
OPEN ACCESS

ll
Perspective

Toward a functional future for the cognitive
neuroscience of human aging
Zoya Mooraj,1,2,* Alireza Salami,3,4,5,6 Karen L. Campbell,7 Martin J. Dahl,1,2,8 Julian Q. Kosciessa,9

Matthew R. Nassar,10,11 Markus Werkle-Bergner,1 Fergus I.M. Craik,12 Ulman Lindenberger,1,2 Ulrich Mayr,13

M. Natasha Rajah,14,15 Naftali Raz,1,16 Lars Nyberg,4,5,17 and Douglas D. Garrett1,2,*
1Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
2Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL
Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
3Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden
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6Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
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*Correspondence: mooraj@mpib-berlin.mpg.de (Z.M.), garrett@mpib-berlin.mpg.de (D.D.G.)
https://doi.org/10.1016/j.neuron.2024.12.008

SUMMARY

The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities
and individual differences in age-related behavioral changes. This goal has been pursued predominantly
through structural or ‘‘task-free’’ resting-state functional neuroimaging. The former has elucidated the mate-
rial foundations of behavioral decline, and the latter has provided key insight into how functional brain net-
works change with age. Crucially, however, neither is able to capture brain activity representing specific
cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into
how aging affects real-time brain-behavior associations in any cognitive domain, from perception to
higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage
to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first
research framework that is built upon cognitive experimentation and emphasizes the importance of theory
and longitudinal design.
Human cognitive performance changes with age.1 The primary

goals of the cognitive neuroscience of aging are to elucidate

the neural mechanisms of such cognitive changes and to under-

stand why some individuals fare better in the aging process than

others. Achieving these goals requires understanding how the

aging brain carries out cognition. To this end, task-based func-

tional neuroimaging accounts of the aging brain are crucial as

they allow a sensitive and flexible interrogation of the brain in ac-

tion, thus permitting anonlinewindow into cognitive functioning.2

In this perspective, we argue in four parts for the necessity of a

functionally interrogated, multi-modally imaged, behavior-first

perspective on the cognitive neuroscience of normal human ag-

ing. We begin by detailing why a reliance upon commonly used

structural or resting-state imaging approaches alone cannot pro-

vide the same insight into the multifaceted nature of cognitive
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aging as task-based functional neuroimaging. Next, we empha-

size greater investigative and mechanistic granularity in assess-

ing aging brain function through multimodal task-based func-

tional imaging designs (e.g., combining functional magnetic

resonance imaging [fMRI] with magneto/electroencephalog-

raphy [M/EEG] or dynamic positron emission tomography

[PET]). Third, we highlight the need to increase the specificity

of how behavior is conceptualized and assessed during func-

tional investigations to understand the effects of aging upon

component processes of cognition. Finally, we outline important

considerations to optimize the functional cognitive neuroscience

of aging and deliberate upon outstanding considerations rele-

vant to this pursuit. Our aim is to provide a road map to reorient

the cognitive neuroscience of aging toward a functional, task-

focused future.
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Figure 1. The cognitive neuroscience of aging requires a functional, task-based approach
(A) Proportions of MRI-based studies on brain aging using structural MRI, resting-state fMRI, or task-based fMRI published in 2023 show the underutilization of
task-based fMRI (for the year 2023, a Web of Science search using the terms ‘‘MRI’’ AND ‘‘aging OR elderly OR older’’ AND ‘‘gray matter volume OR surface area
OR cortical thicknessORbrain’’ NOT ‘‘Alzheimer’s’’ yielded 3,800 articles. For functional investigations, 1,070 fMRI articles were found using ‘‘fMRI’’ AND ‘‘elderly
OR aging OR older,’’ and using ‘‘fMRI’’ AND ‘‘elderly OR aging OR older’’ AND ‘‘resting state OR functional connectivity’’ indexed 689 resting-state articles; Web
of Science, September 8, 2024).
(B) Convergence between longitudinal change in gray matter volume and task-based function is spatially sparse (reproduced from Nyberg et al.3).
(C) Associations between task-based function (blue activation maps) and white matter tract integrity depend on how task-based function changes in response to
cognitive load (adapted from Burzynska et al.4; CC-BY-NC-SA).
(D) Positive and negative task-related BOLD modulation (but not white matter fractional anisotropy) uniquely predict working memory and executive function
performance across the adult lifespan (created using data from Webb et al.5).
(E) Task-based fMRI shows greater prediction of online and offline behavior than either brain structure or resting state, exhibiting the highest brain-behavior
correlation, with the smallest sample size (values above each bar) needed to achieve that effect at 80% power (created using data from Makowski et al.6). Error
bars reflect standard deviation adjusted for sample overlap (see Makowski et al.6 for further details).
(F) Task-based functional connectivity outperforms rest-based functional connectivity in predicting offline cognition in two young adult datasets (adapted from
Greene et al.7).
(G) Across a number of brain networks, age effects are both stronger and directionally differential in sensorimotor task-induced networks compared with resting-
state networks (adapted from Geerligs et al.8).
(H) Different functional connectivity age differences are observed in different networks depending on which task domain is measured (vocabulary, speed, fluid
intelligence, and memory; created using data from Varangis et al.9).
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THE COGNITIVE NEUROSCIENCE OF AGING REQUIRES
A FUNCTIONAL, BEHAVIOR-FIRST PERSPECTIVE

At present, the cognitive neuroscience of aging remains heavily

dominated by gross structural (e.g., gray matter volumes, white

matter diffusion properties) and resting-state (task-free) func-

tional neural investigations, comprising 92% of the published
literature in 2023 (Figure 1A). However, neither of these ap-

proaches can capture functional dynamics of the aging brain

during experimentally manipulated cognitive operations. In the

following sections, we outline why the real-time functional im-

aging of cognition in action should become a primary focus in

future work on the neural bases of healthy human cogni-

tive aging.
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Figure 2. For brain structure to be claimed as relevant for a given cognitive process, brain structure must converge with brain function
measured during that process
Whether cross-sectional or longitudinal, many structural accounts of aging-related cognition are rooted in the idea that the structure of a given brain region
directly reflects function in that same brain region. For example, hippocampal volumemay correlate with memory performance, perhaps leading one to conclude
that the hippocampus subservesmemory. However, such a conclusion cannot be drawnwithout convergent evidence that hippocampal activity observed during
memory can be directly accounted for by hippocampal volume estimates. Here, we conceptually depict the possible range of overlap in variance between
measured structure, measured function, and measured behavior. We then indicate the inferences that can be made in each scenario about the functional
relevance of the observed structure to the given behavior process. Only with some overlap of variance of the three can the functional relevance of structure be
evidenced, and structuremay then be used as a viable proxy for task-based function. If not, structuremay only be used as amarker for behavior. We do not speak
to the reasons for the observation of any particular combination of overlap—there may be many reasons for any combination to occur, and somemay bemore or
less likely than others. Finally, while we exemplify our argument here using brain structure, convergence between resting-state activity and task-based activation
is similarly needed to establish the cognitive relevance of resting-state measures.
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The cognitive consequences of aging cannot be
understood through brain structure alone
The study of brain structure is by far the leading neuroimaging

approach in the cognitive neuroscience of aging,10–14 utilized in

78% of all articles published in 2023 (Figure 1A). Structural MRI

studies have revealed profound and replicable aging-related

changes in brain structure,15,16 which are often viewed as con-

straints on function and behavior.17 However, commonly used

structural measures are static over shorter timescales,18 too

coarse to capture with any specificity the fine-grained age-related

biological changes of interest (such as synaptic pruning or

neuronaldeath), and inherentlyunable to informondynamiccogni-

tive processes in real time.Given the dynamic tuning of brain-wide

circuits by neuromodulators,19,20 and neuromodulatory volume

transmission (which does not require direct synaptic contact

sites),21,22 not all relevant activity in the brain can be understood

from the brain’s structural properties alone.23

Critically, inferring task-related function from structure-cogni-

tion relationships alone is logically problematic. A substantial

number of studies invoke ‘‘functional’’ accounts of what aging-

related structural changes indicate for cognition. For example,

if an association between hippocampal structure, age, and

memory is found, a common inference may be that ‘‘the hippo-

campus shrinks with age; therefore, its function must be

impaired, causing memory deficits.’’ Such arguments are plau-
156 Neuron 113, January 8, 2025
sibly rooted in the logic of lesion models,24 which presume that

structural insult necessitates functional impact. However,

without converging evidence of impairment in memory-related

brain function executed by the same region expressing structural

effects, such logic fails. We thus argue that aging-related brain

structure can only be considered relevant for a given cognitive

process if it converges with brain function measured during

that process, necessitating the observation of task-based brain

function (see Figure 2).

Furthermore, lesion studies often silently assume that loss of

functioning is restricted to the lesioned site. However, cognitive

aging is a systemic condition that can only be understood by

observing the entire brain as behavior takes place. From a

related perspective, consider how a cardiologist might assess

a patient’s heart. An angiogram may reveal a partial occlusion

in a specific vessel that could lead to functional deficiency. How-

ever, a dynamic stress test is still required to uncover the extent

to which the entire heart’s function is affected. In the same way,

structural investigations of the aging brain must be comple-

mented by functional neuroimaging to better understand the

cognitive relevance of those structural changes.

Notably, within-subject evidence for convergence between

structure and function in the same brain region remains sparse.

In the first longitudinal study combining structural and task-

based functional imaging (in middle-aged and older adults
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followed over 6 years),3 convergence between longitudinal

changes in gray matter volume and task-based fMRI activation

was observed in a small cluster of voxels in the frontal cortex

(Figure 1B). However, for over 99% of the other voxels showing

either functional or structural changes, no overlapping change

was observed. In a study of working memory in 56–78 year

olds, EEG power was unrelated to gray matter volume but was

related to white matter connectivity depending on cognitive

load level.25 Similarly, in an early study of multivariate conver-

gence between white matter properties and fMRI during a para-

metric working memory task in older adults, greater white matter

diffusion properties mapped moderately to overall task-fMRI

activation.4 Crucially, however, higher load levels revealed stron-

ger associations between function and white matter properties4

(Figure 1C). It thus appears that the precise extent of conver-

gence between structure and function in aging can be better dis-

cerned through a task-based functional lens. Therefore, wher-

ever structural changes are of interest in aging, task-based

functional imaging data should also be assessed to better under-

stand the functional consequences of changing structure. The

joint pursuit of structure and function will only be strengthened

by improving structural imaging methods such as quantitative

MRI26 or ultra-high-field imaging to assess cortical laminae.27

Beyond the search for convergence, studies directly

comparing structure and function in the prediction of cognitive

performance have also revealed notable differences. For

example, one study showed that task-related blood-oxygen-

level-dependent (BOLD) signal modulation uniquely related to

working memory and executive function performance across

the adult lifespan, whereas white matter connectivity did not5

(Figure 1D). Task-based fMRI also better predicts both online

(i.e., carried out during fMRI scanning) and offline (asynchro-

nously measured) behavior than typical gray- or white-matter-

based structural measures6 (Figure 1E). Why might task-based

functional approaches better relate to behavior? Functional in-

terrogations can directly reflect performance across moments,

and tasks parametrically manipulating older adults’ brain

function across different cognitive domains28,29 can reveal differ-

ential brain function underpinning different cognitive faculties or

uncover load-based performance decrements.30–32 Within such

studies, brain structure remains a fixed factor unable to capture

the nature of dynamic cognitive processes functionally observed

across tasks or load conditions within a task. We thus argue that

future work must include a heightened focus on understanding

the cognitive consequences of aging through a functionally neu-

roimaged, behavior-first lens.

