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A B S T R A C T

In face of cumulating evidence about the impact of human-induced environmental changes on mental health and
behavior, our understanding of the main effects and interactions between environmental factors – i.e., the
exposome and the brain – is still limited. We seek to fill this knowledge gap by leveraging georeferenced large-
scale brain imaging and psychometry data from the adult community-dwelling population (n = 2672; mean age
63 ± 10 years). For monitoring brain anatomy, we extract morphometry features from a nested subset of the
cohort (n = 944) with magnetic resonance imaging. Using an iterative analytical strategy testing the moderator
role of geospatially encoded exposome factors on the association between brain anatomy and psychometry, we
demonstrate that individuals’ anxiety state and psychosocial functioning are among the mental health charac-
teristics showing associations with the urban exposome. The clusters of higher anxiety state and lower current
psychosocial functioning coincide spatially with a lower vegetation density and higher air pollution. The uni-
variate multiscale geographically weighted regression identifies the spatial scale of associations between in-
dividuals’ levels of anxiety state, psychosocial functioning, and overall cognition with vegetation density, air
pollution and structures of the limbic network. Moreover, the multiscale geographically weighted regression
interaction model reveals spatially confined exposome features with moderating effect on the brain-
psychometry/cognitive performance relationships. Our original findings testing the role of exposome factors
on brain and behavior at the individual level, underscore the role of environmental and spatial context in
moderating brain-behavior dynamics across the adult lifespan.
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1. Introduction

Given the global longevity increase, the current focus on extending
the healthy lifespan motivates research beyond the assessment of
endogenous and lifetime factors towards understanding their in-
teractions with social and environmental determinants – i.e. the expo-
some. Despite a mounting body of empirical evidence about the impact
of exposome factors on aging-related cognitive and mental health
decline, we still lack a detailed knowledge about the related brain-
behavior outcomes (Xu et al., 2023a; Liu et al., 2023a). In this study,
the emphasis is on the urban exposome, driven by the worldwide trend
of growing populations living in towns and cities (Rydin et al., 2012).

In the context of brain health, the association between air pollution
and depression is among the most replicated exposome risk factors,
whilst the role of traffic noise, seasonal allergens, electro-magnetic
fields, or pesticides remains controversial (Hao et al., 2022; Qin et al.,
2011; Bagheri Hosseinabadi et al., 2019; Zanchi et al., 2023). The
beneficial effects of city living on cognitive performance and psycho-
social functioning, mainly related to higher social mobility and better
access to healthcare, are opposed to the impact of chronic stress,
sedentary lifestyle and easy access to high-fat, high-energy food (Dye,
2008; Engemann et al., 2018, 2019; Vassos et al., 2012). The proximity
to green spaces, the levels of air pollution, traffic noise, and natural light
exposure share a big proportion of variance and strongly depend on
individuals’ socio-economic status. These intersections render the
interpretation of the unique and combined impact of urban and social
exposome characteristics on brain health highly debatable (Generaal
et al., 2019a, 2019b; Gonzales-Inca et al., 2022).

Although traditionally associated with low mood and high levels of
anxiety (Costa e Silva and Steffen, 2019), the urban exposome may have
beneficial mental health effects by promoting increased physical activity
in the greener city areas (Schipperijn et al., 2017). Conversely, the built
environment and lack of green spaces are linked to a higher risk of
depression (Sokale et al., 2022). Meta-analyses confirm the initial ob-
servations of associations between air pollution and low mood, putting
forward the augmented risk of depression due to short- and long-term
effects of exposure to particulate matter (PM10) and nitrogen dioxide
(NO2) (Zundel et al., 2022). The proposed underlying mechanisms are
pollution-induced neuroinflammation, oxidative stress and cerebrovas-
cular damage (Babadjouni et al., 2017) further linked to dysregulation
of the hypothalamus-pituitary-adrenal axis (Blier, 2016; Li et al., 2017).
Additional evidence comes from studies showing elevated cytokines
plasma levels, similar to those observed in depression, after short- and
long-term particulate matter exposure (Pope et al., 2016; Tsai et al.,
2019). Complementing the research on the mental health effects, studies
show associations between air pollution and resilience to cognitive
decline mediated by decreased beta-amyloid burden (Ma et al., 2023).
Along these lines, higher levels of residential greenness and attractive
public spaces promoting social interaction are associated with slower
aging-related cognitive decline (Clarke et al., 2015; de Keijzer et al.,
2018), albeit not overcoming the impact of genetic risk for Alzheimer’s
disease (Zhu et al., 2020). These relationships remain controversial
considering country-specific health and social welfare systems and the
strong dependence on differential lifespan trajectories (Wang et al.,
2023).

The well-established relationship between cognition, behavior and
brain imaging-derived anatomy characteristics provides a foundational
framework for interpretation of the neurobiological processes underly-
ing the environmental impact on psychometry/cognitive performance
outcomes (Polemiti et al., 2024). The cumulating evidence from imaging
neuroscience studies offers unique insights into the links between
exposome, lifetime factors, brain, and behavior (Liu et al., 2023b; van
den Bosch and Meyer-Lindenberg, 2019; Wang et al., 2021; Yang et al.,
2023; Olsen et al., 2017; Yeung et al., 2021). Air pollution and traffic
noise are associated with brain atrophy in older adults (Nuβbaum et al.,
2020), whilst multiple environmental exposome characteristics explain

the specific neural activation patterns in stress processing networks
(Lederbogen et al., 2011). Correspondingly, urban living influences
cognition and behavior via its impact on brain volume and connectivity
(Xu et al., 2023a; Glaubitz et al., 2022). These findings resonate previous
reports about the moderating effect of family, school environment and
social engagement on neighborhood deprivation linked to hippocampal
volume and functional connectivity measures (Ku et al., 2022; Rakesh
et al., 2021).

Despite major advances in the field, the imaging neuroscience
studies using georeferenced data to investigate brain-environment as-
sociations reduce the rich geospatial information to descriptive and
composite indices of “urbanicity” (Haddad et al., 2015), environmental
categories (Kühn et al., 2017) or average values of a single environ-
mental factor within a spatial buffer - e.g. tree cover density or sky view
factor (Kühn et al., 2023a, 2023b), air pollution, traffic noise (Nuβbaum
et al., 2020; Lucht et al., 2022). While the spatial correspondence be-
tween environmental factors and individuals’ home address is implicitly
included, the statistical analysis rarely incorporates subject-specific
geocoded information that accounts for the geospatial heterogeneity
of the data. As evident from studies on cardiovascular risk, infectious
diseases (Oshan et al., 2020; Gaisie et al., 2022; Xu et al., 2023b; Asori
et al., 2023) and affective disorders (Song et al., 2024; Stulz et al., 2018;
Giordano et al., 2023; Moore et al., 2022; Rivera and Mollalo, 2022;
Chen et al., 2023; Taylor et al., 2018), the impact of social and envi-
ronmental exposome factors shows a significant geospatial heteroge-
neity that can be statistically formalized using spatial regression models
(Giordano et al., 2023; Brown et al., 2018; Houlden et al., 2019).

Aiming to fill this knowledge gap, we systematically address the
question whether anxiety levels, psychosocial functioning and overall
cognitive performance will show a spatial dependence associated with
environmental exposome factors and brain anatomy characteristics. We
use georeferenced data in a spatial statistics’ analytical framework to: i.
identify spatial clusters of individuals with similar psychometry/
cognitive performance, ii. analyze environmental exposome factors and
gray matter volume differences across these spatial clusters, and iii.
calculate the associations and interaction between the exposome, gray
matter volume, and individuals’ psychometry/cognitive performance in
the geographical space.

