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ABSTRACT: The need for short time steps currently limits routine atomistic
molecular dynamics (MD) simulations to the microsecond time scale. For long time
steps, the numerical integration of the equations of motion becomes unstable, resulting
in catastrophic crashes. Here, we combine mass repartitioning and rescaling to
construct a water model that increases the sampling efficiency in biomolecular
simulations without compromising integration stability and with preserved structural
and thermodynamic properties. The resulting “fast water” is then used with a time step
as before in combination with standard force fields. The reduced water viscosity and
faster diffusion result in proportionally faster sampling of the larger-scale motions in
the conformation space of both solute and solvent. We illustrate this approach by
developing TIP3P-F based on the popular TIP3P model of water. A roughly 2-fold
boost in the sampling efficiency at minimal cost in accuracy is substantial and helps
lower the energy impact of large-scale MD simulations. The approach is general and
can readily be applied to other water models and different types of solvents.

1. INTRODUCTION
Despite enormous progress in algorithms and computing
power, routine atomistic molecular dynamics (MD) simu-
lations remain limited to the microsecond time scale. The
reason is that the allowed time step for the time integration of
the trajectories is set by the fastest molecular motions. For
large time steps, time integration becomes unstable, primarily
because deep particle collisions or fast bond vibrations result in
large forces that at the next time step amplify the stability
problem. The default time step of ∼2 fs in classical MD of
biomolecules is below the stability limit so that deep collisions
and the resulting catastrophic crashes are virtually impossible
to occur in simulations of reasonable length for accessible
system sizes.
A number of workarounds have been developed to stabilize

time integration. For instance, bonds involving hydrogen
atoms are often treated as rigid, which eliminates the highest-
frequency motions.1,2 Also, the repartitioning of masses from
heavy atoms to bonded hydrogen atoms has long been found
to stabilize the time integration and make the use of longer
time steps possible.3 Such schemes, known as hydrogen mass
repartitioning (HMR), were systematically applied to hydro-
gen atoms in proteins4 and lipids,5 allowing stable simulations
using 4 fs time steps. The statistical mechanical basis of all of
these schemes is well established, as configuration space
averages are independent of the masses in classical statistical
mechanics.
Walser et al.6 rescaled the water masses to systematically

modify the solvent viscosity. Lin and Tuckerman7 have treated
the masses as free parameters to improve the efficiency of

conformational sampling in protein simulations, establishing a
hierarchy of adiabatic decoupling between solvent, side-chain,
and backbone motions by decreasing the solvent and side-
chain masses. This approach differs from mass repartitioning
because, in practice, it tends to decrease the hydrogen masses
along with the total solvent mass, whereas mass repartitioning
increases hydrogen masses at constant total solvent mass.
Nevertheless, both approaches aim to achieve larger particle
displacements per simulation step without compromising the
stability and accuracy of the numerical integration. In these
and similar approaches, one should keep in mind that a
uniform scaling of all masses in the system does not improve
the sampling efficiency, because it simply amounts to a
rescaling of time.
Lowering the solvent viscosity tends to speed up the rate of

reactions in condensed phase, consistent with Kramers’
theory.8 In particular, there is ample experimental and
computational evidence indicating that proteins exhibit faster
internal motions and folding times as the solvent viscosity is
reduced.7,9−15 Modifications of particle masses thus provide an
opportunity both to stabilize the time integration of molecular
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motions and to improve the sampling efficiency of MD
simulations.
Here, we develop a “fast water model” that fully retains all

energetic and thermodynamic properties, yet substantially
increases the sampling efficiency. We combine the two
approaches of (1) quantifying the stability of MD time
integration and (2) mass repartitioning with (3) the fact that in
dilute (aqueous) solution, larger-scale molecular motions and
thus sampling efficiency are largely determined by the viscosity
of the solvent medium. To speed up the solute dynamics, we
repartition and rescale the masses of water to reduce the
viscosity without causing time integration instabilities. A
simple analytical relation for the rate of catastrophic crashes
kcrash in MD simulations as a function of the time step16 allows
us to quantify the stability of the time integration. The
resulting “fast water” is then used with a time step as before, to
keep the time integration of the vibrational motions of, say,
protein solutes stable. However, the reduced water viscosity
and faster diffusion result in a proportionally faster sampling of
the larger-scale motions in the conformation space of both
solute and solvent. We illustrate this approach by developing
the TIP3P-F model based on the modified version of the
popular TIP3P model17 used with the CHARMM force field,18

but the scheme can readily be applied to different water models
and other solvents.
The paper is organized as follows. First, we present the

underlying theory for the effect of mass changes and the
stability of MD time integration. After describing the
simulation and analysis methods, we construct a water model
optimized for sampling efficiency. To validate our model, we
show that TIP3P-F preserves the key thermodynamic and
structural properties of TIP3P water. We proceed to
demonstrate that for small peptides and RNA segments,
which can be sampled extensively in standard MD, relevant
structural and energetic properties are preserved. We then
show that TIP3P-F enhances the sampling by comparing
autocorrelation functions of widely studied observables.
Finally, we show applications of TIP3P-F to full-length
proteins, and lipid bilayers, again comparing the results to
runs with regular TIP3P. Overall, we find that using TIP3P-F
with a conventional time step of 2 fs speeds up conformational
sampling of biomolecules up to about a factor of 2 over regular
TIP3P at no additional cost in computation.