Resting-state measures are insufficient for the study of
cognitive aging
With the goal of understanding how changes in brain function

relate to changes in cognitive abilities in healthy aging, fMRI re-

mains the most widely used neuroimaging technique. However,

the fMRI literature on the aging brain is now dominated by a

focus on resting-state fMRI (i.e., the assessment of task-free

brain dynamics33), which uses spontaneous, correlated activity

between regions to gain insight into the brain’s intrinsic

functional organization (resting-state functional connectivity

[rsFC]).34,35 There has been a 60-fold increase in resting-state
aging research articles since 201236 (a search for the terms

‘‘functional connectivity [FC],’’ ‘‘resting state,’’ and ‘‘aging OR

elderly’’ found 151 articles in July 201236 and 9,192 articles in

June 2024; Web of Science, June 17, 2024). Rest was addition-

ally the focus of 64% of all fMRI studies published on human ag-

ing in 2023 (14% rest-fMRI out of 22% total fMRI studies,

Figure 1A). Resting state thus appears to have become the field’s

modern-day convenience sample. Its appeal often lies in the

possibility of using short, task-free scans as a biomarker for

cognitive aging, with individual differences in rsFC thought to

serve as a trait-level predictor of cognitive performance.37,38

The ease of collection and widespread availability of such data

through large cohort and consortia-level studies (e.g., the Hu-

man Connectome Project39 [HCP] and UK Biobank [UKB]40)

has resulted in the use of resting state to understand aging-

related neural changes. Resting state has indeed provided

invaluable insights into how networks differ and change with

age, from the modularity and specificity41 of higher-order net-

works to how suchmeasures correlate with age-related declines

in domain-specific31,42–45 and domain-general46 cognitive func-

tions (for reviews, see Damoiseaux,14 Ferreira and Busatto,36

Liem et al.,38 and Fox and Greicius47).

However, we again emphasize that conclusions about specific

links between aging, brain, and cognition require the observation

of brain function during the cognitive process of interest. Perva-

sive, non-specific correlations between resting-state markers

(e.g., network characteristics) and (offline) cognition commonly

found in the literature should ideally converge with the same

task-based measures extracted while that cognition occurs.

We maintain that without such convergence, mapping specific

cognitive functions onto resting-state measures is no more

feasible than linking those cognitive functions directly to struc-

tural brain properties (cf. Figure 2).

At present, the evidence for resting state as a sufficient func-

tional marker of cognition is empirically questionable,48–50 with

little evidence that resting-state fMRI outperforms task-fMRI

data for understanding any specific cognitive process.7,51–54

Rather, recent work shows that FC measured on-task

relates more strongly to cognition than FC at rest7,8,50,52 (e.g.,

Figure 1F). Furthermore, age differences are more strongly

observed during task than during rest8,55 (Figure 1G), and

different age effects in FC patterns are observed across different

networks in different tasks (across load levels of a single task,56

as well as tasks within and across cognitive domains8,9;

Figure 1H). Moreover, patterns of age-related connectivity

differences observed during taskmay differ or directly contradict

those observed during rest. For example, while aging is typically

thought to be related to an increase in rsFC between higher-or-

der networks,57 Geerligs et al.8 found decreasing connectivity

between these networks during task-based fMRI.

Whymight resting state be a relatively poor reflection of partic-

ular cognitive processes related to human aging? Resting state

is completely unconstrained.58 Instead of capturing a ‘‘task-

free’’ intrinsic mode of brain activity, it may instead reflect a per-

son’s current arousal state—drowsy or anxious about being in

the scanner.59–62 Moreover, given well-documented differences

in the content of spontaneous thought with age,63,64 age differ-

ences in rsFC may partly reflect individual differences and age
Neuron 113, January 8, 2025 157
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differences in unconstrained thought. This corroborates discor-

dant age effects observed between rest and task (e.g., Geerligs

et al.8 and Grady et al.51). Using resting-state data is then not

unlike having task-based data,33,65 except each person is

executing a different ‘‘task’’ and there is little means of knowing

who is carrying out which process and when. Even simple,

naturalistic paradigms such as movie-watching may prove

more sensitive to individual differences in offline cognition

compared with rest, allowing for more accurate predictions of

trait-like phenotypes,53,66 almost certainly because individuals

are placed in a more constrained state.

However, in the quest to understand aging cognition, assessing

functional brain measures in relation to asynchronouslymeasured

cognition is not enough. The field should rather aim to understand

the neural changes that directly give rise to the changes in cogni-

tion (or lack thereof) thatareobservedasapersonages.48Well-de-

signed in-scanner tasks allow far more precise control over what

subjects think, what they do, and the states into which they are

induced by perturbing the brain in a controlled manner.49 This en-

ables elucidation of which neural differences may underlie differ-

ences in observedcognition in agingwithprecision and sensitivity.

If the goal is to understand the neural bases of cognitive aging in

the context of functional network analyses, assessing networks

defined by cognitive functions67 should be prioritized over large-

scale, brute-force attempts to relate uncategorized neural activity

during rest to any and all offline measures of cognition.68,69

To this end, a balance must be struck between large-scale

studies thought necessary to observe brain-wide associations

with adequate power70 (but which predominantly use resting-

state fMRI) and small-scale studies aiming to isolate specific

cognitive functions,71 test new hypotheses, and develop theo-

retical frameworks.72,73 Marek and colleagues’70 recent

argument that sample sizes in the many thousands are required

to achieve reliable brain-behavior associations is based on

resting-state results70which, as outlined above, often have lower

associations with cognition to begin with. Indeed, when the au-

thors themselves compared univariate task-based activation

with cognitive ability in a sample of 844 subjects, the resulting

correlation was larger than their largest replicated univariate ef-

fect size for resting state.70 Using task-fMRI may thus provide

greater statistical power: in a developmental sample, Makowski

et al.6 recently showed that both uni- and multivariate analysis74

of task-fMRI data provides stronger, more robust, and reproduc-

ible brain-behavior associations, and in far smaller samples (�40

for offline cognition and �30 for online cognition) than either

structural or resting-state data6 (Figure 1E). We thus argue for

a renewed focus on task-based functional imaging designs for

understanding the cognitive consequences of brain aging.

The unique importance of task-based accounts of
functional brain aging
Despite serving as the most common neuroimaging method for

functional investigations in aging, task-based fMRI represented

only 8% of MRI-based publications on human brain aging in

2023 (Figure 1A). Regardless of its gross underutilization, what

specifically have we gained thus far from a task-based functional

account of brain aging, and why should we prioritize it as a pri-

mary experimental approach going forward? By permitting the
158 Neuron 113, January 8, 2025
flexible manipulation of behavior alongside a deliberate interro-

gation of neural engagement, task-based functional imaging de-

signs have provided a host of benefits indispensable to under-

standing the neural bases of the multifaceted nature of

cognitive aging, of which we highlight some of the most salient.

Stimulating development of the most prominent

theories of the cognitive neuroscience of aging

Strikingly, most prominent theories of the cognitive neurosci-

ence of aging have arisen from functional, task-based studies.

The theory variants of aging-related neural compensation75

(e.g., cognitive reserve,76 hemispheric asymmetry reduction in

older adults [HAROLD],77 the posterior-to-anterior shift in aging

[PASA],78 and compensation-related utilization of neural circuits

hypothesis [CRUNCH]79; see Reuter-Lorenz and Park80 for re-

view) all argue that older adults may additionally recruit brain re-

gions to achieve young-adult-like cognitive performance (e.g.,

Figure 3A). These accounts have relied almost exclusively on

task-based age comparisons of functional brain activation pat-

terns. Similarly, the neural dedifferentiation account suggests

that older adults express less differentiated neural responses

to different stimulus categories,85,86 inherently requiring task-

based functional data. The maintenance hypothesis of cognitive

aging87 integrates structural, functional, and behavioral findings

by claiming that maintenance of brain structure allows for youth-

like functional activation patterns associated with high levels of

performance.88 These leading theories were built on evidence

from task-based functional investigations and, in turn, make

cognitively relevant functional predictions about the brain

changes giving rise to observed cognitive changes in aging.

The success of task-based investigations in producing these

prominent theories bodes well for future forays into understand-

ing the brain mechanisms of individual variations in cognitive

performance that come with advanced aging.

Permitting investigation of how brain representations

change as a consequence of aging

The consequences of aging on cognition must express them-

selves via changes to how information is represented in the

brain. Only task-based functional neuroimaging studies make it

possible to directly test and dissociate potential hypotheses of

how and why these representational changes lead to observed

behavioral effects of aging. For example, it has been suggested

that older adults’ memory impairments may arise not from an

impaired memory system but rather due to processing too

much (irrelevant) information as a result of impaired attentional

control.89,90 Indeed, functional neural investigations have shown

that distractor stimuli irrelevant to later recognition elicit higher

fMRI activation in older compared with younger adults82,91

(Figure 3B), indicating increased attention to and processing of

these stimuli.82 Importantly, the temporal resolution of functional

neuroimaging can uncover neural representations of behavior as

it unfolds. A recent EEG study showed that while younger adults

exhibited neural signatures of top-down control when cued in

pre-stimulus periods, older adults did not exhibit such prepara-

tory activity. Instead, they exhibited neural modulation only after

stimulus presentation, indicating that age differences in attention

may stem from a reorganization of neural activity83 (Figure 3C).

Notably, these age differences were more pronounced for trials

with unsuccessful performance.83 In these ways, functional
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Figure 3. Unique insights achieved from task-based functional investigations
(A) Forming a key basis of the compensation account, only high-performing older adults expressed bilateral prefrontal cortex (PFC) activation during memory
encoding (reproduced from Cabeza et al.81 with permission from Elsevier).
(B) fMRI evidence for increased brain activity in response to stimuli instructed to be ignored, indicating deficits in cognitive control mechanisms rather than
memory ability itself (reproduced from Gazzaley et al.82 with permission from SNCSC). Error bars reflect standard error of the mean; *p < .005.
(C) During a dichotic listening task, older adults exhibited diminished pre-stimulus alpha-lateralization following cueing, indicating compromised self-initiated
attentional control, with these age-specific temporal patterns related to behavioral performance (reproduced from Dahl et al.83 with permission from Elsevier).
(D) Functional heterogeneity based on cognitive profiles: those with declining cognition over 5 years showed decreasing activation longitudinally across working
memory load levels, as well as baseline differences already at lower loads in some regions(adapted fromNyberg et al.32). W =wave; error bars represent standard
error of the mean.
(E) Older adults show muted brain responses to internal versus external environmental demands, with those showing stronger modulation also exhibiting more
stable reaction times (adapted from Grady & Garrett84 with permission from Elsevier). Error bars reflect standard error.
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neural investigations enable distinguishing between competing

hypotheses of the causes and consequences of age-related dif-

ferences by uncovering process-specific neural mechanisms of

cognitive processes.