2. Methods

2.1. Study design and population

We used data from the CoLaus|PsyCoLaus cohort, a longitudinal
study in the community-dwelling population of Lausanne, Switzerland,
initiated in 2003 with already three completed follow-ups. At baseline,
the cohort involved 6734 individuals aged 35–75 years old (Firmann
et al., 2008; Preisig et al., 2009). Given that the brain magnetic reso-
nance imaging (MRI) acquisition started at the second follow-up (FU2)
in 2014, we analyzed data collected between 2014 and 2018 from this
follow-up. Our sample included only individuals from the urban center
and less dense adjacent areas (see Fig. S1; Tables S1 and S2). The brain
imaging nested cohort consisted of study participants that consented for
an MRI (n = 1341; nmax = 944 after geographical selection and
matching with corresponding psychometry/cognitive performance data;
see Fig. S2).

2.2. Ethics

The institutional Ethics Committee of the University of Lausanne,
which afterwards became the Ethics Commission of the Canton of Vaud
(www.cer-vd.ch) approved the baseline CoLaus|PsyColaus study
(reference 16/03; 134-03,134-05bis, 134-05-2to5 addendum 1 to 4).
The approval was renewed for the first (reference 33/09; 239/09), the
second (reference 26/14; 239/09 addendum 2), the third (PB_2018-
00040; 239/09 addendum 3 to 4) and the fourth (PB_2018_0038 (239/
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09)) follow-ups. The study was performed in agreement with the Hel-
sinki declaration and its former amendments, and in accordance with
the applicable Swiss legislation. All participants signed a written
informed consent.

2.3. Magnetic resonance imaging (MRI) data acquisition, processing, and
quality control

We acquired magnetization transfer- (MTw), proton density- (PDw),
and T1-weighted (T1w) images on a 3T whole-body MRI system (Mag-
netom Prisma, Siemens Medical Systems, Germany) (Trofimova et al.,
2021) (for details on the MRI data acquisition protocol see Methods S1).
The MT saturation and effective PD maps calculated with default set-
tings (Taubert et al., 2020) were used to estimate probabilistic maps of
gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) in
the framework of SPM12s (SPM12; Wellcome Trust Centre for Neuro-
imaging, London, UK, www.fil.ion.ucl.ac.uk/spm) multi-channel “uni-
fied segmentation”, running under Matlab 2019 (Mathworks, Sherborn,
MA, USA). For optimal delineation of subcortical structures we used
enhanced tissue priors (Helms et al., 2009). This was followed by an
atlas-based parcellation of gray matter structures using
factorization-based labeling (Yan et al., 2022) and calculation of
regional averages of tissue volume. The atlas-based parcellation is based
on the dataset from theMICCAI 2012 Grand Challenge andWorkshop on
Multi-Atlas Labelling (Landman and Warfield, 2012; http://www.neu
romorphometrics.com) and provides 72 cortical and subcortical
labeled anatomical regions per hemisphere. The ROI selection in the
study stems from the assumption of their specific involvement in mood
disorders (Smagula and Aizenstein, 2016; Ancelin et al., 2019; Wang
et al., 2016) and cognitive function (Helie et al., 2013; Tabatabaei-Jafari
et al., 2015; Herrmann et al., 2019). The ROIs include both the left and
right hemispheres of the accumbens area, caudate, pallidum, putamen,
anterior cingulate gyrus, middle frontal gyrus, parahippocampal gyrus,
substantia nigra, thalamus, amygdala, hippocampus, entorhinal cortex,
and subcallosal area (see Table S3).

For image quality control, we used the established motion degra-
dation index with a threshold = 4.5 × 10− 3 ms− 1 for the PD and T1w
contrasts (Castella et al., 2018). All data surpassing the threshold were
visually inspected by two experienced imaging neuroscientists reaching
94% agreement, which resulted in excluding 17 participants from the
final analysis. Aiming at automated detection of macroscopic brain ab-
normalities – silent ischemic lesions, benign tumors etc., we created
individual tissue class specific binary mask and compared the number of
voxels to a canonical group-average tissue map. Among the individuals
with less voxels in each tissue class, we identified those surpassing the
mean number of voxels+2 SD, excluding 46 additional individuals from
the final analysis.

2.4. Psychometry and cognitive assessment

For assessment of anxiety levels, we used the State and Train Anxity
Inventory (STAI) (Spielberger et al., 1983), which includes two scales:
STAI state [STAI_s] and STAI trait [STAI_t] sub-scores. For each of the
two scales, the sum of the item scores was computed to obtain a final
score ranging between 20 and 80, with higher values corresponding to
higher levels of anxiety. As an indicator for psychosocial functioning we
used the Global Assessment of Functioning (GAF) assessing the lifetime
[GAF_l], worst [GAF_w] and current [GAF_c] states (Bell, 1994). Higher
GAF scores translate into a better overall functioning. We tested in-
dividuals’ global overall cognitive performance with the Mini Mental
State Examination – MMSE (Folstein et al., 1975). The test administra-
tion was restricted to individuals aged 60 years and older (see Tables S4
and S5).

2.5. Adjustment for confounding factors

For all analyses, we adjusted the psychometry and cognitive data for
the confounding effects of age, sex, educational level, last occupational
position recorded and income category at the time of the FU2 assess-
ment. Educational levels were categorized into primary (1), secondary
(2), and tertiary (3). Last occupational position was classified as low (1),
middle (2), high (3). Finally, income categories were defined as ≤ 4999
CHF (1), 5000–9499 CHF (2), >9500 CHF (3).

We used imputation to compensate for missing income values. We
observed 991 missing values - out of 4115 total individuals geocoded in
the geographic area of interest - in our study sample for the income
categorical variable. To handle missing data, we used predictive cate-
gorical imputation, leveraging neighborhood income, education level,
last job occupation, age, and sex as predictors (Lee et al., 2012). The
OneVsRestClassifier with a LinearSVC model, implemented through the
scikit-learn package (version 1.5.2), was used to impute values for 977
cases (Pedregosa et al., 2011; Vapnik et al., 1996). For the remaining 14
instances, where fewer than three predictors were available, we imputed
the income category based on the strongest single predictor (in order of
last occupational position, education, or neighborhood income), given
the strong Spearman’s rank correlation observed between these vari-
ables and income (Lee et al., 2012; Schafer and Graham, 2002). For
individuals in the area of interest with available psychometry/cognitive
performance outcomes, the imputation resulted in the following extra
number of individuals retained in the dataset compared to the case
where no imputation was performed: STAI_s: N = 252 (14.55% in-
crease); STAI_t: N = 178 (12.59%); MMSE: N = 225 (19.74%); GAF_l: N
= 371 (16.12%); GAF_w: N = 371 (16.13%) (see Fig. S2). The missing
SES values in Fig. S2 correspond to individuals for whom a complete SES
profile could not be obtained, even after income imputation.

We performed the adjustments before conducting any spatial anal-
ysis. All results presented in this study use the psychometry and cogni-
tive health outcomes that have already been adjusted for the
confounding factors introduced in this section.

2.6. Georeferencing and exposome data

We georeferenced participants at their current home address using
the geospatial information of the Swiss Confederation via its API REST
services. Using the QGIS software (version 3.10.11) we extracted the
following variables: i. night-time traffic noise (road and rail); ii. Vege-
tation density as quantified by the Normalized Difference Vegetation
Index (NDVI) and by the Atmospherically Resistant Vegetation Index
(ARVI); iii. Incoming solar radiation using the Total Solar Insolation
(TSI) and Daily Duration of Insolation (DDI); and iv. Atmospheric
pollution using Nitrogen Dioxide (NO2) and Particulate Matter (PM10)
averaged considering circular buffers of 25 m, 50 m, 100 m, 200 m, 400
m, 500 m, 600 m, 800 m, 1000 m, 1250 m and 1500 m around the
participants’ addresses. We also calculated the minimum walking time
to reach the closest public transport stops from each individual address
using OpenStreetMap data and the OSMnx Python package (Boeing,
2017) (see Methods S2-S6 for details). We imputed missing data using
the median of the particular variable.

