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Biological materials display a wide array of functionality, often dictated
by complicated microstructures. New geometric and topological strategies
allow one to describe the microstructures in a precise and systematic way.
This article describes the application of topological persistence and other
geometric methods to the microstructural analysis of three-dimensional
X-ray micro-computed tomography scans of the Bombyx mori silkworm
cocoons. These methods allow conclusions to be drawn about pore space
gradients, silk fibre thickness gradients and fibre alignment within the
cocoon. The study demonstrates the applicability of these topological and
geometric methods to quantify and characterize fibrous materials.

1. Introduction
Silk has been used by humans for several thousand years, e.g. as a medical
suture material, for garments, charms and musical instruments [1–5]. While
silk is produced by many species of insects and spiders, the silk used by
humans for textiles originates from caterpillars of silk moths. More than 500
silk moth species among the Lepidoptera (butterflies and moths) are known,
but only a few are used for commercial silk production, with Bombyx mori
being the main ‘producer’ [6,7]. The silkworm spins the cocoon out of silk
as a casing for its pupal stage in which it undergoes metamorphosis from
caterpillar to moth. The shape and colour of cocoons are highly diverse
and depend on the species and environmental conditions [8]. Bombyx mori
caterpillars spin the entire cocoon out of a single silk filament (bave), which is
up to 1500 m long, spinning from the outside to the inside creating a multi-
layered structure [9]. The silk bave is a protein-fibre composite consisting
of two fibroin filaments (brin). These are embedded in sericin, acting as the
matrix/glue holding the spun filament network in place [10].

Research into the cocoon’s function shows possible oxygen, carbon dioxide
and water vapour gating properties, as well as potential insulation against
heat or cold [11,12]. Structural analysis of the B. mori cocoon membrane often
shows a gradient with decreasing pore size from the outside to the inside,
where a decrease in filament diameter is also seen [8]. Fibre dimensions and
orientation are fundamental parameters for fibrous structures. They impact
the mechanical properties of the structure and characteristics such as the
porosity [13–16]. The architecture of the pore space is important for functional
properties like thermal insulation or gas exchange [12,17,18] and the gradient
in pore size is linked to tear resistance [19]. The fibre orientation in a given
layer of the cocoon membrane is described as being uniformly distributed
in all directions; it is considered a ‘stochastic fibrous material’ with isotropic
mechanical properties [20].

Recent research using micro-computed tomography (µCT) to analyse the
cocoon of B. mori, however, indicates a possible preferred fibre orientation
along the short axis of the cocoon [14]. Until now, all microstructural analyses
have been performed on two-dimensional images of either manually peeled
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cocoon layers or two-dimensional µCT slices [14,21]. To gain a robust and accurate picture of the cocoon’s microstructure,
analysis of the three-dimensional orientation of the fibres is necessary. However, three-dimensional analysis of the orientation of
highly interconnected, curved spun bond fibre networks is a challenging task.

The disordered, entangled and porous structure of the cocoons naturally lends itself to a study from a geometric and
topological perspective. Topological data analysis offers methods to analyse complex data using theoretical foundations from
both topology and data science. The central mathematical concept of topological data analysis is the notion of persistent
homology, which gives a robust characterization of connected components, loops and cavities present in data.

The concept of persistent homology arises concurrently in the separate works of Frosini [22], Robins [23] and Edelsbrunner
et al. [24] in the 1990s. It provides a characterization of shape and topology of a structure using robust mathematics, and when
paired with statistics, it becomes a central idea in topological data analysis. The stability of persistent homology makes its
application robust with respect to noise, deformations and interpretability of the results. It allows us to extract the features of
the data that are the most prominent, or those that are persistent, ignoring irrelevant noise and fluctuations. Persistent homology
has been previously used to describe porous materials when the pore space is a complicated network-like shape [25–27], further
enabling the study of physical processes in disordered materials [28,29]. Topological data analysis has also been used to predict
the physical properties of the effective elastic modulus of porous media in rocks [30,31].

In our case, persistent homology enables us to robustly characterize topological and geometric features of the pore space
and fibres of the cocoon, which is what we do in this paper for µCT scans of B. mori cocoons (figure 1). We demonstrate
the use of persistent homology for extracting geometric information about the pore space and estimating the micro-structural
characteristics of the fibres. Such an approach reveals a gradient in the pore sizes through the thickness of the cocoon. We show
the gradient in fibre size. Finally, we demonstrate in a robust way that the B. mori cocoon is built as a layered structure with a
uniform distribution of fibre orientations.