Providing a distinct window into individual differences

underlying heterogeneous cognitive trajectories

While the examples mentioned above (and indeed the vast ma-

jority of early aging research) focused on average age-related

trends,92,93 there is substantial heterogeneity in both interindi-

vidual and intra-individual age effects.94,95 Such heterogeneity

is particularly relevant given that individual differences are

thought to magnify with advancing age.96 Why do some older in-

dividuals exhibit maintained cognition while others experience

declines across a variety of cognitive domains?32,87,97,98 Are

these individuals differentially utilizing the same neural areas

and circuits, or instead engaging alternative neural regions or

networks? With increasing individual differences, it is also

possible that aging adults differentially recruit the same or addi-

tional regions or networks in order to carry out the same task at a

similar level of performance79,99 (in line with the idea of brain
degeneracy—that a specific task could be executed through

multiple neural pathways).100

Task-based fMRI analyses have helped identify the neural cor-

relates of these heterogeneous trajectories by identifying

differing patterns of brain-behavior associations.97,101 For

example, while some older adults show marked declines in

episodic memory between measurement time points, others

exhibit maintained memory in later life,98 indicating successful

aging of memory systems. Assessing these differing patterns

of cognitive change in relation to their underlying neural associ-

ations88,102 has identified distinct patterns between cognitive

maintainers versus those who exhibit declines.32 For example,

those with declining working memory over 5 years (cognitive de-

cliners) also showed declining activation in frontal regions longi-

tudinally, across all load conditions, while cognitive maintainers

showed stable neural activation across time32 (Figure 3D). More-

over, different regions can show differential effects, as the two

groups showed similar baseline activation in medial frontal areas

across all load conditions but different baseline activation in the

dorsolateral prefrontal cortex (dlPFC) at the lowest load,
Neuron 113, January 8, 2025 159



Box 1. Optimizing behavior-first, functionally imaged efforts to understand cognitive aging

Before the field pivots toward behaviorally anchored, functionally imaged accounts of cognitive aging, it is important to zoom out

and consider how to optimize such a complex endeavor. We touch upon some key points that may help orient toward this goal.

Formal and targeted theory comparisons

It is noteworthy that many prominent theories of the neural bases of aging-related cognitive changes (e.g., cognitive reserve,

compensation,112 and neural dedifferentiation85,86) have largely originated from task-based functional investigations. However,

a sizable proportion of published studies in the field operate in the absence of any clear overarching framework or theory, or

results are explained post hoc by the theory they best fit. When theory is utilized, a single theory is often tested in isolation.

Designing (preregistered) studies where multiple competing theories can be assessed within the same dataset will help

determine which theory best explains exhibited patterns of brain aging.113 It is also possible that different subgroups of

participants (e.g., cognitive decliners versus maintainers) show differing patterns of neural activity supportive of different

theories, or that different patterns of change may be observed across brain regions. For example, both an under-recruitment

as well as non-selective recruitment of frontal areas have been seen in older adults.114 A concerted effort toward formal theory

comparison would allow the field to advance its understanding of the fundamental bases of functional brain aging.

Necessity of longitudinal investigation

In carrying out such theory comparisons, an important consideration is that almost every theory in the field has originated from (and

mostly been validated with) data from cross-sectional studies. Yet, it has long been known115–117 that neither cross-sectional age

comparisons nor cross-sectionally inferred age gradients can be used as proxies for true longitudinal aging-related change. Cross-

sectional estimates are intrinsically unable to distinguish between- and within-person sources of variance; this is only possible with

longitudinal, repeated-measures data.118–126 In an extreme case of how discrepant cross-sectional and longitudinal accounts can

be, Nyberg et al.3 found that despite cross-sectional evidence of increased PFC activation (consistent with compensatory

accounts of aging),81 longitudinal evidence within the same subjects revealed ‘‘decreased’’ PFC activation during episodic

memory.3 It is thus possible that current theories guiding predictions in the field are primarily informed by data that do not

represent aging processes per se. As a first step, the longitudinal validity of these theories must be robustly established. In the

absence of longitudinal data, it is impossible to assess whether there are true differences in aging-related trajectories or simply

differences driven by starting levels (e.g., influenced by other factors such as birthweight,127 education,128 or cohort effects129,130).

Cross-sectional data alone are thus unable to speak to the presence,131,132 magnitude,133,134 form,135,136 or direction3 of true

unimodal change, and minimal overlap between cross-sectional and longitudinal brain-behavior relations has been observed

across the entire brain in an adult lifespan sample.68 It is thus particularly concerning if attempts to validate findings arising from a

first cross-sectional time point are made using longitudinal data, as brain-behavior associations observed cross-sectionally are not

at all guaranteed to be those exhibiting correlated changes over time.68

However, longitudinal studies are not free from challenges. In addition to the substantial time, resources, and expertise required to

collect such data, longitudinal designs are prone to selective sampling (e.g., those included are typically of higher SES and more

educated than population means, although this may be somewhat mitigated through population-representative sampling101).

Longitudinal aging studies also experience participant attrition that may be selective,137,138 potentially causing observed

effects to be under- or over-represented3,139,140 (though methods for correction have been utilized97). However, comparisons

of baseline task activity between those who remain in a study and those who drop out can be informative. In a study by Nyberg

and colleagues,3 older adults who remained exhibited declining PFC activity during a memory task, while those who dropped

out already showed lower PFC activity at baseline, as well as lower memory performance.3 Finally, it is difficult to ensure that

results are free of practice effects (i.e., the influence of having prior exposure to a cognitive test141,142), which have been shown

to affect longitudinal slopes139 differently across age groups by introducing a positive bias into observed longitudinal trends.142

However, a lack of practice effects may be indicative of impaired cognition and can be leveraged as a predictor of decline.141
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(Continued on next page)
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Box 1. Continued

(A–C) Despite evidence for (A) elevated prefrontal recruitment during memory encoding from (B) cross-sectional data (in line with

other age-comparative studies indicating higher prefrontal activity in older adults supporting theories of compensatory prefrontal

activity), (C) longitudinal trajectories over a 6-year period showed the opposite, showing decreases and revealing a rare case of

Simpson’s paradox. (D) In this study, evidence of selective attrition was observed such that those who did not return for the second

time point already showed lower prefrontal activity at baseline (figure adapted from Nyberg et al.3).

Measurement sensitivity to aging-related cognitive changes

Many measures used to assess cognition are robust in their ability to capture cross-sectional age differences between younger

and older adults, but how suitable are these cognitive tests for discerning longitudinal changes? Nesselroade104 argued that

we need not only adequate measurement time points to be able to detect (potentially nonlinear) patterns of aging-related

change but also measures that are sensitive to detecting change in the domain of interest. If (even robust) cross-sectionally

identified variables are used to make predictions regarding age-related changes, we are likely conditioning upon the wrong

variables—it is possible that these tests are good at capturing differences in levels rather than aging-related change.

Furthermore, many cognitive tasks in the field were built with the aim of minimizing individual differences to boost power and

reliability.143,144 This complicates the assessment of what are unavoidable individual differences144 in aging-related brain-

behavior associations, and assessing individual differences in change becomes an even more difficult issue.

When studies move beyond single tasks, multiple different tests of a cognitive domain are often used to create latent factors

(representing a cognitive construct such as working memory)145–147 that capture the shared aspects of these indicators in an

effort to boost reliability and reduce measurement error.148 While this is a reasonable practice, trade-offs are incurred; different

tasks are designed to differ from one another and capture different aspects of a given cognitive construct. By focusing only on

shared variance, the uniqueness/sensitivity of each given task in capturing age-related cognitive changes is lost, and

measurement reliability is prioritized at the cost of validity and sensitivity to cognitive changes. How can we be certain that only

this shared aspect most undergoes aging-related declines? It certainly may, given evidence for coupled cognitive changes in

aging,149 but well-designed tasks are intended to isolate specific cognitive processes that are not redundant with another

measure in its cognitive domain. It is plausible that this uniqueness is also sensitive to aging-related decline. Future work

should therefore target both the shared and unique components of cognitive tasks in the search for the functional neural bases

of cognitive aging, particularly via the use of computational models.
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potentially indicating the need for additional resources even for

simple task demands (Figure 3D). Furthermore, preserved

episodic memory has been related to maintained PFC activity,

while individuals identified as cognitive decliners show decre-

ased hippocampal recruitment in relevant tasks.102,103

Thus, explicit assessments of individual differences within a

functional, behaviorally-anchored framework are required to un-

derstand disparate neural mechanisms related to whether and

why some individuals fare better in the process of aging.

Assessing how older adults modulate neural resources

in response to varying demands

Perhaps the most sensitive window into the neural bases of

cognitive aging is afforded by a focus on intra-individual vari-

ability104 to parametric task-load modulations.79 Parametric de-

signs are optimal for assessing how aging may impact the dy-

namic range of cognitive abilities. For example, older adults

appear to exhibit capped performance ranges relative to

younger adults, which hampers their performance on tasks

requiring substantial cognitive effort. In tasks parametrically

manipulating working memory load (such as an n-back task),

older adults often show significant drops in accuracy and

response time (RT) at higher load levels such as 3-back or

4-back.30,105 This within-person load-related performance drop

likely reflects the approach to their resource limits.79 Age-

comparative parametric load modulations have indeed shown

that both younger and older adults typically recruit similar re-

gions but that older adults express greater PFC activation at

lower loads (with similar behavioral performance) and lower
PFC engagement at higher loads (with poorer perfor-

mance).56,106 Similarly, the ability to modulate neural dynamics

(e.g., moment-to-moment variability of the BOLD signal107) in

response to task demand108 has been shown to serve as a key

signature of a more effective and flexible system.29,84 Older

adults exhibiting attenuated modulations of neural vari-

ability28,84,107,109 tend to have slower, less accurate perfor-

mance across cognitive tasks.107,110 This has been observed

across a range of load-based modulations, with older adults

showing damped modulation from fixation to task,28 between

task types,84 within levels of the same task,111 and as a function

of the feature-richness of visual input29 (e.g., Figure 3E). These

examples highlight how assessing neural activity arising from

tasks varying in cognitive demands makes it possible to delin-

eate the dynamic nature of the functional neural bases of aging

cognition.

Howshould the field proceed to better capture function?
Thus far, we have aimed to articulate why a comprehensive un-

derstanding of the functional consequences of human aging re-

quires linking the brain’s neural activity to real-time cognition.