2.7. Spatial statistics

2.7.1. Clustering and variance analysis
We used the PySAL (v.4.6.0) Python library suite (Rey and Anselin,

2007) to calculate the Getis-Ord Gi* (Getis) (Getis and Ord, 1992) and
the Univariate Local Moran’s I (Moran) clustering statistics (Anselin,
1995). The Getis statistic measures spatial dependence by identifying
local clusters in the spatial arrangement of a variable (here, psycho-
metry/cognitive performance). Getis compares the sum of the in-
dividuals’ psychometry/cognitive performance values within a spatial
lag proportionally to the sum of values across the entire study area (Getis
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and Ord, 1992). The null hypothesis assumes a random spatial distri-
bution of the values analyzed. The Getis statistic is a Z score. Statistically
significant positive and negative Z scores are representative of hot spots
(HS) – clusters of high values, and cold spots (CS) – clusters of low
values, respectively. Neutral sampling sites are labeled non-significant
(NS).

The Moran statistic also assesses spatial dependence by evaluating
clustering in geographic space. It is based on the statistical index I
developed by Moran (1950), which measures the global spatial auto-
correlation of the data in the area under investigation. Moran’s I ranges
from − 1 (negative spatial autocorrelation – or dispersion) to 1 (complete
spatial dependence – or clustering), with a value of 0 indicating the
absence of spatial dependence. The Moran method introduces two
additional classes, compared to Getis, to identify dissimilar values
within the local high and low spots (high–low and low–high). This
refinement prevents the misclassification of individuals in areas with
relatively high numbers of dissimilar neighbors. Classification in both
Getis and Moran statistics is based on significance testing, using random
Monte-Carlo permutations, which shift the values between sample lo-
cations. These permuted values are then compared to the observed Getis
or Moran statistics (see details in (Anselin, 1995)). In this study, statis-
tical significance testing was based on a conditional randomization
procedure using a sample of 999 permutations (Anselin, 1995). All maps
shown in this paper correspond to a significance level of 0.05. For
sensitivity analysis, we calculated both cluster statistics using spatial
lags of 400 m, 500 m, 600 m and 800 m following values used in prior
health related investigations (Joost et al., 2018) and aligning with
self-assessed or perceived neighborhood boundaries (Perchoux et al.,
2016).

We applied the clustering analysis to each psychometry/cognitive
performance outcome separately, rather than to a combined psycho-
metric profile. This approach allowed us to map clusters of high and low
values in space for each specific outcome variable. For each cluster
obtained from the Getis and Moran statistics, we calculated the average
of the environmental exposome factors and brain anatomy volumes. To
assess the homogeneity of variance across clusters we applied the Lev-
ene’s test (Levene, 1960). When the assumption of homogeneity was
respected, we proceeded with one-way ANOVA and the subsequent
Tukey post-hoc test for multiple pairwise comparisons. Conversely, for
data exhibiting heterogeneity, we implemented a one-way Kruskal--
Wallis test, followed by a post-hoc Conover test. To account for multiple
testing, we applied the Holm method for p-value adjustment.

To optimize the identification of clusters’ spatial lags and environ-
mental exposome factors measuring buffers showing stronger effect, we
classified the significant results from the ANOVA and Kruskal-Wallis
tests by their effect size. We set thresholds of 0.06 and 0.14 to high-
light medium to large effect sizes (Cohen, 1988; Miles and mark, 2001).

2.7.2. Spatial regression analysis
We used the multiscale geographically weighted regression (MGWR)

method with the mgwr Python library (version 2.1.2) to test for asso-
ciations between the exposome, brain anatomy, and psychometry/
cognitive performance outcomes. The MGWR builds upon the
geographically weighted regression (GWR). GWR differs from a con-

ventional OLS regression by accounting for the underlying spatial pro-
cesses in the analysis, allowing them to vary with geographic context
and therefore not assuming constant relationships across the study area
(Fotheringham et al., 2003). GWR integrates the spatial component by
calculating parameter estimates at each location of interest (here, the

participants’ home addresses), through location-specific regressions,
where a weighting scheme is used to give more influence to nearby data
points.

MGWR extends GWR by allowing distinct bandwidths to be associ-
ated with each covariate in the model, rather than applying the same for
each relationship. This means that the influence of each covariate can
vary at different spatial scales, better capturing the spatial heterogeneity
within and across processes. Advantages of MGWR include minimizing
overfitting, mitigating concurvity (correlated predictors), and producing
more accurate spatial relationships (Oshan et al., 2019, 2020; Fother-
ingham et al., 2017; Yu et al., 2020; Wolf et al., 2018).

To account for multiple hypothesis testing due to the various sets of
parameter estimates produced using overlapping subsets of data, the
alpha threshold is adjusted within MGWR, making it more conservative
than a standard 0.05 threshold (Oshan et al., 2020). Additionally, since
the bandwidths used are covariate-specific, MGWR allows for the
calculation of adjusted alpha and t-values for each modeled relationship
(Oshan et al., 2019). Finally, response and explanatory variables are
standardized before implementing MGWR so that the bandwidths are
not influenced by the scale of the variables, facilitating the comparison
between them (Fotheringham et al., 2017).

This analysis is independent from the cluster analysis but comple-
mentary to it, in line with the need for both exploratory (Getis and
Moran) and confirmatory (MGWR) statistics in spatial analysis (Tukey,
1980). The spatial clustering identified areas with significantly high and
low values of psychometry/cognitive performance, confirming the
presence of spatial dependence and enabling to assess mean differences
in exposures and brain anatomy across these clusters. The existence of
spatial dependence justifies the usage of a spatial regression method,
which makes it possible to quantify the associations between exposures,
brain anatomy and psychometry/cognitive performance outcomes,
allowing for a more detailed understanding of how these relationships
vary spatially. By integrating regression coefficients into spatial con-
texts, MGWR provides a nuanced perspective on the associations.

We conducted the MGWR analyzes using a bi-square kernel function
to allocate weights around each calibration point. We selected an
adaptive bandwidth (see Methods S7 on the difference between spatial
lag and bandwidth), guaranteeing an equal number of sampled obser-
vations when estimating the local regression (Fotheringham et al.,
2003).

We implemented three types of models to calculate the diverse as-
sociations between the environmental exposome factors (EEF), adjusted
psychometric and cognitive outcomes, and brain ROIs:

ySTAI s|STAI t|GAF c|GAF l|GAF w|MMSE adjusted(i)= β̂bw0(i) + β̂bw1(i)XEEF,1(i) + ε(i), i
∈ {1,2,…, n}

(1)

ySTAI s|STAI t|GAF c|GAF l|GAF w|MMSE adjusted (i)= β̂bw0(i) + β̂bw1(i)XROI,1(i) + ε(i), i
∈ {1,2,…, n}

(2)

Equations (1)–(3) delineate three distinct models wherein the psy-
chometric and cognitive variables are the dependent variables (see
Methods S8 for details). In equations (1) and (2), we used the environ-
mental exposome factors and brain ROIs as predictors, respectively.
Specifically, in equations (1) and (3), we determined the single optimal

ySTAI s|STAI t|GAF c|GAF l|GAF w|MMSE adjusted(i)= β̂bw0(i) + β̂bw1(i)XEEF,1(i)+ β̂bw2(i)XROI,2(i)+ β̂bw3(i)
[
Z
(
XEEF,1(i)

)
*Z

(
XROI,2(i)

)]
+ ε(i), i ∈ {1,2,…, n} (3)
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buffer radius for calculating the average value of each environmental
exposome factor around a subject’s home address. This selection was
based on the models that yielded the lowest Akaike Information Crite-
rion corrected (AICc), indicating the most efficient model fit.

In the multivariate interaction model presented in equation (3), we
used the average values of the environmental exposome factors calcu-
lated within the single optimal buffer radius, in conjunction with each
brain ROI. The interaction term was obtained by multiplying the stan-
dardized values of environmental exposome factors with those of the
brain ROIs.