2. Topological persistence
Homology is a mathematical idea that describes shapes by counting the number of connected components and holes in different
dimensions. For example, the homology of a sphere and a torus are not equal, which tells us that these two shapes are
fundamentally different; the torus has a hole through its middle, and the sphere does not. Persistent homology considers this
concept in relation to data rather than smooth shapes, identifying topological and geometric patterns that describe the ‘shape’
of the data. This is done by defining a filtration, which is a sequence of nested sets related to the data. The persistence of
topological features of the sequence of sets through the filtration gives rise to persistence homology. For a binary dataset,
a filtration can be constructed using the signed Euclidean distance transform (SEDT), which has been used previously in
analysing material microstructures using persistent homology [32,33]. For each voxel in the pore space of the binary dataset, the
SEDT returns the distance to the closest voxel on the interface between the object and the pore. For each voxel in the fibre, the
SEDT returns the negative value of the distance to the same interface.

Figure 2 shows a filtration and the resulting persistence information for a two-dimensional binary image of a pore surroun-
ded by a solid region, shown as white and red respectively in the first image. Figure 2j show the filtration (the sequence of
nested sets) induced by signed Euclidean distance, growing from deep in the pore space towards the solid red domain. The
regions of the pore space that are furthest from the red solid are included first, and subsequent regions are added according to
distance from the red domain.

The persistence of topological features is shown in the final two plots of figure 2, representing the persistence of connected
components and enclosed holes through the filtration, respectively. Each horizontal line in the plots describes a topological
feature, which is born at its left endpoint (at the value it first appears in the filtration), and dies at its right endpoint (at the value
it disappears in the filtration). We always choose to continue the bar that appeared earlier. Finally, at the end of our filtration,
which formally can go to infinity, we are left with one connected component. Each of these horizontal lines can be collected
into a plot of birth on the x-axis and death on the y-axis, called a persistence diagram. For three-dimensional images, we have
non-trivial persistence diagrams in three dimensions. The significance of each topological feature is measured by the absolute
value of the difference between birth and death for that feature, with more persistent features having a larger difference. All
non-persistent features are concentrated around the diagonal, and these are characterized as noise or fluctuations. We can
simplify the diagrams by deleting non-persistent features up to a certain threshold.

Persistence diagrams have different geometric interpretations in each dimension. For a three-dimensional dataset, the
zero-dimensional diagrams summarize the evolution of connected components, where each birth signifies the appearance of
a new connected component in the filtration, and each death tells us when two connected components merge. The one-dimen-
sional diagrams can then be interpreted as the evolution of loops. If a point in the diagram has a negative birth and positive
death, it means that this point represents the existence of a loop around the fibre in the level set. When a point has negative birth
and negative death, there exists a loop in the pore space that lies in a big pore and dies when fibres get closer to each other. A
visualization of these structures is shown in figure 3.

In this article, persistent homology is used on binary three-dimensional data to extract information about connected
components and one-dimensional holes.
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3. Methods
3.1. Micro-computed tomography of Bombyx mori and resulting data structures
Micro-CT scans were employed for acquiring three-dimensional volumes of dissected cocoon samples. Samples of 4 mm
diameter were dissected from the equator and poles of seven cocoons (see figure 1) approximately 5 days after the animals
started spinning, using a biopsy punch (KAI Europe GmbH, Solingen, Germany). The resulting silk discs were glued on a
carbon stick holder for µCT scanning. The scans were conducted using an EasyTom Nano 160 system (RX solutions, Chavanod,
France), equipped with a nanofocus X-ray source Hamamatsu L10711-03 (Hamamatsu Photonics K.K., Iwata, Japan). The
scanning parameters were set to a voltage of 55 kV, tube current of 85 µA and voxel sizes of 2 µm and activated anti-ring shift.