However, pursuing task-based function in earnest is not a trivial

goal—it requires comprehensive and accurate characterization

of both the neural and behavioral domains. We expand on this

theme in the next two sections. First, we stress the value of,

and core aging-related issues related to, measuring and under-

standing brain function in amultimodal manner. Next, we identify

important considerations for accurately characterizing behavior,
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Box 2. Outstanding considerations for task-based functional imaging of cognitive aging

Opportunity costs of task-based functional neuroimaging

Task-based investigations bear significant opportunity costs and are relatively difficult to execute. It requires substantial

theoretical knowledge of specific cognitive domains, as well as time and effort to develop, validate, and execute a task in the

scanner (especially for novel paradigms).150 Extensive consideration must be given to the number of participants and trials

needed to observe task-related effects in brain activity with sufficient statistical power.151 This is crucial as increasing

individual differences with age likely result in different patterns of task-driven activation,32 in turn, requiring larger samples to

achieve sufficient power.151 It is certainly more work for participants coming into the lab; often, only a single task can be

carried out in a given imaging run, and including multiple runs of multiple tasks bears the risk of exhausting elderly participants.

There are many additional considerations, such as the amount of time required for subjects to understand instructions and

achieve a steady state of performance, whether this is desirable to be achieved within or outside of the scanner first, and the

role of practice effects in longitudinal aging studies. In the case of large cohort studies, tasks included are often well validated

and reliable but may not necessarily be the most sensitive to age-related differences or changes.

Despite the various difficulties in executing task-based functional neuroimaging, we firmly believe in the necessity of these studies

for understanding aging cognition and the neural underpinnings thereof. A complete understanding of the cognitive neuroscience

of aging is unlikely to come about in the absence of such investigations. This prompts greater consideration of where, as a field, we

direct our time and resources. Can we envision the standard resting state scan being replaced by additional task-based scans to

more efficiently achieve the end goal of understanding the neural bases of cognitive aging? Greater discussion within the field is

needed at this stage as big data collection becomes more and more popular. If task-based investigations are what is needed to

better understand the neural substrates of aging cognition, due prioritization must be given. Several aging studies have

successfully incorporated multiple task-based measures across domains.28,110 There are also exciting new examples of large-

scale task prioritization, such as in the Dortmund Vital Study,152 a longitudinal aging study with EEG data collected during 11

cognitive tasks ranging from attention to executive functioning. Such studies exemplify how, when prioritized, a vast array of

on-task neural data can be collected.

Balancing quality and quantity

However, the balance of quality over quantity should also be considered. Perhaps a wide array of task-based functional

investigations crammed into a large cohort study is not the solution. Perhaps investigating the neural basis of one cognitive

process in depth (in a comprehensive multimodal manner) should be prioritized over the quantity of tasks included to

understand the result of aging upon that cognitive process. For example, Grill et al.153 combined task-fMRI and dynamic PET

imaging during a unique decision-making task in a young adult sample to assess dopamine release during reversal learning.

Might it be most useful to include fewer, well-thought-out, novel tasks in aging studies? Will yet another large cohort-level

n-back task really help us understand the neural bases of cognitive aging?

A greater balance between reliance upon large cohort-based investigations and small, directed studies for developing and

disentangling hypotheses of interest may be a way forward (see Tibon et al.71 for an extended discussion; see also Rosenberg

and Finn73 and Smith and Little154). Much recent research relies upon data from large cohort studies due to the undeniable

statistical power. However, as we discuss in the main text, recent concerns regarding power have arisen from analyses of

brain-behavior associations during resting state.70 A recent power analysis in a neurodevelopmental sample has shown that

both uni- and multivariate analysis of task-fMRI data may provide stronger, more robust, and more reproducible brain-behavior

associations in far smaller samples than either structural or resting-state data (Figure 1E).6 Although promising, heightened

individual differences in later life96 requires validation in aging samples. Additionally, precision functional mapping through

dense within-individual repeated scanning has revealed strong brain-behavior associations in younger adult samples (e.g., Du

et al.155)—applications of such approaches to aging investigations (while again complex due to increased individual

differences) may uncover valuable insights.

Reliability of task-based functional neuroimaging

Finally, an important consideration is the reliability of the imaging methods used to assess task-based neural responses. Given the

substantial variability observed in cognition across situations (trials, conditions, and tasks) and timescales (minutes, days, and

years), it is imperative that the functional imaging approaches employed are sensitive to such nuanced fluctuations. How

should we think about the reliability of measurement in this scenario? It is challenging to disentangle the reliability of the tool

(e.g., fMRI) from the activities taking place in the scanner. For instance, the test-retest reliability of fMRI has been shown to

vary based on the task being performed.156 In general, basic visual or sensorimotor tasks exhibit higher reliability while

complex cognitive tasks (reliant on higher-order brain regions) often exhibit lower reliability.157 While the disparity may initially

seem concerning, it may be unsurprising. The high reliability for basic functions may speak to the reliability of fMRI as a tool

(e.g., one is likely to reliably find visual cortex activation in the face of an on/off visual stimuli, both within and across

participants), and the lower reliability for more complex cognitive tasks may reflect the tool’s sensitivity to real cognitive

fluctuations as they take place. As discussed in the main text, time-of-day effects are common in older adults—this variability

(Continued on next page)
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Box 2. Continued

would ostensibly affect the ‘‘reliability’’ of task-fMRI activation patterns, but the sensitivity of task-based investigations to these

effects may rather be a strength. Such nuance is valuable for understanding the neurobiology of aging cognition.

There is indeed substantial intra-individual variability in behavior across all scales.104 Within a testing session, it can take a number

of trials or blocks before asymptotic performance is reached.158 In longitudinal aging studies, practice effects result in increases in

performance even with years between the first and second session.139 Overall, we should not expect the first and second times a

person does the same task to be cognitively identical; these differences may be perceived as a lack of reliability. Older adults in

particular exhibit more variable cognition159,160—perceived low reliability of imaging during cognitive tasks may thus be

attributable to high within-subject variability. Indeed, it has been found in younger adult samples that much of the between-

session variance in fMRI is due to variability in the underlying cognitive process,156 and within-subject reliability across

sessions has been found to be higher than between-subject reliability.161 Thus, for tasks where within-person differences

across conditions are the outcome of interest and longitudinal contexts where changing cognition is expected, it is essential

that functional imaging tools are sensitive to such fluctuations.

Furthermore, substantial heterogeneity in aging trajectories leading to variable functional neural patterns among the older adults

may complicate the use of approaches that have been successful in more homogeneous younger adult samples. However, given

the link between reliability and statistical power,162 significantly larger samples may be needed to detect aging effects (e.g., Yang

et al.163). Such complexity additionally serves to highlight the need for multivariate and multimodal approaches to aging. To this

point, recommendations for increasing reliability have been outlined,157,164 with recent work suggesting greater reliability for

task-based rather than resting-state investigations,161,165 and for multivariate rather than univariate analysis.6,166
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emphasizing the role of computational modeling to parameterize

latent aspects of changing cognition. We additionally outline

steps for optimizing such endeavors (Box 1) and deliberate

upon outstanding considerations related to carrying out task-

based functional investigations (Box 2).
TOWARD FUNCTIONAL, MULTIMODAL IMAGING OF
COGNITIVE AGING

Having established the necessity of behaviorally anchored func-

tional investigations of the aging brain, we now turn to how such

investigations can best be achieved. To date, functional interro-

gations in the field have primarily utilized fMRI, both cross-

sectionally and longitudinally. FMRI is a powerful tool167 (but

see Logothetis168 and Samanez-Larkin and D’Esposito169 for

discussions on potential limitations) and will likely remain a pri-

mary functional modality of interest given that many theories

make predictions requiring the spatial specificity afforded by

fMRI (e.g., PASA78; neural dedifferentiation85,86).

However, the neurobiology of aging is complex and multifac-

eted, and given the coarseness and abstraction of the investiga-

tive measures available to researchers of human aging, it is un-

likely that any single modality in isolation will fully explain the

neural underpinnings of cognitive aging. Employing multimodal

imaging approaches that complement fMRI (such as EEG, dy-

namic PET, and functional magnetic resonance spectroscopy

[fMRS]) is thus essential to assess cognition-related brain func-

tion spanning timescales and layers of mechanistic granularity

within the brain, ranging from cortical to subcortical, neurotrans-

mitter to network, and balancing high spatial and temporal reso-

lution. Indeed, multimodal approaches have already been shown

to be more effective at predicting behavior than any single

modality,170,171 supporting the idea that a lifespan-oriented

understanding of age-related change requires a multivariate,

multimodal approach.104 The common denominator of these

techniques, however, must be their link to cognitive performance
via simultaneous engagement in cognitive task performance.We

will now elaborate on these aspects in more detail.
Vasculature: Changing brain or changing vein?
With fMRI serving as a mainstay of the field, we must continue to

grapple with the fact that its interpretation in an aging context re-

mains complex.169 Typical aging studies utilize the BOLD fMRI

contrast, which represents a poorly understood interplay of ce-

rebral blood flow (CBF), cerebral blood volume (CBV), and cere-

bral oxygen metabolism in response to underlying neural activity

(neurovascular coupling) (see Logothetis168 and Buxton et al.172

for detailed discussion). However, there is much evidence of

changing and degrading vasculature with increasing age, im-

pacting each of these aspects173–175 (see Zimmerman et al.176

for review). It is thus essential to account for how changing

vasculature may confound the interpretation of age-related dif-

ferences in BOLD activation (see Tsvetanov et al.177 for an over-

view). For example, past work has suggested that similar levels

of BOLD responsemay represent greater neural activity changes

in older adults compared with younger adults.178 Given that the

current default interpretation of task-elicited BOLD activity as-

sumes equivalent neural functioning in the absence of age

differences in BOLD, we may be inaccurately characterizing

aging-related changes in neural underpinnings of cognition.

Recent work has also shown many aspects of the shape

and timing of the hemodynamic response to be altered in

older adults,179 indicating that canonically used hemodynamic

response functions (HRFs) may not best fit task-related hemody-

namics in aging populations. Moreover, there is substantial

regional heterogeneity in vascular effects in aging.179–181 Using

hypercapnia (increased CBF through CO2 inhalation that allows

for vascular calibration of BOLD178), Garrett et al.180 showed

that associations between cerebrovascular reactivity (CVR; the

increase in BOLD signal in response to a unit increase in CO2)

and BOLD variability were both directionally and spatially differ-

entiated by age group (Figure 4A). Similarly, Henson et al.181
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Figure 4. Multi-modal characterization of the functional bases of human brain aging
(A) Across subjects, within voxel correlations between SDBOLD and CVR vary widely in strength, direction, and spatial pattern between younger and older adults
(adapted from Garrett et al.180).
(B) Older adults exhibit lower alpha than younger adults and greater alpha desynchronization during encoding than during memory retention (reproduced from
Sghirripa et al.182 with permission from Elsevier). **p < .01, ***p < .001.
(C) The EEG-based 1/f spectral power slope flattens upon aging during an auditory task (reproduced from Waschke et al.183). ***p < .0001.
(D–E) Cognitive uncertainty-related parametric shifts in alpha and 1/f EEG signatures are more muted in older adults.
(F–I) A multivariate model linking EEG, behavioral, and pupil-based markers to BOLD activity revealed the thalamus as a primary region jointly reflecting these
signatures in a load dependent fashion. Error bars in (G) represent bootstrapped 95% confidence values.
(J) The aging-related decrement in thalamic modulation was specific to frontally projecting nuclei (mediodorsal nucleus; MD) and not sensory nuclei (e.g., lateral
geniculate [LGN]). Traces display standard error around mean. (D)–(J) from Kosciessa et al.184
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showed that despite (indirect) vascular control accounting for

some observed age-related regional BOLD effects during a

sensorimotor task, age differences in some regions remained.