Subsequently, we derived parameter estimates for the interaction
term for each subject and focused our analysis on those with significant
regression coefficients. We analyzed each of these subjects individually,
considering their unique set of covariate coefficients as determined by
the MGWR. We plotted the conditional association of brain ROIs with
psychometric and cognitive variables across various environmental
exposome factors. For this, we incorporated into equation (3) the vari-
able values from the selected nearest neighbors and the uniquely
calculated covariate coefficients. Applying the Johnson-Neyman tech-
nique (Johnson and Fay, 1950), we identified specific value ranges of
the moderating environmental exposome factors where the brain ROIs
were significantly associated with psychometry and cognition. Lastly,
for each relationship, we averaged these significance ranges, the cor-
responding thresholds of the exposome’s moderating effect, and the
conditional slopes of the brain-behavior associations for all subjects with
significant interaction terms.

2.8. Exposures additive effects analysis

We complemented our analyses with a Weighted Quantile Sum
(WQS) regression with two indices to assess multiple additive effects of
the exposures on the adjusted psychometry/cognitive outcomes, while
accounting for correlation between exposures (Renzetti et al., 2023).

3. Results

3.1. Clustering and variance analysis

The classification by effect size of the ANOVA and Kruskal-Wallis
significant tests, involving environmental exposome factors across

Fig. 1. Manhattan plot of the effect sizes. Effect sizes of the Analysis of variance (ANOVA) (a and b left-hand panel) and Kruskal-Wallis (K–W) tests (a and b right-
hand panel) for the environmental exposome factors variance analyses across Getis (a) and Moran (b) clusters of adjusted anxiety state [STAI_s], anxiety trait
[STAI_t], current psychosocial functioning [GAF_c], lifetime psychosocial functioning [GAF_l], worse ever psychosocial functioning [GAF_w] and overall cognitive
performance (MMSE). Horizontal lines represent medium (η2 = 0.06) and high (η2 = 0.14) effect size thresholds. Significant results with medium to high effect size
(≥0.06) are highlighted: Normalized Difference Vegetation Index (NDVI) and Atmospherically Resistant Vegetation Index (ARVI) (green), particulate matter under
10-μm (PM10) and nitrogen dioxide (NO2) (red). Significant tests with effect size <0.06 are in gray: public transport accessibility, Total Solar Insolation (TSI) and
Daily Duration of Insolation (DDI), night-time road and rail noise.

Table 1
Results of ANOVA and Kruskal-Wallis tests for environmental exposome factors’
(EEF) variance across Getis and Moran clusters of adjusted anxiety state [STAI_s]
and current psychosocial functioning [GAF_c]. Highest effect size (η2) results
from Fig. 1 are reported.

Variance
test

cluster
analysis

PCV
(Spatial
lag)

EEF
(buffer
radius)

Test
statistics

p-value η2

ANOVA GETIS STAI_s
(400 m)

ARVI [-]
(500 m)

F(2,1970),
133.24

<0.001 0.12

ANOVA GETIS GAF_c
(500 m)

ARVI [-]
(500 m)

F(2,2664),
95.77

<0.001 0.07

ANOVA MORAN STAI_s
(400 m)

ARVI [-]
(500 m)

F(4, 1968),
64.34

<0.001 0.12

ANOVA MORAN GAF_c
(500 m)

ARVI [-]
(500 m)

F(4, 2662),
50.21

<0.001 0.07

K-W GETIS STAI_s
(800 m)

PM10

[μg/m³]
(1500m)

χ2(2, N =

1984),
222.13

<0.001 0.11

K-W MORAN STAI_s
(800 m)

PM10

[μg/m³]
(1500m)

χ2(2, N =

1984),
239.13

<0.001 0.12

K-W MORAN GAF_c
(800 m)

NDVI [-]
(400 m)

χ2(4, N =

2672),
193.05

<0.001 0.07

Key: ANOVA, analysis of variance; K-W, Kruskal–Wallis test; PCV, psychometric
and cognitive variables; EEF, environmental exposome factor; ARVI, Atmo-
spherically Resistant Vegetation Index; NDVI, Normalized Difference Vegetation
Index; PM10, particulate matter under 10-μm; STAI_s, anxiety state; GAF_c,
current psychosocial functioning; F, F-statistic for ANOVA test; χ2, chi-square
statistic for K-W test; η2, effect size.
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clusters of psychometric and overall cognitive performance, is presented
in Fig. 1. The brain ROIs’ variance tests effect size estimates, all falling
below the fixated 0.06 medium threshold, are detailed in Fig. S3.

We observed variance results exceeding the 0.06 medium effect size
threshold across cluster classes of both the anxiety state [STAI_s], and
the current level of functioning assessed with the GAF_c, for vegetation
measurements, as quantified by the Atmospherically Resistant Vegeta-
tion Index (ARVI) and Normalized Difference Vegetation Index (NDVI),
and air pollution (primarily PM10 over NO2) (see Fig. 1; Table 1;
Tables S6-S9). Detailed Getis and Moran cluster maps for all spatial lags
are provided in Figs. S4-S7.

Based on the classification of the variance analysis (Fig. 1) we pre-
sent selected results from the clustering analysis in Fig. 2. We found a
significant spatial dependence for both the anxiety state [STAI_s], and
the current level of psychosocial functioning [GAF_c]. Among the

individuals assessed with STAI_s, 158 (8.0%) belonged to a HS, 127
(6.4%) to a CS, and 1696 (85.6%) presented no spatial dependency (NS).
We identified two primary hot spots of anxiety state near the city center,
extending towards the east and northwest and two cold spots in the
northern and eastern areas (see Fig. 2a). For the GAF_c, 109 individuals
(4.1%) were in a HS, 88 (3.3%) in a CS, and 2470 (92.6%) showed no
spatial dependency (NS). We found a primary cold spot of reduced
current psychosocial functioning with lower GAF_c in the city center,
and smaller hot spots in the southwestern, northern, and eastern parts of
the city (see Fig. 2f).

Variance analysis of vegetation density and particulate matter under
10-μm (PM10) within buffer radii of 400 m (see Fig. 2b and d) calculated
across the anxiety state clusters showed medium effect sizes (0.06 ≤ η2
< 0.14). Vegetation density exhibited a dose-response effect: average
ARVI levels were lower, whilst the air pollution concentrations were

Fig. 2. Spatial clusters of adjusted anxiety state [STAI_s] and current psychosocial functioning [GAF_c] and spatial distribution of environmental exposome factors in
Lausanne, Switzerland. a, f Getis clusters of STAI_s and GAF_c, with hot spots (HS) in red, cold spots (CS) in blue and non-significant (NS) in white, using 500 m
spatial lags. b, d, g Average Atmospherically Resistant Vegetation Index (ARVI) levels within buffer radii of 400 m and 500 m and particulate matter under 10-μm
(PM10) levels within 400 m around home addresses. c, e, h Violin plots of ARVI and PM10 distribution across the Getis clusters with variance analysis significance
indicated: p < 0.001 (***). The effect sizes for these analyses are η2 = 0.09 for ARVI and η2 = 0.06 for PM10 across STAI_s, and η2 = 0.07 for ARVI across GAF_c
clusters. F statistic is used for the Analysis of variance (ANOVA) and chi-square (χ2) for Kruskal-Wallis (K–W). Box plots within the violin plots show the median, as a
white dot, and interquartile range. Width of the violin plot shows the density of observation at that value. Upper and lower boundaries of violin plots represent the
maximum and minimum values, respectively.
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higher in hot spots (p < 0.001) (see Fig. 2c and e; Table 2). Variance
analysis of vegetation density ARVI at a 500 m buffer radius (see Fig. 2g)
across current psychosocial functioning clusters had a medium effect
size with a dose-response effect, where average ARVI levels were
significantly higher in hot spots (p < 0.001) (see Fig. 2h; Table 2).

