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Abstract
The Earth is greening in many regions due to increased temperature, higher atmospheric CO2

concentration, and land use change. However, while climate change has been accelerating, greening has
not kept pace in many regions. Here, we show that decreasing water availability and increasing
atmospheric water demand are regionally coinciding with browning trends over recent decades. In
affected tropical regions, a regression analysis considering a comprehensive set of hydro-meteorological
variables con�rms that both water availability and atmospheric water demand are dominant drivers of
inter-annual variability in Leaf Area Index (LAI). Earth system models mostly reproduce the observed
spatial extent of browning and related coinciding water changes in the multi-model mean, while
simulations from individual models differ strongly. Our results provide a new constraint for related model
development and underscore the need for enhanced monitoring and consideration of observation-based
water availability trends as an emerging driver of vegetation in future analyses and model development.

Introduction
Terrestrial vegetation provides essential ecosystem and climate services such as food supply, carbon
storage, and evaporative cooling (Bonan et al. 2008), and contributes to the uptake of about one third of
anthropogenic CO2 emissions (Gulev et al. 2021, Friedlingstein et al. 2022). Furthermore, vegetation can
mediate land surface responses to extreme events such as heat waves (Forzieri et al. 2017, Forzieri et al.
2020), droughts, �oods (Ukkola et al. 2016, Hoek van Dijke et al. 2022), and �res (O et al. 2020) through
its impacts on evaporative cooling (Seneviratne et al. 2010), runoff (W. Li et al. 2023), cloud formation
(Xu et al. 2022), and precipitation (Smith et al. 2023).

A greening of the Earth's land surface has been observed since the 1980s in many areas across the
globe (Donohue et al. 2013, Zhu et al. 2016, Chen et al. 2019, Winkler et al. 2021). The greening has been
attributed to increasing temperature, rising atmospheric CO2 concentration (Donohue et al. 2013, Zhu et
al. 2016, Winkler et al. 2021) and nitrogen deposition (Zhu et al. 2016), as well as to human land-use
changes and management, e.g. fertilization, irrigation or revegetation (Chen et al. 2019, Ruijsch et al.
2023). The relevance of these drivers varies spatially, where temperature increases are most relevant in
high-latitude regions while management has contributed to greenness trends in south-east Asia (Chen et
al., 2019). The greening, in turn, has contributed to changes in ecosystem functioning such as increased
transpiration and associated evaporative cooling (Forzieri et al. 2020, Zhan et al. 2022, Yang et al. 2023),
and likely also to the land sink of anthropogenic carbon (Ruehr et al. 2023).

Next to energy (e.g. temperature, radiation) and nutrients (e.g. nitrogen) (Piao et al. 2019, Denissen et al.
2020), water is an essential prerequisite for vegetation functioning. Water consumption through
transpiration is directly linked to CO2 assimilation via diffusion through stomatal openings. While
temperature and CO2 concentration have continued to this increase (Gonsamo et al. 2021, Gulev et al.
2021), there is considerable uncertainty on whether this will continue translating into greening (Jiang et
al. 2017, Piao et al. 2020, Frankenberg et al. 2021, Winkler et al. 2021) and evidence is mounting for
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increasing episodic and local browning which slows down the global greening trend (Feng et al. 2021, Q.
Liu et al. 2023).

Past studies on vegetation greening trends and its drivers have either not separated the effects of
vegetation water limitation or found it to be a minor control (Chen et al. 2019, Winkler et al. 2021). Also,
in some of these cases, the overall climate change effect is considered without explicitly distinguishing
the role of water limitation from that of e.g. warming. Studies based on dynamic vegetation models
intrinsically account for water limitation; however, water limitation is not accurately represented in many
models (Gentine et al. 2019, W. Li et al. 2023). An increasing importance of vegetation water limitation
on greenness was shown in Feng et al. (2021) and Jiao et al. (2021), while the latter particularly
highlights the role of droughts. More recent studies �nd an increasing sensitivity of vegetation to soil
moisture in many regions across the world, both in recent decades and future projections (Denissen et
al. 2022, Li et al. 2022). This increase in the vegetation’s sensitivity to water might re�ect an increase in
water-limited conditions in response to a changing climate. Decreasing soil moisture and increasing
vapor pressure de�cit are projected in many regions (Gulev et al. 2021). Water stress can slow down
vegetation greening trends by (i) introducing episodic browning where hydraulic vulnerability thresholds
are exceeded during days or weeks and the tissue is irreversibly damaged; at the same time (ii) there
could also be more gradual changes in LAI by which tree architecture acclimates in response to decadal
trends in atmospheric water demand, plant water use e�ciency, and water availability. While research
focuses considerably on vegetation greening, the in�uence of trends in water availability and demand
remains uncertain and often not explicitly addressed in most greening-related studies. Only 39% of the
greening-related publications in 2022 in the Web of Science relate speci�cally to water or moisture
(search terms “vegetation”, “greening”, and “water” or “moisture”).