(a) (b)
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Figure 1. (a) A colorized rendered image of the X-ray μCT scan of a cocoon of B. mori. The blue arrow indicates the short axis or equator of the cocoon. White circles
mark the position of samples cut from the two poles (north at the top, south at the bottom) and the equator of the cocoon. (b) Rendered greyscale images of the µCT
scans of the marked sample at 2 µm voxel size.
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Figure 2. (a) A two-dimensional porous pattern, where the white area represents the pore, and the red area is a solid material. Panels (b)–(j) show level sets of the
signed Euclidean distance transform growing from deep in the pore space to the solid red domain. The dark purple region represents the area most distant from the red
solid, and the yellow region is the area closest. Each coloured stripe is the area that is equally distant from the solid, where all points have a distance not more than a
certain small threshold. (k) The zero-dimensional persistence diagram for the filtration shown in images (b)-(j), represents the persistence of connected components
through each subsequent coloured layer. The first blue horizontal line is generated by the first connected component which appears at the second step of the filtration
(b). The second yellow line corresponds to the connected component that appears at the fifth step of filtration (e). These two connected components merge at step
seven (g), which signifies the ‘death’ of the shorter yellow bar. (l) The one-dimensional persistence diagram for the filtration, which describes the persistence of
enclosed holes in each subsequent coloured layer. In the eighth step, the level set has one hole, which gives birth to the green bar, whereas the red bar is generated by
the second hole which appears in the ninth step.
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The frame rate was 1, with an average over eight frames for a total of 1792 projections for each scan. A total of nine scans were
obtained, seven for equatorial samples and two for north and south pole samples. The north pole of the cocoon is defined as
being at the head side of the pupa, and the south pole is on the abdominal side (see figure 1). The process of reconstruction
from projections to tomographic slices was executed using the XAct software in version 22.11 (RX Solutions, Chavanod, France).
All reconstructions involved spot correction, geometric x-shift correction and small angle X-ray diffraction correction (phase
contrast correction).

Analysis was performed on seven samples from the equator of the cocoon (Samples A–G). Each sample’s inner wall is
naturally concave, while the outer surface is convex. To study how the cocoon’s microstructure evolves from the inner to the
outer surface, we want to look at the parts of the cocoon that are equidistant from the innermost wall. Therefore, samples A–G
were further subdivided to account for the curvature of the cocoon. In the planes XZ and YZ, the image was cut with the step
of 600 µm along the axes Z and Y, respectively, which gave us samples of the size 600 × 600 µm × z, where z is the thickness of
the cocoon. At this scale, the inner wall of the subdivided samples is close to flat. Finally, we rotated each piece so that the inner
wall of the cocoon is parallel to the XY plane.

For computing SEDT and persistence diagrams on these samples, we are using the diamorse library [34,35]. This software
was previously used to analyse the pore space of the sandstones [30,33,36]. Figure 4 shows a segmented piece of the cocoon
alongside two-dimensional slices of the sample along the axis perpendicular to the thickness direction of the cocoon and the
respective SEDT calculations.

Further processing steps were required for the fibre analysis. We used a Matlab algorithm to extract a skeleton of the fibre
domain of the cocoon, which works best if the sample does not have small holes enclosed in the fibre region. We observed that
the pore space was typically fully connected and used this to remove small cavities from the fibres. That the pore space is a
fully connected network that percolates the structure is an important property of the cocoon. In our finite sample sizes, the fibre
domain is not always fully connected, where separate connected components are typically separated by extended pores. This
could be an artefact of our samples being cut to small sizes, where the fibres could reconnect outside of the physical sample
domain, making it difficult to draw a strong conclusion here. Using this observation, only those clusters of fibres were extracted
that consisted of more than 100 voxels. In this way, we can minimize artefacts in the medial axis. The processing was done using
the libraries in Python: NumPy [37], SciPy [38] and connected-components—three-dimensional [39].

We compute persistent diagrams in zero and one dimensions, which are shown in figure 5. Each point in the zero-dimen-
sional diagram can be considered as the maximum included sphere that fits within relatively large pore pockets, where the
radius of the sphere is given by the absolute value of the ‘birth’ coordinate (in µm). The one-dimensional diagram summarizes
the loops within the pore space through the filtration.

4. Results
4.1. Pore space analysis
The connectivity of the pore space geometry of the cocoon enables water transport through the channels [17]. It was previously
observed that the silkworm cocoon and in particular the B. mori cocoon has a gradient in pore size going from the outer to the
inner part of the cocoon. Often the layer analysis of the silkworm cocoons requires peeling the layers [40]. Here, we extract the
information about the pore space directly from the scans from a piece of cocoon whose inter-layer bondings stay intact.