The lifetime and worse ever psychosocial functioning [GAF_l,
GAF_w], anxiety trait [STAI_t] and overall cognitive performance
(MMSE) showed specific patterns of spatial dependence (see Figs. S8-
S15) but did not meet the effect size criterion set for the significant
environmental exposome factors variance analysis. Similarly, there were
no significant brain volume differences with effect size ≥0.06 across the
psychometry and overall cognitive performance clusters (see Fig. S3).

3.2. Psychometric and cognitive performance associations with the
environmental exposome

The vegetation indices NDVI and ARVI showed a positive association
with the current levels of psychosocial functioning [GAF_c] and overall
cognitive performance (MMSE). The vegetation index ARVI and the
quantity and duration of sunlight at home, assessed with Total Solar
Insolation (TSI) and Daily Duration of Insolation (DDI), were negatively
associated with both anxiety trait and current levels of anxiety [STAI_t
and STAI_s]. The vegetation index NDVI was also negatively associated
with current levels of anxiety [STAI_s]. The air pollution levels of PM10
and NO2, were negatively associated with current psychosocial func-
tioning [GAF_c] and positively associated with the current anxiety levels
[STAI_s]. Night-time traffic noise was associated negatively with overall
cognitive performance (MMSE) and positively with the current anxiety
levels [STAI_s] (see Table 3). These associations exhibited varying
spatial patterns throughout the city, with significant regression co-
efficients appearing in different locations for each relationship. Addi-
tionally, we report that the association between the duration of sunlight
at home (DDI) and the anxiety trait [STAI_t] occurred at a global
geographical scale, whilst all other significant associations showed local
dependence, involving fewer than 10% of individuals (see Fig. 3).

3.3. Psychometric and cognitive performance associations with
environmental exposome mixture

Corroborating our previous results, the mixed exposures models
showed significant association with the anxiety state (STAI_s). Here, the
mixed exposures demonstrated a negative association with the outcome,
interpreted as reduction of the anxiety state in the urban context. The
models testing for associations with metrics of psychosocial functioning
- GAF and overall cognition – MMSE, did not result in significant find-
ings, which we interpret as lack of strong evidence for combined or
synergistic effects of the studied environmental exposures. The results
are available as Supplementary material (see Fig. S16-S29; Tables S10-
S23).

3.4. Psychometric and cognitive performance associations with brain
anatomy

The analysis testing for the spatially distributed associations between
brain anatomy, and psychometry/cognitive variables across the city
showed negative associations between the current level of anxiety
[STAI_s] and the left amygdala, bilateral entorhinal cortex, and left
thalamus volumes. Additionally, we found negative associations be-
tween the overall cognitive performance assessed with the MMSE and
the bilateral substantia nigra volumes, and positive – with the left en-
torhinal cortex and thalamus (see Fig. 4 and Table 4).

3.5. MGWR multivariate interaction analysis

The multivariate interaction analysis confirmed the negative main
effect associations between the left amygdala, bilateral entorhinal cor-
tex, left thalamus volumes and the anxiety state [STAI_s], and the main
effects of the bilateral substantia nigra, left entorhinal cortex and thal-
amus volumes on overall cognitive performance (MMSE). Whilst the
brain anatomy main effect associations with STAI_s remained significant
across all environmental exposome factors, the significance of associa-
tions with MMSE varied according to individual factors (see Table S24).

We found night-time traffic noise to interact with the right

Table 2
Results of group-comparison tests involving the environmental exposome factors (EEF) across the Getis spatial clusters (HS: hot spots; CS: cold spots; NS: non-
significant spots) of adjusted anxiety state [STAI_s] and current psychosocial functioning [GAF_c] depicted in the boxplots of Fig. 2. The mean difference of EEF
between cluster groups is also reported.

EEF (buffer
radius)

PCV
(spatial
lag)

Getis cluster group 1
(Number of subjects; %)

Getis cluster group 2
(Number of subjects; %)

EEF mean value
in GCG1 (±SD)

EEF mean value
in GCG2 (±SD)

Mean difference
(GCG2-GCG1)

[95% CI] p-value

ARVI [-]
(400 m)

STAI_s
(500 m)

NS (1696; 85.6%) HS (158; 8.0%) 0.54 (±0.15) 0.39 (±0.15) − 0.14 [− 0.17 to
− 0.12]

<0.001

ARVI [-]
(400 m)

STAI_s
(500 m)

NS (1696; 85.6%) CS (127; 6.4%) 0.54 (±0.15) 0.63 (±0.12) 0.09 [0.06–0.12] <0.001

ARVI [-]
(400 m)

STAI_s
(500 m)

HS (158; 8.0%) CS (127; 6.4%) 0.39 (±0.15) 0.63 (±0.12) 0.23 [0.19–0.27] <0.001

PM10 [μg/
m³] (400
m)

STAI_s
(500 m)

NS (1696; 85.6%) HS (158; 8.0%) 19.35 (±0.99) 20.15 (±0.85) 0.81 [ – ] <0.001

PM10 [μg/
m³] (400
m)

STAI_s
(500 m)

NS (1696; 85.6%) CS (127; 6.4%) 19.35 (±0.99) 19.37 (±0.58) 0.03 [ – ] 0.951

PM10 [μg/
m³] (400
m)

STAI_s
(500 m)

HS (158; 8.0%) CS (127; 6.4%) 20.15 (±0.85) 19.37 (±0.58) − 0.78 [ – ] <0.001

ARVI [-]
(500 m)

GAF_c
(500 m)

NS (2470; 92.6%) HS (109; 4.1%) 0.53 (±0.14) 0.64 (±0.14) 0.10 [0.07–0.14] <0.001

ARVI [-]
(500 m)

GAF_c
(500 m)

NS (2470; 92.6%) CS (88; 3.3%) 0.53 (±0.14) 0.36 (±0.15) − 0.18 [− 0.21 to
− 0.14]

<0.001

ARVI [-]
(500 m)

GAF_c
(500 m)

HS (109; 4.1%) CS (88; 3.3%) 0.64 (±0.14) 0.36 (±0.15) − 0.28 [− 0.33 to
− 0.23]

<0.001

Key: GCG1, Getis Cluster Group 1; GCG2, Getis Cluster Group 2; PCV, psychometric and cognitive variables; EEF, environmental exposome factor; PM10, particulate
matter under 10-μm; ARVI, Atmospherically Resistant Vegetation Index; STAI_s, anxiety state; GAF_c, current psychosocial functioning; HS, hot spot; CS, cold spot; NS;
non-significant.
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hippocampus in predicting current psychosocial functioning [GAF_c].
This interaction was characterized by a mean negative regression coef-
ficient across significant subjects, indicating a decreasing right
hippocampus-current psychosocial functioning association with rising
noise levels. For instance, Fig. 5 illustrates this relationship for a specific
subject. Calculating Johnson-Neyman significance region, we show that
the conditional association between the right hippocampus and current
psychosocial functioning is positive but decreases with raising noise
levels and becomes non-significant above 39.83 [dB]. More generally,
for all subjects with significant interaction terms, we observed vari-
ability in the number of significant ranges for the moderating effects.
While some subjects exhibited a single significant range, as in Fig. 5, for
the moderating effect of night-time traffic noise on the association be-
tween the right hippocampus and current psychosocial functioning,
others showed two distinct significant ranges (see Table S25). In that
case, the association between right hippocampus volume and current
psychosocial functioning becomes negative.

In the MGWR interaction analysis we also report additional findings
for main effects of brain ROIs that were not significant in the univariate
analysis comprising negative mean regression coefficients for STAI_s and
GAF_c and positive for STAI_t and MMSE (see Table S26). The spatial
extent of these associations was predominantly local to regional.