Such findings indicate that, while changing vasculature is un-

likely to account for all observed BOLD age differences, careful
164 Neuron 113, January 8, 2025
regional vascular control and interpretation must be carried out

to draw clear inferences about the functional neural basis of

cognitive aging. Direct assessments of aspects of cerebral

vasculature (e.g., CBF and CBV with arterial spin labeling

[ASL],178 global cerebral pulse wave velocity from 4D flow,185
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or system capacity and reactivity via hypercapnia178,180) will

provide the most robust assessment of whether observed

BOLD effects are due to an age-related ‘‘vascular ceiling’’ (i.e.,

blood vessel rigidity preventing an accurate representation of

neural activity via BOLD) or are rather a faithful representation

of neural activity. While indirect measures such as body mass in-

dex and composite cardiovascular risk scores186 are more easily

collected and often used to ‘‘correct’’ BOLD estimates, these are

not an adequate vascular control given the regional and direc-

tional nuance of cerebrovascular dynamics.

It is worth noting that most investigations of vascular effects are

age comparative in nature, and accurate characterizations of

changing vasculature will require longitudinal ASL-hypercapnia

studies. Crucially, most fMRI and ASL-hypercapnia aging work is

off-task.Suchapproachesassumethat vascular effectsareafixed

factor that canbecontrolledor calibrated, regardlessof an individ-

ual’s cognitive state at the time of data collection. However, given

BOLD modulations in older adults in response to parametric task

designs,30,32 it is difficult to see howoff-taskapproaches to vascu-

lature will sufficiently account for task-related BOLD effects.

Future explorations in this regard, such as whether region-wise

vascular reactivityshiftswithcognitive load, remainessential.Early

evidence that hypercapnia can differentially impact EEG re-

sponses during wakefulness,187 visual stimulation,188 and motor

response188 suggests that the relevance of vasculature for under-

standing task-relatedbrainactivitygoesbeyond its roleasasimple

confound for BOLD. Rather, it may be a major aspect of under-

standing the aging brain overall.

The use of hybrid fMRI-PET studies may also shed some light

upon the relation between BOLD and regional neural activity. A

recent hybrid study using BOLD fMRI and dynamic PET imaging

of glucose metabolism (as a marker of task-dependent synaptic

activity) found that while observations from the two mostly

converged, older adults exhibited task-elicited BOLD overactiva-

tions that did not correspond to increased synaptic activity.189

This finding calls into question the neural origins of such overacti-

vations and weakens the evidence for theories of cognitive aging

positing compensatory neural activity with increasing age.

fMRI + M/EEG: Spanning temporal and spatial scales
It is well known that in contrast to fMRI, M/EEG provides more

direct measures of neural activity and is particularly well suited

for non-invasively investigating on-task, aging-related changes

in rapid neural dynamics with millisecond-level precision.168,190

Yet, despite its clear benefits and long history of use in the field,

M/EEG remains largely underutilized. We can only surmise that

the rise of spatial network analyses and the lack of spatial reso-

lution afforded by M/EEG (especially for subcortical sources

typically thought to be involved in aging, such as the hippocam-

pus, striatum, and locus coeruleus [LC]87,191–194), have limited its

use in functionally investigating the aging brain. However, there

are multiple reasons from a task-based functional perspective

why that gap should be closed.

M/EEG’s ability to capture activity in the alpha frequency

range (one of the most dominant, reliable, and theoretically rich

rhythms in the human brain)190,195 in a temporally precise

manner allows it to tap into key subcortical and neuromodulatory

functions thought to play a central role in human cognitive ag-
ing.196 Alpha has long been purported to be generated by the

thalamus,197 is consistently linked to noradrenergic neuromodu-

lation by the LC,194,198 and is heavily involved in flexibly orienting

to task-relevant input.193 Older adults typically exhibit a slowing,

spatial shift, and overall reduction of alpha activity at rest.195,199

On task, alpha is commonly viewed as a marker of suppres-

sion.200 It decreases as new sensory input is processed and in-

creases as new information is to be ignored (e.g., during working

memory maintenance201). One task-based study found that

although overall alpha was lower in older adults, they indeed

showed alpha desynchronization during the encoding of new

input relative to a memory retention phase182 (Figure 4B).

Another study noted decreasing alpha with increasing working

memory load, revealing alpha’s parametric sensitivity to task

load in older adults.25

Another key insight from M/EEG is that aperiodic 1/f spectral

power slopes are consistently flatter in older adulthood,183,202

revealing decreased lower frequency and increased higher fre-

quency activity both off- and on-task (e.g., audition, working

memory, and cognitive uncertainty; Figure 4C). The 1/f slope is

also considered a proxy for excitation/inhibition (E/I) balance

and is typically expected to flatten with external task engage-

ment,184,203 revealing an increase in overall system ‘‘excitability’’

(i.e., more E, less I).184,204 As older adults have a flatter 1/f to

begin with, aging-related decrements in task engagement

(e.g., slower or less efficient shifts from default to task-positive

modes under increasing cognitive load205) may indicate a floor

effect that limits further 1/f modulation. However, the relative

lack of spatial specificity of M/EEG, especially from deep

subcortical sources (even with state-of-the-art, structural MRI-

informed subcortical source modeling206) renders it relatively

difficult to understand how task-based 1/f effects are generated

across the entire brain at the within-person level.

With these benefits and limitations in mind, what could be

gained from combining M/EEG (with its higher temporal resolu-

tion of dominantly cortical activity) with fMRI (with its higher

spatial resolution and subcortical sensitivity) in the context of hu-

man aging? Although attaining high signal quality in each modal-

ity during simultaneous acquisitions remains challenging,207

recent work highlights the benefits of leveraging fMRI and EEG

from ‘‘separate’’ on-task experimental sessions to better

address cognitive aging-related questions. For example, Ko-

sciessa et al.184 comprehensively assessed age differences in

the dynamic range of responses to cognitive uncertainty via a

theoretically informed set of neuroimaging signatures (EEG-,

fMRI-, and pupil-based) combined with behavioral modeling.

Older adults exhibited attenuated modulation of EEG indices of

cortical excitability (including alpha power and aperiodic 1/f

slopes)184 and perceptual evidence integration (drift rate) (Fig-

ures 4D–H). These effects were jointly related to the extent of

BOLD modulation in prefrontally projecting thalamic nuclei

(Figures 4I–4J). In this way, a combination of task-based EEG

and fMRI provided a subcortical (thalamic) basis for understand-

ing multivariate EEG-based effects across the lifespan.

Despite being long established and relatively cost and

resource effective,190 almost all task-related M/EEG aging

work remains cross-sectional and age comparative. There is a

need for high-quality multimodal longitudinal data to empirically
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evaluate change-change associations between different neural

indices of aging cognition. Interestingly, despite previous

cross-sectional support, one recent longitudinal EEG aging

study found neither a change in occipital alpha over 5 years

nor a posterior-to-anterior shift of alpha activity, indicating

potentially preserved thalamocortical control over oscillations

in aging.208 Such discrepant effects can hopefully be clarified

via the handful of newer longitudinal cohort studies that include

task-based M/EEGmeasures (e.g., Dortmund Vital Study152 and

Cam-CAN209).

Neurochemistry: Toward a better understanding of task-
related functional mechanisms
A key component of cognitive decline in aging arises from func-

tional changes in the interactions of neurons (e.g., the timing or

amount of neurotransmission), with an impairment in the

ability to modify synaptic connections serving as a ‘‘functional

lesion.’’210 Changing neurochemical functioning is thus thought

to be a core mechanistic source of observed cognitive deficits

in aging.191 Aging is associated with a decline in brain-wide neu-

rochemicals such as gamma-aminobutyric acid (GABA) and

glutamate,131,211–213 and in subcortically produced neuromodu-

lators such as dopamine (DA) and noradrenaline (NA)191,214,215

that are distributed throughout the brain and serve to modulate

neural excitability and optimize signal-to-noise ratios in target

areas.216–219

Several techniques can assess localized neurochemical prop-

erties of the brain. With pre- and post-synaptic ligands, PET can

assess receptor availability and synaptic dynamics. MRS lever-

ages unique magnetic resonance properties of atoms in specific

molecular configurations to estimate regional concentration and

modulation of neurometabolites and neurotransmitters.220,221

However, neurotransmitter and neuromodulatory functioning is

rarely assessed on-task in older adults, and these techniques

are typically used to obtain static measures of baseline capacity

measured off-task. Yet, the impact of changing neurochemistry

in aging may be most evident during functional, behavioral as-

sessments. In this section, we outline the mechanistic impor-

tance of these key neurochemicals for understanding cognitive

aging and the means of, and insight gained from, functional

task-based interrogations of these systems.

DA: The workhorse candidate mechanism

The most studied neuromodulator in the cognitive neurosci-

ence of aging is DA.145,191,222,223 DA has been long hypothe-

sized to play a role in core cognitive functions,224 with age-

related DA system declines133,134,225 linked to declining

higher-order cognitive functions214 such as episodic194 and

working memory.226 Different DA receptor classes are thought

to respectively subserve cognitive stability (D1) and flexibility

(D2),19,227 with aging particularly associated with impaired

dopaminergic mechanisms of cognitive flexibility223,228 in

fronto-striato-thalamic circuits.108 The ‘‘correlative triad’’ of

DA-mediated cognitive declines in aging191 (initially based

on animal models and cross-sectional human studies) has

recently been corroborated by the world’s first two longitudi-

nal studies214,225,229 (Figure 5A).

Such relations of DA to changing cognition have primarily been

generated by correlating PET measures obtained at rest to offline
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cognition and task-based fMRImeasures.108,214,232,233 ThesePET

measures are approximated using steady-state kinetic models

that presume DA concentrations remain at equilibrium,234

providing a static estimate of regional dopaminergic capacity

that may be considered closer to a structural measure of DA level

(amount of available receptors) rather than a measure of DA func-

tion or activity. Although DA capacity measures are indispensable

for understanding the architecture of the DA system, the true

impact of DA on cognitive aging requires distinguishing tonic

(continuous) from phasic (burst-like) DA firing modes191 during

different cognitive activities. Such dynamic investigations would

provide a better understanding of how the DA systemmay switch

between subserving cognitive stability and cognitive flexibility (as

needed during for working memory maintenance and updating,

respectively).140,235 Though challenging, delineating such aspects

in aging requires state-of-the-art dynamic (time-resolved) PET-

fMRI, allowing for separate baseline receptor availability and

task-related receptor occupancy measures alongside the collec-

tion of BOLD to verify region- and system-wide effects.236,237 One

recent study has used hybrid task-based dynamic PET and fMRI

in conjunction with computational modeling to assess dopami-

nergic firing in a sample of younger adults (Figure 5B), showing

that phasic DA is a better predictor of cognitive function than tonic

DA.153 However, to the best of our knowledge, no such studies yet

exist in research on human cognitive aging.