We start by dividing our samples into layers. The chosen thickness of the layers must be sufficiently large so that we have
enough pores within each layer, thus each layer has a thickness of 90 µm (45 voxels). We chose the first five layers to be of the
same size starting at the inner wall, and the sixth layer is the remaining material on the outer surface of the cocoon, which has
variable thickness due to the non-uniform thickness of the cocoon across the samples.

We analysed the pore space of the cocoon samples using a geometric interpretation of the zero-dimensional persistence
diagram (figure 5). Defining distinct pores in a network-like domain is difficult; however, persistent homology can attempt this

(a)

Geometric interpretation

of zero-dimensional PH:

birth < 0 and death < 0

Geometric interpretation

of one-dimensional PH:

birth < 0 and death > 0

Geometric interpretation

of one-dimensional PH:

birth < 0 and death < 0

(b) (c)

Figure 3. A visualization of the geometrical interpretation of persistence diagrams in different dimensions. Mathematically speaking, each point in a persistence
diagram corresponds to a cycle, the notion of a cycle can be geometrically interpreted for specific examples. Here, we demonstrate the intuition behind the structure
of cycles in the case of silkworm cocoon data, or more generally fibrous material. Grey wires represent the fibres and the colourful spheres and tori represent the
geometrical interpretations of cycles coming from specific regions in persistent. PH; persistent homology.
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in a robust way. We can quantify the pore size gradient by observing the distribution of sphere radii within the different layers
of the cocoon that we defined earlier. Figure 6 shows each of the pore sizes represented by a sphere, coloured by layers.

The density distribution (kernel density curves) of pore sizes within each layer, averaged across all samples A–G, is shown
in the plot in figure 6. The peaks of the distributions are concentrated around the value of radius 4.2 ± 0.2 µm, where the
height of the peaks decreases from the innermost layer to the outermost. The standard deviation of the radius within layers
ranges between 0.2 and 0.4 µm. The tail height of the distribution increases from the innermost layer to the outermost layer.
Since the distribution is skewed, we consider the second moment with standard deviations within layers of each distribution
as a measure of the variance of the distribution, which are 18 ± 7 µm (first layer), 30 ± 12 µm (second layer), 33 ± 25 µm
(third layer), 35 ± 47 µm (fourth layer), 38 ± 28 µm (fifth layer), and 60 ± 25 µm (sixth layer). Together, this shows that the
distribution gets lower and broader (towards larger pore sizes) from the inner layer to the outer layer, indicating an increase
in pore sizes, consistent with previous studies [14]. The trends in individual samples are similar, with some expected biological
variation. Plots of distributions for individual cocoon samples as well as local behaviour of pore space are given in the electronic
supplementary material .

4.2. Fibres’ size analysis
We can estimate the fibre thickness using persistent homology by growing the filtration from the fibre space rather than the
pores. The points in the zero-dimensional persistence diagram fill the fibre space with densely packed balls, as shown in figure
7. The radii of these spheres give an estimate of the fibre thickness. Given that the cross-section of the fibre is not circular (see
figure 8), the inscribed spheres measure the smallest thickness across the cross-section of the fibre. These results are enhanced
by the subdivision of the voxels within the dataset, to improve the sensitivity of the measurement.

The density distribution of fibre thickness within each layer averaged across all samples A–G with corresponding variance,
is shown in figure 7. The clearly defined peaks in the distribution of fibre thickness for each layer occur at the following
corresponding radii: 3.9 ± 0.6 (first layer), 4.1 ± 0.5 (second layer), 4.4 ± 0.5 (third layer), 4.4 ± 0.7 (fourth layer), 5.4 ± 0.7 (fifth
layer), and 5.5 ± 0.5 (sixth layer). The second moments of the fibre distributions are 2.7 µm (first layer), 2.9 µm (second layer),
3.0 µm (third layer), 3.1 µm (fourth layer), 3.1 µm (fifth layer), and 3.7 µm (sixth layer). The fibre thickness has a clear gradient
behaviour, similar to that of the pore space, where the minimal fibre thickness increases from the inner layer to the outer layer
of the cocoon.