Water availability and atmospheric water demand for vegetation can be represented in different ways
using single variables such as soil moisture, vapor pressure de�cit, precipitation and water potential, or
combined indices such as aridity index, precipitation minus evaporation, and Palmer Drought Severity
Index. Studies on respective trends yield partly contrasting results (Huang et al. 2016, Vicente-Serrano et
al. 2022a, Z. Liu et al. 2023), probably because the employed indices differ in their consideration of water
supply and/or atmospheric water demand. In fact, plant functioning is affected by different water-related
variables through different pathways. Plants absorb water mainly from the soil through their roots, when
soil moisture content is above the wilting point such that water is accessible. This water moves through
the xylem of the plant and is released through the stomata on the bottom of the leaves by transpiration.
When soils are dry or atmospheric water demand is high, plants can (partly) close the stomata to
minimize the water loss (Novick et al. 2016, Fu et al. 2022). This prevents hydraulic failure, i.e., cavitation
in the xylem which inhibits the water transport, while at the same time it leads to reduced CO2

assimilation and consequently potentially reduced vegetation growth.

Main text
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In this study, we compare global patterns of trends in vegetation greenness with those in water
availability and atmospheric water demand. We use leaf area index (LAI) as an indicator of vegetation
greenness. We quantify the trends in annual-mean LAI and water-related variables, and contrast them
between the recent past (2002–2020) and the preceding period (1982–2001) in order to detect potential
changes in those trends. Acknowledging the relevance of multiple water-related variables, we use a suite
of these variables here including soil moisture, precipitation, dryness index, and vapor pressure de�cit
(VPD) (see Methods). VPD can decrease vegetation productivity even if soil moisture is not limiting (Fu
et al. 2022). In particular, we analyse the agreement of trends across these variables with respect to
decreased water availability or increased water demand (see Methods for details). To further determine
the relevance of water availability and demand for inter-annual LAI dynamics, we perform a regression-
based driver attribution analysis at each grid cell where a range of energy- and water-related variables
are considered as potential drivers (see Methods). We consider annual averages of the water- and
energy-related variables, and additionally we use monthly soil moisture minima and daily temperature
maxima per year to represent droughts and heat waves. This allows us to compare the impact of gradual
changes in hydro-meteorological variables on vegetation greenness with that of hydro-meteorological
extremes.

The analyses are performed with both observation-based data and Earth system model output.
Observation-based data include hydro-meteorological variables from various independent datasets (see
Methods), and LAI data from the GEOV2 and MODIS datasets (Verger et al. 2020) (see Methods for
details). In addition, we consider historical and SSP5-8.5 scenario simulations from nine Earth system
models from the sixth phase of the coupled model intercomparison project (CMIP6) which provide all
variables required for our analysis (see Methods for details).

