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Abstract 
 
 
The ability to integrate semantic information into the context of a sentence is essential for 
human communication. Several studies have shown that the predictability of a final keyword 
based on the sentence context influences semantic integration on the behavioral, 
neurophysiological, and neural level. However, the architecture of the underlying network 
interactions for semantic integration across the lifespan remains unclear. 

In this study, 32 healthy participants (30-75 years) performed an auditory cloze 
probability task during functional magnetic resonance imaging (fMRI), requiring lexical 
decisions on the sentence’s final words. Semantic integration demands were implicitly 
modulated by presenting sentences with expected, unexpected, anomalous, or pseudoword 
endings. To elucidate network interactions supporting semantic integration, we combined 
univariate task-based fMRI analyses with seed-based connectivity and between-network 
connectivity analyses.  

Behavioral data revealed typical semantic integration effects, with increased 
integration demands being associated with longer response latencies and reduced accuracy. 
Univariate results demonstrated increased left frontal and temporal brain activity for 
sentences with higher integration demands. Between-network interactions highlighted the 
role of task-positive and default mode networks for sentence processing with increased 
semantic integration demands. Furthermore, increasing integration demands led to a higher 
number of behaviorally relevant network interactions, suggesting that the increased 
between-network coupling becomes more relevant for successful task performance as 
integration demands increase. 

Our findings elucidate the complex network interactions underlying semantic 
integration across the aging continuum. Stronger interactions between various task-positive 
and default mode networks correlated with more efficient processing of sentences with 
increased semantic integration demands. These results may inform future studies with 
healthy old and clinical populations. 
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Introduction 

Efficient language comprehension in everyday communication requires the integration of 
context-dependent information into sentence meaning, a process known as semantic 
integration. There is consensus that the combination of words into a sentence generates 
expectations about further information (e.g., Kutas & Hillyard, 1980), and the human brain 
constantly generates context-dependent predictions about the subsequent input (for a 
review, see Ryskin & Nieuwland, 2023). Numerous studies have shown that the integration of 
a final keyword into a sentence is influenced by the preceding context (e.g., Hagoort, 2006; 
Hagoort & Indefrey, 2014; Obleser & Kotz, 2010; Rogalsky & Hickok, 2009; Zhu et al., 2013). 
However, expectations about subsequent input are frequently violated in everyday 
communication, for example, when the less dominant meaning of an ambiguous word is 
processed or when we perceive jokes or ironic statements. Such situations require additional 
integration processes during lexical access (Franzmeier et al., 2012).  

At the behavioral level, higher semantic integration demands are reflected in 
increased response latencies and error rates (e.g., Baumgaertner et al., 2002; Kutas & 
Federmeier, 2000; Kutas & Hillyard, 1980; Lau et al., 2008). At the neurophysiological or 
neural level, integration demands result in increased N400 amplitudes (DeLong et al., 2014; 
Federmeier, 2007; Kutas & Federmeier, 2000; Kutas & Hillyard, 1980; Lau et al., 2008) and 
increased task-related activity in frontal and temporal brain areas (Baumgaertner et al., 2002; 
Hartwigsen et al., 2017). Previous neuroimaging studies investigating semantic integration in  
sentence endings with different levels of expectancy (cloze probability) showed increased 
activity in key areas of the semantic network, including the left anterior inferior frontal gyrus 
(aIFG), posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG), and anterior 
superior temporal sulcus/MTG (aSTS/MTG) for sentence endings with high integration 
demands, such as unexpected and anomalous endings (Baumgaertner et al., 2002, 
Hartwigsen et al., 2017).  

To elucidate the mechanisms underlying semantic integration, it is essential to briefly 
explore the field of semantic cognition research. In the current literature, semantic cognition 
is typically defined as the effective use of acquired knowledge about the world (Badre & 
Wagner, 2002; Hoffman et al., 2018; Jefferies, 2013; Lambon Ralph et al., 2017). A growing 
body of evidence suggests that successful semantic cognition is based on two interacting 
components (Jefferies, 2013; Lambon Ralph et al., 2017): 1) Semantic knowledge 
representation refers to the ability to store information about the meaning of objects, 
concepts, and words. 2) Semantic control processes regulate how aspects of our knowledge 
are retrieved and used in a specific context or during a specific task (Hoffman et al., 2018; Yee 
& Thompson-Schill, 2016). All semantic tasks require the interaction of knowledge and control 
processes, although the weighting between both components may vary depending on the 
task. Moreover, studies investigating semantic cognition in the lesioned (e.g., Jefferies & 
Lambon Ralph, 2006) or aging brain (e.g., Hoffman, 2018; Hoffman & MacPherson, 2022) 
suggest that both aspects can be impaired independently and rely on different neural 
systems. For example, older people generally show well-preserved semantic knowledge, 
whereas semantic control processes deteriorate with age (Grady, 2012; Hoffman, 2018; 
Hoffman & MacPherson, 2022; Martin et al., 2022, 2023; Morcom & Johnson, 2015; Wu & 
Hoffman, 2022). At the neural level, several studies have shown that the anterior temporal 
lobes function as a store of conceptual representations and are largely responsible for 
semantic knowledge through interaction with modality-specific association regions (Hoffman 
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et al., 2017; Humphreys et al., 2015; Mion et al., 2010; Patterson et al., 2007; Pobric et al., 
2007). The controlled use of semantic knowledge, on the other hand, is primarily associated 
with the activation of a neural network that includes the inferior frontal gyrus, the posterior 
middle temporal gyrus (pMTG), and inferior parietal regions including the intraparietal sulcus 
(Noonan et al., 2013; Rodd et al., 2005; Thompson-Schill et al., 1997).  

Since these brain regions align well with the above discussed regions involved in 
semantic integration under increasing demands, this leads to the assumption that higher 
semantic integration demands require enhanced control processes within the semantic 
network. Several studies have investigated network connectivity during the performance of 
semantic tasks using fMRI (e.g., Davey et al., 2016; Jackson et al., 2016) or MEG (e.g., Kielar 
et al., 2016). However, it is less clear how exactly brain areas interact during semantic 
integration. Hartwigsen et al. (2017) explored task-related effective connectivity during 
semantic integration between preselected areas of the semantic network. This study revealed 
task-specific interactions between temporal and frontal areas: Relative to sentences with 
expected endings, sentences with unexpected endings increased the inhibitory influence of 
the left aSTS/MTG on left pSTS/MTG. In contrast, processing sentences with semantically 
anomalous endings required increased inhibitory connectivity from left aIFG to left 
pSTS/MTG. These results are supported by other studies that complemented task-related 
interactions during semantic processing with resting state connectivity (e.g., Jackson et al., 
2016; Mascali et al., 2018). For example, Wawrzyniak et al. (2017) revealed a strong 
interaction between predefined areas in the left IFG, aMTG, and pMTG, and a left-dominant 
frontotemporal network of semantic language regions at rest. Increased functional 
connectivity between IFG and pMTG correlated positively with task performance under high 
semantic integration demands in the task paradigm. These results emphasize the relevance 
of interactions between the left IFG and pMTG in semantic control processes. 