2. METHODS
2.1. Mass Scaling in MD Simulations. MD simulations

are extensively employed to sample equilibrium configurational
properties, i.e., quantities that depend on the particle positions,
r, but not their momenta, p.19 When computing ensemble
averages of these configurational properties, the classical
partition function factorizes and, as a result, configuration
space averages are independent of particle masses,
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where A(r) is the configurational property of interest, Ekin =
pTM−1p/2 and Epot are the total kinetic and potential energies,
respectively, and β = 1/(kBT), M is the mass tensor and

superscript T indicates the transpose. As a notable method that
relies on eq 1, Metropolis Monte Carlo simulations of
molecular systems accept or reject randomly proposed particle
moves without referring to particle masses.19 Therefore,
particle masses can be considered as adjustable parameters for
the particular case of sampling equilibrium distributions of
configurational properties. We note further that Newton’s
equation of motion, i.e., mass times acceleration equals force,

=Mr F (2)

is invariant if time and masses are scaled uniformly by factors f
and f 2, respectively. Expressed in terms of integration time
steps and particle masses, we thus have the formal equivalence

=t
t

m
m (3)

2.2. Mass Scaling of 3-Site Water. In MD simulations of
biomolecules, the viscosity of the solvent is a major
determinant of the speed not just of diffusion but also of
conformational changes, and thus of the sampling efficiency.
Scaling the masses of solvent molecules6 by a factor f 2, i.e., m′
= f 2m, changes the solvent viscosity by a factor f, η′ = fη.
Here, we consider TIP3P as a widely used 3-site water

model.17,18 The masses of the oxygen and two hydrogen sites
are mO and mH, respectively, with a total mass of mtot = mO +
2mH. We modify the atomic masses in two consecutive steps.
First, we repartition mass from the oxygen to the hydrogen
atoms in a symmetric manner and, second, we scale the total
mass mtot. The unmodified masses are mO = 15.9994 and mH =
1.008 with a total mass M0 = mO + 2mH = 18.0154 in atomic
units (a.u.) of g/mol. Repartitioning by mass mr decreases the
oxygen mass to mO,r = 15.9994 − mr and increases the
hydrogen masses to mH,r = 1.008 + mr/2. Finally, after
repartitioning, mass scaling changes the total mass from M0 to
mtot, resulting in atomic masses of mO′ = (15.9994 − mr)(mtot/
M0) and mH′ = (1.008 + mr/2)(mtot/M0), and a total mass of
mO′ + 2 mH′ = mtot. We use total mass scaling to decrease the
shear viscosity, and mass repartitioning to stabilize the time
integration.

2.3. Stability of MD Simulations. In classical MD, the
system of interest is propagated forward in discrete integration
time steps, Δt, according to Newton’s equations of motion,
usually extended with a thermostat and barostat. The value of
Δt is a trade-off between computational efficiency (sampling of
the configuration space) and accuracy (energy and momentum
conservation). The time step commonly used in atomistic
biomolecular simulations is Δt ≈ 2 fs. Either increasing Δt or
decreasing the particle masses results in larger particle
displacements per single time step, that is, in a single unit of
computation. In MD simulations, the time step is usually
chosen close to the limit of stable time integration to achieve
near-optimal sampling.
We recently developed a kinetic model of the probability

that a simulation with a given time step Δt will crash during a
given total simulation time.16 In this model, crashes are caused
when a position update by the time integrator positions a fast-
moving particle within the repulsive core of another particle.
Large forces then result in numerical instabilities. The model
describes crashes as Poisson-distributed events with exponen-
tial waiting times. For a system of point particles, we showed
that the crash rate depends on the integration time step as
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where the prefactor kcrash0 accounts for the specifics of the
system and its size.16 The factor in the exponent is defined as
1/γ2 = βmΔxcrit2 , with Δxcrit the critical particle displacement in
the model. The crash rate as a function of the particle mass m
then becomes
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Applied to water, if the integration time step and the mass
repartitioning are kept constant, the crash rate is expected to
decrease approximately exponentially with increasing total
particle mass,

k m m k m m c m( , ) ( )exp( / ( ))crash tot r crash
0

r tot r (6)

Here, c is a constant that depends on mr. Complicating effects
of rotation16 are ignored here.
We used a maximum-likelihood estimator of the crash rate16

in our MD simulations,
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=
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where 0 ≤ ncrash ≤ n is the number of crashes observed in n
independent simulations and ti is either the time point of the
crash in simulation i or its end point. Typically, n ranged from
40 at higher total masses to 400 at lower total masses. We
assessed the uncertainty of the estimator using the standard
error = k n/crash crash , which corresponds to the Crameŕ-Rao
bound. For the exact definition of crashes, see ref 16.

2.4. Simulation Methods. We tested the TIP3P-F water
model with reduced total mass and repartitioned oxygen mass
in simulations of neat water, peptide, nucleic acid, protein, and
lipid systems. For peptides, the N- and C-termini were blocked
with methyl groups. The 5′ and 3′ termini of the
polyribonucleotides were modeled as hydroxyl groups, without
phosphate. All systems were prepared and solvated using the
CHARMM-GUI server20 with the CHARMM36m force field
parameters21 in combination with the CHARMM version of
the TIP3P water model,18 which was kept rigid in all
simulations using the SETTLE constraint algorithm.1 All
simulations were performed using Gromacs 2020.122 and the
replicas and mass scaling were controlled through
asyncmd.23 Two 10 ns-long equilibration runs were
performed, first in the NVT ensemble at constant volume
and temperature, and then in the NPT ensemble at constant
pressure and temperature. The following production simu-
lations in the NPT ensemble were run for times indicated in
Supporting Table S1. All simulations were performed using a 2
fs time step at T = 310 K and p = 1 bar with the stochastic
velocity rescaling thermostat24 (τt = 1 ps) and the Parrinello−
Rahman barostat25 (τp = 5.0 ps). To estimate averages and
autocorrelation times of selected collective variables, we
simulated 10 replicas per system. For a more detailed list of
simulation parameters, all input files can be accessed in
zenodo.26

Simulations were analyzed using tools available in the
GROMACS package as well as diffusion-GLS,27 custom
MDAnalysis28 code, and updated unwrapping29,30 of water
centers of mass, as implemented in qwrap (version 1.4;

https://github.com/jhenin/qwrap). Curve fitting and statisti-
cal analyses were performed using SciPy.31 Notably, we
computed the hydrogen-bonding properties and the deuterium
order parameter32 using gmx hbond and gmx order,
respectively. For details about autocorrelation analysis and for
comparison of equilibrium distributions, see Supporting Text
Sections 1.1 and 1.2.

