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1 Master equation for an electronic system coupled to a photon

bath

The total Hamiltonian Ĥ that describes a many-electron system coupled to a photon bath can be

expressed as:

Ĥ = ĤS +
∑
k

2∑
λ=1

ℏωk

(
â†k,λâk,λ +

1

2

)
+

e

m

∑
k

Âk · p̂, (1)

where λ denotes the two possible indices for the orthogonal polarization states, â†k,λ and âk,λ are the

creation and annihilation operators for photons with wavevector k = (kx, ky, kz) and angular frequency

ωk = c|k|, p̂ is the electron’s momentum operator and Âk is the vector potential operator:

Âk =

2∑
λ=1

ϵk,λ

(
ℏ

2ωkV ε0

)1/2 (
â†k,λ + âk,λ

)
. (2)

where we have used the dipole approximation, i.e., eik·r ≈ 1. Here, V stands for the system’s volume,

ε0 is the vacuum permittivity, and ϵk,λ are the two polarization vectors, which satisfy the following

conditions:

ϵk,1 =
e1 × k

|e1 × k|
,

ϵk.2 = ϵk,1 ×
k

|k|
,

(3)

where e1 stands for the unit vector in the x direction. These polarization vectors allow us to simplify

the interaction term if we consider a one-dimensional electronic system with p̂ = p̂xe1:

Âk · p̂ = −
(
k2y + k2z

)1/2
|k|

(
ℏ

2ωkV ε0

)1/2 (
â†k + âk

)
p̂x. (4)

Here, for simplicity, we have omitted the λ index from the âk and â†k operators.

Since we are interested in the electronic subsystem, we will obtain the evolution of its reduced density

operator by tracing the full Liouville-von Neumann equation over the photonic degrees of freedom:

iℏ
d

dt
ρ̂(t) =

[
ĤS , ρ̂(t)

]
+
∑
k

[
p̂x,Trph

(
Âk,xρ̂T (t)

)]
, (5)
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where ρ̂ is the reduced density operator of the electronic subsystem, ρ̂T is the density operator of the total

system, Trph implies the partial trace over the photonic degrees of freedom, and Âk,x is the x-component

of Âk, which we will denote simply as Âk from now on, since in our treatment it is the only relevant

component. We can formally integrate the total density matrix in the interaction picture to obtain:

ρ̂T (t) = e−iĤ0t/ℏρ̂(0)eiĤ0t/ℏ +
1

iℏ
∑
k

e

m

∫ t

0

eiĤ0(τ−t)/ℏ
[
Âkp̂x, ρ̂T (τ)

]
e−iĤ0(τ−t)/ℏdτ, (6)

where

Ĥ0 = ĤS + ĤB = ĤS +
∑
k

2∑
λ=1

ℏωk

(
â†k,λâk,λ +

1

2

)
, (7)

is the unperturbed Hamiltonian.

Using equation 6, we can write:

Trph

(
Âkρ̂T (t)

)
=

e

miℏ
Trph

{∑
k′

(∫ t

0

p̂t−τ
x ÂkÂ

τ−t
k′ ρ̂τ−t

T (τ)dτ −
∫ t

0

ρ̂τ−t
T (τ)Âτ−t

k′ Âkp̂
τ−t
x dτ

)}
, (8)

where we have used the notation Q̂t = eiĤ0t/ℏQ̂e−iĤ0t/ℏ. Applying the decomposition ÂB̂ = (1/2)[Â, B̂]+

(1/2){Â, B̂} gives:

Trph

(
Âkρ̂T (t)

)
=

e

2miℏ
Trph

(∑
k′

∫ t

0

[
p̂τ−t
x , ρ̂τ−t

T (τ)
] {

Âk, Â
τ−t
k′

}
dτ

)

+
e

2miℏ
Trph

(∑
k′

∫ t

0

{
p̂τ−t
x , ρ̂τ−t

T (τ)
} [

Âk, Â
τ−t
k′

]
dτ

)
.