We observed a marked difference in the spatial extents within which
the environmental exposome factors displayed significant interactions

with brain anatomy. Specifically, vegetation indices showed significant
interactions when measured within a closer median buffer radius of 100
m, in contrast to the broader median radii of 500 and 550 m for air
pollution indicators NO2 and PM10, respectively (see Table S27). The
average proportion of subjects with significant regression coefficients
(27.5%) indicated a pronounced localized trend of these interaction
associations. Overall, models involving MMSE exhibited the highest
MGWR adjusted r-squared values (see Table S27).

4. Discussion

Our large-scale study in the community-dwelling adult population
reveals the geospatial heterogeneity of associations between geocoded
environmental exposome factors, individuals’ psychometry/cognitive
performance and brain anatomy. We extend previous studies, which
collapse geospatial information to environmental exposome categories,
by using spatial statistical models that explicitly test georeferenced
exposome-brain-behavior associations at the individual level. Under the
assumption of environmental factors’ moderating effects on brain
structure and resulting behavior, our findings offer an original
perspective by mapping brain-psychometry/cognitive performance as-
sociations in geographic space, indicating localized associations influ-
enced by the urban context.

Adopting an iterative analytical strategy, we start from a geographic

Table 3
Results of the univariate multiscale geographically weighted regression (MGWR) predicting adjusted psychometric and overall cognitive performance variables (PCV)
with environmental exposome factors (EEF). Results are reported as the mean of the parameter estimates, averaging the values of the regression coefficients of the
significant subjects.

PCV EEF (buffer
radius)

adjusted
alpha

Mean of regression
coefficients (±SD)

Min regression
coefficient

Max regression
coefficient

Number of
significant
subjects

Number of non-
significant subjects

MGWR
bandwidth

Adjusted
R2

STAI_s Ltotn [dB]
(50 m)

0.012 0.11 (±0.01) 0.09 0.13 253 1731 1243 0.003

STAI_s NO2 [μg/m³]
(200 m)

0.009 0.14 (±0.01) 0.11 0.16 140 1844 966 0.004

STAI_s PM10 [μg/
m³] (200 m)

0.004 0.27 (±0.04) 0.22 0.35 43 1941 398 0.010

STAI_s NDVI [-]
(500 m)

0.003 − 0.23 (±0.07) − 0.46 − 0.18 51 1933 376 0.014

STAI_s ARVI [-]
(400 m)

0.003 − 0.21 (±0.03) − 0.33 − 0.17 92 1892 376 0.013

STAI_s TSI [W/M2]
(100 m)

0.023 − 0.07 (±0.0) − 0.08 − 0.07 45 1939 1946 0.001

STAI_s DDI [h] (50
m)

0.030 − 0.06 (±0.0) − 0.07 − 0.05 57 1927 1982 0.001

STAI_t ARVI [-] (25
m)

0.012 − 0.11 (±0.01) − 0.11 − 0.09 142 1669 1101 0.002

STAI_t TSI [W/M2]
(25 m)

0.031 − 0.06 (±0.0) − 0.07 − 0.06 19 1792 1802 0.002

STAI_t DDI [h] (25
m)

0.033 − 0.06 (±0.0) − 0.08 − 0.05 1811 0 1810 0.002

GAF_C NO2 [μg/m³]
(1500 m)

0.028 − 0.05 (±0.0) − 0.05 − 0.05 74 2598 2669 0.001

GAF_C PM10 [μg/
m³] (25 m)

0.011 − 0.09 (±0.0) − 0.1 − 0.09 100 2572 1689 0.002

GAF_C NDVI [-]
(800 m)

0.034 0.05 (±0.0) 0.04 0.06 89 2583 2669 0.001

GAF_C ARVI [-]
(800 m)

0.031 0.06 (±0.01) 0.05 0.07 92 2580 2662 0.002

MMSE Ltotn [dB]
(50 m)

0.009 − 0.14 (±0.01) − 0.16 − 0.13 47 1318 626 0.004

MMSE NDVI [-]
(100 m)

0.004 0.3 (±0.02) 0.24 0.37 59 1306 271 0.016

MMSE ARVI [-]
(100 m)

0.003 0.3 (±0.03) 0.24 0.4 78 1287 271 0.016

Key: PCV, psychometric and cognitive variables; EEF, environmental exposome factor; MGWR, Multiscale Geographically Weighted Regression; MGWR bandwidth,
number of nearest neighbors used for calculation of parameter estimates; NO2, nitrogen dioxide; PM10, particulate matter under 10-μm; NDVI, Normalized Difference
Vegetation Index; ARVI, Atmospherically Resistant Vegetation Index; TSI, Total Solar Insolation; DDI, Daily Duration of Insolation; Ltotn, Night-time road and rail
traffic noise; STAI_s, anxiety state; STAI_t, State Trait Anxiety Inventory trait; GAF_c, current psychosocial functioning; GAF_l, lifetime psychosocial functioning;
GAF_w, worse ever psychosocial functioning; MMSE, overall cognitive performance.
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Fig. 3. Spatial distribution of the regression coefficients from the multiscale geographically weighted regression univariate models, showing associations between
environmental exposome factors and adjusted psychometric and cognitive variables. Hot colors – positive regression coefficients, cold colors – negative regression
coefficients, white – non-significant regression coefficients. Panels of spatial associations between a Daily Duration of Insolation (DDI) [h] and anxiety trait [STAI_t];
b Atmospherically Resistant Vegetation Index (ARVI) [-] and STAI_t; c ARVI [-] and anxiety state [STAI_s]; d ARVI [-] and overall cognitive performance (MMSE); e
particulate matter under 10-μm (PM10) [μg/m³] and current psychosocial functioning [GAF_c]; f ARVI [-] and GAF_c. Brackets: buffer radius to calculate average
values of environmental exposome factors around the home address. Color bar: three classes with equal intervals representing the range of significant regression
coefficients.
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Fig. 4. Spatial distribution of regression coefficients from the multiscale geographically weighted regression univariate models, showing associations between brain
anatomy and adjusted psychometric and cognitive variables. Hot colors - positive regression coefficients, cold colors - negative regression coefficients, white - non-
significant regression coefficients. Panels of spatial associations between a left amygdala volume and anxiety state [STAI_s]; b left entorhinal cortex volume and
STAI_s; c right entorhinal cortex volume and STAI_s; d left thalamus volume and STAI_s; e left substantia nigra volume and overall cognitive performance (MMSE); f
right substantia nigra volume and MMSE; g left thalamus volume and MMSE; h left entorhinal cortex volume and MMSE. Color bar: three classes with equal intervals
representing the range of significant regression coefficients.
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analytical perspective and demonstrate the distribution of spatial clus-
ters of high and low levels of anxiety and psychosocial functioning.
These results indicate that psychometry levels are not randomly
distributed across the city. The additional assessment of environmental
exposures across clusters of anxiety state and current psychosocial
functioning corroborates previous research, showing strong associations
of psychometric outcomes with air pollution and vegetation density,
which exhibited the highest effect sizes. These findings motivate elab-
orating guidelines to design cities supporting mental health (Vidal Yañez
et al., 2023; Collins et al., 2024; Giebel et al., 2022). The fact that the
exposome factors show associations with individuals’ current state
psychometry, suggests short term effects with rapid changes in mood
linked to the environment.

Building on these findings, the applied univariate multiscale
geographically weighted regressions allow for differentiating exposome-

brain-behavior associations at the global, regional, and local spatial
scales. Our assessment of exposome-behavior associations extends the
observed clustering variance results by also showing their unique spatial
distribution. The obtained scale dependent results of the associations
between, on the one hand side, overall cognitive performance and
vegetation density, and on the other – current psychosocial functioning
and PM10 air pollution, align well with previous research (Houlden
et al., 2021) and increase the confidence in the validity of inferences.
The spatial specificity is also evidenced by the observed geographical
variation in the associations between air pollution factors and current
psychosocial functioning – the associations with PM10 are restricted to
the city center, whilst the NO2 ones - to the city periphery. Further
support for the existence of scale-dependent effects comes from the
demonstrated negative relationship between daylight duration and in-
dividuals’ anxiety trait at the global scale. These findings contrast with

Table 4
Results of the univariate multiscale geographically weighted regression (MGWR) predicting adjusted psychometric and overall cognitive performance variables (PCVs)
with brain anatomic regions (ROIs). Results are reported as the mean of the parameter estimates, averaging the values of the regression coefficients of the significant
subjects.

