networks were predominantly 
negative. Based on the assumption that the FPCN is crucial 
for domain- general cognitive control and facilitates the real-
ization of new task states through interactions with other rel-
evant networks (Cole et al. 2013; Marek and Dosenbach 2018; 
Power et al. 2011), it is not surprising that we observed strong 
interactions between both control networks (ContA and ContB) 
and somatomotor as well as default mode networks, indepen-
dent of task contrast. These findings are consistent with previ-
ous research highlighting the role of task- positive networks in 
cognitive control and attention during increased task demands, 
while the default mode network is typically anticorrelated (Fox 
et al. 2005; Power et al. 2011). More specifically, previous studies 
reported an anticorrelation between the default mode network 
and control regions in tasks with low semantic predictability 
(e.g., Lanzoni et al. 2020) and there is evidence that the default 
mode network may be less involved in harder relative to easy 
semantic tasks (Humphreys et  al.  2015; Humphreys, Jackson, 
and Lambon Ralph 2019; Humphreys and Lambon Ralph 2015). 
On the other hand, we also found strong positive interactions 
between DefaultA and the left hemispheric ContA as well as 
between DefaultB and SomMotB for all three task contrasts, 
suggesting that the default mode network might contribute to 
semantic integration to some extent. In fact, there is evidence 
that the default mode network activates during a wide variety of 
cognitive tasks, including episodic, linguistic, social, and emo-
tional processes and supports the integration of external and 
internal information (Smallwood et al. 2021; Spreng et al. 2010). 
In particular, DefaultB shows a large overlap with the semantic 
network and might therefore contribute to performing our task, 
as mentioned above. A functional explanation for the default 
mode network interacting with other task- positive networks 
during semantic integration under increased demands could 
be that it facilitates access to semantic knowledge (Smallwood 
et al. 2021) and thus makes the detection of unexpected stimuli 
(Corbetta and Shulman 2002) more effective. Interestingly, we 
found a negative interaction between the two control networks 
(ContA and ContB) across all contrasts. This may indicate a di-
vision of labor or specialization within the control networks, 

where different components are engaged depending on the spe-
cific cognitive demands of the task (Dosenbach et al. 2007). A 
comparison of the network couplings for the individual task 
contrasts revealed slight, although nonsignificant, differences 
in between- network interactions. First, we found the most in-
teractions between task- positive networks for sentences with 
unexpected versus expected endings, likely supporting success-
ful semantic integration under increased demands for cognitive 
control and attention. The “anomalous vs. expected sentence 
endings” contrast showed less pronounced positive network 
interactions but instead a notable negative interaction be-
tween the cerebellum and DefaultB. Since both the cerebellum 
and DefaultB are known to contribute to semantic processing 
(Smallwood et al. 2021; Turker et al. 2023), we interpret this neg-
ative interaction as a response to the semantic violations caused 
by the anomalous sentence ending. Finally, the “pseudoword vs. 
expected sentence endings” contrast, where semantic integra-
tion fails due to the missing lexical entry, exhibited the least sta-
tistically significant network interactions. This suggests that the 
absence of meaningful semantic content in pseudowords leads 
to reduced engagement of both task- positive and default mode 
networks.

We also examined the behavioral relevance of network interac-
tions during the processing of sentences with varying semantic 
integration demands, revealing associations between reaction 
times and network coupling for each task contrast. Our main 
finding was that increased integration demands led to a higher 
number of behaviorally relevant network interactions. This 
suggests that the coupling becomes more relevant for success-
ful task performance as integration demands increase. In gen-
eral, stronger network interactions were associated with faster 
reaction times, especially for sentence endings with increased 
integration demands. However, for the “anomalous vs. expected 
endings” contrast, stronger coupling between SomMotB and 
ContA was associated with slower reaction times in the anoma-
lous condition. A possible interpretation would be that subjects 
with increased listening effort tend to have a stronger interaction 
between auditory cortex and semantic control regions, which is 
reflected in a slower button response. In contrast, for sentences 
with pseudoword versus expected endings, stronger coupling 
between default mode and task- positive networks led to slower 
reaction times. Given that this is the most challenging condition, 
this result is expected and fits with the fact that the default mode 
network is often deactivated during the performance of cogni-
tively difficult tasks (Fox et al. 2005; Power et al. 2011). In sum-
mary, our findings highlight especially the role of task- positive 
control and somatomotor networks in facilitating cognitive pro-
cessing under increased semantic integration demands.

Our study has several limitations that should be addressed in fu-
ture work. First, the relatively small sample size in combination 
with a wide age range makes it difficult to draw generalizable 
conclusions. Our sample was recruited as an age- matched con-
trol group for patients with brain tumors in an ongoing study. In 
the present study, we were able to show a significant age effect in 
the behavioral data but not in the univariate fMRI and functional 
connectivity analyses. Thus, our study provides first insights into 
semantic integration in humans along a continuous age spec-
trum. However, more comprehensive findings will require larger 
cohorts. Moreover, investigating functional connectivity during 
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semantic integration in a larger sample of older adults could be 
insightful, as there is evidence that cognitive decline is associated 
with increased between- network connectivity (Chan et al. 2014; 
Martin, Saur, and Hartwigsen 2022; Martin et al. 2023; Setton 
et al. 2022). Another limitation is that the fMRI methods used 
here are associated with poor signal in the ATL. This is critical 
because the ATL is thought to play an important role in semantic 
cognition research as a storage area for knowledge representa-
tions. Although our univariate results for the contrast between 
sentences with word endings and pseudoword endings showed 
significant activation in this area, it is possible that anterior and 
inferior parts are still missing. A multi- echo/multiband fMRI 
setup would be useful to investigate the role of this brain region in 
semantic integration under increased demands, especially with 
regard to its functional connectivity with the rest of the brain. 
Nevertheless, our findings pave the way for further research on 
semantic integration in older and clinical populations.

5   |   Conclusion

The present study explored the dynamic within-  and between- 
network interactions during semantic language processing in 
healthy adults across a continuous age range. We focused on the 
role of network interactions in semantic integration under in-
creased demands. Behavioral and univariate data revealed typ-
ical semantic integration effects, with increased brain activity 
mainly in regions associated with semantic control for sentences 
with higher integration demands. Higher semantic control de-
mands were also reflected by significant interactions between 
control- related frontal regions and subcortical or cerebellar 
areas. Between- network interactions further highlighted the 
role of task- positive control and somatomotor networks for sen-
tence processing with increased semantic integration demands. 
Additionally, stronger interactions between various task- positive 
as well as default mode networks were associated with more ef-
ficient processing during task conditions with increased seman-
tic integration demands. Collectively, our findings elucidate the 
complex network interactions underlying semantic integration, 
a language ability that is crucial for everyday communication. 
By including young, middle- aged and old adults, our findings 
provide first insight into semantic integration processes across 
the aging continuum. These results may inform future studies 
with healthy old as well as clinical populations.
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