(9)

Since we have:

Âτ−t
k = −

(
k2y + k2z

)1/2
|k|

(
ℏ

2ωkV ε0

)1/2 (
â†ke

iωk(τ−t) + âke
−iωk(τ−t)

)
, (10)

we can use: ∑
k′

[
Âk, Â

τ−t
k′

]
= i

k2y + k2z
|k|2

ℏ
ωkV ε0

sin (ωk(τ − t)) . (11)

and, under the assumption that the coupling between the electronic system and the photons is weak

enough to consider harmonic behaviour:

Trph

(∑
k′

{
Âk, Â

τ−t
k′

}
ρ̂τ−t
ph (τ)

)
≈

k2y + k2z
|k|2

ℏ
ωkV ε0

(2Nk(τ) + 1) cos(ωk(τ − t)), (12)

we finally get:

Trph

(
Âkρ̂T (t)

)
=

e

2mωkiε0V

k2y + k2z
|k|2

∫ t

0

[
p̂τ−t, ρ̂τ−t(τ)

]
(2Nk(τ) + 1) cos(ωk(τ − t)) dτ

+
e

2mωkε0V

k2y + k2z
|k|2

∫ t

0

{
p̂τ−t, ρ̂τ−t(τ)

}
sin (ωk(τ − t)) dτ.

(13)

Now, we will assume that the distribution of photon modes is isotropic and dense enough to replace

the summation over the wavevectors k by an integral. We additionally introduce the operators χ̂A and
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χ̂B , whose matrix elements in the basis of eigenstates of ĤS are given by:

χA
nn′(k, k′) =

∫ ∞

0

eωk

6iπ2mε0c3
(2Nk + 1)

∫ t

0

pτ−t
nn′ (k, k

′) cos(ωk(τ − t)) dτ dωk, (14)

χB
nn′(k, k′) =

∫ ∞

0

eωk

6π2mε0c3

∫ t

0

pτ−t
nn′ (k, k

′) sin (ωk(τ − t)) dτ dωk. (15)

Let’s first consider the following integral:

χA
nn′(k, k′) =

∫ ∞

0

eωk

12iπ2mε0c3
(2Nk + 1)

∫ t

0

pnn′(k, k′)eiωnn′ (k,k′)(τ−t)
(
eiωk(τ−t) + e−iωk(τ−t)

)
dτ dωk,

(16)

where the integration as a function of τ can be solved by replacing s = τ − t with the following limits:

lim
ϵ→0+

lim
s→−∞

pnn′(k, k′)

∫ 0

s

ei(ωnn′ (k,k′)+ωk−iϵ)s + ei(ωnn′ (k,k′)−ωk−iϵ)s ds

= lim
ϵ→0+

pnn′(k, k′)

i

(
1

ωnn′(k, k′) + ωk − iϵ
+

1

ωnn′(k, k′)− ωk − iϵ

)
= lim

ϵ→0+

pnn′(k, k′)

i

(
ωnn′(k, k′) + ωk + iϵ

(ωnn′(k, k′) + ωk)
2
+ ϵ2

+
ωnn′(k, k′)− ωk + iϵ

(ωnn′(k, k′)− ωk)
2
+ ϵ2

)

=
pnn′(k, k′)

i

(
1

ωnn′(k, k′) + ωk
+

1

ωnn′(k, k′)− ωk
+ πiδ(ωnn′(k, k′) + ωk) + πiδ(ωnn′(k.k′)− ωk)

)
.

(17)

Therefore, we can write:

χA
nn′(k, k′) = −

∫ ∞

0

epnn′(k, k′)ωk

12π2mε0c3
(2Nk + 1)

×
(

1

ωnn′(k, k′) + ωk
+

1

ωnn′(k, k′)− ωk
+ πiδ(ωnn′(k, k′) + ωk) + πiδ(ωnn′(k.k′)− ωk)

)
dωk.

(18)

Following the same rationale, the expression for the matrix elements of χ̂B yields:

χB
nn′(k, k′) = −

∫ ∞

0

epnn′(k, k′)ωk

12π2mε0c3

×
(

1

ωnn′(k, k′) + ωk
+

1

ωnn′(k, k′)− ωk
+ πiδ(ωnn′(k, k′) + ωk)− πiδ(ωnn′(k, k′)− ωk)

)
dωk.