Furthermore, while DA receptors are expected to decline with

advancing age, latent class analyses have revealed groups of

older adults with high DA receptor availability accompanied by

either high or low cognitive performance.238 Such contradictory

effects may be due to the unspecific nature of static PET mea-

sures. High binding potential may represent either greater DA ca-

pacity due to less receptor loss in the high-cognition group, while

for the second group indicating greater receptor availability due

to lower endogenous binding for the second group. Another

study showed decreases in DA receptor availability following

an exercise intervention, and it was speculated that physical ac-

tivity may increase DA release, resulting in less receptor avail-

ability.239 However, with only single post-synaptic static PET

measures assessed off-task, it is difficult to corroborate these in-

terpretations. Such cases serve to exemplify that the complexity

of a neurotransmitter system cannot be faithfully indexed by

single, static measures. Rather, there is a need to capture both

pre- and post-synaptic aspects of DA activity simultaneously,

on-task, in real time to understand the cognitive relevance of

any potential changes.

Joint task-dependent fMRI and pharmacological manipulation

studies hold great promise for capturing real-time DA function

underpinning cognition in aging.109,240 For example, Garrett

et al.109 showed that DA-agonism (via amphetamine) during a

working memory task selectively increased neural variability

and behavioral performance in older adults109 (Figure 5C). Other

studies have shown that young-like task-fMRI-imaged reward

prediction errors were restored in the striatum via l-Dopa admin-

istration,241 and DA-antagonism during a spatial working mem-

ory task made younger adult’s BOLD and behavioral responses

appear similar to (off-drug) older adults.240 Crucially, although

such drugs inevitably impact the real-time function of DA, the

dynamic functional role of DA is only presumed, not imaged.
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Figure 5. Importance of dynamically assessing neurochemical systems to understand aging-related cognition
(A) Longitudinal ‘static’ positron emission tomography (PET) imaging indicates that older adults showing declining dopamine D2 receptor availability over 5 years
show associated changes between D2 receptors in the putamen and working memory performance (reproduced from Karalija et al.214). *p < .05.
(B) However, assessing real-time dopamine firing through hybrid dynamic PET/fMRI with computational modeling can bring more insight into changing
neurotransmitter dynamics, as has been done in younger adults (reproduced from Grill et al.153).
(C) Combined pharmacological/fMRI studies may also be a way forward, as older adults were shown to increase neural variability and performance in a working
memory task in response to dopamine (DA) agonism via amphetamine (AMPH) (adapted from Garrett et al.109). Error bars represent bootstrapped 95% confi-
dence intervals.
(D) While neuromodulatory systems are difficult to assess, indirect functional proxies such as pupil diameter (proxy for noradrenergic function) may be used, with
older adults expressing muted responses to parametric task uncertainty (adapted from Kosciessa et al.184).
(E) Combined fMRS-fMRI showed tight coupling between glutamate and BOLD during on/off visual stimulation in younger adults230 (white = off; grey = on), and
may be explored in older adults (reproduced from Ip et al.230). Error bars indicate standard error of the mean.
(F) Combined pharmacological/MRS/fMRI studies show that baseline g-aminobutyric acid (GABA) in visual cortex is positively associated with the ability to
increase visuo-cortical SDBOLD under load, and those with lower baseline GABA experienced the greatest GABA agonist-induced shift in neural dynamics
(adapted from Lalwani et al.231).
(G) Animal models of aging suggest a tripartite association between glutamate (GLU), dopamine, and GABA; older animals exhibit less DA release per unit of
glutamate, which reduces GABA availability in nucleus accumbens,213 emphasizing the need for combined investigations into changing neurochemistry in aging
(adapted from Segovia et al.213 with permission from Elsevier).
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On-task dynamic PET-fMRI during pharmacological manipula-

tion236 may provide a promising way forward in that regard.

However, certain DA-relevant pharmacological agents, such

as amphetamine or methylphenidate, are also known to target

multiple neuromodulatory systems (e.g., NA), and their effects

may not be DA-specific. Indeed, neuromodulatory systems are

highly complex with intricate microcircuitry, reciprocal efferent

andafferent connectionswithin a system, andcomplex interplays

between other systems.242 While DA remains most prominently

related to declining higher-order cognition in human aging,243 in-
teractions between DA and other neurochemicals are typically

overlooked. For example, DA is a precursor for NA synthesis,

the main NA-nuclei releases most of the DA in the hippocam-

pus,194,244 and theNA transporter (NET) clears DA in both the hip-

pocampus and PFC.245,246 Thus, disentangling these neuromo-

dulators’ interacting roles in aging-related changes in cognition

requires understanding system changes in their entirety. This

will aid in the arbitration of whether within-system degradation

or changing between-system functional interactions are the key

mechanism underlying various forms of cognitive decline.
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The rising significance of NA

Given evidence of older adults’ impaired attentional control,90

functions of the NA system are also of great mechanistic interest

in cognitive aging.247 NA is associated with enhancing the pref-

erential processing of behaviorally relevant stimuli across

various stages of cognitive processing, from perception and

attention to episodic memory and working memory (see

Sara218 and Poe et al.248 for review). While the deep location

and small size of the LC (the main NA-nuclei) complicate fMRI

assessment by requiring optimized protocols,249,250 the NA sys-

tem is well posed for task-based functional investigation through

temporally precise in vivo proxies such as pupil dilation251 or

EEG-based indices such as the P300252 and alpha desynchroni-

zation.193 These indices have been associated with task-based

attentional selectivity198,253 and related to concurrent task-

related LC fMRI activity.254

Combined pupil and functional imaging investigations

have shown that periods of elevated neuromodulation lead

to increased neural and behavioral selectivity in younger but

not older adults,255 with older adults additionally lacking LC-

coupled, arousal-related fronto-parietal attention network

activity.255 Studies combining pupil and electrophysiological

measures have demonstrated lower responsiveness to paramet-

rically manipulated cognitive uncertainty184 in older adults

(Figure 5D), with individual differences in pupil- and alpha-in-

dexed NA system responsiveness associated with better perfor-

mance across several attention tasks.198 Novelty-related LC

BOLD responses256,257 and LC connectivity to the medial tem-

poral lobe258 also positively correlate with late-life memory.

Together, such functional, task-based investigations allow for

better mechanistic understanding of NAs role in some of the

changes in cognition observed in aging.

However, because most of these functional NA measures

are indirect proxies, they may contain information about other

neuromodulatory systems as well (e.g., pupil dilation may not

be an accurate real-time readout of LC activity259 and is related

to other neurochemicals such as acetylcholine and seroto-

nin260–262). Thus, direct functional interrogation may improve un-

derstanding of the link between specific neuromodulatory sys-

tems and cognition in aging. There are ongoing efforts to

manipulate NA directly in real time using vagus nerve stimulation

(electrical stimulation of ascending peripheral nerve fibers that

innervate the LC)263,264 or pharmacological manipulations (e.g.,

with propranolol and atomoxetine).263,265 Though little used in

healthy aging research, these approaches may prove a fruitful

avenue for future research.266 Similarly, on-task dynamic NA

PET-fMRI during NA-based pharmacological manipulations

may be a target to pursue,230,267,268 given that the few available

static PET reports indicate lower NA transporter (NET) with

increasing age.269 Such dynamic methods would also allow for

distinguishing the impact between tonic and phasic effects270

and how these relate to on-task performance.

The growing importance of E/I balance

A dynamic equilibrium between the brain’s primary excitatory

and inhibitory neurotransmitters, glutamate and GABA, is crucial

for synchronized neuronal transmission and optimal information

processing.271,272 An aging-associated skew toward greater

excitation is thought to contribute to observed cognitive de-
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clines,272,273 though this is sparsely studied in an aging human

context. One glutamate study using MRS found that older adults

exhibited lower glutamate levels in parts of the PFC typically

related to lower workingmemory capacity across the lifespan.274

However, MRS provides a static measure of baseline neuro-

chemical levels, and studies linking glutamatergic modulation

to task-related responses in aging are not yet available. In addi-

tion to proxies for E/I (such as theM/EEG-based 1/f204,275), fMRS

is a promising, yet underutilized, technique to directly assess

task-related changes in glutamate and GABA, essential to un-

derstanding E/I equilibrium shifts in the brain276 and age differ-

ences therein. fMRS is particularly attractive for studying aging

due to its insensitivity to age-related vascular alterations. Initial

simultaneous fMRI-fMRS studies in younger adults have

shown that glutamate and BOLD appear especially coupled dur-

ing both simple sensory and complex cognitive tasks266,268 (see

Figure 5E). Future work could test whether this strong task-

related BOLD-glutamate coupling degrades with aging, and if

so, whether it is due to decreasing glutamatergic modulation,

impaired neurovascular coupling, or both.

As with glutamate, most GABA studies of aging assess

baseline GABA levels, typically showing lower GABA in older

than younger adults across the cortex,277–281 corroborated by

recent longitudinal work.131 However, 1H-MRS alone cannot

provide an understanding of GABA dynamics in response to

cognitive demand. Recent work has attempted to manipulate

the GABA system in real time through GABA agonism (using

low-dose lorazepam), which boosted older adults’ neural vari-

ability to young adult levels, with poorer cognitive performers

benefiting most.278 Furthermore, by combining computational

modeling, task-fMRI, 1H-MRS, and pharmacological interven-

tion, Lalwani et al.231 showed that older adults’ reduced ability

to modulate neural variability during visual processing was

associated with reduced baseline visual GABA levels. Accord-

ingly, those participants with lower baseline GABA levels

showed higher GABA-agonism-related increases in task-driven

neural variability modulation (Figure 5F). These results suggest

that GABA plays an important role in the utilization of neural

dynamics to adapt to the complexity of the visual world. This

rare combination of fMRI, 1H-MRS, and pharmacological

manipulation also provides unusually strong evidence for a

dose-dependent, inverted-U age association226 of GABA in ag-

ing humans.

