Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Non-Markovian Effects in Quantum Rate Calculations of Hydrogen Diffusion with Electronic Friction

MPG-Autoren
/persons/resource/persons298518

Trenins,  G.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.       
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2412.15014.pdf
(Preprint), 259KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Trenins, G., & Rossi, M. (2024). Non-Markovian Effects in Quantum Rate Calculations of Hydrogen Diffusion with Electronic Friction.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-5CFB-D
Zusammenfassung
We address the challenge of incorporating non-Markovian electronic friction effects in quantum-mechanical approximations of dynamical observables. A generalized Langevin equation (GLE) is formulated for ring-polymer molecular dynamics (RPMD) rate calculations, which combines electronic friction with a description of nuclear quantum effects (NQEs) for adsorbates on metal surfaces. An efficient propagation algorithm is introduced that captures both the spatial dependence of friction strength and non-Markovian frictional memory. This framework is applied to a model of hydrogen diffusing on Cu(111) derived from ab initio density functional theory (DFT) calculations, revealing significant alterations in rate constants and tunnelling crossover temperatures due to non-Markovian effects. Our findings explain why previous classical molecular dynamics simulations with Markovian friction showed unexpectedly good agreement with experiment, highlighting the critical role of non-Markovian effects in first-principles atomistic simulations.