Previous research has shown that, in addition to a functionally specialized core 
network, domain-general networks are also crucial for successful language processing (e.g., 
Fedorenko & Thompson-Schill, 2014). Indeed, tasks with high semantic control demands led 
to increased activation in areas that partially overlap with the multiple demand network - a 
network activated in response to increased executive control demands across various 
cognitive domains (Duncan, 2010; Fedorenko et al., 2013). FMRI studies suggest that semantic 
control can be divided into semantic-specific and domain-general components that activate 
adjacent brain regions in the left inferior prefrontal cortex (Badre et al., 2005; Hoffman, 2018; 
Nagel et al., 2008). Controlled retrieval appears to be semantic-specific, a mechanism that 
comes into play when automatic activation of semantic knowledge is insufficient, e.g., when 
a less dominant or unexpected word meaning must be accessed (Badre & Wagner, 2007). This 
controlled retrieval is associated with increased activation in the anterior ventral part of the 
left inferior prefrontal cortex (Brodman Area 47 (BA47)) (Badre et al., 2005; Dobbins & 
Wagner, 2005; Gold et al., 2006; Jackson et al., 2016; Krieger-Redwood et al., 2015). Studies 
of the structural and functional connectivity of BA47 support this hypothesis, as BA47 has 
close connections to anterior temporal regions, i.e., the region where semantic knowledge is 
stored (Jackson et al., 2016; Jung et al., 2017; Von Der Heide et al., 2013). In contrast, semantic 
selection between competing representations seems to be controlled more by a domain-
general executive selection system (Hoffman, 2018). Here, increased brain activation has 
been found primarily in the posterior part of the left inferior prefrontal cortex (BA 44/45) 
(Badre et al., 2005; Gold et al., 2006; Thompson-Schill et al., 1997). Therefore, the interaction 
between domain-specific semantic regions and domain-general networks likely contributes 
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to semantic integration. As the previous study by Hartwigsen et al. has primarily focused on 
effective connectivity between pre-selected areas of the semantic network during semantic 
integration, it is unclear how varying semantic integration demands modulate functional 
connectivity between large-scale cognitive networks at the whole-brain level. The present 
study aims to address this gap. Specifically, we were interested in whole-brain interactions 
during the processing of sentences with unexpected and anomalous endings.  

Using a previously established auditory semantic integration paradigm (Hartwigsen et 
al., 2017), we combined univariate task-related functional magnetic resonance imaging (fMRI) 
analyses with seed-based connectivity and between-network connectivity analyses. This 
allowed for a comprehensive characterization of semantic integration at the whole-brain 
level. We expected that semantic integration demands should modulate the task-specific 
interaction between frontal, temporal, and potentially parietal areas. More specifically, we 
hypothesized that processing sentences with increased semantic integration demands, that 
is, sentences with unexpected and anomalous endings, would lead to a stronger interaction 
between brain regions involved in semantic control in the frontal and temporal cortex. We 
assumed that while processing unexpected sentence endings requires the suppression of the 
expected word, semantic integration generally succeeds. In contrast, for anomalous sentence 
endings we hypothesized that, while lexical word retrieval should be possible, semantic 
integration would require restructuring attempts. Consequently, we expected to find an even 
more pronounced interaction with frontal control regions during the processing of anomalous 
sentence structures compared to unexpected ones. Additionally, we examined the processing 
of sentences with pseudoword endings, where neither lexical word retrieval nor semantic 
integration of the pseudoword into the sentence context should be feasible. Here, we also 
anticipated a significant interaction with control regions, even though this condition likely 
leads to less pronounced recruitment of the semantic system compared to sentences with 
real word endings. In addition to the increased interaction between regions of the semantic 
network, we hypothesized that the interaction with domain-general networks, particularly 
during the processing of sentences with increased integration demands, is crucial. We 
expected that the interaction between task-positive networks increases as semantic 
integration demands rise. Conversely, we expected a stronger interaction with the default-
mode network (DMN) during the more automated processing of predictable sentence 
endings. At the behavioral level, increased semantic integration demands should be reflected 
in increased response latencies and probably also decreased accuracy. Specifically, we 
expected an increase in response speed from expected to unexpected, anomalous and 
pseudoword endings. Furthermore, we assumed that behavioral performance might benefit 
from a stronger coupling between task-positive networks and a decreased coupling with task-
negative networks such as the DMN. 

 

Methods 

Participants 

33 healthy participants were recruited via postings at the University Hospital Halle (Saale) and 
the database of the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig. 
One participant was excluded because of left-handedness. The final sample included 32 
participants (mean age: 55.7 years, SD: 13.2, range: 30-75 years, 15 females). For a 
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visualization of the age distribution, see Supplementary Material Figure S1. On average, the 
participants had 16 years of education (SD: 2.4). All participants were native German speakers 
and, according to the Edinburgh Handedness Inventory (Oldfield, 1971), right-handed (mean 
LQ: 91.5, SD: 9.0). They had normal hearing, normal or corrected-to-normal vision, and no 
history of neurological or psychiatric conditions or contraindications to magnetic resonance 
imaging (MRI). The study was approved by the local ethics committee of the University of 
Halle (Saale) and conducted in accordance with the Declaration of Helsinki. Participants gave 
written informed consent prior to the experiment. They received 10 Euro per hour for 
participation. 
 

Neuropsychological Assessment 

To assess cognitive functioning, all participants performed a comprehensive 
neuropsychological test battery. They were screened for cognitive impairments using the Mini 
Mental State Examination (MMSE; Folstein et al., 1975; all ≥ 26/30 points) and for depression 
with the Beck Depression Inventory (BDI-II; Beck et al., 1996; all ≤ 13 points). Furthermore, 
participants performed the Digit Span Test (Wechsler & De Lemos, 1981) to assess their 
working memory capacity. The participants also underwent the subtests Alertness, Go/No-go 
1 of 2, and Go/No-go 2 of 5 of the Test of Attentional Performance (TAP; Zimmermann & 
Fimm, 2002). This battery evaluates different aspects of attention, including vigilance, 
response inhibition, and sustained attention. Demographic data and neuropsychological test 
results are shown in the Supplementary Material (Table S1). 
 

Experimental Design and Stimuli 

Our study employed an auditory cloze probability paradigm as previously described 
(Hartwigsen et al., 2017). This paradigm allows for modulating the demands of semantic 
integration by varying the predictability of the last word in a sentence across four different 
experimental conditions. The final word can either be (1) expected (e.g., "The pilot flies the 
plane."), (2) unexpected (e.g., "The pilot flies the kite."), or (3) semantically anomalous (e.g., 
"The pilot flies the book."). Additionally, pseudoword endings (e.g., "The pilot flies the kirst."), 
make successful semantic integration impossible. Participants had to perform a lexical 
decision task (word or a pseudoword) on the sentence’s final words. Stimuli consisted of 60 
sentences for each word condition (expected, unexpected, anomalous words), and 120 
sentences for the pseudoword condition (i.e., 60% word endings vs. 40% pseudoword 
endings, 300 sentences in total). To ensure that the context matched between the four 
conditions, the same sentence stems (subject + verb phrase) were used, with only the last 
word (object phrase) being varied accordingly. In addition to the 300 experimental trials, a 
separate set of 50 practice sentences was used for training outside of the scanner. All 
sentences were recorded by a female, professional German speaker. For details regarding 
stimulus creation, please refer to Hartwigsen et al. (2017).  
 

Experimental Procedure 

The data were collected in a single session of three hours for each participant. After the 
participants provided informed consent, they completed the neuropsychological assessment, 
followed by a short training of the experimental task outside the scanner. The subsequent 
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MRI measurement lasted about one hour and included the acquisition of a T1-weighted 
anatomical dataset as well as several fMRI scans (resting state, semantic integration 
paradigm, language localizer, breath hold task). Here, we focus on the results of the semantic 
integration task, as the other measures were performed to collect control data in the context 
of an ongoing patient study. The semantic integration task was implemented in two event-
related fMRI runs and had a total duration of 27 minutes. During the experiment, participants 
looked at a black screen with a white fixation cross in the center. All 300 stimuli were 
presented auditorily via MR-compatible over-ear headphones. Sentence duration ranged 
from 1.5 - 2.6 s, with a jittered inter-trial interval of 1.5 - 4.4 s. Both runs contained the same 
number of stimuli for each condition (30 expected, 30 unexpected, 30 anomalous, 60 
pseudowords). The distribution and order of stimuli across both runs were generated for each 
participant individually as a pseudo-randomized list, ensuring that a maximum of three 
sentences from the same condition could occur consecutively. Subjects performed a lexical 
decision task (Is the last word a real word or a pseudoword?) by responding via button press 
with their left middle (pseudoword) or index finger (word), and reaction times and accuracy 
data were collected. Note that the left hand was used to avoid button-press related left-
hemispheric motor activity. Presentation of the stimuli and triggering of the scanner was 
conducted through PsychoPy (Peirce et al., 2019). For a visualization of the experimental 
design see Figure 1. 
 