Global trends in LAI and water-related variables
Figure 1a,b shows evidence for widespread global greening during 1982–2001, particularly in the
northern mid and high latitudes and the tropics, which then slows down during 2002–2020 with
regionalized browning in addition to continued greening in other regions. The browning emerges mostly
in tropical regions such as the eastern Amazon and western central Africa as well as in high latitudes
across parts of Canada, Alaska and eastern Siberia. Note that for the earlier period 1982–2001, LAI data
can only be inferred from observations from the Advanced Very High-Resolution Radiometer (AVHRR).
This data suffers from temporal inconsistency caused by inconsistent biases with ground reference
stations and satellite orbital drift, which induces uncertainty in the long-term trends of LAI inferred from
AVHRR observations (Zhu et al. 2016, Jiang et al. 2017, Jeong et al. 2024). The GEOV2 product
employed here aims to compensate for inconsistencies in the AVHRR data, and the results are largely
consistent with independent LAI data from MODIS (Figure S1). We note that while, different state-of-the-
art LAI products still disagree in the strength of the slowdown of global greening (Jeong et al. 2024),
here we focus on evaluating the role of drying for these trends.
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Next, we analyse the agreement of trends across four water-related variables that represent decreased
water availability and/or increased water demand. The resulting drying hot-spot regions are shown in
Fig. 1c,d. In both time windows, a drying trend was observed for approx. 4% of the global study area,
however, the regions with strong drying vary over time. During 1982–2001, drying is most pronounced
south of the Amazon, in eastern tropical Africa and in north-eastern Europe. Thereafter, during 2002–
2020 these regions do not show continued drying while drying is found in the eastern Amazon, central
tropical Africa and western Russia. Figure S2 displays the trends of the individual water-related variables.
While some similarity is found between the precipitation and soil moisture trend patterns, the spatial
patterns and the extent of drying mostly differ between variables and time periods. This highlights the
complexity of changes in water availability and demand, which are also related to each other. Largest
extent of drying regions is found for VPD and is related to increasing temperature across most of the
globe allowing the air to absorb more water which consequently leads to decreasing relative humidity
and increasing atmospheric water demand. This suggests that water-related variables are affecting LAI
mainly through their interplay, rather than because of the dominant in�uence of individual variables. Note
that the statistical signi�cance of the detected trends is not only affected by the strength of the trends
but also by the interannual LAI variability, where the latter differs across regions.

To investigate if drying trends potentially caused browning trends, we study whether the drying trends
coincide with browning trends in Fig. 1e,f. In the �rst time period 1982–2001 we �nd hardly any regions
with coinciding browning and drying. This is related to the fact that very few regions with browning are
detected during this period. During 2002–2020, however, some regions with combined browning and
drying emerge, mostly across the Amazon, western-central tropical Africa, and Siberia (see boxes in
Fig. 1f)). While the extent of drying areas did not change much across both considered time periods, the
extent of vegetation browning within those regions clearly increases from the �rst to the second
considered time period. This could be related to the fact that in addition to the effects of increases in
radiation and CO2 promoting vegetation greenness, water-related variables are exerting increasing
in�uence on vegetation greenness and can regionally cancel out promoting effects of other variables. At
the same time, however, this result can be affected by inconsistencies in satellite data underlying the
long-term LAI evolution (Jeong et al. 2024). We also analyse the relationship of the spatial patterns of
the trends of the individual water variables (Figure S2) with that of LAI (Fig. 1a,b) and �nd weak
correspondence (Cramer’s V around or below 0.1 across water-related variables and time periods).

Figure 2 investigates trends in LAI and water-related variables which are simulated by nine Earth system
models from the sixth phase of the coupled model intercomparison project (CMIP6). Historical
simulations are used until 2015, and simulations from the SSP5-8.5 scenario (O’Neill et al. 2016)
thereafter. Figure 2a,b show that models are overall showing global greening in both time periods,
including the large-scale spatial pattern with most pronounced greening across the northern mid and
high latitudes and less greening in tropical regions. Compared with satellite-based LAI, models simulate
browning over larger regions during 1982–2001 and over smaller regions during 2002–2020. Also no
individual model agrees with the observed increase in browning regions between the two considered
time periods (Fig. S3 and S4). An increase in the extent of browning regions is, thus, only found in the
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satellite-based LAI data and not in the modelled data. However, it remains unclear whether this indicates
model shortcomings or is related to the temporal inconsistencies underlying the LAI data, or both. There
are considerable differences between the results of individual models as shown in Figures S3 and S4.
While greening prevails for all of them, the extent of browning as well as its spatial patterns are different
between the models.

Figure 2: Model-based trends in leaf area index (LAI) and water variables during 1982–2001 (left) and
2002–2021 (right). Analysis is performed for each of nine Earth system models separately and the �gure
shows summarized results. (a,b) Trends in LAI. Coloring of each grid cell indicates the most frequently
occuring trend category (signi�cant/insigni�cant greening or browning) across the model ensemble.
Signi�cance trends at the 95% level are marked with asterisks (see methods). Gray colors indicate
limited model data availability or low agreement between models. Black color denotes that more than
one trend category is most occurring across the same number of models. (c,d) Fraction of models
simulating signi�cant drying for at least two variables. Drying is quanti�ed through decreasing water
availability or increasing water demand; variables considered are root-zone soil moisture, precipitation,
vapour pressure de�cit and dryness index. Analyses are restricted to grid cells with data from at least
�ve models. All trends are determined as the difference between the two considered decades.