(19)

We retain only the Dirac delta functions, discarding the Lamb shift terms, resulting in the final

expressions for the matrix elements:

χA
nn′(k, k′) ≈ −

∫ ∞

0

epnn′(k, k′)ωk

12π2mε0c3
(2Nk + 1) (πiδ(ωnn′(k, k′) + ωk) + πiδ(ωnn′(k.k′)− ωk)) dωk

= − iepnn′(k, k′)|ωnn′(k, k′)|
12πmε0c3

(2N(|ωnn′(k, k′)|+ 1)) ,

(20)

χB
nn′(k, k′) ≈ −

∫ ∞

0

epnn′(k, k′)ωk

12π2mε0c3
(πiδ(ωnn′(k, k′) + ωk)− πiδ(ωnn′(k, k′)− ωk)) dωk

=
iepnn′(k, k′)ωnn′(k, k′)

12πmε0c3
.

(21)

Thus, we can rewrite equation 5 as:

iℏ
d

dt
ρ̂ =

[
ĤS , ρ̂

]
+

e

m

[
p̂,
[
χ̂A, ρ̂

]
+
{
χ̂B , ρ̂

}]
. (22)
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In order to get the master equation for the one-electron density operator, we need to tracer over the

degrees of freedom of the electrons, denoted as Tr2,...,Ne , where Ne is the total number of electrons. Since

we consider ĤS , χ̂
A and χ̂B as single electron operators, tracing over the related commutators leads to

the same expression. For the anticommutator, we have:

Tr2,...,Ne

({
χ̂B , ρ̂

})
=
{
χ̂B,oe(1), ρ̂oe(1)

}
+ 2Tr2

(
χ̂B,te(2)ρ̂te(1, 2)

)
, (23)

where the superscripts oe and te indicate one- and two-electron operators, respectively, with the numbers

in parentheses specifying the electrons on which the operators act. Assuming a basis of independent

electrons, we can write:

2Tr2
(
χ̂B,te(2)ρ̂te(1, 2)

)
= −2ρ̂oe(1)χ̂B,oe(1)ρ̂oe(1) + 4ρ̂oe(1)Tr

(
χ̂B,oe(1)ρ̂oe(1)

)
. (24)

In this way, we arrive at the final master equation for the single-electron density operator:

iℏ
d

dt
ρ̂ =

[
ĤS , ρ̂

]
+

e

m

[
p̂,
[
χ̂A, ρ̂

]]
+

e

m

[
p̂,
{
χ̂B , ρ̂

}
+ 4ρ̂Tr

(
ρ̂χ̂B

)
− 2ρ̂χ̂B ρ̂

]
(25)

2 Matrix elements of the velocity operator

Before deriving the matrix elements of the velocity operator, we need to establish some additional prop-

erties of our system. We are dealing with a linear chain of dimers, with each atom corresponding to the

same element. The atomic basis functions in the unit cell with index j are designated by |Lj⟩, |Rj⟩. The
distance between the atoms Lj and Rj inside cell j is d1m while that between Rj and Lj+1 is d2. The lat-

tice parameter is given by a = d1+d2. The electronic structure is described by the Su–Schrieffer–Heeger

(SSH) model, using the tight-binding Hamiltonian in real space:

ĤS = β1

N∑
j

|Rj⟩⟨Lj |+ β2

N∑
j

|Lj+1⟩⟨Rj |+ h.c., (26)

where β1 and β2 represent the hopping energies and N is the number of unit cells. Since our system is

periodic, the eigenstates of ĤS can be written as Bloch states:

|nk⟩ = 1√
N

N∑
j

eikaj [cL,n(k)|Lj⟩+ cR,n(k)|Rj⟩] , (27)

where n is the band index and k the wavevector. The expansion coefficients cL,n(k) and cR,n(k) can be

obtained by solving the eigenvalue problem:(
0 β1 + β2e

−iak

β1 + β2e
iak 0

)(
cL,n(k)

cR,n(k)

)
= En(k)

(
cL,n(k)

cR,n(k)

)
. (28)

After diagonalizing, the eigenvalues obtained are:

E1(k) =−

√
(β1 − β2)2 + 4β1β2 cos2

(
ka

2

)
,

E2(k) =

√
(β1 − β2)2 + 4β1β2 cos2

(
ka

2

)
.