 
Figure 1. Experimental design of the semantic integration task. The figure illustrates two fMRI trials. 
Sentences were presented in an event-related fashion with a variable stimulus onset asynchrony 
between 3 and 7 s. Sentence duration varied between 1.5 and 2.6 s. After the auditory presentation of 
the sentence, subjects had to indicate via button press whether the final word represented a word or 
pseudoword (lexical decision). Reaction times (from the last word onset) and error rates were 
measured. 

 

Data Acquisition and Preprocessing 

Functional imaging was performed on a human whole body 3-Tesla scanner (Magnetom 
Skyra, Siemens, Erlangen, Germany) equipped with a 32-channel head coil. For the acquisition 
of fMRI data during the semantic integration task, a gradient echo-planar imaging (EPI) 
sequence was used (TR/TE = 2.24 s / 0.03 s, flip angle 90°, field of view (FOV): 100 mm, matrix: 
76×76 pixel, voxel size: 3×3×3 mm). A total of 360 image stacks consisting of 40 transversal 
slices each were acquired continuously during each session. Additionally, T1-weighted 
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anatomical images were acquired with an MPRAGE sequence in sagittal orientation (voxel size 
= 1 x 1 x 1 mm; TR = 2.53 s; TE = 0.00267 s). Preprocessing was performed using fMRIPrep 
23.0.0 (Esteban et al., 2019), which is based on Nipype 1.8.7 (Gorgolewski et al., 2011). In 
summary, preprocessing comprised skull stripping, co-registration, slice timing correction, 
and calculation of several confounding time-series for each of the two functional runs per 
participant. Anatomical T1-weighted images were skull-stripped, segmented, and spatially 
normalized to the MNI152NLin6Asym template. For details on the preprocessing pipeline, see 
Supplementary Material (Note S1) and fMRIPrep’s documentation 
(https://fmriprep.org/en/23.0.0/workflows.html). Finally, functional images were smoothed 
with a 6 mm FWHM Gaussian kernel using SPM12 implemented in MATLAB R2022b (9.13; The 
Mathworks Inc., Natick, MA, USA). 
 

Behavioral Data Analysis 

The statistical analysis of reaction times and error rates was conducted using R 4.2.2 via 
RStudio (R Core Team, 2021). We utilized the packages lme4 (Bates et al., 2014) and ggeffects 
(Lüdecke, 2018) for mixed models and ggplot2 (Wickham, 2016) for visualizations. Reaction 
times were measured from the onset of the last word in a sentence to the button press. 
Incorrect responses, omissions, and trials in which the button was pressed before the onset 
of the last word were excluded from the analysis of reaction times. Reaction times were 
corrected for outliers (based on the individual means by subject and condition +/- 2 SDs). For 
the analysis of reaction time data (Equation S1), a linear mixed-effects model with the log-
transformed data was computed. As fixed effects, we included condition, age, and their 
interaction term. Intercepts for participants and stimuli were defined as random effects. 
Additionally, we entered education as a covariate of no interest to account for a potential 
effect on performance in the semantic integration task. P-values were calculated using 
likelihood ratio tests comparing the full model with the effect in question against the model 
without the effect in question. The emmeans package (Lenth, 2020) was applied for post hoc 
comparisons, using Bonferroni-Holm correction. For the analysis of error rates, a generalized 
linear mixed-effects logistic regression was used to account for the binary nature of the 
response variable (Equation S2). However, since the model including an interaction of 
condition and age failed to converge, we defined the model without this interaction. 

We used deviation (simple) coding for our categorical predictor “condition”. The 
purpose of simple coding is to create numeric variables that capture deviations from the 
overall mean of a continuous variable or the baseline level in case of categorical variables, 
thereby allowing for comparisons in terms of deviations from a central reference point across 
different levels of a variable. The numeric variables “education” and “age” were mean-
centered and scaled to have unit variance. 
 

Univariate fMRI Analysis 

For the statistical analysis of fMRI data, a two-level approach was implemented using SPM12. 
On the first level, a general linear model (GLM) with a flexible factorial design was created for 
each participant. Each run was modeled separately in this design. The GLM included 
regressors for the onsets and durations of the four stimulus conditions, as well as a regressor 
of no interest for incorrect trials (wrong button presses). Nuisance regressors, consisting of 
the six motion parameters and individual regressors for strong volume-to-volume movement, 
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as indicated by framewise displacement (FD) values > 0.9, were also defined. Additionally, age 
was included as a covariate in the model. A high-pass filter with a cut-off of 128 s was applied 
to the data before model estimation. Statistical parametric maps of the t-statistic were 
generated by estimating the contrast of each condition against rest and the direct contrasts 
between the individual conditions. Additionally, the contrasts “sentences with word endings 
> sentences with pseudoword endings” and “sentences with pseudoword endings > 
sentences with word endings” were estimated by combining the trials of the three word-
conditions. 

For the second-level analysis, the contrast images of the pooled parameter estimates 
were entered into a random effects model. A one-sample t-test was performed for within-
group comparisons. Contrasts were thresholded at p < 0.05 and corrected for multiple 
comparisons using the family-wise error method at the cluster level (FWEc). The SPM 
anatomy toolbox (version 3.0; Eickhoff et al., 2005) was used for the anatomical localization 
of activation peaks. 

 

Functional Connectivity Analysis 

Generalized Psychophysiological Interaction Analyses 

To investigate task-related changes in functional connectivity during semantic integration, we 
conducted a generalized psychophysiological interaction (gPPI) analysis using the gPPI 
toolbox for SPM12 (version 13.1; McLaren et al., 2012). Since we were mainly interested in 
the functional connectivity underlying challenging but successful semantic integration 
processes, we defined our seed regions for areas that showed greater activation for 
unexpected and anomalous sentence endings relative to expected sentence endings. To this 
end, we ran a conjunction analysis: “unexpected > expected ∩ anomalous > expected” (see 
Figure S2 in the Supplementary Material). Subsequently, seed regions were defined for all 
global maxima within this conjunction (FWEc, p < 0.05) (see Table S2). A spherical ROI with a 
radius of 10 mm was created around each peak coordinate, using the MarsBaR toolbox 
(version 0.45; Brett et al., 2002). Within this boundary, we searched for the top 25% active 
voxels (positive) in each participant and defined them as our subject-specific ROIs. All 
participants had active voxels within the spherical masks. Next, we conducted the standard 
two-level approach by performing a whole-brain random-effects group analysis based on the 
GLM. At the first level, individual participant data were modeled separately using the gPPI 
toolbox. The first level GLM included: 1) “Psychological” regressors for all four experimental 
conditions convolved with the canonical hemodynamic response function (HRF), 2) a 
“physiological” regressor consisting of the deconvolved time series of the first eigenvariate of 
the BOLD signal from the respective seed ROIs, 3) PPI regressors for each experimental 
condition, which were calculated by multiplying the deconvolved BOLD signal of the 
respective seed ROIs with the condition onsets and convolving with the canonical HRF 
(McLaren et al., 2012), 4) nuisance regressors, consisting of the six motion parameters and 
individual regressors for strong volume-to-volume movement, as indicated by FD values > 0.9. 
Resulting participant level contrast images were entered into t-tests on the group level. To 
test for functional coupling during semantic integration, we compared the connectivity for all 
our task contrasts by using paired t-tests. For all group-level analyses, a gray matter mask 
(SPM12 tissue probability map) was applied, restricting statistical tests to voxels with a gray 
matter probability > 0.3. All activation maps were thresholded at a voxel-wise p < 0.001 and 
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a cluster-wise p < 0.05 FWE-corrected for multiple comparisons. We also tested the gPPI 
analysis using seed regions defined by the peak coordinates of the individual contrasts 
unexpected > expected and anomalous > expected (instead of the conjunction of both). 
However, no significant results were found for this approach. 