Trends of water availability and demand in browning regions
In a next step, we focus explicitly on browning regions and analyse the degree of drying found within
these regions. Figure 3a con�rms that models simulate a larger extent of signi�cant browning during
1982–2001 compared to observations which show almost no browning. In the model-based results,
drying as detected in a majority of the considered water variables is only found in a small fraction of the
browning areas. This suggests that changes in water availability and demand may play a role regionally
while most browning is related to other causes. The results across individual models differ greatly in
terms of both the simulated extent of browning (as also seen in Figures S3 and S4) and in the simulated
extent of coinciding drying. Figure 3b shows similar model-based results for the period 2002–2020 even
though individual models simulate slightly different extents of browning and drying compared with the
earlier time period. Further, the multi-model mean results are similar to the observation-based results for
this time period with regard to the extent of browning as well as the coinciding drying. We reproduce
Fig. 3 with additionally considering regions of insigni�cant browning (Figure S5). The results are similar
in the sense that models simulate a larger browning area 1982–2001, and that there is no drying in more
than half of the detected browning regions. A small difference to the previous results is that models are
underestimating the observed extent of browning regions during 2002–2020.

These results indicate that the browning may be related to water availability and demand regionally,
while other causes seem to prevail in most browning regions. These include human impacts through
land management and land use changes (Carvalho et al. 2019, Liu et al. 2021), which can make it hard or
impossible to detect actual climate impacts. Note in this context that (i) greenness can also change at
longer time scales due to changes in vegetation composition as a result of natural succession and
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ecological dynamics, e.g., grasses are replaced by shrubs or a young forest becomes a mature forest.
And (ii) vegetation can also cope with drying trends through e.g. increased atmospheric CO2

concentration which can contribute to enhanced intrinsic plant water use e�ciency (Gonsamo et al.
2021, Zhang et al. 2022, Jiao et al. 2021, Vicente-Serrano et al. 2022b), and reducing their water
limitation by structural adaptation through for example deeper roots (Fan et al. 2017, Singh et al. 2022,
Stocker et al. 2023). These mechanisms tend to reduce vegetation sensitivity to water (Stocker et al.
2023); the �nding that coinciding browning and drying is nevertheless increasing in some regions
suggests that these changes in water-related variables are happening more rapidly than the rate at which
vegetation can naturally adapt and acclimate to it.

Moreover, Fig. 3 con�rms observation-based results from Fig. 1 of increased browning in observations
between both considered time periods, and of increased coincidence of browning and drying. This is in
line with previous studies providing evidence that vegetation sensitivity to water availability is increasing,
which, however, focused on vegetation dynamics at shorter time scales and on individual water-related
variables or indices. For example, Jiao et al. (2021) found an increasing area within the Northern
Hemisphere extratropics where NDVI is signi�cantly correlated with water availability as represented
through the standardized precipitation-evaporation index (SPEI) and the Palmer Drought Severity Index
(PDSI). Using a different methodological approach and datasets, Li et al. (2022) found an increasing
trend in the global sensitivity of LAI to soil moisture during recent decades. Both studies report that
temperature increases play a major role in driving the increased vegetation water sensitivity, in addition
to other aspects such as decreasing precipitation, decreasing soil moisture, and changes in vegetation
structure and physiology (Zhang et al. 2020). The relevance of each factor varies between regions. While
the relevance of precipitation and soil moisture is straightforward, the prominent role of temperature can
be explained by increased atmospheric dryness, as warmer air can hold more water.

We repeat this analysis of browning regions and their dryness trends for future time periods and the
multi-model mean results are shown in Figure S6. There is no systematic trend in the extent of browning
areas during this century, but drying becomes more common in the detected browning areas. Vice versa,
the fraction of browning areas where no water-related variable shows drying decreases.