PCV Brain ROI and
hemisphere

Adjusted
alpha

Mean of regression
coefficients (±SD)

Min regression
coefficient

Max regression
coefficient

Number of
significant
subjects

Number of non-
significant
subjects

MGWR
bandwidth

Adjusted
R2

STAI_s Th L 0.019 − 0.12 (±0.0) − 0.12 − 0.11 61 713 691 0.002
STAI_s Agd L 0.037 − 0.08 (±0.0) − 0.09 − 0.08 158 616 770 0.001
STAI_s Ent R 0.025 − 0.1 (±0.0) − 0.11 − 0.09 256 518 732 0.004
STAI_s Ent L 0.029 − 0.09 (±0.0) − 0.1 − 0.08 171 603 749 0.002
MMSE SN R 0.007 − 0.28 (±0.02) − 0.33 − 0.25 26 384 163 0.022
MMSE SN L 0.012 − 0.2 (±0.01) − 0.22 − 0.18 29 381 267 0.017
MMSE Th L 0.015 0.18 (±0.0) 0.17 0.18 16 394 304 0.009
MMSE Ent L 0.015 0.19 (±0.0) 0.18 0.19 22 388 313 0.008

Key: PCV, psychometric and cognitive variables; ROI, brain region of interest; MGWR, Multiscale Geographically Weighted Regression; MGWR bandwidth, number of
nearest neighbors used for calculation of parameters estimates; STAI_s, anxiety state; MMSE, overall cognitive performance; Agd, amygdala; Ent, entorhinal cortex; SN,
substantia nigra; Th, thalamus; L, left; R, right.

Fig. 5. Conditional association of brain anatomy and adjusted psychometry for one subject. a. Conditional association of right hippocampus volume with current
psychosocial functioning [GAF_c] at different night-time traffic noise levels for one random individual with a significant regression coefficient for the interaction term
in b and histogram of noise levels from bandwidth neighbors. Orange - significant conditional association in black with 95% confidence interval (CI). Purple – non-
significant conditional association in black with 95% CI. The conditional slope of significant association ranges from a 0.23 S.D. increase (95% CI: 0.07–0.38) to a
0.07 S.D. increase (95% CI: 0.00–0.13) in GAF_c scores for each one S.D. increase in right hippocampus volume. Dotted lines - limits of significance of the moderator.
Conditional significant association between right hippocampus and GAF_c is observed for values of the moderating night-time traffic noise < − 0.097 S.D. from
centered mean (true mean = 40.55 dB; − 0.097 S.D.≙39.83 dB). Night-time traffic noise was measured with a 25 m buffer radius and the range of observed values is
[-2.22 S.D., 2.92 S.D.] ≙ [24.21 dB, 62.00 dB]. b. Spatial distribution of interaction term regression coefficients. Cold colors - significant regression coefficients for
interaction between right hippocampus volume and average night-time traffic noise measured within a buffer radius of 25 m in predicting GAF_c. Significant co-
efficients observed for 516 subjects. White – 427 subjects show non-significant interaction regression coefficients. Color bar: three classes with equal intervals
representing range of significant regression coefficients for the interaction term.
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the localized dependencies between the other investigated environ-
mental exposome factors and current psychometry measures, including
the negative association between indoor daylight and anxiety state.
Here, the direction of the associations between indoor daylight and both
anxiety state and trait remained consistent with previous findings
(Morales-Bravo and Navarrete-Hernandez, 2022). The negative associ-
ations between night-time traffic noise and measures of overall cogni-
tion, additionally to the positive associations with current anxiety levels
corroborate with the published literature (Lan et al., 2020; Tzivian et al.,
2017). However, we also demonstrate that these relationships are
spatially constrained.

In the next step we integrate the neurobiological question about
associations between brain anatomy and behavior in the geospatial
context. Given our assumption of a moderator role of exposome factors
on the association between brain anatomy and psychometry/cognitive
performance outcomes, we focus on the behavioral outcomes and
abstain from testing for associations between environment and brain
structure. The observed geospatial distribution of brain-behavior asso-
ciations is exemplified by negative associations between current anxiety
levels and amygdala volume, additionally to positive associations be-
tween overall cognitive performance and entorhinal cortex volume.
Beyond the confirmatory findings on the directionality of behavior-brain
anatomy associations that align with the literature (Wang et al., 2021;
Yang et al., 2023; Olsen et al., 2017; Mah et al., 2015), our study ad-
vances this understanding by explicitly mapping the spatial distribution
of the tested relationships. The geospatial mapping not only provides
insights into how specific environmental contexts shape neurological
and psychological outcomes, but it might help explaining additional
variance in previous conflicting studies (Wang et al., 2021; Bas-Hoo-
gendam et al., 2018; Brühl et al., 2014).

The obtained findings challenge the notion of geographically uni-
form brain-behavior associations in the community-dwelling popula-
tion. Here, we emphasize the specificity of exposome-brain-behavioral
findings, confirmed by the spatial patterns of associations between the
MMSE-based estimates of overall cognition and brain anatomy. The
positive spatial associations between MMSE scores, entorhinal cortex
and thalamus volume follow the canonical view on episodic memory
consisting of two complementary components – a “temporal lobe”
stream centered on hippocampus and entorhinal cortex, and a “medial
diencephalic” stream centered on anterior thalamic nuclei (Aggleton
and O’Mara, 2022). On the other hand, we interpret the negative asso-
ciation between individuals’ overall cognition and substantia nigra
volumes localized in a different geographical area as evidence for the
distinct exposome-brain-behavior relationships for this brain structure
spanning limbic, cognitive, and motor domains (Zhang et al., 2017).

Consistent with our intention to fully integrate the multi-domain
data in geographical space, we use a multiscale multivariate
geographically weighted regression analysis. Our results confirm and
expand the findings of the separate univariate analyses by providing
proof-of-concept evidence about the differential spatial extent of the
interaction between the environmental exposome factors, brain, and
behavior. The regression coefficients for specific brain anatomy regions,
showing consistent directionality across both univariate and multivar-
iate interaction models that predict current anxiety levels and cognition,
underscore the robustness of the identified brain-behavior associations.
The assessment of the anxiety trait using interaction models showed that
the main effects of brain anatomy were primarily linked to air pollution
and public transport accessibility. In contrast, when evaluating current
anxiety levels, the main effects of brain anatomy were not tied to any
specific environmental exposure. We attribute this difference to the
varying impacts of short- and long-term effects on mood states as sug-
gested previously (Li et al., 2021). Here, the reported brain-behavior
associations manifesting at local and regional levels, rather than at the
global level, underline the importance of geographical context for future
studies.

The finding of significant regression coefficients for the interaction

term in the multivariate interaction models confirms our hypothesis that
brain-behavior associations are contingent upon specific levels or com-
ponents of the environmental exposome. The predominant local level of
these interactions reaffirms the spatially context-dependent nature of
the exposome-brain anatomy relationships and their corresponding
psychometry/cognitive performance outcomes. This finding aligns with
previous reports about the (geo)spatial heterogeneity influencing
various health-related outcomes. In a neuroscientific context, it em-
phasizes the need for spatially explicit models that capture the hetero-
geneity of brain-behavior dynamics in relation to environmental factors
in urban contexts (Pykett, 2018; Pykett et al., 2020; Buttazzoni et al.,
2022).