Zhao et al. [1] measured fibre thickness for three silk strands from B. mori that gave the different ranges for fibre diameter
8.35–22.41, 10.60–22.82 and 9.93–25.74 µm. In a study by Khodarahmi Borujeni et al. [15], the fibre diameter was estimated
as 21 µm. Another analysis by Chen et al. [40] found the fibre thickness to be in the range of 15.01−24.16, 15.35−23.71 and

(a) (b) (c) (d) (e)

z

y
x

The voxelised

representation of the

X-ray CT scan

Segmented 2D

image (150 × 150)
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Segmented 2D
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SEDT computations

XY projection

SEDT computations

XZ projection

0
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–10
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Figure 4. (a) A visualization of the voxelised data obtained from the µCT scans, where black voxels in the dataset represent fibres. (b)–(e) A two-dimensional slice
of a segmented image of the silkworm cocoon scan (2 µm) and its SEDT. In the segmented image, the yellow part corresponds to fibres, and the purple one to the
background. On the SEDT images the colours are fitted between the negative values of the distance in the pore space and the positive distance in the fibre space and
the gradient scale is presented on the colour bar. The axis of the colour bar has the unit of distances between the centre of voxels, e.g. the distance between two
neighbouring voxels equals one voxel.
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Figure 5. Persistence diagrams of the cocoon Samples A–G in zero and one dimensions. The x-axis is the value of birth and the y-axis is the value of death. The minus
sign comes from the negative values of the SEDT, and the absolute values correspond to the physical sizes of the structure and are measured in µm. Panels (a) and (b)
correspond to the case where pore space is a foreground and fibres are the object in the segmented image. Panel (c) corresponds to the inverted image where fibres are
in the foreground.
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16.23−24.01 µm. Our estimation is in the lower range compared with these studies, which may be caused by the non-circular
fibre cross-section. Compared with the analysis of Pérez et al. [41], where they focus on measuring the variability of fibre
thickness because of its uneven cross-section, they report the brin diameter ranging from 6.8 up to 16.7 µm with the mean 11 ±
2.1 µm, which is very close to our results. If micrographs are taken in the x or y direction (figure 1) the diameter will be larger,
since the two fibroin strands connected by the sericin will be exposed to the objective/camera. The smaller radius of the fibres is

(b)(a)
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A-G: Pore size distribution

Figure 6. (a) The maximal inscribed sphere of each pore of the sample is shown, coloured by layer. The black part shows a small section of the fibres of the sample. (b)
The kernel density distribution of the pore sizes in different layers of the cocoon, where the pore size radius is shown along the x-axis, coloured as in (a). The peaks of
the curves are at the value 4.2 ± 0.2 µm, and the height of the peaks decreases from the innermost layer to the outermost.
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Figure 7. (a) The voxelized data on the left shows the fibres coloured by layers. (b) The kernel density distribution of the fibre thicknesses in different layers of the
cocoon, coloured as in the left-hand image. The corresponding radii for the peaks of the distributions are 3.9 µm (first layer), 4.1µm (second layer), 4.4 µm (third layer),
4.4 µm (fourth layer), 5.4 µm (fifth layer), and 5.5 µm (sixth layer). The minimal fibre thickness decreases from the outer to the inner part of the cocoon.
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Figure 8. Environmental scanning electron micrograph of the cross-section of the cocoon wall of B. mori.
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only imaged in z-direction. Finally, the preparation of samples for microscopy can affect fibre size measurements by positioning
or humidity changes.

4.3. Fibre orientation analysis
We use here geometric methods to analyse the orientation of fibres in the cocoon samples. To begin with, the orientation
analysis relies on the robust extraction of a skeleton of fibres from the three-dimensional voxelized data. We use bwskel function
from Matlab that relies on medial axis transform [42]. To increase the reliability of the computation, we compute the medial axis
for each image and its three rotations by 90, 180 and 270°. All four medial axes are overlayed, and then we apply the medial axis
algorithm to this structure, which gives us a medial axis that reflects the fibres well.

The voxelized skeleton is converted then to a series of vertices and edges, where each vertex corresponds to a voxel centre,
and the neighbouring voxels are connected via edges. If more than two edges meet at one vertex, the one with the smaller
incidence angle is removed. The vertices and edges are then smoothed using Laplacian smoothing [43], where 10 rounds of
smoothing are performed. Additionally, all connected components that are shorter than 20 edges are removed to decrease
artefacts from the original image. After this removal, a further 10 rounds of smoothing are repeated. The resulting fibre skeleton
is shown in figure 9.