Drivers of inter-annual LAI dynamics
In order to further corroborate the detected coincidence of browning and drying trends, we perform a
regression-based analysis to determine the roles of considered water-related and energy-related climate
variables in explaining inter-annual LAI dynamics (see Methods). The results are shown in Fig. 4 (Figure
S7 shows results for individual variables). The top panels show regions where water and energy-related
variables are identi�ed as most in�uential for LAI dynamics, respectively. Such spatial patterns with
mainly water vs. energy-controlled vegetation dynamics have long been recognized (Budyko 1974) and
further investigated more recently (Seneviratne et al. 2010, Forzieri et al. 2017, Papagiannopoulou et al.
2017, Denissen et al. 2020, Fu et al. 2021, Jiao et al. 2021, Feldman et al. 2022, Wang et al. 2022). Many
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of these studies, however, focused solely on water availability and did not include water demand. The
spatial extent of the area where water-related variables are found most relevant for LAI dynamics in
Fig. 4 is increasing between both considered time periods. As shown in Figure S7, this is related to
increasing areas where soil moisture, VPD and temperature are most relevant. The �gure also indicates
that both water availability and demand are relevant for LAI dynamics globally. But spatial patterns are
rather noisy which could indicate the underlying relevance of spatially heterogeneous patterns of soil
and vegetation types. Finally, in this analysis we also analyse the relevance of soil moisture droughts and
heat waves and the results suggest these extremes are less relevant than annual average energy and
water conditions. This can be related to the fact that extremes are relevant in years with particularly
signi�cant temperature maxima or soil moisture minima, but not when considering them in all years.

The lower panels in Fig. 4 show the inferred rank of the most relevant water-related variable in explaining
LAI dynamics. Also in regions where energy-related variables are most relevant, water variables can
additionally play a role. In the eastern Amazon and in western tropical Africa where we identi�ed
coinciding browning and drying (Fig. 1f), water-related variables are found to be most relevant in
explaining LAI dynamics, while energy-related variables dominate for the Siberian region identi�ed
previously. This way, these results serve as additional evidence of the regional role of drying for inducing
vegetation browning in tropical regions. Note, however, that the trends analysed in Figs. 1–3 and the
results here are not fully comparable as they are based on slightly different time scales (decadal vs.
annual). Note also that while our approach to determine the most relevant variable for LAI dynamics is
illustrative, in reality also additional variables play a role. The response of vegetation to concurrent
changes in water availability, other climate drivers, and changing CO2 concentrations is complex
(Brodribb et al. 2020, Walker et al. 2021, Zhan et al. 2022). For example, increasing CO2 concentrations
can enhance photosynthesis and/or water use e�ciency which can consequently affect LAI dynamics.
Thereby, the effect of different drivers can also amplify or compensate for each other (De Kauwe et al.
2021, Z. Liu et al. 2023). Also variables can interact with each other such that for example reduced water
availability at the land surface can lead to reduced evaporation, which can, in turn, yield increased VPD
which makes it more likely to be detected as a main driver of LAI dynamics (Novick et al. 2016, Fu et al.
2022).

In addition to annual means of water and energy-related variables, the regression analysis also includes
annual soil moisture minima as a proxy for drought and annual temperature maxima as a proxy for heat
waves. Figure S7 shows that while these extremes are not most relevant for LAI dynamics across
widespread regions, they matter in speci�c locations scattered across the globe. Furthermore, the extent
of regions where soil moisture droughts are most relevant increases between both considered time
periods. Also previous studies have shown that hydroclimatic extremes including droughts, �oods and
heat waves can have profound impacts on vegetation greenness (Reichstein et al. 2013, Kroll et al. 2022)
even though they did not compare the role of climate means versus that of climate extremes. Extreme
event impacts can be abrupt, persistent, and di�cult or impossible to reverse, due to the crossing of
critical thresholds and triggering of regime shifts (Berdugo et al. 2022). The impacts of hydroclimatic
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extremes on vegetation are induced through multiple biophysical and biochemical processes. For
example, in the case of drought (Allen et al. 2015) (i) plants may close their stomata to save water which
can lead to carbon starvation, or (ii) plants do not close their stomata to fully bene�t from the surplus in
available radiation, but then risk hydraulic failure (Anderegg et al. 2015, Ruehr et al. 2019). Next to such
direct effects, hydroclimatic extremes also introduce cascading effects such as pathogens and insect
outbreaks that cause tree mortality (Allen et al. 2015, De Brito 2021). Furthermore, droughts and
heatwaves can self-propagate to neighboring regions when reduced evaporation leads to reduced
precipitation and higher temperatures (Schumacher et al. 2019, Schumacher et al. 2022). More frequent
extreme weather events in a warming climate (particularly droughts and heat waves, Seneviratne et al.
2021) are likely to affect trends, or to even induce abrupt and lasting shifts in vegetation greenness (He
et al. 2023). This can happen as more frequent extreme events might affect the vulnerability of
vegetation to future climate change (Anderegg et al. 2020, Forzieri et al. 2022).