These various proof-of-principle studies could provide a viable

springboard for future work linking real-time E/I changes to

cognitive function across the adult lifespan. They also open a

window into interactions between neurotransmission and neuro-

modulation in aging. For example, lower DA release per unit of

glutamate reduces GABA in the nucleus accumbens (NAcc)213

(Figure 5G), and glutamate is thought to amplify NA effects dur-

ing phasic LC activity.282 Thus, a comprehensive assessment of

on-task neurochemical dynamics is essential to characterize

whether the changes in a given system, or changing interactions

among many, underlie various forms of cognitive decline. For

example, one could examine whether on-task, functionally

measured glutamate and GABA predict age effects in DA

drug-induced task-performance changes using combined

fMRI-fMRS.
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UNDERSTANDING THE AGING BRAIN BY BETTER
CHARACTERIZING BEHAVIOR

If the goal is to understand the functional neural changes under-

pinning cognitive changes, the latter must first be well under-

stood. Scrupulous characterization and modeling of changing

behavior is crucial to investigations of their neural basis.283,284

We thus consider it essential that cognitive theory285 increas-

ingly guide the cognitive neuroscience of aging (see Frank and

Badre286 for an enriching discussion on the necessity of cogni-

tive theory to neuroscience). In the sections below, we discuss

the importance of increasing the specificity of measuring

aging-related cognition.

Accurately delineating behavior
A few issues become salient when considering how to best delin-

eate behavior in the cognitive neuroscience of aging. For one,

when assessing changes in behavior, how can we ensure the

validity of the comparisons being made, either young versus

old, or old to their own past selves in a longitudinal context?

For example, age differences in a variety of cognitive tasks and

in task-based fMRI patterns tend to minimize when older adults

are tested in their peak hours287,288 (Figure 6A). Performance on

tasks requiring cognitive control (particularly inhibitory pro-

cesses dependent on the PFC) is optimal depending on when in-

dividuals are most alert,288,290 in line with findings of unique age

effects on circadian gene expression in the PFC.291 Given evi-

dence of NA’s role in regulating circadian rhythms,292,293 these

time-of-day effects may be related to aging-related changes in

neuromodulatory function.

Moreover, it is essential to consider both the upper and lower

bounds of aging cognition. Testing the limits of cognitive capac-

ity in aging is key given that individual and age differences are

thought to be best studied at individuals’ cognitive limits.294,295

For example, older adults can be instructed on effective strate-

gies for memory encoding to assess the upper limits of memory

plasticity (i.e., can they learn this strategy, and does it improve

their performance?).294 Within such a testing-the-limits frame-

work, it is possible to distinguish between initial performance

(pre-instruction), baseline plasticity (post-instruction perfor-

mance), and developmental plasticity (performance changes af-

ter practice).296,297 Research utilizing such approaches indicates

that while older adults show improvements from practicing

effective strategies (indicating that plasticity is present into old

age),298,299 they typically require more practice and exhibit the

least gains compared with younger adults and children.299

Relatedly, if task demands were to be reduced such that

older adults performed similarly to younger adults, would age

differences in brain activity remain? Task demands can be

reduced by making group-specific adaptations (e.g., for a

memory task, reducing the number of to-be-remembered

stimuli and/or increasing encoding time/practice sessions for

older adults)300,301 or through personalized titration to target per-

son-specific upper limits (e.g., adaptively adjusting encoding

time individually for each participant).299 Studies of strategy in-

struction in combination with task-demand adjustments have

indicated few age differences in fMRI activation both before

and after strategy instruction. However, even with adjusted
task demands, other task manipulations, such as increasing

the retention interval over days for both younger and older

adults, can magnify age differences in memory performance.302

It is thus important to consider both the upper and lower bounds

of older adults’ cognition. Additionally, even when using titration

to fix accuracy to a predetermined amount, differences in RTs

are observed.28 Thus, future work should aim to further establish

how performance matching influences neural and cognitive dy-

namics and the extent to which this may conceal or uncover

fundamental age differences. However, while task-demand

equalization is typically carried out in age-comparative studies,

its value in longitudinal contexts assessing within-person

changes over time is debatable. On the one hand, equating de-

mands may conceal changes in cognition; alternatively, it may

also be informative, as the amount of individualized titration

needed to achieve a similar level of performance compared

with a past session can be modeled.

Aging is typically associated with slowing and difficulties in

learning tasks,303 and observed age differences in neural activa-

tionmaybe representativeof such learningchallenges rather than

impairments in the cognitive domain being assessed. While age-

related learning impairments are themselves relevant, it is essen-

tial to delineate which specific aspects of behavior are contrib-

uting to the (potentially) observed age effects. One approach

may be to tease apart task demands by separating and contrast-

ing process-specific from domain-general processes. For

example, when contrasting a language task with naturalistic lan-

guagecomprehension, noagedifferences in syntax-relatedmod-

ulation of the frontotemporal syntax network were seen, with

task-related networks only activated when participants had to

perform an active task.304 This suggests that constructing para-

digms that tease apart task demands can provide a clearer pic-

ture of age differences (or lack thereof) in brain function, and

such paradigms may be adopted into longitudinal studies to

assesswithin-personchanges in thesecomponentprocesses.304

Emotional, social, and motivational determinants of
behavior
Crucially, cognition does not take place in a vacuum104 and is

influenced by many contextual factors such as emotion, motiva-

tion, or beliefs.305,306 For example, compared with younger

adults, older adults have been shown to overweigh307 and differ-

entially use308 emotional information when carrying out cognitive

tasks. Their performance may also be biased by beliefs such as

stereotypes about memory in aging or beliefs about their own

memory.309,310 Believing their memory to be worse may cause

lower confidence in their abilities and may result in the use of

different strategies, such as a greater reliance on (potentially

misleading) external cues as an unconscious or intentional strat-

egy tomitigate what they believe to bememory deficits.311 In line

with these ideas, it has been shown that instructing older adults

to use effective strategies can improve recognition memory.298 It

is thus possible that observed age effects of decreasing cogni-

tion may be attributed to the way in which older adults carry

out tasks, rather than purely due to reductions in the cognitive

domain of interest.304

Furthermore, the extent of decline observed in laboratory ver-

sus everyday settings for older adults312,313 may be discrepant.
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Figure 6. Toward a better characterization of behavior to understand aging-related brain function
(A) Exemplifying the importance of accurately characterizing behaviour, time of day effects have been shown to increase age differences between younger and
older adults (reproduced from Anderson et al.287 with permission from American Psychological Association). Error bars represent 95% confidence intervals.
(B) The importance of diversifying studied samples. When accounting for SES, older adults of lower SES showed chance performance on recency memory
judgements and also exhibited greater differences between frontal EEG responses between recency and recognition memory trials compared to older adults of
higher SES (adapted from Czernochowski et al.289 with permission from Elsevier).
(C–E) Connecting computationally-modelled behaviour to age-differences in task-fMRI activity and dopamine capacity. (C) Using a probabilistic reward learning
task, the computational model-derived parameter of value anticipation (Q) was linked to differential ventromedial PFC responses between younger and older
adults. Q-related activity was in turn shown to relate to (D) behavioral performance (quantified bymonetary reward during the task) and (E) D1-binding potential in
the nucleus accumbens (adapted from de Boer et al.233). *p < .05, error bars and shaded areas represent standard errors.
(F–H) Linking computationally modelled behaviour to neurotransmitter levels. Using computational modeling to disentangle reinforcement learning from
working memory computational mechanisms, (F) age differences in the working memory capacity (theta) parameter as well as working memory set size 3
(Omega3) parameter (G–H) predicted MRS-based glutamate level predicted performance (adapted from Rmus et al.274). Error bars depict standard error of
coefficients. *p < .05.
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For example, despite negative age-cognition correlations in

studies undertaken in the lab, little correlation of age to cognition

was found based on objective and subjective real-world perfor-

mance metrics.314 This effect may stem from unfamiliarity with

the lab environment, the compensatory role of routine in

everyday life,315 or stereotype threat.310 Similarly, some chal-

lenges of real life, such as crossing a busy street at night, might

be more demanding than typical laboratory tasks because they

depend on the successful coordination of sensory, motor, and

cognitive functions, all of which are known to decline with

age.315,316 More engaging and naturalistic versions of typically

used cognitive tasks may help bridge the gap between the lab

and real life for older adults.317

Better understanding behavior through sampling
diversification
How generalizable are the behavioral effects we target?

Research into the cognitive neuroscience of aging has primarily

been conducted in western, educated, industrialized, rich, and

democratic (WEIRD)318,319 countries, and these findings are ex-

pected to generalize to all aging individuals despite only repre-

senting a highly select slice of the world’s population. Indeed,

almost all the findings discussed thus far in this paper originate

exclusively from North American and European samples. How-

ever, given known cultural differences in behavior,318 differing

neural underpinnings are highly plausible.320,321 Many cognitive

processes involved in tasks are culturally saturated,322 and even

tasks designed to be free of cultural differences may be affected.

For example, many widely used tests assessing fluid intelligence

(e.g., Raven’s progressive matrices) are thought to be culture-

fair due to their purely visuo-spatial nature, but this assumption

has been questioned.323,324

Even within western societies, the lack of diversity in aging

studies319 is problematic, as marginalized communities may be

susceptible due to exposure to risk factors for age-related cogni-

tive decline (e.g., untreated hearing loss, obesity, and poor car-

diovascular health).325,326 Socioeconomic status (SES)327 and

race/ethnicity328 have been shown to have a moderating effect

on neural activity with fMRI and EEG differences in task-related

activity observed between different groups despite similar

behavioral performance, perhaps reflecting different underlying

strategies or approaches.327 For example, older adults with

higher SES and accuracy on recency memory judgments ex-

hibitedmore frontal EEG activity (Figure 6B), suggesting a poten-

tially compensatory ability to recruit additional neural resources

to combat adverse aging effects.289 Furthermore, given that

past childhood SES has shown a greater moderating effect on

hippocampal activation and recognition memory than current

SES,329 targeting both early- and late-life SES may be key in

future work. Moreover, the lack of diversity in current aging sam-

ples has limited our knowledge of how communities historically

excluded from research experience ‘‘successful’’ aging from a

neural and cognitive perspective and how different communities

and cultures operationalize the concept of successful aging.

Hitherto undiscovered neural mechanisms of risk and resilience

to cognitive decline with age may remain, and the effect of some

of these mechanisms on cognitive aging trajectories may vary

across communities.
Furthermore, despite females having longer lifespans,330 most

studies do not disaggregate analyses by sex or gender.331,332

However, recent studies show the existence of latent sex

differences in the neural mechanisms of aging and cognitive

function.333–338 Given notable sex-specific reproductive and

endocrine changes with age in females and males (such as

menarche, pregnancy, menopause, and testosterone decline),

it is critical for future research to investigate how endocrine

and chronological aging interactively influence brain and cogni-

tive aging across sexes and genders.

Computational models of aging-related behavior
Given the possibility that some observed aging effects may be

attributed to underlying latent aspects such as strategies or

learning rates, individual differences in these latent aspects

may provide greater insight into the types of cognitive changes

taking place with age. Grossly underutilized in cognitive aging,

computational models of behavior make it possible to interpret

features of aging-related changes in cognition over and above

simple metrics like accuracy and RT. For example, drift-diffusion

models have been used to identify the computational mecha-

nisms underlying age-related RT and accuracy differences,

showing a widespread tendency for older adults to use conser-

vative response thresholds, which increases reaction times

even at comparable levels of accuracy.339–344 In these ways,

such models allow fine-grained cognitive processes to be disen-

tangled from the simple behavior (accuracy or RT) that is

measured in a given task.