(29)
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The normalized coefficients for the band with index n = 1 are given by:

cL,1(k) =
f(k)√

1 + |f(k)|2
,

cR,1(k) =
1√

1 + |f(k)|2
,

(30)

where we have defined the complex function f(k):

f(k) = −

√
(β1 − β2)2 + 4β1β2 cos2

(
ka
2

)
β1 + β2eiak

. (31)

For the band with index n = 2 we have:

cL,2(k) =
g(k)√

1 + |g(k)|2
,

cR,2(k) =
1√

1 + |g(k)|2
,

(32)

where now we defined g(k) as:

g(k) =

√
(β1 − β2)2 + 4β1β2 cos2

(
ka
2

)
β1 + β2eiak

. (33)

The electronic position operator, x̂, of a linear, non-periodic chain can be defined as:

x̂ =
∑
j

(
jaÎ+j +

d1
2
Î−j

)
, (34)

where

Î±j = |Rj⟩⟨Rj | ± |Lj⟩⟨Lj |. (35)

.

Now, we define the velocity operator, v̂, as:

v̂ =
1

iℏ

[
x̂, Ĥ

]
. (36)

It is important to note that, even if the position operator becomes ill-defined when applying periodic

boundary conditions, the velocity operator remains meaningful since it its translationally invariant.

Therefore, in the following, x̂ serves merely as a tool for the matrix elements of the velocity operator,

which holds actual physical relevance.

The matrix elements of v̂ are computed in the space spanned by the eigenstates |nk⟩ of the Hamilto-

nian ĤS . Within this representation, we have

⟨nk|v̂|n′k′⟩ = 1

iℏ
⟨nk|

[
x̂, Ĥ

]
|n′k′⟩

=
1

iℏ
∑
j

(
ja⟨nk|Î+j |n′k′⟩+ d1

2
⟨nk|Î−j |n′k′⟩

)
(En′(k′)− En(k)) .

(37)
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Each term can be worked out separately. For the first one, we have:

1

iℏ
(En′(k′)− En(k))

∑
j

ja⟨nk|Î+j |n′k′⟩

=
δk,k′

ℏ

[
δn,n′

dEn′(k)

dk
+ (En′(k′)− En(k)) ⟨ϕn(k)|

dϕn′(k)

dk
⟩
]
,

(38)

where we have defined

|ϕn(k)⟩ = cL,n(k)|L⟩+ cR,n(k)|R⟩. (39)

For the second term, we have:

d1
2iℏ

(En′(k′)− En(k))
∑
j

⟨nk|Î−j |n′k′⟩

= δk,k′
d1
2iℏ

(En′(k)− En(k))
[
c∗R,n(k)cR,n′(k)− c∗L,n(k)cL,n′(k)

]
.

(40)

3 Master equation for an electronic system coupled to a phonon

bath

Since we will define the matrix elements of the force operator for our electronic system—a linear chain

of dimers composed of same-element atoms—in close analogy to the simpler case of a chain with one

atom per unit cell, we begin the analysis with this system. Under the nearest-neighbor orthornomal

tight-binding approximation, the Hamiltonian is defined as:

ĤS = β

N∑
j

(|j + 1⟩⟨j|+ |j − 1⟩⟨j|) + h.c., (41)

where {|j⟩} correspond to the atomic basis states, ĤS is the electronic Hamiltonian operator, and β is

the hopping integral. Due to the system’s translational symmetry, the eigenstates of the Hamiltonian

can be expressed as Bloch states of the form:

|k⟩ = 1√
N

N∑
j

eijka|j⟩. (42)

Here, N represents the number of unit cells, and a the lattice parameter. The force operator over atom

j can be defined, in our nearest-neighbor approximation, as:

F̂j = −β′ (|j⟩⟨j − 1| − |j⟩⟨j + 1|) + h.c., (43)

where β′ is a parameter that sets the magnitude of the force. Thus, the matrix elements of F̂j in the

basis of eigenstates of ĤS are given by:

⟨k|F̂j |k′⟩ = −2iβ′eij(k
′−k)a

N
(sin(ka)− sin(k′a)) . (44)

In the case of the dimerized chain, we will define the matrix elements of the force operator analogously

to the monoatomic scenario:

⟨nk|F̂j |n′k′⟩ = Fj,nn′(k, k′) = − 2i

N
δnn′β′

ne
ij(k′−k)a (sin(ka)− sin(k′a)) , (45)
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where j is the cell index. This model assumes that the force operator has non-zero matrix elements only

within the same band, allowing us to define two parameters β′
n, one for the valence band and another

for the conduction band.