The regression-based analysis is also applied to the Earth system model outputs. Figure 5 shows that
the models overall capture the observed global pattern of the relevance of water-related variables for LAI
dynamics well. Also the ranks of the relevance of water-related variables in regions where LAI dynamics
are mainly controlled by energy-related variables are in good agreement with observation-based results.
The area where a water-related variable is found to be most relevant is smaller than in observations. This
is mainly related to an underestimated relevance of precipitation and of soil moisture droughts as shown
in Figure S8. However, as Figure S8 summarizes results across models it may provide biased results for
climate variables which are only relevant in small and/or scattered regions. Some individual models in
Figures S9 and S10 for example show that locally, soil moisture droughts are most relevant for LAI
dynamics, underlining the importance of extremes versus mean soil moisture conditions. In addition,
Figures S9 and S10 illustrate that the main drivers of LAI dynamics differ greatly between models. This is
probably related to different representations of the vegetation-climate coupling in general and the
vegetation-water coupling in particular. Also the mechanisms through which heat waves and droughts
can affect vegetation, including legacy effects, are not fully implemented in models. The models do,
however, agree with observations in terms of the spatially multifaceted main controls of LAI dynamics.
Simulated spatial patterns are more similar between the analysed time periods than in the case of the
observed spatial patterns for both periods (Figures S7-S10).

Conclusions
In this study, we highlight the relevance of water availability and demand for vegetation greenness trends
by jointly analysing a comprehensive set of climate and vegetation data streams. We show that water-
related variables can regionally affect greenness trends, and should be considered in analyses of global
or regional greening or browning. Our results constitute a rather conservative estimate of the relevance
of water-related variables as we focus on browning areas while changes in water availability and
atmospheric water demand may also slow down greening in some areas which are not (yet) browning.
At the same time, soil water availability and atmospheric water demand are only two among many
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relevant drivers of vegetation greenness, and our results do not question the role of other factors, such
as land use change or CO2 fertilization.

Moving beyond previous studies, we incorporate a comprehensive suite of water variables covering both
water availability and demand. And all of them are found to be relevant, even though partly in different
regions. Including several water-related variables allows us to acknowledge the differences in trends of
the individual water-related variables, to detect regions and time periods where most water-related
variables agree on drying, and to analyse to which extent models acknowledge the in�uence of this
diversity of water-related variables. Also, the regression-based analysis suggests that different water-
related variables are relevant for LAI dynamics in different regions such that ignoring their variety would
lead to biased results. Another novel aspect of the regression-based analysis is the joint consideration of
the role of means and extremes of soil moisture and temperature for LAI dynamics which showed that
means are overall more relevant while extremes matter locally.

In addition to the direct effects of water-related variables on greenness, vegetation changes can also
feed back into the climate system and the water cycle in particular. For example, reduced plant
transpiration as a response to water stress translates into changes in runoff (W. Li et al. 2023) and
precipitation (Hoek van Dijke et al. 2022). Vegetation growth leads to decreased terrestrial water storage
in drylands (K. Liu et al. 2023), and vegetation greening leads to an increased ratio of transpiration-to-
evaporation such that surface energy and water �uxes become more controlled by vegetation (Forzieri et
al. 2020). Furthermore, greenness in�uences surface albedo, which is key for the energy balance of the
Earth and thereby in�uences climate (Forzieri et al. 2017, Duveiller et al. 2018, Y. Li et al. 2023). Other
studies show that vegetation affects climate sensitivity, i.e. the response of global mean temperature to
increasing atmospheric CO2 (Zarakas et al. 2020, He et al. 2022).