Independent Component Analysis 

To further assess which large-scale networks are active during the semantic integration task, 
we conducted a groupwise spatial independent component analysis (ICA; Calhoun et al., 
2009). ICA decomposes fMRI time series into multiple source components in a data-driven 
manner. While artifactual components can be removed (Griffanti et al., 2014), the remaining 
independent components correspond to functionally connected neural networks. 

The preprocessed, normalized, and smoothed data were analyzed using the Group ICA 
of fMRI Toolbox (GIFT v4.0c), which initially intensity-normalized the data before 
implementing the ICA. Data dimensions were reduced with a two-step expectation 
maximization principal component analysis (PCA) procedure. To this end, PCA was first 
performed at the run level, with dimensions being reduced from the full time-course-length 
(360 timepoints) to a participant-specific number of components as determined by the 
Minimum Description Length (MDL) criterion (Rissanen, 1978). Second, data were 
concatenated to further reduce dimensionality on the group level, again using the MDL 
criterion to determine the number of independent components (ICs). The MDL approach 
allows for an adaptive determination of the optimal number of components based on the 
data characteristics, providing a more tailored analysis compared to a fixed number of 
components (Rissanen, 1978; Schwartz, 1978). ICA was implemented using the Infomax 
algorithm (Calhoun et al., 2002). To ensure the reliability of the decomposition, Icasso was 
repeated 50 times with a cluster size determined by the MDL-derived number of components 
(Himberg & Hyvarinen, 2003). In the last step, the back-reconstruction of group-level ICs to 
the subject level was performed using the GICA3 algorithm in GIFT (Calhoun et al., 2001). For 
the remaining analyses, the components were scaled to Z-scores within each component. The 
resulting 36 ICs were visually inspected following the established criteria of Griffanti et al. 
(2014). After discarding components attributable to artifacts and noise, we identified a total 
of 11 network components. The spatial extent of these 11 components at the group level was 
determined using a one-sided t-test on the spatial maps of the participants. Results were 
corrected for multiple comparisons using a cluster-level threshold at p < 0.05 with the family-
wise error (FWE) method. 

Brain Network Identification 

To guide visual inspection in determining network labels for the 11 resulting component 
maps, we relied on the Jaccard similarity coefficient (J; Jaccard, 1912). The Jaccard Similarity 
Coefficient computes spatial similarity in the form of overlapping voxels between two binary 
spatial network masks (i.e., a component map A and a template map B), compared to all other 
voxels in the brain. This spatial similarity measure results in values between 0 and 1, where 0 
indicates no similarity, and 1 indicates a complete match. As template images, we chose the 
17-network functional connectivity-based parcellation scheme by Yeo et al. (2011) which is 
based on resting state data and provides a well-established foundation for the functional 
parcellation of the brain, enhancing the comparability and reproducibility of results. 
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Network Activity 

To investigate the activity of networks during various conditions of the semantic integration 
task, we used the temporal sorting utility in GIFT. Multiple regression analyses were 
performed between the time courses of the selected components and the design matrix from 
the GLM at the subject level. Through this analysis step, beta values for each network and 
each condition were obtained per run, representing the activity of a network for a given task 
predictor (11 ICs x 4 conditions x 32 subjects x 2 runs).  

Initially, we examined the FDR-corrected network activity for each individual task 
condition compared to the rest condition. We decided to retain only those networks that 
exhibited significant (de)activation (p < 0.05) for at least one condition versus rest for further 
analysis. This resulted in a selection of seven networks and ensured that our subsequent 
analysis of differences in network activity between conditions focused only on networks that 
seemed to be task relevant. 

To determine how the seven networks responded during individual conditions, 
pairwise comparisons of activity estimates for the respective conditions were conducted. 
Since this study focused on investigating semantic integration under challenging conditions, 
we were particularly interested in network activity during unexpected and anomalous 
compared to expected sentence endings. Additionally, we examined network activity for the 
two most opposing conditions: pseudoword endings (which cannot be semantically 
integrated into the overall meaning of the sentence) compared to expected sentence endings 
(which can be most easily integrated). To this end, the primary beta values for each network 
were initially averaged across runs. Subsequently, the utility in GIFT, "Stats on Beta Weights," 
was used to conduct paired t-tests on the subject level for the chosen conditions (unexpected 
vs. expected, anomalous vs. expected, pseudoword vs. expected). The results were FDR-
corrected, and the significance threshold was set at p < 0.05. 

Network Interactions 

To investigate task-related interactions between the seven networks that showed significant 
network activity in the task vs. rest comparison, we applied a correlational 
psychophysiological interaction (cPPI) analysis (Fornito et al., 2012). CPPI computes pairwise 
partial correlations between ROIs and produces an output in the form of undirected, 
symmetrical connectivity matrices. To examine network interactions for the tasks reflecting 
increased semantic integration demands, we performed cPPI for the contrasts “sentences 
with unexpected vs. expected endings” and “sentences with anomalous vs. expected 
endings”. Additionally, we were interested in contrasting sentences with semantically non-
integrable pseudoword endings and sentences with easily integrable, expected word endings.  

During cPPI analyses, the deconvolved time series of each network were multiplied 
with the task time course from the design matrix of the first-level analysis and convolved with 
a canonical HRF to create a PPI term. Subsequently, pairwise partial correlations between the 
PPI terms and two networks were estimated, while controlling for all remaining regressors in 
the GLM, the noise regressors, and the activity of the ten remaining networks. Task-specific 
network interactions were assessed by contrasting the above-mentioned conditions of 
interest. As a result, a symmetrical 7 x 7 connectivity matrix was obtained for each subject 
and contrast. Finally, the correlation coefficients were Fisher-transformed into z-values and 
the full matrices, including positive and negative correlation weights, were statistically tested 
at the group level. Interactions were considered significant at p < 0.05. Additionally, we used 
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the Network-Based Statistic (NBS) Toolbox (Zalesky et al., 2010) to investigate potential 
differences in the coupling of networks between the task contrasts. However, no significant 
results were found in this analysis. 

Behavioral Performance and Network Interactions 

For the contrasts "unexpected vs. expected sentence endings," "anomalous vs. expected 
sentence endings," and "pseudoword vs. expected sentence endings," we investigated the 
effects of the interaction among networks on participants' reaction times and error rates by 
fitting linear mixed-effects models (Equations S3 and S4). Models included fixed effects for 
the corresponding mean-centered network measure, condition, their interaction term, age, 
education and by-participant random intercepts. 

Additionally, we investigated the performance of the participants in the 
neuropsychological tests with regard to a potential correlation with the connectivity values 
of the networks. For this purpose, a sum score from all neuropsychological test results was 
calculated for each participant. Subsequently, a correlation analysis between the sum scores 
and the connectivity values of the networks for the respective task contrasts was conducted. 
However, after removing an outlier, no significant correlations were observed here. 