3. RESULTS
3.1. Construction of the TIP3P-F Model. 3.1.1. Crash

Rate as a Function of Water Mass. First, we systematically
determined the stability of time integration for TIP3P water
models with modified masses of the oxygen atom (mO) and
hydrogen atoms (mH). We varied the repartitioned mass mr
from 0 to 8 g/mol in steps of 1 g/mol. For each repartitioning,
we then varied the total mass in the regime of 0.5 < mtot < 1.5
g/mol and collected the statistics of simulation crashes at a
fixed time step Δt = 2 fs. With the equivalence of time and
mass scaling, eq 3, ignoring possible effects of thermostats and
barostats, the mass rescalings correspond to probing time steps
in the regime of 7 to 12 fs for TIP3P with unmodified total
mass. The rate of crashing kcrash as a function of the total mass
mtot of the TIP3P water molecules with various values of mr is
shown in Figure 1. Results are shown for repartitioning mr = 0

to 8 g/mol of the mass from the oxygen to the hydrogens.
Repartitioning the mass from the oxygen atom to the two
hydrogen atoms initially increases the integration stability.
However, beyond mr ≈ 4.5, the rate of crashing kcrash starts to
increase with increasing mr at a fixed value of mtot.
3.1.2. Water Diffusion as a Function of Water Mass. We

calculated the translational self-diffusion coefficient as a
measure of the reciprocal fluid viscosity according to the
Stokes−Einstein relation. To obtain continuous trajectories
from the simulations under periodic boundary conditions, we
used an unwrapping scheme29 that properly accounts for box-
size fluctuations in constant-pressure MD. To determine
diffusion coefficients from the unwrapped trajectories, we used
a generalized least-squares-based estimator.27 We set the
shortest lag time to 20 ps, resulting in excellent quality factors
of the fits (Q ≈ 0.5). As we were only interested in relative
changes due to mr and the system size was not varied, the
values of the diffusion coefficients were not corrected for
effects of finite system size,34,35 except if stated otherwise.

Figure 1. Crash rate kcrash in MD simulations of neat water as a
function of the total mass mtot of TIP3P water molecules with
different repartitioned masses mr. The upper scale indicates the
equivalent time step according to eq 3.
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Repartitioning mass mr from O to H atoms at fixed total
mass slows down water diffusion (Figure 2). The diffusion
coefficient decreases by ≈14% from mr = 0 to the most stable
mr = 4.5. This finding is consistent with earlier results by
Feenstra et al.3

We also tested for possible deviations of the calculated
diffusion coefficients from ideal mass scaling by fixing mr and
varying mtot. From the invariance of Newton’s equation of
motion, eq 2, the self-diffusion coefficient of neat water should
scale as

=D m
M
m

D M( ) ( )tot
0

tot
0

(8)

with total mass for fixed mr. As shown in Figure 3, the expected
mass scaling is quite accurately captured by the MD
simulations of TIP3P water with modified total mass and mr
= 4.5. However, as the total mass approaches zero, the
increasingly significant friction of the thermostat and possible
errors in the time integration lead to less-than-ideal
acceleration of the water self-diffusion, as shown in the inset.
We note that in the development of “fast water” we are not

interested in the most stable repartitioning per se, but rather in
the fastest diffusing water at a fixed crash rate kcrash. In Figure 4,
we show lines of constant crash rate in the plane of mr and mtot,
as obtained by fitting eq 6 to the data in Figure 1 and then
evaluating the fits at constant kcrash. To zoom in on the region
of high integration stability, we performed additional
simulations at kcrash ≈ 3.1 × 10−4 (ns × 1000 molecules)−1.
For masses (mtot, mr) = (0.766, 3.0), (0.696,4.0) and
(0.694,4.5), we obtained diffusion coefficients of 27.52 ±
0.01, 28.44 ± 0.02, and 28.31 ± 0.04 nm2/ns, respectively.
Therefore, for our purpose, the optimal value for mass
repartitioning is mr = 4.0, as it results in the fastest diffusing
water for fixed kcrash. Interestingly, the same amount of mass is
repartitioned from carbon to methyl hydrogen atoms in force

fields employing HMR.4,5 The masses of the TIP3P and
TIP3P-F water models are presented in Table 1 for reference.

While developing the water model required us to use
parameters that result in a measurable number of crashes, for
production purposes, we used a more conservative value of mtot
= 1.116 g/mol; hence, kcrash was on the order of 10−11 (ns ×
1000 molecules)−1. For a system of 1 million water molecules,
we thus expect one crash in about 100 ms of MD.
The diffusion coefficient of the TIP3P-F model with

repartitioned and scaled masses was corrected for finite-size

Figure 2. Self-diffusion coefficient of neat TIP3P water at T = 310 K
and p = 1 bar as a function of the mass repartitioning, mr. Diffusion
coefficients are not corrected for finite-size effects. The total mass mtot
of water molecules was unchanged. Data were averaged over two
independent replicas, with differences between replicas being smaller
than the symbol size. The line is a rational-function fit as a guide to
the eye. For reference, finite-size corrected values of self-diffusion
coefficients of TIP3P water at ambient pressure and 298 and 313 K
have been reported as D∞,298K = 6.22 nm2/ns and D∞,313K = 7.48
nm2/ns,33 respectively, bracketing the value of 7.053 nm2/ns obtained
here at an intermediate temperature of 310 K after finite-size
correction34 (see Table 2).

Figure 3. Self-diffusion coefficient of neat TIP3P water at T = 310 K
and p = 1 bar as a function of the total mass mtot of water molecules
for fixed mass repartitioning mr = 4.5 (symbols). The line corresponds
to ideal scaling of the diffusion coefficient (line) according to eq 8.
Results are not corrected for finite-size effects. Data point are averages
over two independent replicas. The differences between the two runs
are smaller than the symbols. The inset shows the deviation of the
diffusion coefficient from the ideal scaling. For reference, finite-size
corrected self-diffusion coefficients of TIP3P water have been
reported as D∞,298K = 6.22 nm2/ns and D∞,313K = 7.48 nm2/ns,33

bracketing the value of 7.05 nm2/ns obtained here at an intermediate
temperature of 310 K after finite-size correction.34

Figure 4. Rate of crashes of MD simulations of neat water as a
function of total mass mtot (y axis) and repartitioned mass mr (x axis).
Contour lines correspond to fixed crash rates kcrash in units of (ns ×
1000 molecules)−1 as computed using eq 6 and the parameters
reported in Table S2.