We consistently perform the analyses in this study for both observation-based data and Earth system
model outputs, enabling direct comparison. Earth system models generally capture the relevance of
water-related variables for inter-annual greenness dynamics. At the same time we identify some
disagreements between observation-based and model-based results that can inform model
development. Speci�cally, models tend to (i) overestimate the in�uence of water demand on inter-annual
greenness dynamics, (ii) underestimate global greening during 1982–2001, even though observation-
based trends are uncertain due to temporal inconsistencies in the underlying satellite data (Jeong et al.
2024), (iii) underestimate the diversity of in�uential water-related variables across different regions, and
(iv) show large variation across individual models such that individual models typically agree less well
with observation-based �ndings than the multi-model mean. This way, a promising avenue for model
development is to improve the representation of plant hydraulics, including water stress formulations
determining the response of stomatal conductance to variations in soil moisture and atmospheric water
demand (e.g. Migliavacca et al. 2021). Such development can in turn help to decrease the considerable
spread across models and their future projections. Thereby, accurately capturing the effects of water-
related variables on vegetation trends can provide more precise information for managing water
resources and ecosystems under global change.
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Methods

Observation-based data
The water-related variables are sourced from independent datasets; soil moisture is from GLEAMv4.1
(Miralles et al. 2024), precipitation from MSWEP v2.8 (Beck et al. 2019), and VPD from ERA5 (Hersbach
et al. 2020). Note, however, that GLEAM is forced with MSWEP precipitation data. Meteorological data
(temperature, shortwave radiation and net radiation) are also from ERA5. While ERA5 does not include
inter-annual dynamics nor trends in greenness, they are deemed suitable for our analysis thanks to its
comprehensive data assimilation across many quantities which can compensate for some model
shortcomings. Dryness index is calculated as the ratio between net radiation from ERA5 and unit-
adjusted precipitation from MSWEP. Annual means are used for all observation-based data. For LAI, the
state-of-the-art GEOV2 dataset was selected as it is a global LAI dataset that is consistent in terms of
explicitly reconciling the effects of satellite changes during the time period 1982-recent (Verger et al.
2020). As such, it is less likely to suffer from artifacts due to changes in instrumentation, which have
proven to jeopardize interpretation of greenness over long time scales. Note that the last two years of
the considered GEOV2 record, 2019–2020, have been reported to be of lower quality (Verger 2023). In
addition, for the more recent considered time period 2002–2020 we also use LAI data from MODIS
(MOD15A2H.061, Myneni et al. 2021). All employed variables are used on 0.5ox0.5o resolution.

Earth system model output
The same hydrological, meteorological and LAI variables as in the observation-based analysis are
considered in the model-based analysis. Earth system models considered here include ACCESS-ESM1-5,
CMCC-ESM2, CNRM-ESM2-1, EC-Earth3-CC, GFDL-CM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0,
and UKESM1-0-LL. We use data from these nine Earth system models because (i) all variables required
for this analysis are provided, and (ii) the models do not prescribe LAI but actually simulate it. All models
account for land use change through e.g. crop expansion, pasture development, and wood harvest in the
historical simulations. Similar to the observational analysis, annual means are used. Root-zone soil
moisture is computed as an average of soil moisture per soil layer weighted by the model-dependent
thickness of the respective layer between 0-100cm. All employed variables are aggregated temporally to
monthly and spatially to 2ox2o resolution.

Trend calculation and related assessment of statistical signi�cance
Trends are calculated by subtracting the mean of the �rst half of the considered time period from the
mean of the second half. Statistical signi�cance of increases or decreases of considered variables in
considered time periods is determined through bootstrapping. For this purpose, the difference of the
mean values of the �rst and second half of the considered time period is compared with differences
from 300 randomly drawn groups of two samples of the same number of values as the �rst and second
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half of the time period. If the difference between the values of the �rst and second half of the time period
is larger than the 95th percentile or smaller than the 5th percentile of the differences from the randomly
drawn samples, it is considered signi�cant.

Regression analysis
We evaluate the effectiveness of various predictors to reproduce inter-annual variations in Leaf Area
Index (LAI). The predictors include annual averages of soil moisture, precipitation, vapor pressure de�cit,
shortwave incoming radiation, net radiation, and temperature, along with annual minima of monthly soil
moisture and daily maxima of temperature. Monthly and daily time scales are used here in order to
mimic the typical time scales of droughts and heat waves, respectively. The predictors are normalized to
range between 0 and 1. A multivariate linear regression approach is employed, utilizing the dredge
function from the MuMin package (Burnham & Anderson, 2004; Barton, 2024), similar to the
methodology used by Fernández-Martínez et al. (2020) and Denissen et al. (2022). This function tests all
possible combinations of predictors and ranks them based on the Akaike Information Criterion (AIC),
allowing us to identify a set of models that balance both performance (likelihood) and complexity
(number of parameters).