 

Results 

Semantic integration demands are reflected in behavioral responses 

Analyses of reaction times revealed a significant two-way-interaction of condition and age (χ2 
= 24.3249, p < 0.001). Post hoc tests showed significant differences in reaction times between 
all three word conditions (all p < 0.001), with the shortest reaction times observed for 
sentences with expected endings, followed by sentences with unexpected and anomalous 
endings. The longest reaction times were measured for sentences with pseudoword endings. 
However, reaction times for anomalous vs. pseudoword sentence endings did not differ 
significantly (Figure 2, left). For error rates, we found main effects of condition (χ2 = 71.793, 
p < 0.001) and age (χ2 = 8.018, p < 0.001). Post hoc tests revealed significant differences in 
error rates between all conditions (all p < 0.001), except for the contrast of unexpected vs. 
expected sentence endings (p = 1.0). The highest error rate was found for sentences with 
anomalous endings, followed by sentences with pseudoword endings and unexpected 
endings. The lowest error rate was observed for sentences with expected sentence endings 
(see Figure 2, right). Complete model outputs are reported in the Supplementary Material 
(Table S3). Furthermore, both reaction times and error rates, particularly for conditions with 
increased semantic integration demands, showed an increase with advancing age (see Figure 
S3). 
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Figure 2. Behavioral results. Differences in reaction times (RTs, left panel) and error rates (right panel) 
between task conditions. *p < 0.05, Bonferroni-Holm corrected. 

 

Semantic integration demands increase task-related activity in left fronto-temporal 
areas 

Our goal was to investigate the neural correlates underlying semantic integration under 
varying conditions. For all examined contrasts, we observed the expected brain activation in 
a predominantly left-lateralized fronto-temporo-parietal language network (Figure 3 and 
Table S4).  

Increased semantic integration demands were generally reflected by a frontal 
activation pattern. Specifically, the contrasts of unexpected, anomalous and pseudoword 
sentence endings vs. expected sentence endings all showed activation in the inferior frontal 
gyrus (IFG), the orbitofrontal cortex (OFC), and the presupplementary motor area (preSMA). 
For the “unexpected sentence endings > expected sentence endings” contrast, additional 
activation was found in the right precentral gyrus (PrG), the right cerebellum (VI), and the left 
inferior temporal gyrus (ITG). A similar, although even more pronounced activation pattern 
emerged for the “anomalous sentence endings > expected sentence endings” contrast. Here 
we found additional brain activation in the right cerebellum (VI), the left superior temporal 
gyrus (STG) and the right cerebellum Crus II. Finally, for sentences with pseudoword endings 
compared to expected endings we observed additional activation in the middle frontal gyrus 
(MFG). 

In contrast, the processing of sentences with expected endings was associated with 
predominantly temporo-parietal brain activity. We also examined blood-oxygen-level-
dependent (BOLD) signal differences during the processing of sentences with word endings 
(encompassing the conditions expected, unexpected, and anomalous) > sentences with 
pseudoword endings. We found the largest differences in brain activation in the left inferior 
parietal lobe (IPL), the left frontal pole (FP), the left middle temporal gyrus (MTG), the left 
parahippocampal gyrus, and the right MTG. Additional contrasts between the individual task 
conditions are included in the Supplementary Material (Figure S4). No significant effect of 
age was found in our univariate analysis. 
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Figure 3. FMRI results on the group level from the univariate analysis for our semantic contrasts of 
interest. Results are FWE-corrected at p < 0.05 at the cluster level. Abbreviations: ATL: Anterior 
temporal lobe; OFC: Orbitofrontal cortex; FP: Frontal pole; IFG: Inferior frontal gyrus; IPL: Inferior 
parietal lobe; ITG: Inferior temporal gyrus; (a)MTG: (Anterior) middle temporal gyrus; PreSMA: 
Presupplementary motor area; PrG: Precentral gyrus; STG: Superior temporal gyrus; STS: Superior 
temporal sulcus. 

 

Functional Connectivity Results 

Semantic integration demands increase task-related interactions between frontal and 
subcortical areas 

We ran gPPI analyses for seeds derived from the conjunction of the tasks with increased 
semantic integration demand, i.e., unexpected and anomalous sentence endings. Results 
revealed significant task-specific interactions for the seeds in the left IFG and preSMA. For 
unexpected > expected words, we found increased functional connectivity between left IFG 
and the thalamus (Figure 4, left). For the contrast expected > anomalous words, left preSMA 
showed increased coupling with the right cerebellum (Figure 4, right). We also performed 
gPPI analysis for regions with increased activation for individual contrasts of unexpected and 
anomalous conditions relative to expected words. Results did not indicate significant changes 
in functional connectivity for these seeds. 
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Figure 4. Task-dependent changes in functional connectivity for seeds in the left inferior frontal gyrus 
(IFG) and the contrast unexpected sentence endings > expected sentence endings (left) as well as the 
presupplementary motor area (preSMA) and the contrast expected sentence endings > anomalous 
sentence endings (right). All results are FWE-corrected at p < 0.05 at cluster level.  

Semantic integration is characterized by distributed large-scale networks  

We defined functional networks for the semantic integration task by performing spatial ICA 
at the group level. After filtering out noise components from a total of 36, we identified 11 
network components encompassing ten cortical components and one component in the 
cerebellum.  
To assign the 11 ICs to cognitive networks, we calculated the Jaccard Similarity coefficient 
between our binarized and thresholded ICs and template masks of neural networks  from Yeo 
et al. (2011). With the exception of IC16 and IC33, all ICs showed a similarity coefficient above 
the threshold recommended by Jackson et al. (2019) (J = 0.15) for at least one network 
template. The Jaccard indices for individual ICs and network templates are listed in Table S5. 
IC16 exhibited predominantly cerebellar connectivity and was thus not represented in the 
cortical templates of Yeo et al. (2011). Consequently, we labeled IC16 as the cerebellum. For 
all other independent components, we chose the label according to the highest Jaccard 
similarity coefficient. We found two control networks: ContA (IC25, J = 0.241) and ContB (IC17, 
J = 0.159), two default mode networks: DefaultA (IC11, J = 0.225) and DefaultB (IC35 = 0.273), 
as well as two somatomotor networks: SomMotA (IC12, J = 0.274) and SomMotB (IC04, J = 
0.288). IC13 showed the highest similarity to the salience/ventral attention network A 
(SalVentAttnA, J = 0.240). IC18 showed the highest Jaccard similarity coefficient for the central 
visiual network (VisCent, J = 0.197). Two networks showed the highest agreement with the 
peripheral visiual network (IC21, J = 0.286; IC33, J = 0.122). Figure 5 shows the thresholded 
maps (FWE-corrected at the cluster level with p < 0.05) with their original component 
numbers. Please note that the figure only includes the selected non-noise components that 
showed significant (de)activation for at least one task condition, since we decided to focus on 
those components in our further analysis. Details will be explained in the next paragraph. 
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Figure 5. Spatial ICA-derived networks during the semantic integration task. Networks are shown as 
binary masks, created from the T-scores from 1-sided T-tests (FWE-corrected p < 0.05 at cluster level). 
Network labels were chosen according to the spatial similarity analysis. Abbreviations: ContA/B: 
Control network A/B; DefaultA/B: Default mode network A/B; SomMotA/B: Somatomotor network 
A/B. 
 