Table 1. Masses of the Original TIP3P17,18 and the Modified
TIP3P-F Model (with mtot = 1.116 and mr = 4) Developed in
This Work

water model mO [au] mH [au] mtot [au]

TIP3P 15.9994 1.008 18.0154
TIP3P-F 0.744 0.186 1.116
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effects following the method by Yeh and Hummer.34 Three
cubic water boxes with increasing side length L were prepared
in CHARMM-GUI20 and simulated in the NPT ensemble for
100 ns using an isotropic barostat. Uncorrected diffusion
coefficients as a function of the inverse box length are
presented in Figure 5. Least-squares fitting to a straight line

and extrapolation to infinite size (1/L → 0) yielded the results
in Table 2. As expected, mass transfer from the oxygen to the

hydrogen atoms decreases the diffusion coefficient, while mass
repartitioning combined with scaling increases the finite-size-
corrected diffusion coefficient by a factor of 3.35 with respect
to the original TIP3P model. Also, the slope in Figure 5
indicates a significant decrease in water viscosity34 by a factor
of 0.293 consistent with a ratio of 1/0.298 of the extrapolated
diffusion coefficients D∞ (Table 2).

3.2. Validation and Sampling Efficiency of the TIP3P-
F Model. 3.2.1. Water Structure and Energetics. For neat
water (Table 3), the combined effect of repartitioning the
masses (mr) and decreasing the total mass (mtot) by a factor of
≈26 does not substantially change the average potential energy
per molecule, ⟨Epot⟩/N, the average volume, ⟨V⟩, or the
number of hydrogen bonds, ⟨#H-bonds⟩. However, decreasing

the total mass substantially increases the self-diffusion
coefficient, D, of the water molecules and decreases the
lifetime,36 τH−bond, of hydrogen bonds. Even though the change
in the potential energy is minor, it is statistically significant.
Similar systematic tendencies in the potential energy as a
function of the time step have been reported previously.4,37

Additionally, as Figure 6 shows, our approach leaves the radial
distribution functions unchanged.

3.2.2. Kinetic Energy Repartitioning. Recently, Asthagiri
and Beck40 showed that long time steps in molecular dynamics
simulations of rigid water models lead to noticeable violations
of the equipartition of kinetic energy. Since mass rescaling is
equivalent to an increase in the integration time step, we
expect similar effects for the TIP3P-F model presented here.
We performed additional simulations using the protocol and
temperature (298.15 K) reported by Asthagiri and Beck,40 and
calculated the temperatures associated with the translational
(Ttrs) and rotational (Trot) degrees of freedom, using the
original TIP3P model, the model with hydrogen mass
repartition-only (TIP3P-R; mr = 4, mtot = 18.0154), and the
fast water model (TIP3P-F). Asthagiri and Beck40 tested
equipartition with a velocity Verlet integrator combined with
either the velocity rescaling or Langevin thermostat. Here, we
used the velocity Verlet integrator with the velocity rescaling
thermostat (VV-VR), and the Leap Frog integrator with
velocity rescaling (LF-VR) or Langevin thermostats (LF-L).
Figure S1 shows our results for all three integrator
combinations and all three water models. While increasing
the time step leads to an increase in Ttrs and a decrease in Trot
in the case of VV-VR, the combinations LF-VR and LF-L
showed the opposite tendency. Systems with only repartitioned
hydrogen masses (without rescaling) are basically unaffected

Figure 5. System size dependence of the self-diffusion coefficient for
the original (TIP3P), repartitioned (TIP3P-R), and fast water model
(TIP3P-F). The intercepts of straight-line fits34 at infinite box size (1/
L → 0) correspond to the finite-size-corrected diffusion coefficient.
The slope is proportional to the reciprocal of the shear viscosity.

Table 2. Effect of the Water Mass Repartitioning (mr = 4.0
g/mol) and Mass Rescaling (mtot = 1.116 g/mol) on the
Diffusion Coefficient D∞ after Finite-Size Corrections for
the Original (TIP3P), Repartitioned (TIP3P-R), and Fast
Water Model (TIP3P-F)

water model D∞ [nm−2 s−1]

TIP3P 7.053
TIP3P-R 6.125
TIP3P-F 23.648

Table 3. Comparison of Potential Energy, Volume, Number of Hydrogen Bonds, and Their Lifetime between the Original
TIP3P17 and TIP3P-F Water Models in NPT Simulations of 31859 Molecules.a

water model ⟨Epot⟩/N [kJ/mol] ⟨V⟩ [nm3] ⟨#H-bonds⟩ τH−bond [ps]

TIP3P −40.322 (0.001) 955.41 (0.02) 3.30 (0.01) 1.93 (0.07)
TIP3P-F −40.400 (0.001) 953.15 (0.02) 3.31 (0.01) 1.19 (0.02)

aThe reported uncertainties (except for τH−bond) in parentheses correspond to SEM and were calculated with block average analysis. The error in
τH−bond is the χ2 value of the fit. The average number of hydrogen bonds matches well the literature value of 3.36 at T = 298.15 K,38 while τH−bond
closely follows the values reported for other water models at T = 298 K.39

Figure 6. Oxygen−oxygen radial distribution function of TIP3P17

(solid blue line) and TIP3P-F water model (red dashed line) in neat
water at T = 310 K and 1 bar pressure.
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by the integration time step, yielding Ttrs and Trot close to the
target value. By contrast, deviations between the two
temperatures are amplified with the TIP3P-F model as the
integration time step increases. In their work, Asthagiri and
Beck40 attribute this behavior to the short relaxation times of
the rotational velocity, comparable to the time scale of
vibrational modes present in flexible water models. Therefore,
such deviations in the energy repartition are inherent to the
rigid body description of water and further work is required to
elucidate its effect on the dynamics and thermodynamics of
biological systems. In simulations using algorithms that rely on
the sampling of canonical partition functions, such as replica
exchange, small deviations from the Boltzmann distribution
can be amplified.41