We select models whose AIC difference from the top-ranked model is less than 2, yielding one or more
similarly performing models per grid cell. Only models with satisfactory predictive power (adjusted R² >
0.36) are included in the attribution analysis. If only one model with a single predictor exists, this
predictor is considered the most important for that grid cell. When a multivariate model contains
multiple predictors, the most in�uential variable is determined using the variance explained by each
predictor, calculated with the ‘lmg’ metric in the relaimpo R package (Groemping, 2007). In cases with
multiple multivariate models, the most important predictor is chosen based on the average variance
explained across all models, weighted by the Akaike weights.
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Figure 1

Observation-based trends in leaf area index (LAI) and water variables during 1982–2001 (left) and
2002–2020 (right).(a-b) Trends of LAI based on GEOV2. Signi�cant trends at the 95% con�dence level
are marked with asterisks (see Methods). (c-d) Number of water-related variables that show drying
trends, de�ned as decreasing water availability or increasing water demand; variables considered are
root-zone soil moisture, precipitation, vapor pressure de�cit and dryness index (calculated as the ratio
between net radiation and precipitation). (e-f) Regions of coinciding browning and drying trends. Boxes
in panel (f) denote focus regions. All trends are determined as the difference between the two
considered decades. White areas denote regions where the decadal mean LAI is below 0.5 in any of the
four considered decades.
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Figure 2

Model-based trends in leaf area index (LAI) and water variables during 1982–2001 (left) and 2002–2021
(right). Analysis is performed for each of nine Earth system models separately and the �gure shows
summarized results. (a,b) Trends in LAI. Coloring of each grid cell indicates the most frequently occuring
trend category (signi�cant/insigni�cant greening or browning) across the model ensemble. Signi�cance
trends at the 95% level are marked with asterisks (see methods). Gray colors indicate limited model data
availability or low agreement between models. Black color denotes that more than one trend category is
most occurring across the same number of models. (c,d) Fraction of models simulating signi�cant
drying for at least two variables. Drying is quanti�ed through decreasing water availability or increasing
water demand; variables considered are root-zone soil moisture, precipitation, vapour pressure de�cit
and dryness index. Analyses are restricted to grid cells with data from at least �ve models. All trends are
determined as the difference between the two considered decades.
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Figure 3

Degree of drying in areas of signi�cant browning in observations and models during (a) 1982–2001 and
(b) 2002–2021. Height of bars indicates the size of the area with signi�cant browning. Bar colors denote
the agreement of water-related datasets on drying, quanti�ed by decreasing water availability or
increasing water demand; variables considered are root-zone soil moisture, precipitation, vapour
pressure de�cit and dryness index. Observation-based results from MODIS shown for 2002-2020 period
only due to limited data availability. Multi-model mean is calculated as the average across results from
individual models.
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Figure 4

Observation-based assessment of drivers of inter-annual LAI dynamics during 1982-2001 and 2002-
2020. (a-b) Dominant variable as determined in regression-based analysis (see Methods). Turquoise
color indicates a water variable (i.e. mean soil moisture, precipitation, or vapour pressure de�cit) as the
strongest driver, while red color indicates an energy variable (i.e. mean temperature, net radiation, or
incoming short-wave radiation). Dark blue and dark red denote extremes in soil moisture and
temperature, respectively. (c-d) Rank of the highest-ranked water variable in the regression-based
analysis. Boxes in panels b and d denote focus regions identi�ed in Figure 1.
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Figure 5

Model-based assessment of drivers of inter-annual LAI dynamics during 1982-2001 and 2002-2020.
Analysis is performed for each of nine Earth system models separately and the �gure shows
summarized results. (a-b) Dominant variable as determined in regression-based analysis (see Methods).
Turquoise color indicates a water variable (i.e. mean soil moisture, minimum soil moisture, precipitation,
or vapour pressure de�cit) as the strongest driver, while red color indicates an energy variable (i.e. mean
temperature, maximum temperature, net radiation, or short-wave radiation). Dark gray color indicates
that less than three models agree on the most-occuring trend category. Black color denotes that
different trend categories are most-occurring across the same number of models (denoted as Tie). (c-d)
Mean rank of the highest-ranked water variable across models in the regression-based analysis.
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