Semantic integration demands differentially modulate network activity  

To focus subsequent analyses on networks relevant to the semantic integration task, we 
examined network activity for each task condition compared to rest. In total, seven of the 11 
networks showed significant (de)activation in at least one task condition (see Figure 6, top 
panel). A detailed summary of the beta and p-values of all 11 networks can be found in Table 
S6. Both somatomotor networks (SomMotA and SomMotB) showed significant positive 
activation for all four task conditions. The two control networks revealed a more complex 
picture: While ContA showed significant positive network activity for the three conditions 
with increased integration demands (unexpected, anomalous and pseudoword), ContB was 
significantly deactivated for the sentences with unexpected word endings. The two default 
mode networks showed overall more deactivation, which was significant for all four 
conditions in the DefaultA network, but only for the pseudoword condition in the DefaultB 
network. Finally, the cerebellum showed positive network activity that reached significance 
for the anomalous condition. All other networks (IC13, IC18, IC21, IC33) showed no significant 
(de)activation and were thus excluded from the following analysis. 
Next, we examined the activity of the remaining seven networks during the semantic 
integration task for three contrasts reflecting increasing integration demands ("unexpected 
vs. expected sentence endings," "anomalous vs. expected sentence endings," and 
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"pseudoword vs. expected sentence endings"). The differences in beta values between 
conditions are depicted in Figure 6 (bottom panel) and described in Table S6 for each 
network. No significant (de)activation was found for the "unexpected vs. expected sentence 
endings” contrast. However, a significant positive activation of ContA was detected for the 
more challenging task contrasts "anomalous vs. expected sentence endings" and 
"pseudoword vs. expected sentence endings". Furthermore, DefaultA showed significant 
deactivation for "pseudoword vs. expected sentence endings". 
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Figure 6. Network activity during semantic integration. Top Panel: Network activity (beta weights + 
SD) for the conditions expected, unexpected, anomalous and pseudoword compared to rest. Bottom 
Panel: Network activity calculated from differences between mean beta weights (+ SD) for the 
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contrasts of unexpected, anomalous and pseudoword vs. expected trials. Asterisks indicate significance 
for a given network’s contrast t-test (FDR-corrected, p < 0.05). Abbreviations: ContA/B: Control 
network A/B; DefaultA/B: Default mode network A/B; SomMotA/B: Somatomotor network A/B. 

Semantic integration demands mainly increase interactions between task-positive networks 

To investigate how the seven ICA-derived networks interact with each other during different 
conditions of the semantic integration task, a cPPI analysis was conducted, resulting in a 7 x 
7 correlation matrix for each task contrast (Figure S5 B). Significant network interactions for 
our contrasts of interest ("unexpected vs. expected sentence endings," "anomalous vs. 
expected sentence endings," and "pseudoword vs. expected sentence endings") are shown in 
Figure 7 (left column). Additional results are visualized in Figure S5 A.  
Networks typically classified as task-positive (ContA and ContB) as well as somatomotor 
networks predominantly exhibited increased positive interactions with one another across all 
three task contrasts. Conversely, these task-positive networks displayed increased negative 
interactions with default mode networks. Exceptions were the positive interactions between 
DefaultB and SomMotB, DefaultA and ContA, and DefaultA and ContB, the last pair only for 
the two semantic contrasts (unexpected vs. expected and anomalous vs. expected), but not 
for the contrast between pseudowords and expected sentence endings. Furthermore, we 
found a negative interaction between the two control networks ContA and ContB for all three 
task contrasts. The cerebellum showed a predominantly positive network modulation with 
SomMotA and ContB, and a weak negative interaction with ContA. Interestingly, however, 
this cerebellar interaction pattern differed for the anomalous vs. expected contrast. In this 
case, an increased negative interaction with DefaultB was predominant, a pattern not 
observed in the other two contrasts. Furthermore, the results show that for the two semantic 
contrasts (unexpected vs. expected and anomalous vs. expected), more network interactions 
reached statistical significance (n = 18) than for the contrast between pseudoword and 
expected endings (n = 11).  

Higher integration demands result in an increased number of behaviorally relevant network 
interactions 

Finally, we examined the behavioral relevance of these significant network interactions for 
the task contrasts "unexpected vs. expected sentence endings," "anomalous vs. expected 
sentence endings," and "pseudoword vs. expected sentence endings" (see Figure 7, right 
column; Table S7 – S9 for details). We did not detect any significant effect of network coupling 
on error rates. However, results revealed interactions between reaction times in the 
respective semantic conditions and network interactions. Remarkably, we found more 
behaviorally relevant network interactions for higher integration demands. For the 
"unexpected vs. expected sentence endings" contrast, we found a significant interaction 
between SomMotA and DefaultA. Increased coupling between these networks was 
associated with faster reaction times, especially for unexpected trials. For sentences with 
anomalous endings vs. expected endings, significant network interactions were observed 
between SomMotB and ContA as well as SomMotB and DefaultB. While a stronger interaction 
between SomMotB and ContA was reflected in slower reaction times for anomalous trials, 
coupling led to faster reaction times in the expected condition. The interaction between 
SomMotB and DefaultB instead promoted faster reaction times for sentences with anomalous 
endings. Regarding reaction times for sentences with pseudoword endings compared to 
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expected endings, we identified significant network interactions between DefaultA and 
ContA, SomMotA and Cerebellum, DefaultB and ContB, SomMotB and ContB, SomMotB and 
DefaultA as well as SomMotA and DefaultB. A stronger coupling between SomMotA and 
Cerebellum, SomMotB and ContB, and SomMotB and DefaultA resulted in faster reaction 
times in both conditions. The opposite pattern was found for DefaultB and ContB, as well as 
SomMotA and DefaultB, since a stronger coupling led to slower reaction times in both task 
conditions. Finally, a stronger interaction between DefaultA and ContA was associated with 
slower reaction times in the pseudoword condition and faster reaction times in the expected 
condition.  
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Figure 7.   Functional coupling between task-relevant networks and their behavioral relevance. Left 
panels: Chord diagrams show significant results of functional coupling between ICA-derived networks. 
Connectivity values are partial correlations. The color intensity and width of a connection indicate its 
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correlational strength. Higher correlation values (r) indicate positive coupling, and negative values 
indicate decoupling between networks. Right panels: Correlations between network interactions and 
task efficiency. Plots show significant 2-way interactions between task conditions and the respective 
network pair for response time data. Connectivity values were mean-centered for interaction analyses. 
Results were FDR-corrected for multiple comparisons at p = 0.05. Abbreviations: ContA/B: Control 
network A/B; DefaultA/B: Default mode network A/B; SomMotA/B: Somatomotor network A/B. 

 

Discussion 

The within- and between-network dynamics underlying context-dependent, semantic 
integration are still poorly understood.  Here, we addressed this issue by combining an 
auditory semantic integration paradigm with univariate task-related fMRI analyses, seed-
based within-network analyses, and ICA-based between-network connectivity analyses. On 
the behavioral level, we reproduced the typical semantic integration effects, characterized by 
increased reaction times and reduced accuracy for sentences with higher integration 
demands (Baumgaertner et al., 2002; Hartwigsen et al., 2017). These changes were 
underpinned by increased task-related activity in brain areas of the semantic control network. 
Likewise, seed-based functional connectivity analysis revealed a significant interaction 
between frontal regions involved in cognitive control and subcortical or cerebellar areas. 
Finally, we identified seven neural networks active during semantic integration. While 
increasing integration demands promoted activation of task-positive networks, the default-
mode networks showed more deactivation as semantic integration demands increased. As a 
main novel finding, between-network analyses revealed a dynamic interplay between task-
positive networks associated with control and somatomotor functions and the default mode 
network, supporting the processing of sentences with increased semantic integration 
demands. Increased integration demands lead to a higher number of behaviorally relevant 
network interactions, suggesting that between-network coupling becomes more relevant for 
successful task performance as integration demands rise. 
 The gradual increase in response times with higher semantic integration demands in 
our data is in agreement with previous studies (Baumgaertner et al., 2002; Hartwigsen et al., 
2017; Wawrzyniak et al., 2017) and likely reflects the suppression of the expected word as 
well as restructuring attempts. Likewise, a similar pattern for accuracy, but with highest error 
rates for anomalous trials, is supported by the same previous studies. However, unlike the 
previous studies that selectively included young participants, we did not find a significant 
difference in reaction times for sentences with anomalous compared to pseudoword endings. 
This could be explained by the fact that, in our study, older age was associated with longer 
reaction times and higher error rates, especially for sentences with anomalous endings. 