We can measure the orientation of each edge in the skeleton of the cocoon sample using two angles of orientation, namely the
angle of deviation from a horizontal plane through the sample, which is the polar angle (θ), and the angle of orientation within
that horizontal plane, which is the azimuthal angle (φ). A sketch of this is shown in figure 9.

A plot of the polar angle for all edges in the skeleton is shown in figure 10a. We see that the distribution has a very
pronounced peak at zero, which implies that most fibres are oriented within horizontal layers, confirming that the cocoon is a
multi-layer structure with very little inter-layer weaving, which can be visually confirmed in figure 10b. The large portion of
edges with orientation closer to ± 90° comes from the skeletonization of the contact of two fibres lying on top of each other.

With the layered structure confirmed, we can analyse the orientation of fibres within pseudo-layers. This is a process in
which it is necessary to have full control of the effects of discretization. If a sequence of vertices and edges is constructed from
a voxelized skeleton, the discrete organization of the voxels means that all edges will follow the grid lines of the structure, and
the orientation of the edge segments will be in just two directions at right angles to one another. The smoothing process that
we apply to the vertices and edges of the skeleton decreases this effect. We first wish to quantify what level of variation in
directions we should see in a uniform distribution of fibre directions.

We estimate this variation by constructing a dataset where lines are uniformly distributed in pseudo-layers. We inflate
the lines with a radius of three voxels, which is a typical fibre thickness in our datasets. On this structure, we perform the
skeletonization process as described above, and we can now observe how uniform this resulting structure is. An important
point here is that we take a circular section of the sample to collate the distribution, which is a necessary choice to avoid biasing
the measurement along the diagonals of a square sample (this is discussed further in the conclusion). The distribution of angles
within these pseudo-layers is shown in figure 11. For the uniform dataset that we started with, the distribution of angles is a
horizontal line across the plot. One can see that the data processing that we perform leads to a small fluctuation around this
value, whose magnitude we can use to quantify the variability of the angles due to discretization effects. The magnitude of these
fluctuations is also shown on the plot, as the global minimum and global maximum of the fluctuating curve.

We next look at the angle distribution within thin pseudo-layers of thickness 40 µm of the cocoon samples. Using the
skeletonized data, the distribution of edge angles from a chosen direction in the same is computed, and the results are
shown in figure 12. The distributions of multiple pseudo-layers are overlayed, and the range of the expected variation for a
uniform distribution is shown too (positioned about the average of the distribution curves of the pseudo-layers). From these
distributions, we conclude that there is no preferred orientation beyond the expected fluctuations of the distribution curves, and
thus that there is no preferred alignment of fibres within the pseudo-layers of the cocoon.

A visualization of the distribution of fibres within pseudo-layers is shown in figure 13, where the skeleton is coloured by φ.

4.4. Extremities of the cocoon
The thickness of the cocoon wall is different at different latitudes. In particular, the wall on the bottom and the top of the
cocoon is thinner (see figure 1 for an orientation of the north, south and equatorial parts of the cocoon). Two additional samples
were prepared from the north (Sample H) and the south (Sample I) of one of the cocoons (that from which Sample B was also
prepared) following the same preparation as for all previous samples. Given the smaller thickness of the sample, we can only
split the cocoon into three different layers, the first two layers are 90 µm each, and the last third layer contains the rest of the
cocoon structure.

We can observe a clear gradient in pore sizes in both the bottom and top samples, see figure 14. This confirms the idea that
the north and south poles of the cocoon display the same pore-size gradients as the equatorial section. We see a difference in the
position of the peak though, where the peak is at 4.3 µm for both south and north, while for the sample from the equator, it is at
4.8 µm, which tells us the most common pore size at the extremities is smaller than those at the equator.

We can also consider the fibre thickness throughout the cocoon sections at the north and south poles of the cocoon, see figure
15. For the sample from the north pole of the cocoon, the fibres’ thickness distribution has its peak at 4.24, 5.41 and 5.71 µm, and
for the south 4.27, 4.43 and 5.67 µm, which is slightly larger on average than those seen at the equator.
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5. Conclusions
In this article, we have demonstrated the gradient behaviour in the pore space in B. mori silkworm cocoons through combining
methods of three-dimensional microscopy with persistent homology and image processing techniques. We analysed the fibre
properties and concluded that the fibre thickness increases from the inner to the outer layer. These results are consistent at
the poles of the cocoon as well as around the equator. Finally, we demonstrated through robust techniques that the cocoon
is a layered structure and the distribution of fibres cannot be distinguished from the uniform distribution, hence confirming
previous results that suggest this. All of these computations were performed on tomography datasets, and no further exper-
imental techniques were required to collect these results. This demonstrates the practicality of using persistent homology
and other tools from computational geometry on biological datasets, reducing problems with variability in the experimental
conditions.