3.3. Validation and Sampling Efficiency for Peptides.
To demonstrate the increase in sampling efficiency and the
preservation of equilibrium properties by the fast water model,

we performed molecular dynamics simulations of alanine-based
peptides. In particular, the alanine dipeptide serves as a
minimal system to mimic the backbone dynamics of a protein.
Additionally, the alanine penta- and decapeptides can exhibit
transitions between secondary structure elements commonly
found in folded proteins. We selected the Ramachandran
dihedral angles of the central residues to describe the structure
of the polypeptides, as illustrated in Figure 7. Additionally, we
also used the distance between the N-terminal and C-terminal
atoms (end-to-end distance) as a collective variable to
characterize the penta- and decapeptides. Free energies were
estimated from histogram counts,

=G d k T p( )/ logi iB (9)

where di is the value of the collective variable at the bin center
and pi is the proportion of observed samples in bin i for equal-
sized bin widths.

Figure 7. Illustration of the solutes tested in MD simulations with TIP3P-F water. Collective variables used to analyze the trajectories are indicated.

Figure 8. Dihedral angles of alanine dipeptide as sampled in simulations with the (A−C) TIP3P and (D−F) TIP3P-F water models. (A, D) Free
energy as a function of the dihedral angles. (B, C) Cumulative distribution functions of dihedrals in TIP3P (blue) and TIP3P-F water (orange).
The dashed vertical lines show where the two cumulative distributions are furthest apart. (E, F) Van der Spoel−Berendsen42 autocorrelation
functions of the dihedrals for the two water models.
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For alanine dipeptide, free energy plots as a function of the
Ramachandran angles are depicted in Figure 8A,D comparing
both water models. Alongside the Ramachandran maps, the
marginal cumulative distribution functions of each dihedral
(Figure 8B,C) demonstrate that changes in the water mass
have a negligible effect on the final equilibrium distribution.
Furthermore, the dihedral angle order parameters, SD2 (see the
Supporting Text Section 1.1 for the definition), for both
Ramachandran angles reported in Table 4, are in good
agreement.
In addition to the free energy maps of Figure 8, we also

present their difference, GTIP3P − GTIP3P‑F, in Figure S2. It is
clear from these differences that the fast water model preserves
the positions of the energy minima in the Ramachandran map.
Also, the relative energies between minima are practically
unchanged, indicating that the populations of the alanine
dipeptide conformers observed in the simulations with both

water models are comparable. Notably, Figure S2 also shows
that the largest deviations from the original TIP3P model
appear at the edges of the distribution, as demonstrated by
superposition of the isocontours of the Ramachandran map
using the reference TIP3P model. Conformations in these
regions of the energy surface are relatively poorly sampled due
to their low equilibrium probability. Indeed, the sign of the
difference shows no discernible pattern in the Ramachandran
representation (Figure S2).
Similar results were obtained for alanine penta- and

decapeptides. Figures 9A-C and 10A-C depict the comparison
of the cumulative distribution functions of the collective
variables, sampled from simulations with each water model.
Expectation values and order parameters of these observables
are reported in Table 4. Small shifts toward larger values of the
end-to-end distance were obtained with the mass-scaled
TIP3P-F model. However, the magnitude of these differences

Table 4. Dihedral Order Parameters and Extensions for Alanine Dipeptide (AlaDip), Ala5, and Ala10
a

peptide collective variable water model average (SE) τ̂int (SE) [ns] τ̂exp (SE) [ns]
AlaDip SD2 (ϕ) TIP3P 0.594 (0.001) 0.092 (0.001) 0.189 (0.006)

TIP3P-F 0.601 (0.001) 0.072 (0.001) 0.118 (0.008)
SD2 (ψ) TIP3P 0.293 (0.001) 0.100 (0.001) 0.104 (0.002)

TIP3P-F 0.299 (0.001) 0.070 (0.001) 0.061 (0.001)
Ala5 dNC [nm] TIP3P 1.270 (0.001) 0.607 (0.010) 0.989 (0.015)

TIP3P-F 1.275 (0.001) 0.281 (0.003) 0.448 (0.007)
SD2 (ϕ) TIP3P 0.639 (0.002) 0.254 (0.003) 0.710 (0.006)

TIP3P-F 0.643 (0.001) 0.141 (0.001) 0.351 (0.004)
SD2 (ψ) TIP3P 0.315 (0.003) 0.582 (0.011) 0.923 (0.016)

TIP3P-F 0.330 (0.002) 0.268 (0.003) 0.441 (0.010)
Ala10 dNC [nm] TIP3P 2.150 (0.005) 2.374 (0.085) 14.877 (0.082)

TIP3P-F 2.173 (0.003) 1.291 (0.051) 9.260 (0.076)
SD2 (ϕ) TIP3P 0.642 (0.002) 0.833 (0.027) 20.640 (0.546)

TIP3P-F 0.648 (0.001) 0.401 (0.009) 8.342 (0.264)
SD2 (ψ) TIP3P 0.149 (0.006) 5.173 (0.288) 16.734 (0.044)

TIP3P-F 0.164 (0.004) 2.468 (0.093) 8.289 (0.045)
aAverages and relaxation times τ̂int and τ̂exp are listed with SE in parentheses.