As expected, univariate results revealed a left-dominant, frontal activation pattern, 
including IFG, OFC, and preSMA, which increased with higher semantic integration demands 
(cf. Hartwigsen et al., 2017; Wawrzyniak et al., 2017). These regions are associated with 
cognitive control functions. While the IFG is linked to domain-specific semantic integration 
(e.g., Hartwigsen et al., 2017; Zhu et al., 2013) and semantic control (Jefferies, 2013), the 
preSMA and OFC appear to be involved in domain-general control processes (Brockett & 
Roesch, 2021; Fedorenko et al., 2013; Jackson, 2021). The gradual increase in activation in 
these regions during the processing of sentences with unexpected, anomalous, and 
pseudoword sentence endings suggests that the higher the semantic integration demands, 
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the more control is required to inhibit the expected word. In addition to frontal regions, 
temporal regions were also involved in processing sentences with increased integration 
demands. Specifically, we found significant activation in the posterior STG/STS. This finding 
was expected, as the pMTG/STS region has been implicated in the storage of lexico-semantic 
information (Lau et al., 2008; Price et al., 1997) as well as lexical retrieval and selection under 
increased executive demands (Whitney et al., 2011, 2012). For sentences with expected 
endings, as well as for the contrast between word and pseudoword endings, we observed a 
predominantly temporo-parietal activation pattern, especially in the left IPL/AG. This is not 
surprising given that this region is a multimodal convergence zone, linking various semantic 
features of concepts and information from different modalities (Seghier, 2013). In addition, 
previous studies confirm the critical role of this region in the processing of more predictable 
sentences (e.g., Humphries et al., 2007). 

The gPPI analysis revealed significant task-specific interactions for the left IFG and the 
preSMA. Specifically, the IFG showed increased interactions with the thalamus for 
unexpected > expected endings. The thalamus acts as a hub region for many cognitive 
functions (e.g., Hwang et al., 2017) including language processing and is responsible for the 
transfer of lexical information to cortical regions (Fritsch et al., 2022; Nadeau & Crosson, 
1997). Accordingly, patients with thalamic lesions often show aphasia with mainly lexical-
semantic deficits (e.g., Fritsch et al., 2022; Radanovic & Almeida, 2021). Interestingly, the 
thalamus seems to be involved especially when automated mechanisms such as semantic 
priming are not effective (Friederici, 2006; Ketteler et al., 2008) or during difficult language 
tasks (Alain et al., 2005; Assaf et al., 2006). The lexical-semantic nature of our task, and the 
fact that we found a significant interaction between the IFG and the thalamus only for 
sentences with increased integration demands fits well into the bigger picture of current 
research. Furthermore, the preSMA showed increased interactions with the right cerebellum 
(Crus I-IV and Crus VI) for expected > anomalous sentence endings. An increasing number of 
studies suggest that the cerebellum is involved in language processing and often exhibits a 
crossed activation pattern with the left-dominant cortical language network. Areas Crus I-IV 
and Crus VI have been associated with semantic and phonological processing (Turker et al., 
2023). Since both functions are crucial for the performance of our auditory lexical decision 
task, the involvement of the cerebellum is not surprising here. Consequently, the gPPI results 
emphasize the importance of subcortical and cerebellar regions in semantic integration, 
especially under increased demands. 

Using spatial ICA, we characterized 11 higher-order large-scale functional networks 
active during semantic integration. Cortical networks included two control networks: A left 
hemispheric network (ContA) as well as a right hemispheric network (ContB). Additionally, we 
identified the “classical” default mode network (DefaultA) and a subnetwork of the default 
mode network (DefaultB) which is thought to facilitate access to semantic knowledge 
(Smallwood et al., 2021). We also found two somatomotor networks: SomMotA likely reflects 
primarily motor aspects, such as button presses (Feis et al., 2015), and SomMotB, which - 
consistent with the auditory nature of our task - showed pronounced activation in the 
auditory cortex. Another network was primarily characterized by cerebellar connectivity. 
Furthermore, we identified a cortical network that best matched the salience/ventral 
attention network A (SalVentAttnA), a central visiual network (VisCent), and two networks 
that best aligned with the peripheral visual network (VisPeri). Overall, these results confirm 
our hypothesis that both task-positive and task-negative networks are involved in semantic 
integration. The fact that we found both default mode and control networks is consistent with 
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the observation that networks which are typically anticorrelated during resting state become 
functionally integrated during semantic tasks (Krieger-Redwood et al., 2016; Martin et al., 
2022, 2023). 

By examining the response of the networks to increasing semantic integration 
demands, we identified distinct patterns of activation and deactivation across task conditions. 
Since we were primarily interested in networks that were relevant for successful performance 
of the semantic integration task, we excluded all networks that did not show significant 
(de)activation for at least one task condition compared to rest from further analysis. 
Consequently, we explored task-related activity and between-network interactions for seven 
task-relevant networks (Cerebellum, ContA and ContB, DefaultA and DefaultB, as well as 
SomMotA and SomMotB). Our main finding was that increased semantic integration demands 
were associated with task-positive activation of the left hemispheric control network (ContA) 
and both somatomotor networks but led to deactivation of the default mode networks. We 
found the strongest positive activation across all conditions for SomMotB. This result was 
expected as the network is mainly characterized by connectivity in the auditory cortex and 
thus likely reflects the auditory nature of the task. The fact that sentences with pseudoword 
endings elicited slightly more activity in this network than the other three conditions supports 
this hypothesis and could be explained by increased listening effort for pseudowords. 
Accordingly, Kotz (2002) showed that lexical status modulates the hemodynamic response in 
cerebral regions responsible for auditory word recognition. SomMotA also showed significant 
network activity for all four conditions, likely reflecting motor response (e.g., Feis et al., 2015) 
caused by the button presses. The slightly lower activity for sentences with pseudoword 
endings could be due to the imbalance between word and pseudoword trials. Both default 
mode networks showed stronger deactivation with higher semantic integration demands, 
although for DefaultB, this effect only reached significance for sentences with pseudoword 
endings. This result was expected, as the default mode network is known to play a role in self-
referential information processing and monitoring the internal mental landscape (Greicius et 
al., 2003; Qin & Northoff, 2011). These processes are particularly suppressed during cognitive 
tasks involving external stimuli with increased demands (e.g., Menon & D’Esposito, 2022), 
such as sentences with unexpected, anomalous or pseudoword endings. Furthermore, 
evidence suggests that the default mode network activates during more "automatic" retrieval 
and conceptual combination tasks (Davey et al., 2016; Lanzoni et al., 2020; Price et al., 2016), 
such as when processing predictable sentences. The observation that DefaultB showed 
significant deactivation exclusively for sentences with pseudowords (which do not possess a 
semantic-lexical entry) is consistent with the assumption that this network contributes to 
semantic processing (Smallwood et al., 2021). The significant network activity of the left-
dominant ContA for unexpected, anomalous, and pseudoword sentence endings, but not for 
expected sentence endings, likely reflects an increased level of cognitive control under 
increasing integration demands. ContA, together with ContB, constitutes the frontoparietal 
control network (FPCN), a network that acts as a flexible hub for cognitive control (Dosenbach 
et al., 2007; Marek & Dosenbach, 2018; Spreng et al., 2010). It is associated with phasic 
control and attention (for a review, see Menon & D’Esposito, 2022) as well as error-related 
activity (Dosenbach et al., 2007). These skills are relevant to semantic integration under 
increased demands. The fact that we found activity mainly in the left-dominant ContA was 
expected given the semantic language task and may indicate semantic-specific control 
mechanisms. In contrast, the right-dominant ContB showed an opposite trend with its 
significant negative activation for unexpected sentence endings. Although this condition is 
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associated with increased integration demands, it still allows for successful semantic 
integration (unlike the anomalous or pseudoword condition). Therefore, a possible 
interpretation could be that this condition relies less on right-dominant, domain-general 
control compared to sentences with anomalous or pseudoword endings. Additionally, the 
cerebellum showed significant positive network activity for sentences with anomalous 
endings. This finding is consistent with our gPPI results, where we found an interaction 
between the control region preSMA and the cerebellum for the contrast between expected 
and anomalous sentence endings. Thus, the cerebellum may play a supporting role in 
semantic processing under increased control demands.  