The total Hamiltonian of the electronic system coupled to the phonon bath is given by

Ĥ = ĤS + ĤP + ĤC , (46)

where ĤP is the Hamiltonian of the phonon bath, corresponding to a set of uncoupled harmonic oscilla-

tors:

ĤP =
∑
j

ℏΩj

(
N̂j +

1

2

)
, (47)

where, as usual, N̂j denotes the particle number operator associated with mode j, with angular frequency

Ωj . The electron-phonon coupling Hamiltonian, ĤC , is linear with respect to the displacement of ions

from their equilibrium positions:

ĤC =
∑
j

F̂jX̂j . (48)

where X̂j corresponds to a configuration coordinate for displacement of ions in cell j, and F̂j is the force

operator, which couples first-neighbors.

The derivation of the master equation is analogous to the procedure detailed in Bustamante et al.,

J. Chem. Phys. 158, 144104 (2023), resulting in:

iℏ
d

dt
ρ̂ =

[
ĤS , ρ̂

]
−
∑
j

[
F̂j ,
[
η̂Aj , ρ̂

]
+
{
η̂Bj , ρ̂

}
− 2ρ̂η̂Bj ρ̂

]
, (49)

where the matrix elements of the operators η̂Aj and η̂Bj in the basis of eigenstates of ĤS are given by:

ηAj,nn′(k, k′) =
iπFj,nn′(k, k′)(2N(|ωnn′(k, k′)|) + 1)

4M |ωnn′(k, k′)|∆Ω
, (50)

ηBj,nn′(k, k′) = − iπFj,nn′(k, k′)

4Mωnn′(k, k′)∆Ω
. (51)

Here, ωnn′(k, k′) represents the frequency associated with the transition from electronic state |nk⟩ to

|n′k′⟩, where ℏωnn′(k, k′) = En(k) − En′(k′), with En(k) being the energy of the electronic levels.

Additionally N(|ωnn′(k, k′)|) = (eℏ|ωnn′ (k,k′)|/kBT − 1)−1 with T the bath temperature, M an effective

nuclear mass, and ∆Ω = Ωmax−Ωmin the range of phonon bath frequencies. We assume a uniform density

of states for the phonon modes of angular frequency Ω, which is 1/∆Ω in the range Ωmin ≤ Ω ≤ Ωmax and

zero outside this range. Consequently, if |ωnn′(k, k′)| < Ωmin or |ωnn′(k, k′)| > Ωmax, the corresponding

matrix elements ηAj,nn′(k, k′) and ηBj,nn′(k, k′) are zero.

Equation 49 involves summations over products between the operators F̂j and η̂ij (for i = A,B).

Since different phonon modes are uncorrelated, we have:

∑
j

Fj,nn′(k, k′)η
(i)
j,n′′n′′′(k

′′, k′′′) ∝ 1

N2

∑
j

eij(k
′−k)aeij(k

′′′−k′′)a =
δk′−k,k′′−k′′′

N
. (52)

Therefore, these products will be non-zero only when:

k′ − k + k′′′ − k = 0. (53)
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Finally, we define the phonon driving term, Λ̂vib as:

Λ̂vib = −
∑
j

[
F̂j ,
[
η̂Aj , ρ̂

]
+
{
η̂Bj , ρ̂

}
− 2ρ̂η̂Bj ρ̂

]
. (54)

4 Semiclassical and QED-based emitted powers

The radiated power by an electronic system with a time-independent Hamiltonian ĤS following a master

equation of the type

iℏ
d

dt
ρ̂ =

[
ĤS , ρ̂

]
+ Λ̂rad, (55)

is given by

P = − 2

iℏ
Tr
(
ĤSΛ̂rad

)
. (56)

where the factor of 2 arises from spin degeneracy. In our case:

Λ̂rad =
e

m

[
p̂,
[
χ̂A, ρ̂

]]
+

e

m

[
p̂,
{
χ̂B , ρ̂

}
+ 4ρ̂Tr

(
ρ̂χ̂B

)
− 2ρ̂χ̂B ρ̂

]
, (57)

with the χ̂A and χ̂B operators given according to

χA
nn′(k, k′) = − iepnn′(k, k′)|ωnn′(k, k′)|

12πε0mc3
(2N (|ωnn′(k, k′)|) + 1) , (58)

χB
nn′(k, k′) =

iepnn′(k, k′)ωnn′(k, k′)

12πε0mc3
. (59)

Λ̂rad can be separated into two contributions:

Λ̂SC =
e

m

[
p̂, 4ρ̂Tr

(
ρ̂χ̂B

)]
, (60)

Λ̂QED =
e

m

[
p̂,
[
χ̂A, ρ̂

]]
+

e

m

[
p̂,
{
χ̂B , ρ̂

}
− 2ρ̂χ̂B ρ̂

]
. (61)

Working in the state space spanned by the |nk⟩, the eigenstates of ĤS , we can think of each k-point

as a different emitter, and therefore compute the total emitted power as a sum of the power of each

k-point:

P =
∑
k

[PSC(k) + PQED(k)]

= − 2

iℏ
∑
k

∑
n

(
⟨nk|ĤSΛ̂SC|nk⟩+ ⟨nk|ĤSΛ̂QED|nk⟩

)
.

(62)

Using the previous formula for the semiclassical contribution yields:

PSC(k) = − 2

iℏ
∑
n

⟨nk|ĤSΛ̂SC|nk⟩ = − 2

iℏ
∑
n

⟨nk|Λ̂SC|nk⟩En(k), (63)

where ĤS |nk⟩ = En(k)|nk⟩. Considering expression 60, we obtain

PSC(k) = −8e

iℏ
Tr
(
ρ̂χ̂B

)∑
n

(∑
n′

⟨nk|v̂|n′k⟩⟨n′k|ρ̂|nk⟩

−
∑
n′′

⟨nk|ρ̂|n′′k⟩⟨n′′k|v̂|nk⟩
)
En(k),

(64)

where in the last equation we have made use of the fact that the momentum operator is diagonal in k.

From expression 64, it can be seen that when n = n′ = n′′, the terms in the summations cancel out.
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Therefore, the semiclassical power does not include a contribution arising from the diagonal elements of

the density matrix (i.e., the populations), but only from the coherences.

In the particular case of a system with two bands, as the one studied in this work, expression 64

reduces to

PSC(k) =
8e2ω21(k)

3πε0c3
Im

(
ρ12(k)v21(k)

) ∑
k′ ̸=k

ω21(k
′)Im

(
ρ12(k

′)v21(k
′)

)

+
2e2ω2

21(k)

3πε0c3

[
2|ρ12(k)|2|v12(k)|2 − ρ212(k)v

2
21(k)− ρ221(k)v

2
12(k)

]
,

(65)

where we have used the notation f(k, k) = f(k) for the diagonal elements, to simplify the notation. In

equation 65, we have separated the contribution to the semiclassical power into that independent of all

k-points with k′ ̸= k in the second line, and that including the effect of other excited k-points in the first

line. In particular, for a system with only one k-point (i.e., a two-level system), only the second term

survives.

The QED power can be computed in an analogous way. Again, for a system with only two bands,

the result is:

PQED(k) =
e2

3πε0c3
ω2
21(k)|v21(k)|2

[
(2N(|ω21(k)|) + 1)(ρ22(k)− ρ11(k))

+ ρ22(k) + ρ11(k)− 2ρ11(k)ρ22(k) + ρ212(k)
v221(k)

|v21(k)|2
+ ρ221(k)

v212(k)

|v21(k)|2

]
.

(66)

5 Impact of chain length on subradiant transient states in emis-

sion dynamics

According to equation 64, the following proportional relationship exists for the emitted semiclassical

power:

PSC ∝ −Tr
(
ρ̂χ̂B

)
. (67)

Using definition 59 for the matrix elements of the operator χ̂B in the |nk⟩ basis of eigenstates of ĤS , we

can write:

χB
nn′(k, k′) = ⟨nk|χ̂B |n′k′⟩ = ie⟨nk|p|n′k′⟩

12πℏε0mc3

(
⟨nk|ĤS |nk⟩ − ⟨n′k′|ĤS |n′k′⟩

)
= − ie

12πℏε0mc3
⟨nk|

[
p̂, ĤS

]
|n′k′⟩.