Figure 9. End-to-end distance and Ramachandran angles of the alanine pentapeptide as sampled in simulations using the TIP3P and TIP3P-F
water models. (A−C) Cumulative distribution functions of the collective variables. The dashed vertical lines show where the two cumulative
distributions are furthest apart. (D−F) Autocorrelation functions.
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is around 0.01 nm, and thus negligible for most applications.
Furthermore, free energy difference maps of the Ramachan-
dran angles of the central residue, presented in Figures S3 and
S4, also demonstrate that the largest deviations are observed
only at the edges of the map.
We determined whether the samples of the collective

variables obtained using TIP3P and TIP3P-F come from the
same equilibrium distribution by performing Kolmogorov−
Smirnov (KS) tests. Since direct application of the KS test is
complicated by the presence of correlations, numerical
distributions of the statistic itself were calculated by comparing
the samples from individual molecular dynamics trajectories.
Results are presented in Figures S8−S12. The distribution of
the values of the KS statistic when comparing trajectories
simulated with different water models largely overlap with the
distributions calculated when comparing trajectories with the
same water model. These results evidence that the sampled
equilibrium distribution is not altered substantially by the
changes in the mass of the water molecule. It is also important
to note that KS values from the simulations with the TIP3P-F
model tend to be smaller than those observed between
trajectories simulated with the standard TIP3P model. This
means that the more efficient sampling by using the TIP3P-F
model also results in less variability when comparing
trajectories from independent molecular dynamics runs. We
note, however, that the differences in the mean end-to-end
distances and order parameters, while small in absolute terms,
are in some cases statistically significant.
The scaling and repartition of the mass in the water

molecules has large effects on the autocorrelation functions of
the collective variables. Figures 8E,F, 9D−F, and 10D−F
present the autocorrelation functions of each order parameter
and collective variable of the peptide systems. From these
plots, we conclude that the decrease in water viscosity due to
the mass scaling scheme indeed leads to a faster decorrelation.
Furthermore, the integrated autocorrelation times drop by
about a factor of 2 for most systems (Table 4). Additionally,
the exponential autocorrelation time, τ̂exp was also calculated

by linear regression over a reasonably linear regime in log
space for the slowest observed process in the autocorrelation
function. Dashed lines in the autocorrelation plots of Figures 8
to 10 show the range of the function used for the fits. In
general, the amount of decrease in τ̂exp is consistent with the
observed decrease of the integrated times.
In molecular dynamics simulations, the desired accuracy of

an estimator is limited by the integrated autocorrelation time
τint because the statistical error decreases roughly as the
variance times (2τint/t)1/2 with the simulation time t.43 From
the results above, this implies that simulations with the TIP3P-
F model can result in smaller estimation errors for the same
simulation lengths. Equivalently, “independent” samples can be
generated within fewer molecular dynamics steps. Indeed, the
error bars calculated here with block averages (which do not
require the autocorrelation time explicitly), tend to be smaller
for the systems simulated with the TIP3P-F model over the
same total time. Furthermore, Figures S5 to S7 show the
cumulative distribution function of all collective variables
calculated from the alanine decapeptide simulations at different
points in time. Clearly, the time evolution of the CDFs with
the TIP3P model leads to a notably smaller uncertainty for the
same simulation length.
Interestingly, the acceleration in the relaxation times is

somewhat less than the roughly 3-fold change in solvent self-
diffusion or viscosity. For the solutes, the autocorrelation times
instead decrease by about a factor of 2. To explore this effect,
we performed molecular dynamics simulations of the alanine
dipeptide by scanning through different total masses of the
water molecules, using τint of the ψ dihedral as a reporter
variable. The results in Figure 11 show that autocorrelation
times are approximately proportional to the square root of the
water mass, as should be expected according to eq 3, and as
seen before for peptides.44 Moreover, a least-squares straight-
line fit with respect to the square root of the mass scale factor
(Table 5) reveals that the solute autocorrelation time does not
go to zero after extrapolation to zero mass. A small upturn of
τint as mtot → 0 is not statistically significant, but would be

Figure 10. End-to-end distance and Ramachandran angles of the alanine decapeptide as sampled in simulations using the TIP3P and TIP3P-F
water models. (A−C) Cumulative distribution functions of the collective variables. The dashed vertical lines show where the two cumulative
distributions are furthest apart. (D−F) Autocorrelation functions.
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consistent with a transition into the Kramers low-friction
regime,9,12 where the exchange of energy between solute and
solvent degrees of freedom becomes inefficient. However,
much shorter time steps would be required for a firmer
assessment of this interesting regime.44

From a mechanistic point of view, solute motion is affected
by forces arising from solute−solvent and solute−solute
interactions. Conformational changes in the peptide that

require large motions or rearrangements of water networks are
limited by the time needed for solvent reorganization, that is,
the solvent exerts friction over the solute. The proportionality
constant of the model in Table 5, b, is a measure of the
strength of solute−solvent friction. Increasing the water
diffusion constant decreases the time for solvent reorganiza-
tion. Therefore, as the water mass approaches zero, the
dynamics of solute degrees of freedom is dominated by a
combination of intramolecular and thermostat friction. This
“residual” autocorrelation time is characterized by the a
parameter in Table 5, which quantifies the “internal
friction”12,44,45 associated with couplings to intramolecular
motions combined with thermostat friction. In practical terms,
a represents a limit in the maximum speed-up that can be
achieved by scaling the solvent mass. This theoretical limit is
well within the bounds of integration stability of the TIP3P-F
model and provides justification for our final water mass. As
Figure 11 shows, by using a total mass, mtot = 1.116 g/mol, we
are already within the error bar of the theoretical limit of the
alanine dipeptide system.

3.4. Validation and Sampling Efficiency for Nucleic
Acids. To test if the increase in sampling efficiency observed
in protein dynamics extends to other biomolecules, we
prepared systems of the polyribonucleotides Ade2 and Ade4
with both water models. In contrast to polypeptides, where
backbone dynamics can be characterized by the two
Ramachandran dihedrals, nucleic acids have six different
torsion angles shared between consecutive residues. Here, we
only analyzed the phosphate α and ζ dihedrals of the central
residues, together with the distance between the O5′ and the
O3′ atoms of terminal ribonucleotides (dO5′−O3′). Figure 7
shows the structures and variables used for the polyribonu-
cleotides.
As for the peptide observables, the calculated cumulative

distribution function of dO5′−O3′ is practically unchanged when
performing simulations with TIP3P-F (Figures 12A and 13A).
Accordingly, the free energy profile can be completely

Figure 11. Dependence of the alanine dipeptide ψ integrated dihedral
autocorrelation time, τint, on the square root of the mass of the water
molecules, mtot . The repartitioned mass mr = 4 of the TIP3P-F
model was kept fixed in the simulations. The inset shows the
estimated autocorrelation times for the smallest water masses tested in
this work.