x

y

q

j

z

Figure 9. The blue surface is the raw fibre data aligned with the extracted skeleton coloured in pink. On the right, is the definition of polar angle θ and azimuthal
angle φ for a piece of the skeleton.
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Figure 10. (a) The distribution of the polar angle θ over all the layers in B. mori. (b) An example of skeletonized fibres coloured with respect to θ. The colour bar shows
the respective colour coding. One can clearly see the layered nature of the fibres, which hardly deviate from horizontal planes.

90 135 180450

j (°)

0

0.002

0.004

Figure 11. The demonstration of the influence of the computation error for the uniform distribution. Straight lines indicate the maximum and minimum of the
discrete error curve.
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Measuring fibre thickness is a challenging task due to the soft nature of the fibre as well as its uneven cross-section shape
[41]. We demonstrate how to estimate fibre thickness directly from the image data with the advantage of the computational
approach, which takes away the environmental variability introduced via sample preparations for the measurements, which has
been shown for e.g. sample processing by different persons [16]. Generally, it is advised for CT scans to measure parameters
like thickness/diameter in three dimensions, as in two-dimensional slices their apparent values depend on the angle of the
cutting plane [44]. In both parts of pore and fibre analysis, the computation involves so-called minimal inscribed spheres and a
well-defined analysis through persistent homology, which makes it possible to compare with future analysis for other silkworm
cocoons or more generally fibrous materials. We think that the mathematically well-defined techniques of persistent homology
give reliable, reproducible measurements of the fibre thickness.
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Figure 12. The distribution of φ in the scan B of B. mori throughout the pseudo-layers. The pseudo-layers are enumerated from the inner side to the outer side of
the cocoon and each pseudo-layers is of the size 40 µm. The horizontal line demonstrates the magnitude of the discretization error coming from the processing and
computations. The figure demonstrates the deviation of the fibre distribution from the uniform distribution.
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Figure 13. An example of skeletonized fibres coloured with respect to φ. The colour bar shows the respective colour coding.
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Figure 14. Pore distribution in the same sample of the cocoon in different places for Sample B. (a) The distribution of pore size in the north. (b) The distribution of the
pore size in the south. (c) The distribution of the pore size at the equator.
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Figure 15. Fibres’ size distribution in the same sample of the cocoon in different places for Sample B. (a) The distribution of fibres’ size in the north. (b) The distribution
of the fibres’ size in the south. (c) The distribution of the fibres' size at the equator.
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The presented results of this study support the common findings in the literature that the fibre orientation in the layers
of the cocoon of B. mori is uniformly distributed [40]. This finding is contradictory to a recent analysis of µCT scans, which
indicates a preferred fibre orientation towards the short diameter of the cocoon [14]. The conclusion in [14] relied on using
normal orientation index (NOI) as a statistical measurement for the preferred orientation. If a distribution has one defined
peak, NOI gives a measure of how prominent this peak is. However, in the case of a multiple peak distribution NOI is not
a well-defined statistic and it fails to capture the behaviour of a distribution. In addition to this, the shape of the observation
window in analysing orientation can play a prominent role. If the image has a square shape, the orientation will be biased
towards 45 and 135°: It happens because the lines that have the orientation of 45 and 135° are the longest in the image, and it
skews the distribution. Our analysis is performed on circular-shaped images, which removes this bias.

In the computation of persistent homology, one must choose a threshold of what is deemed to be persistent, where every-
thing below the threshold can be considered as noise. Persistence is defined by the absolute value of the difference between
the death and birth of a point in a persistence diagram, and the threshold determines a lower cut-off of this value. In our
computations, we chose the threshold to be 0.5 for the pore analysis, with our results being robust for small changes in this
threshold, and 0 for the fibre analysis, to capture as many measurements for the fine structure.

The results presented in this paper characterize the geometric and topological features of the cocoon on average across many
samples, where individual samples show some variation in this average behaviour. Such variance is inevitable in any biological
data. The results for each sample individually are presented in electronic supplementary material, for pore sizes, fibre thickness
and fibre orientation.
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