Reinforcement learning models have also revealed specific

impairments in learning from positive as opposed to negative

outcomes in later adulthood,345,346 and consistent with this, a

reduced willingness to take risks for monetary gains.347 Other

studies have uncovered seemingly inconsistent age effects in

relation to altered reward prediction error signals in ag-

ing,240,345,348,349 raising questions about whether they arise

from an impaired ability to learn or are rather due to insufficient

representations of uncertainty critical for controlling how much

should be learned from a given prediction error.350 Some recent

research has indicated older adults’ attenuated learning of

reward, with computationally modeled value anticipation linked

to ventromedial PFC responses, modulated by D1-binding po-

tential in NAcc232 (Figure 6C–E).

Despite the current tendency for the field to look at aging-

related deficits from the perspective of previously established

constructs (e.g., working memory or episodic memory), evi-

dence of coupled cognitive changes across domains in ag-

ing149,351 indicates a high probability of domain-general latent

cognitive mechanisms. Given this, a major use of computational

modeling of behavior may be to move beyond a reliance on spe-

cific cognitive domains to target more fundamental aspects of

aging-related cognition. For example, age-related changes in

strategy may manifest in several tasks across multiple cognitive

domains. Applying computational modeling to many different

higher-level designs can help isolate such lower-level, shared

effects.

Developing hybrid tasks and computational models that

probe the integrity of multiple cognitive mechanisms at once

will also help explicate the precise nature of age-related
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changes. For example, the ‘‘reinforcement learning-working

memory’’ task352,353 measures learning under different working

memory load conditions, enabling a computational model to es-

timate the degree to which performance deficits result from re-

ductions in memory capacity versus reductions in learning rate

of a long-term (likely striatally based) memory system.353,354

One application of this in an age-comparative study revealed

that the majority of age-related performance differences were

due to limited working memory capacity in older adults, which

in turn best reflected how prefrontal glutamate and performance

were coupled (Figure 6F–H).274 A similar approach has also re-

cently helped distinguish age-related changes in reinforcement

learning from contributions of episodic memory systems.355

We thus believe that computational modeling can fulfill the

promise of unraveling cognitive mechanisms of aging. Devel-

oping computational explanations for age-related decline will

require new computational methods to fit models across a range

of tasks. These should be able to explain data across experi-

ments in relation to observed functional brain measures. Defini-

tions of validity for computational models may also need to

change, as fitting the nuances of a single-task dataset might

complement the ability to predict how age will affect changing

performance on different tasks. Moreover, longitudinal compu-

tational modeling studies are virtually absent from the literature.

In addition to shedding light upon latent aspects of changing

behavior, longitudinal computational models could serve as a

powerful tool allowing for both the parameterization of practice

effects and the disentangling of state-like factors such as arousal

and valence from other estimates of cognitive change.356 Finally,

while many studies traditionally employ computational modeling

by aggregating over all trials and linking individual differences in

extracted parameter averages to an equally static neural

average, an ideal functional investigation would invoke time-

resolved (trial-level) parameterization of behavior directly related

to trial-by-trial neural activity (e.g., Turner et al.357,358). In this

way, brain function subserving changing cognition in aging can

be maximally understood.

CONCLUSION AND OUTLOOK

In this perspective on the cognitive neuroscience of aging, we

have outlined why the field should embrace a functionally

imaged, multimodally interrogated, behavior-first approach.

Task-based functional imaging provides an essential and grossly

underutilized real-time window into the neural underpinnings of

cognitive aging. Utilizing multimodal imaging approaches will

provide greater mechanistic understanding of the neural sys-

tems most sensitive to cognitive aging, ranging from subcortical

to cortical, neurotransmitter to network, and balancing spatial

and temporal resolution. However, multimodal advances should

not come at the expense of deprioritizing behavior, the nuances

of which must be carefully considered in the context of aging.

Combined with a greater emphasis on developing formal the-

ories and longitudinal within-person assessments, a new and

exciting road for future aging studies lies in our collective hands.

What does the field stand to gain through a reorientation to-

ward function? Many of the most significant achievements in

all of cognitive neuroscience have come through functional inter-
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rogations. The retinotopy of the visual cortex was discovered by

observing functional responses to differing stimuli359 and repli-

cated in humans using PET imaging of CBF during a behavioral

task.360–362 The classification of grid cells and place cells could

only have been made by assessing these neurons’ differential

functional responses,363–3645 and attempts to replicate this in hu-

mans rely exclusively on task-based fMRI.366 It is our hope that a

functional reorientation of the cognitive neuroscience of aging

will prove just as groundbreaking, allowing us to finally under-

stand the dynamic neural processes that characterize human

cognitive aging.
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M., and Lindenberger, U. (2013). Peak individual alpha frequency qual-
ifies as a stable neurophysiological trait marker in healthy younger and
older adults. Psychophysiology 50, 570–582. https://doi.org/10.1111/
psyp.12043.

196. Markand, O.N. (1990). Alpha Rhythms. J. Clin. Neurophysiol. 7, 163–189.
https://doi.org/10.1097/00004691-199004000-00003.

197. Hughes, S.W., and Crunelli, V. (2005). Thalamic Mechanisms of EEG
Alpha Rhythms and Their Pathological Implications. Neuroscientist 11,
357–372. https://doi.org/10.1177/1073858405277450.

198. Dahl, M.J., Mather, M., Sander, M.C., and Werkle-Bergner, M. (2020).
Noradrenergic Responsiveness Supports Selective Attention across
the Adult Lifespan. J. Neurosci. 40, 4372–4390. https://doi.org/10.
1523/JNEUROSCI.0398-19.2020.
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(2024). Longitudinal support for the correlative triad among aging, dopa-
mine D2-like receptor loss, and memory decline. Neurobiol. Aging 136,
125–132. https://doi.org/10.1016/j.neurobiolaging.2024.02.001.

215. Mather, M. (2021). Noradrenaline in the aging brain: Promoting cognitive
reserve or accelerating Alzheimer’s disease? Semin. Cell Dev. Biol. 116,
108–124. https://doi.org/10.1016/j.semcdb.2021.05.013.

216. Servan-Schreiber, D., Printz, H., and Cohen, J.D. (1990). A Network Model
of Catecholamine Effects: Gain, Signal-to-Noise Ratio, and Behavior. Sci-
ence 249, 892–895. https://doi.org/10.1126/science.2392679.

217. L}orincz, M.L., and Adamantidis, A.R. (2017). Monoaminergic control of
brain states and sensory processing: Existing knowledge and recent in-
sights obtained with optogenetics. Prog. Neurobiol. 151, 237–253.
https://doi.org/10.1016/j.pneurobio.2016.09.003.

218. Sara, S.J. (2009). The locus coeruleus and noradrenergic modulation of
cognition. Nat. Rev. Neurosci. 10, 211–223. https://doi.org/10.1038/
nrn2573.

219. Munn, B.R., M€uller, E.J., Wainstein, G., and Shine, J.M. (2021). The
ascending arousal system shapes neural dynamics to mediate aware-
ness of cognitive states. Nat. Commun. 12, 6016. https://doi.org/10.
1038/s41467-021-26268-x.

220. de Graaf, R.A. (2023). In Vivo NMR Spectroscopy: Principles and Tech-
niques (John Wiley & Sons). https://doi.org/10.1002/9781119382461.

221. Ende, G. (2015). Proton Magnetic Resonance Spectroscopy: Relevance
of Glutamate and GABA to Neuropsychology. Neuropsychol. Rev. 25,
315–325. https://doi.org/10.1007/s11065-015-9295-8.

222. B€ackman, L., Lindenberger, U., Li, S.-C., and Nyberg, L. (2010). Linking
cognitive aging to alterations in dopamine neurotransmitter functioning:
Recent data and future avenues. Neurosci. Biobehav. Rev. 34,
670–677. https://doi.org/10.1016/j.neubiorev.2009.12.008.
223. Li, S.-C., Lindenberger, U., and B€ackman, L. (2010). Dopaminergic mod-
ulation of cognition across the life span. Neurosci. Biobehav. Rev. 34,
625–630. https://doi.org/10.1016/j.neubiorev.2010.02.003.

224. B€ackman, L., Ginovart, N., Dixon, R.A., Wahlin, T.B., Wahlin, A., Halldin,
C., and Farde, L. (2000). Age-Related Cognitive Deficits Mediated by
Changes in the Striatal Dopamine System. Am. J. Psychiatry 157,
635–637. https://doi.org/10.1176/ajp.157.4.635.

225. Johansson, J., Nordin, K., Pedersen, R., Karalija, N., Papenberg, G., An-
dersson, M., Korkki, S.M., Riklund, K., Guitart-Masip, M., Rieckmann, A.,
et al. (2023). Biphasic patterns of age-related differences in dopamine D1
receptors across the adult lifespan. Cell Rep. 42, 113107. https://doi.org/
10.1016/j.celrep.2023.113107.

226. Cools, R., and D’esposito, M. (2011). Inverted-U–Shaped Dopamine Ac-
tions on HumanWorking Memory and Cognitive Control. Biol. Psychiatry
69, e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028.

227. Durstewitz, D., and Seamans, J.K. (2008). The Dual-State Theory of Pre-
frontal Cortex Dopamine Function with Relevance to Catechol-O-
Methyltransferase Genotypes and Schizophrenia. Biol. Psychiatry 64,
739–749. https://doi.org/10.1016/j.biopsych.2008.05.015.

228. Berry, A.S., Shah, V.D., Baker, S.L., Vogel, J.W., O’Neil, J.P., Janabi, M.,
Schwimmer, H.D., Marks, S.M., and Jagust, W.J. (2016). Aging Affects
Dopaminergic Neural Mechanisms of Cognitive Flexibility. J. Neurosci.
36, 12559–12569. https://doi.org/10.1523/JNEUROSCI.0626-16.2016.

229. Nordin, K., Gorbach, T., Pedersen, R., Panes Lundmark, V.P., Johans-
son, J., Andersson, M., McNulty, C., Riklund, K., Wåhlin, A., Papenberg,
G., et al. (2022). DyNAMiC: A prospective longitudinal study of dopamine
and brain connectomes: A new window into cognitive aging. J. Neurosci.
Res. 100, 1296–1320. https://doi.org/10.1002/jnr.25039.

230. Ip, I.B., Berrington, A., Hess, A.T., Parker, A.J., Emir, U.E., and Bridge, H.
(2017). Combined fMRI-MRS acquires simultaneous glutamate and
BOLD-fMRI signals in the human brain. NeuroImage 155, 113–119.
https://doi.org/10.1016/j.neuroimage.2017.04.030.

231. Lalwani, P., Polk, T.A., andGarrett, D.D. (2022). Modulation of neural vari-
ability: age-related reduction, GABAergic basis, and behavioral implica-
tions. Preprint at bioRxiv. https://doi.org/10.1101/2022.09.14.507785.
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