Table 5. Fit of = +a b mint tot to the Integrated
Autocorrelation times of the ψ Dihedral Angle of Alanine
Dipeptide as a Function of Total Water Mass (See Figure
11)a

parameter fitted value

a [ns] 0.041 (0.001)
b [ns × au−1/2] 0.013 (0.0003)

aUncertainties correspond to the standard errors of the slope and
intercept.

Figure 12. End-to-end distance and dihedral angles of the adenine diribonucleotide as sampled in simulations using the TIP3P and TIP3P-F water
models. (A−C) Cumulative distribution functions for the O5′ to O3′ distance between terminal nucleotides and for the phosphate bound α and ζ
dihedrals. The dashed vertical lines show where the two cumulative distributions are furthest apart. (D−F) Autocorrelation functions.
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recovered with small differences mainly due to noise. As shown
in Table 6, the averages of this distance also coincide within
the calculated error. Values of the KS statistic for the dO5′−O3′
distributions sampled with the different water models have
similar magnitude, as shown in Figure S13. This behavior is
also observed for the phosphate dihedrals, shown in Figures
12B,C and 13B,C, with corresponding KS statistics shown in
Figures S14−S16. Cumulative distribution functions and their
associated dihedral order parameters are practically independ-
ent of the water model and the estimated errors are within
expected fluctuations between independent molecular dynam-
ics runs.
Autocorrelation functions of the end-to-end distance in

Figures 12D and 13D demonstrate that faster convergence can
be achieved with TIP3P-F. Comparison of τint indicates a
roughly 2-fold increase in efficiency, comparable to the case of
the alanine polypeptides. The relaxation time τexp correspond-
ing to the slowest, exponentially decaying process was
evaluated by linear regression. Results for τexp are presented
alongside τint in Table 6, and the fits are shown as dashed lines
in the autocorrelation plots of Figures 12D and 13D.

Moreover, the increase in the rate of convergence is also
observed for other variables, namely the α and ζ dihedrals, as
demonstrated by the autocorrelation functions in Figures
12E,F and 13E,F.

3.5. Validation and Sampling Efficiency for Protein.
Results discussed in previous sections showed a roughly 2-fold
increase in sampling efficiency using the TIP3P-F water model
for small peptide and ribonucleotide systems. To test if similar
effects can be expected in simulations of properly folded
proteins, we selected ubiquitin46 as a model system. In total, 10
independent molecular dynamics simulations of ubiquitin with
a length of 2.7 μs per replica were used to calculate statistics
and for error analysis. First, time series of the radius of
gyration, Rg, were generated to calculate their distribution and
expectation value. Figure 14D compares the numerical
cumulative distribution functions observed in simulations
with TIP3P and TIP3P-F. The empirical distributions and
the averages in Table 7 indicate that simulations with both
water models lead to essentially the same results. Additionally,
Figure 14E shows a substantial decrease in the decorrelation
rate of this variable when using the TIP3P-F water model,

Figure 13. End-to-end distance and dihedral angles of the adenine tetraribonucleotide as sampled in simulations using the TIP3P and TIP3P-F
water models. (A−C) Cumulative distribution functions for the O5′ to O3′ distance between terminal nucleotides and for the phosphate bound α
and ζ dihedrals. The dashed vertical lines show where the two cumulative distributions are furthest apart. (D−F) Autocorrelation functions.

Table 6. Dihedral Order Parameters and Expectation Values of Collective Variables Used to Analyze the Simulations of the
Polyribonucleotide Systems

RNA collective variable water model average (SE) τ̂int (SE) [ns] τ̂exp (SE) [ns]
Ade2 dO5′−O3′ [nm] TIP3P 0.760 (0.002) 1.270 (0.047) 2.254 (0.015)

TIP3P-F 0.759 (0.002) 0.561 (0.015) 1.090 (0.013)
SD2 (α) TIP3P 0.046 (0.003) 0.992 (0.036) 2.460 (0.026)

TIP3P-F 0.045 (0.002) 0.428 (0.011) 1.148 (0.019)
SD2 (ζ) TIP3P 0.105 (0.002) 0.797 (0.028) 1.889 (0.021)

TIP3P-F 0.107 (0.003) 0.345 (0.009) 0.957 (0.016)
Ade4 dO5′−O3′ [nm] TIP3P 1.113 (0.010) 28.321 (3.433) 122.075 (0.420)

TIP3P-F 1.109 (0.006) 11.258 (0.802) 47.004 (0.124)
SD2 (α) TIP3P 0.263 (0.017) 42.128 (3.979) 82.005 (0.104)

TIP3P-F 0.288 (0.012) 20.098 (1.423) 42.004 (0.064)
SD2 (ζ) TIP3P 0.191 (0.013) 40.492 (3.799) 85.540 (0.107)

TIP3P-F 0.212 (0.008) 19.332 (1.373) 46.473 (0.116)
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particularly in the short- and mid-time scale. The amount of
acceleration, as assessed quantitatively by comparing the
integrated autocorrelation times of both systems in Table 7,
is consistent with previous results. On the other hand, the
exponential characteristic time of the slowest apparent process
is not clearly different between the two water models. The
associated motions may thus be dominated by “internal
friction”. However, the signal-to-noise ratio in the points used
for the linear fit is low, making differences in the slope difficult
to detect, and the respective time scale approaches the overall
duration of the simulations.
In addition to the Rg time series, the collective dynamics of

the α-carbon backbone atoms was analyzed. First, an average
protein structure in TIP3P and TIP3P-F water was calculated
by repeatedly aligning and averaging all structures from the
respective molecular dynamics runs until convergence was
achieved. Figure 14A shows a superposition of the average
structures from trajectories using the two water models,
demonstrating that the average backbone conformation is
independent of water mass. Afterward, the root-mean-square
fluctuation (RMSF) values of every α carbon atom about their
average position were generated and a cutoff of 0.1 nm was
applied to select a rigid skeleton for the generation of the time
series, as shown in Figure 14B. Then, the trajectories were
realigned with respect to this ubiquitin core. Time series of the

RMSD of the α carbon atoms from the core average were
generated. The autocorrelation functions of the time series are
depicted in Figure 14C and the integrated and exponential
autocorrelation times are reported in Table 8. According to the

results, the TIP3P-F water model reduces the decorrelation
times by about 30 to 40% with respect to the standard TIP3P
model. Therefore, the TIP3P-F model speeds up the dynamics
also for a folded protein. However, the slowest motions
captured in the autocorrelation functions appear to decay with
similar characteristic times τexp for TIP3P and TIP3P-F,
indicating that the underlying processes are dominated by
internal friction.