We also identify a scale-dependent effect in the exposome-brain
anatomy interactions on behavior outcomes. The small measurement
buffer radii for vegetation indices in the interaction terms suggest that
the moderating effect of vegetation on the brain-behavior relationship
primarily operates within the immediate vicinity or visible surroundings
of an individual’s home address. This localized effect contrasts with
previous findings linking green space with greater activations in
emotion-regulating brain regions within large non-walkable buffers
(>1500 m) (Dimitrov-Discher et al., 2022). Conversely, we demonstrate
larger radii of measurement for air pollution indicators, suggesting in-
direct exposure and a general impact of air quality over a broader area.
The interaction results for cognitive outcomes suggest the environment
may act as a moderator in the brain-cognition relationships. The
scale-dependent localization of the interaction regression coefficients
for vegetation and brain regions supporting cognitive performance
aligns with previous research, indicating that social interaction and
physical activity, encouraged by specific neighborhood settings
(Vallarta-Robledo et al., 2022), can increase cognitive reserve and
protect cognitive function (Jammula et al., 2021; Jin et al., 2023).
Similarly, the interaction effects for the psychometric outcomes confirm
the notion of moderating brain anatomy’s association with anxiety and
psychosocial functioning.

Besides the novelty aspects of our study, we have to also acknowl-
edge several limitations. These include the focus on the adult population
in a Swiss urban setting, potentially limiting generalizability to younger
or rural populations in lower-income countries. Further, the cross-
sectional design limits our ability to account for long-term health
changes and subject relocation within the city. While previous studies
have shown that the brain mediates the association between environ-
ment and psychometry/cognitive performance outcomes (Glaubitz
et al., 2022; Xu et al., 2023c), we examined how varying levels of
environmental exposure in an urban setting moderate associations be-
tween the brain and these outcomes. In our upcoming work including
analysis of longitudinal data, we focus on evaluating different causal
models including the question about how these pathways coexist.
Similarly, the fact that the environmental exposome factors are calcu-
lated at specific time points rather than averaged over longer periods,
could have an impact on the obtained results. Additionally, the adoption
of a region-of-interest approach as in the UK Biobank (Miller et al.,
2016) constitutes another limitation of our study. While we warrant
caution in interpretating our findings — particularly as our use of
single-environmental exposure models approach may introduce effects
from correlated exposures — we aim to provide a comprehensive
overview of potential effects and interactions.

Conversely, the strength of this study lies in its use of fine-scale geo-
referenced measurements and analysis at the individual level, which
overcomes the limitations of studies using predefined neighborhood
units (Guessous et al., 2014). The analysis of multiple environmental
factors, and explicit testing for spatial heterogeneity represents, to our
knowledge, a new approach to analyzing exposome-brain-behavior as-
sociations. By mapping brain-behavior associations and assessing the
moderating effects of the environment, this study fills an important
knowledge gap and helps advancing research addressing the etiology
and treatment of ubiquitous mental health disorders (Ancora et al.,
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2022). In contrast to previous studies in brain-environment exposure
research that reduce geospatial information to broader indices or sin-
gular exposure measurements, our approaches favorizes a multidimen-
sional set of exposures.

5. Conclusion

Using spatial clustering and multiscale geographically weighted
regression methods, we identified significant associations between
psychometry/cognitive performance and the environmental exposome,
as well as with specific anatomical brain regions, mapped these re-
lationships, and delineated the spatial scales at which they manifest. Our
research contributes to the growing body of work examining the inter-
play between brain, behavior, and environmental factors in urban set-
tings. Our findings align with recent studies that investigated the effects
of green spaces, urban street networks, and nature versus urban walks
on brain activation in varied scenarios (Dimitrov-Discher et al., 2022,
2023; Sudimac et al., 2022). Additionally, we expand on these findings
by demonstrating the spatial scale dependency of these relationships,
particularly in the context of brain-behavior associations. We introduce
a new perspective, highlighting the pivotal role of environmental con-
texts in moderating brain-behavior dynamics and argue for contextually
tailored environmental research and public health strategies for main-
taining brain health. Our results contribute to environmental research
demonstrating that urban exposome factors associate withmental health
and cognition differently across locations, emphasizing the role of urban
spatial organization in shaping cognitive mapping and well-being, and
underscoring the importance of health-oriented urban design for
accessibility and inclusivity (Mondschein and Moga, 2018).

CRediT authorship contribution statement

Marco Vieira Ruas: Writing – review & editing, Writing – original
draft, Visualization, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Elia Vajana: Writing – review & editing,
Visualization, Methodology, Formal analysis, Conceptualization. Ferath
Kherif: Writing – review & editing, Methodology, Conceptualization.
Antoine Lutti: Writing – review & editing, Methodology. Martin Pre-
isig: Writing – review & editing, Resources. Marie-Pierre Strippoli:
Writing – review & editing, Resources, Data curation. Peter Vollen-
weider: Writing – review & editing. Pedro Marques-Vidal: Writing –
review & editing. Armin von Gunten: Writing – review & editing.
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Data availability

The data of the CoLaus|PsyCoLaus study and the generated geore-
ferenced environmental exposome measurements used in this article
cannot be fully shared as they contain potentially sensitive personal
information on participants. According to the Ethics Committee for
Research of the Canton of Vaud, sharing these data would be a violation
of the Swiss legislation with respect to privacy protection. However,
coded individual level data that do not allow researchers to identify
participants are available upon request to researchers who meet the
criteria for data sharing of the CoLaus|PsyCoLaus Datacenter (CHUV,
Lausanne, Switzerland). Any researcher affiliated to a public or private
research institution who complies with the CoLaus|PsyCoLaus standards
can submit a research application to research.colaus@chuv.ch or
research.psycolaus@chuv.ch. Proposals requiring baseline data only,
will be evaluated by the baseline (local) Scientific Committee (SC) of the
CoLaus and PsyCoLaus studies. Proposals requiring follow-up data will
be evaluated by the follow-up (multicentric) SC of the CoLaus|PsyCo-
Laus cohort study. Detailed instructions for gaining access to the
CoLaus|PsyCoLaus data used in this study are available at www.
colaus-psycolaus.ch/professionals/how-to-collaborate/.

We georeferenced participants at their current home address using
the publicly available geospatial information provided by the Swiss
Confederation via its API REST services: https://api3.geo.admin.
ch/services/sdiservices.html.

The modified Copernicus Sentinel data from 2016 processed by
Sentinel Hub and used for vegetation indices calculation, were obtained
from EO Browser, https://apps.sentinel-hub.com/eo-browser/, Siner-
gise Solutions d.o.o., a Planet Labs company. The corresponding images
and generated Normalized Difference Vegetation Index and Atmo-
spherically Resistant Vegetation Index, as well as the walkable street
network from the region of interest that support the findings of this
study are publicly available in Zenodo with the DOI:
10.5281/zenodo.12528203.

The institutional road and rail traffic noise data were sourced from
the publicly available sonBASE database of the Swiss Federal Office for
the Environment at https://www.bafu.admin.ch/bafu/en/home/
topics/noise/state/gis-laermdatenbank-sonbase.html. We derived the
atmospheric conditions to calculate Total Solar Insolation and Daily
Duration of Insolation from publicly available data from the Federal
Office of Meteorology and Climatology Meteoswiss at https://www.
meteoswiss.admin.ch/climate/climate-change/changes-in-
temperature-precipitation-and-sunshine/monthly-and-annual-maps.
html.

Data on public transport stops, Digital Terrain model and Digital
Surface model were obtained from the Association for the Vaudois
Territory Information System (ASIT-VD). Total Solar Insolation and
Daily Duration of Insolation were generated using the Digital Surface
model. Air pollution data were obtained from the Directorate-General
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for the industrial, urban, and rural Environment (DGE-DIREV) of the
Vaud canton. However, restrictions apply to the availability of these
datasets, which were used under license for the current study, and so are
not publicly available. Data are however available from the authors
upon reasonable request and with permission of ASIT-VD and DGE-
DIREV.
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