Finally, for a direct comparison between network activity under increased integration 
demands and more automated semantic integration, we also examined network activity for 
the contrasts "unexpected vs. expected sentence endings", "anomalous vs. expected 
sentence endings", and "pseudoword vs. expected sentence endings". Positive network 
activity survived for ContA when processing sentences with anomalous and pseudoword 
endings compared to expected endings, highlighting the important role of the left-dominant 
control network in semantic integration under increased demands. DefaultA showed the only 
significant negative activity for sentences with pseudoword endings compared to expected 
endings. This result is consistent with our hypothesis that activity in the default mode network 
decreases with increasing integration demands. 

Finally, cPPI analysis unraveled the dynamic interaction between cognitive networks 
under varying semantic integration demands. Overall, the results reveal distinct interaction 
patterns among task-positive networks and the default mode networks across varying 
semantic integration demands. Notably, task-positive control and somatomotor networks 
exhibited increased positive interactions across all task contrasts, whereas interactions with 
default mode networks were predominantly negative. Based on the assumption that the 
FPCN is crucial for domain-general cognitive control and facilitates the realization of new task 
states through interactions with other relevant networks (Cole et al., 2013; Marek & 
Dosenbach, 2018; Power et al., 2011), it is not surprising that we observed strong interactions 
between both control networks (ContA and ContB) and somatomotor as well as default mode 
networks, independent of task contrast. These findings are consistent with previous research 
highlighting the role of task-positive networks in cognitive control and attention during 
increased task demands, while the default mode network is typically anticorrelated (Fox et 
al., 2005; Power et al., 2011). More specifically, previous studies reported an anticorrelation 
between the default mode network and control regions in tasks with low semantic 
predictability (e.g., Lanzoni et al., 2020) and there is evidence that the default mode network 
may be less involved in harder relative to easy semantic tasks (Humphreys et al., 2015, 2019; 
Humphreys & Lambon Ralph, 2015). On the other hand, we also found strong positive 
interactions between DefaultA and the left hemispheric ContA as well as between DefaultB 
and SomMotB for all three task contrasts, suggesting that the default mode network might 
contribute to semantic integration to some extent. In fact, there is evidence that the default 
mode network activates during a wide variety of cognitive tasks, including episodic, linguistic, 
social and emotional processes and supports the integration of external and internal 
information (Smallwood et al., 2021; Spreng et al., 2010). In particular, DefaultB shows a large 
overlap with the semantic network and might therefore contribute to performing our task, as 
mentioned above. A functional explanation for the default mode network interacting with 
other task-positive networks during semantic integration under increased demands could be 
that it facilitates access to semantic knowledge (Smallwood et al., 2021) and thus makes the 
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detection of unexpected stimuli (Corbetta & Shulman, 2002) more effective. Interestingly, we 
found a negative interaction between the two control networks (ContA and ContB) across all 
contrasts. This may indicate a division of labor or specialization within the control networks, 
where different components are engaged depending on the specific cognitive demands of the 
task (Dosenbach et al., 2007). A comparison of the network couplings for the individual task 
contrasts revealed slight, although non-significant, differences in between-network 
interactions. First, we found the most interactions between task-positive networks for 
sentences with unexpected vs. expected endings, likely supporting successful semantic 
integration under increased demands for cognitive control and attention. The "anomalous vs. 
expected sentence endings" contrast showed less pronounced positive network interactions 
but instead a notable negative interaction between the cerebellum and DefaultB. Since both 
the cerebellum and DefaultB are known to contribute to semantic processing (Smallwood et 
al., 2021; Turker et al., 2023), we interpret this negative interaction as a response to the 
semantic violations caused by the anomalous sentence ending. Finally, the "pseudoword vs. 
expected sentence endings" contrast, where semantic integration fails due to the missing 
lexical entry, exhibited the least statistically significant network interactions. This suggests 
that the absence of meaningful semantic content in pseudowords leads to reduced 
engagement of both task-positive and default mode networks. 

We also examined the behavioral relevance of network interactions during the 
processing of sentences with varying semantic integration demands, revealing associations 
between reaction times and network coupling for each task contrast. Our main finding was 
that increased integration demands led to a higher number of behaviorally relevant network 
interactions. This suggests that the coupling becomes more relevant for successful task 
performance as integration demands increase. In general, stronger network interactions were 
associated with faster reaction times, especially for sentence endings with increased 
integration demands. However, for the “anomalous vs. expected endings” contrast, stronger 
coupling between SomMotB and ContA was associated with slower reaction times in the 
anomalous condition. A possible interpretation would be that subjects with increased 
listening effort tend to have a stronger interaction between auditory cortex and semantic 
control regions, which is reflected in a slower button response. In contrast, for sentences with 
pseudoword vs. expected endings, stronger coupling between default mode and task-positive 
networks led to slower reaction times. Given that this is the most challenging condition, this 
result is expected and fits with the fact that the default mode network is often deactivated 
during the performance of cognitively difficult tasks (Fox et al., 2005; Power et al., 2011). In 
summary, our findings highlight especially the role of task-positive control and somatomotor 
networks in facilitating cognitive processing under increased semantic integration demands. 
 Our study has several limitations that should be addressed in future work. First, the 
relatively small sample size in combination with a wide age range makes it difficult to draw 
generalizable conclusions. Our sample was recruited as an age-matched control group for 
patients with brain tumors in an ongoing study. In the present study, we were able to show a 
significant age effect in the behavioral data but not in the univariate fMRI and functional 
connectivity analyses. Thus, our study provides first insights into semantic integration in 
humans along a continuous age spectrum. However, more comprehensive findings will 
require larger cohorts. Moreover, investigating functional connectivity during semantic 
integration in a larger sample of older adults could be insightful, as there is evidence that 
cognitive decline is associated with increased between-network connectivity (Chan et al., 
2014; Martin et al., 2022, 2023; Setton et al., 2022). Another limitation is that the fMRI 
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methods used here are associated with poor signal in the anterior temporal lobe (ATL). This 
is critical because the ATL is thought to play an important role in semantic cognition research 
as a storage area for knowledge representations. Although our univariate results for the 
contrast between sentences with word endings and pseudoword endings showed significant 
activation in this area, it is possible that anterior and inferior parts are still missing. A multi-
echo/multiband fMRI setup would be useful to investigate the role of this brain region in 
semantic integration under increased demands, especially with regard to its functional 
connectivity with the rest of the brain. Nevertheless, our findings pave the way for further 
research on semantic integration in older and clinical populations. 
 
 

Conclusion 

The present study explored the dynamic within- and between-network interactions during 
semantic language processing in healthy adults across a continuous age range. We focused 
on the role of network interactions in semantic integration under increased demands. 
Behavioral and univariate data revealed typical semantic integration effects, with increased 
brain activity mainly in regions associated with semantic control for sentences with higher 
integration demands. Higher semantic control demands were also reflected by significant 
interactions between control-related frontal regions and subcortical or cerebellar areas. 
Between-network interactions further highlighted the role of task-positive control and 
somatomotor networks for sentence processing with increased semantic integration 
demands. Additionally, stronger interactions between various task-positive as well as default 
mode networks were associated with more efficient processing during task conditions with 
increased semantic integration demands. Collectively, our findings elucidate the complex 
network interactions underlying semantic integration, a language ability that is crucial for 
everyday communication. By including young, middle-aged and old adults, our findings 
provide first insight into semantic integration processes across the aging continuum. These 
results may inform future studies with healthy old as well as clinical populations.  
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