3.6. Validation and Sampling Efficiency for Lipid
Bilayer. Figures 15 and 16 indicate that NPT simulations with
the TIP3P and TIP3P-F leave the density and order parameter
of the lipid bilayer virtually unchanged, in agreement with the
expectation that equilibrium thermodynamic averages are
independent of the mass distribution of the system. Moreover,
Table 9 shows that the area per lipid values are also identical
across the two water models. However, due to the reduced
viscosity of the surrounding aqueous medium, the apparent
diffusion coefficient of the lipids, without finite-size correc-
tion,35,47 is increased by ∼25%.
The enhanced sampling brought about by the decreased

viscosity of the TIP3P-F model is less than what we observed

Figure 14. Superposition of the average backbone structure generated from trajectories using TIP3P and TIP3P-F water models (A). (B, C) Root-
mean-square fluctuation (RMSF) values of the α carbons per residue, and the autocorrelation function of the root-mean-square deviation (RMSD)
with respect to the average structures, respectively. The horizontal dashed line in the RMSF plot shows the cutoff used to define the ubiquitin core.
Empirical cumulative distribution functions of the radius of gyration of ubiquitin (D) comparing the sampling using the TIP3P and TIP3P-F water
models. The dashed vertical lines show where the two cumulative distributions are furthest apart. Autocorrelation functions of the time series are
presented in (E). Dashed lines indicate linear regression fits of the late decay of the slowest observed process.

Table 7. Ensemble Averages and Autocorrelation Analysis of
the Radius of Gyration of Ubiquitin from Molecular
Dynamics Simulations Data

water model average (SE) [nm] τ̂int (SE) [ns] τ̂exp (SE) [ns]
TIP3P 1.187 (0.001) 191.4 (85.3) 716.30 (1.28)
TIP3P-F 1.185 (0.001) 99.1 (46.6) 724.61 (3.57)

Table 8. Autocorrelation times of the Core-RMSD Time
Series for the Simulations of Ubiquitin

water model τ̂int (SE) [ns] τ̂exp (SE) [ns]
TIP3P 100 (29) 248
TIP3P-F 78 (27) 169
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for small biomolecules. The reason for this is that lipid
mobility is dominated by the membrane viscosity.35,47,48 To
speed up the lipid dynamics more substantially, one could use
mass repartitioning and scaling also for lipids.

4. CONCLUSIONS
We introduced the TIP3P-F model for fast sampling of
equilibrium distributions of (bio)molecules in aqueous
solution. By first mass repartitioning mass from the heavy
oxygen to the light hydrogen atoms and then rescaling the
mass of the entire water molecule, we achieved a roughly 3-fold
decrease in solvent viscosity while maintaining the time
integration stability. By changing only the masses, TIP3P-F can
be used with all force fields compatible with TIP3P water, with
the usual time step of Δt ≈ 2 fs.
We demonstrated that decreasing solvent viscosity enhances

conformational sampling in biomolecular simulations. Sub-

stantial speedups in sampling by about a factor of 2 for
solvated biomolecules, proteins, and nucleic acids, and by
∼25% for fully hydrated lipid bilayers afforded by the TIP3P-F
model are achieved without compromising the structural and
thermodynamic properties of solute and solvent.
We would be remiss not to emphasize that the TIP3P-F

water model presented here can be trivially combined with the
conventional HMR schemes that allow 4 fs time steps. When
using TIP3P-F in HMR simulations with doubled, 4 fs time
step, the total water mass mtot of TIP3P-F should be
quadrupled to mtot

HMR = 4.464 so not to alter the crash rate
kcrash of the system. We refer to the literature

4,5 for guidance on
HMR.
For practitioners, if retaining the actual dynamics is a

concern, TIP3P-F can be used only in the equilibration phase
to create well-sampled starting points for runs with regular
TIP3P. If sampling is the focus, as is usually the case, TIP3P-F
can be used also for the production runs. The use of TIP3P-F
should also further accelerate enhanced sampling methods. In
umbrella sampling, for instance, sampling will speed up by a
factor given by the decrease in the decorrelation time in the
windows as a result of the faster solvent motions.49 However,
for calculations requiring high precision, as in certain tests on
force fields, one may want to increase the total mass mtot in the
TIP3P-F model to a value intermediate between 1.116 of
TIP3P-F and 18.0154 of TIP3P (Table 1), trading off
statistical against systematic errors. Overall, we recommend
TIP3P-F for the efficient sampling of (bio)molecular systems,
resulting in roughly 2-fold speed-ups in time-to-discovery and,
with that, ∼50% reductions in energy cost and reduced climate
impact.50
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Figure 15. Mass density profiles of the lipid headgroups, glycerol
backbone, acyl chains, and water in simulations of POPC bilayers
using the TIP3P (solid lines) and TIP3P-F (dashed lines) water
models. For the analysis of the water mass density, standard water
masses were used in both cases.

Figure 16. SCH order parameter of the sn-1 and sn-2 acyl chains
calculated in simulations of POPC bilayers using the TIP3P (solid
lines as a guide to the eye) and TIP3P-F (dashed lines) water models.

Table 9. Comparison of Area Per Lipid (APL) and Lipid
Diffusion Coefficient between Simulations of POPC Using
TIP3P and TIP3P-Fa

water model APL (SE) [Å2] D (SE) [10−3 nm2/ns]

TIP3P 65.0 (0.1) 9.9 (0.6)
TIP3P-F 65.1 (0.1) 12.4 (0.3)

aUncertainties report the difference between the two replicas.
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