(68)

Therefore, the operator χ̂B can be expressed, using the definition of the velocity operator, as:

χ̂B =
e

12πiℏε0c3
[
v̂, ĤS

]
. (69)

On the other hand, the expectation value of the second derivative with respect to time of the electric

dipole moment operator can be computed as:

⟨µ̈⟩ = e

(iℏ)2
⟨
[[
x̂, ĤS

]
, ĤS

]
⟩ = 2e

iℏ
Tr
(
ρ̂
[
v̂, ĤS

])
. (70)

Consequently:

PSC ∝ −⟨µ̈⟩. (71)
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Computing explicitly ⟨µ̈⟩ with equation 70 for a system with two bands, we get:

⟨µ̈⟩ = 2e

iℏ
∑
k

(
⟨1k|ρ̂

[
v̂, ĤS

]
|1k⟩+ ⟨2k|ρ̂

[
v̂, ĤS

]
|2k⟩

)
=

2e

iℏ
∑
k

[E1(k)(⟨1k|ρ̂v̂|1k⟩ − ⟨1k|v̂ρ̂|1k⟩) + E2(k)(⟨2k|ρ̂v̂|2k⟩ − ⟨2k|v̂ρ̂|2k⟩)]

=
2e

iℏ
∑
k

E1(k) (ρ11(k)v11(k) + ρ12(k)v21(k)− v11(k)ρ11(k)− v12(k)ρ21(k))

+
2e

iℏ
∑
k

E2(k) (ρ22(k)v22(k) + ρ21(k)v12(k)− v22(k)ρ22(k)− v21(k)ρ12(k))

(72)

⟨µ̈⟩ = 2e

iℏ
∑
k

(E2(k)− E1(k))(ρ21(k)v12(k)− ρ12(k)v21(k)) = 4e
∑
k

ω21(k)Im (ρ21(k)v12(k)) . (73)

Now, for a coherent system, we can write ρ21(k, t) =
√
ρ11(k)ρ22(k)e

−iω21(k)t, with t denoting time.

Using the fact that the matrix elements v12(k) are purely imaginary in the {|nk⟩} representation, we

finally obtain:

⟨µ̈(t)⟩ = 4e
∑
k

√
ρ11(k, t)ρ22(k, t)ω21(k)|v21(k, t)| cos (ω21(k)t) , (74)

where we have made explicit which variables have time dependency. Equation 74 shows that the total

semiclassical power radiated by the system is proportional to a sum of cosines for each k-point, where

each term of the sum is modulated by distinct populations and frequency ω21(k).

Although the previous summation in principle runs over all the reciprocal space, after irradiation with

a monochromatic pulse, only a narrow range of k-points will have appreciable populations in the conduc-

tion band. Consequently, we can neglect those k-points whose excitation frequencies differ significantly

to the pulse frequency, and restrict the summation to:

⟨µ̈(t)⟩ ≈ 8e

k0+∆k/2∑
k0−∆k/2

√
ρ11(k, t)ρ22(k, t)ω21(k)|v21(k, t)| cos (ω21(k)t) , (75)

where k0 is the k-point whose frequency is resonant with the laser, ∆k denotes the range of reciprocal

space that has a non-negligible conduction band population, and the additional multiplicative factor of 2

takes into account the symmetric nature for k and −k, since we are summing for only one of these pairs.

To gain additional insight into the implications of equation 75, we propose a series of assumptions,

whose validity will be discussed later.

Firstly, we assume that the product
√

ρ11(k, t)ρ22(k, t)ω21(k)|v21(k, t)| varies slowly enough over the

range k0−∆k/2 ≤ k ≤ k0+∆k/2, allowing us to approximate it by
√
ρ11(k0, t)ρ22(k0, t)ω21(k0)|v21(k0, t)|.

Secondly, we expand the excitation frequency ω21(k) as a Taylor series around k0, retaining only the

first-order term:

ω21(k) ≈ ω21(k0) +
dω21

dk

∣∣∣∣
k=k0

(k − k0). (76)

Given that k-space is sampled uniformly, we can express k as k = 2πj/(Na), where j is a non-negative

integer, N is the number of k-points sampled, and a the lattice parameter. Using these assumptions, we
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can write:

⟨µ̈(t)⟩ ≈ 8e
√
ρ11(k0, t)ρ22(k0, t)ω21(k0)|v21(k0, t)|

j=jmax∑
j=jmin

cos

(
ω21(k0)t+

dω21

dk

∣∣∣∣
k=k0

(
2πj

Na
− k0

)
t

)
,

(77)

where jmin, jmax correspond to the values of j for k0 −∆k/2 and k0 +∆k/2, respectively.

Since each k-point has a slightly different frequency, the cosines in the sum can interfere constructively,

leading to dissipation, or destructively, resulting in subradiant transient states. A period of this cycle will

be completed when the argument of the cosine function for a given k-point equals that of its neighbors

modulo 2π, i.e.:

ω21(k0)T +
dω21

dk

∣∣∣∣
k=k0

·
(
2πj

Na
− k0

)
T + 2πr = ω21(k0)T +

dω21

dk

∣∣∣∣
k=k0

·
(
2π(j + 1)

Na
− k0

)
T, (78)

where r is an integer and T is the period over which fully constructive interference is observed. Hence,

we obtain:

T = rNa

∣∣∣∣∣ dω21

dk

∣∣∣∣
k=k0

∣∣∣∣∣
−1

, r ∈ N (79)

According to this result, the time intervals between subradiant steps should increase linearly with the

numbers of k-points sampled (and therefore with the length of the linear chain). This trend is evident

in Figure 1, where we plot the radiated energy as a function of time using the same laser parameters

as in Section 3.2. of the main text (E0 = 1.3 V·Å−1
, toff = 50 fs and ω = 11 fs−1, corresponding to

the excitation frequency at k = π/2a), but varied the number N of k-points sampled. In all cases, the

excited state was evolved using the semiclassical driving term, Λ̂SC. As predicted by equation 79, the

time needed to observe dissipation increases linearly with N .

Moreover, using equation 79 with the corresponding values for dω21/dk|k=−π/2a = 15.75 eV fs−1 Å,

a = 2.80 Å, and N = 400, we predict a fundamental period of T ≈ 70 fs, which is in excellent agreement

with the one observed in Figure 1 for the same value of N . This demonstrates that the first-order

approximation of ω21(k) is sufficient for the range of k-points with a non-negligible conduction band

population.

The analysis leading to equation 79 not only correctly predicts the dependence of the period of the

emission cycles on the length of the chain but also explains why the duration of the subradiant transient

states (the plateaus that separate the periods of non-negligible dissipation) remains constant. This period

is independent of any time-dependent quantity. On the other hand, the decrease in the radiated energy

at each step can be understood from equation 77 as a consequence of the diminishing amplitude of the

cosine functions, which occurs as the populations in the conduction band decrease over time.

The inclusion of the dependency of the amplitudes
√
ρ11(k)ρ22(k)ω21(k)|v21(k)| on k complicates the

analysis. Despite the added complexity, equation 79 remains valid as long as the first-order expansion

76 holds over the range k0 ± ∆k/2, since the amplitudes of the cosine functions are positive for all

k. Therefore, the nature of the interference (constructive or destructive) is entirely determined by the

dephasing of the cosines.

These results further suggest that for very dense grids in k-space, transient subradiant states should

be long-lived. In the limit of a continuous number of k-points, summation 74 transforms into the integral:

⟨µ̈(t)⟩ = 4πe

a

∫ π/a

−π/a

√
ρ11(k)ρ22(k)ω21(k)|v21(k)| cos (ω21(k)t) dk, (80)

which asymptotically approaches zero for large t due to the destructive interference among a continuous
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Figure 1: Radiated energy, computed as the time integral of the emitted power, for linear periodic
systems with varying numbers of k-points sampled in reciprocal space, N . The initial excited states,
prepared by irradiation with a laser pulse, were evolved using the semiclassical driving term scaled by
an acceleration factor f = 104.

set of frequencies.
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