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Abstract
Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes 
under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This 
study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant patho-
gens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant 
pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific 
focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil 
pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer. Next-generation sequencing 
(NGS) revealed that PBSA harbored a total of 318 fungal plant pathogenic amplicon sequence variants (ASVs) belonging to 
108 genera. Among the identified genera (Alternaria, Nectria, Phoma, Lophodermium, and Phacidium), some species have 
been reported as causative agents of tree diseases. Plenodomus was present in high relative abundances on PBSA, which 
have not previously been associated with disease in broadleaved and coniferous forests. Furthermore, the highest number 
of fungal plant pathogens were detected at 200 days of PBSA exposure (112 and 99 fungal plant pathogenic ASV on PBSA 
degraded under Q. robur and F. sylvatic-dominated forest, respectively), which was double compared mature leaves and 
needles from the same forest sites. These findings suggest that PBSA attracts fungal plant pathogens in forests as an addi-
tional carbon source, potentially leading to increased disease outbreaks and disrupting the stability of forest ecosystems. The 
fungal plant pathogenic community compositions were mainly shaped by forest type, PBSA exposure time, site locations, 
leaf litter layer water content, and N:P ratio from leaf litter layer in both forest types. This study provides valuable insights 
into the potential risks posed by biodegradable plastic degradation in forests after 200 and 400 days of exposure, respectively. 
Further comprehensive evaluations of their effects on tree health and ecosystems, ideally on a long-term basis, are needed. 
These evaluations should include integrating microbial investigation, soil health monitoring, and ecosystem interaction 
assessments. Nevertheless, it should be noted that our interpretation of plant pathogens is solely based on high-throughput 
sequencing, bioinformatics, and annotation tools.
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Introduction

The escalating demand for consumer items and industrial 
operations has led to a surge in the manufacturing and appli-
cation of plastics, resulting a widespread environmental 
presence in both terrestrial and aquatic environments after 
use [1]. Forests encompass over 38% of the Earth’s land 
surface and are a crucial component of terrestrial ecosystems 
[2]. In addition to timber production, they have an impactful 
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ecological meaning by harboring a huge biodiversity, func-
tioning as both a source and sink of carbon (C), regulating 
rainfall, and exchanging atmospheric gases [3]. Therefore, 
appropriate management of forests is essential for both the 
economic and environmental conservation sectors. The dis-
tribution of plastics in forests has become a serious envi-
ronmental issue, driven by human activities and inadequate 
waste management practices [4, 5]. Due to their resistance 
to degradation, plastics persist in the environment, leading 
to significant pollution [6]. Plastic pollution in agricultural 
soils has been extensively studied, with evidence showing 
alterations in soil physicochemical properties [7], and shifts 
in soil microbial communities, potentially impacting crop 
yields [8, 9]. Nevertheless, other forms of soil pollution, 
such as heavy metal contamination, pesticide residues, and 
nitrogen deposition, have been well-documented to influence 
soil microbial communities negatively impacting nutrient 
cycling and ecosystem health [10, 11]. Similar concerns 
have been raised regarding aquatic ecosystems, where plas-
tics contribute to water pollution and threaten biodiversity 
[12]; however, the impacts of plastic pollution in forest eco-
systems remain less examined. To address this issue, the 
development of biodegradable plastics derived from natural 
sources has gained attention in the past few years.

Biodegradable plastics can be degraded in natural soils 
through microbial activities from bacteria and fungi [13]. 
Biodegradable plastics, derived from both renewable and 
non-renewable sources, have evolved as alternatives to con-
ventional plastics because of their degradability under dif-
ferent environmental conditions [14]. The most significant 
group of biodegradable polymers currently used is the family 
of aliphatic polyesters, including poly(hydroxyalkanoates) 
(PHAs), poly(L-lactic acid) (PLA), poly(butylene succinate) 
(PBS), and poly(butylene adipate) (PBA) [15]. Aliphatic 
polyester PBS and its well-known copolymer poly(butylene 
succinate-co-adipate) (PBSA) are among the most promising 
candidates for degradation in the environment [16]. Over the 
past decade, PBS and PBSA have been produced from petro-
chemical sources; nowadays, they tend to be produced from 
renewable resources such as sugarcane, cassava, and corn as 
bio-based alternatives [17]. It is suitable for a wide range of 
applications because of its similar properties to petroleum-
based low-density polyethylene [18]. For example, they are 
used to produce films for product packaging and mulch films 
[19]. PBSA has been used in the forest industry to produce 
nursery containers or plant pots used for cultivation of tree 
seedlings before their transplanting into forest habitats [20]. 
As these containers are employed for nurturing tree seed-
lings, they often end up discarded or left behind after trans-
plantation in forests. This can result in the accumulation 
of plastic in forested areas, thereby contributing to plastic 
pollution. The effect of plastic pollution is controversial as 
some studies have revealed that biodegradable plastics may 

not have harmful effects on the environment [21, 22]. How-
ever, other studies have shown that biodegradable plastics 
can produce microplastics, which can have negatively effects 
on microbial diversity and plant health [23, 24].

Microorganisms, especially fungi, are involved in the 
biodegradation of plastics because they can attach to and 
colonize the plastic surface [25] and degrade it by secret-
ing strong extracellular enzymes that can penetrate and 
break down the plastic polymers [26–28]. Such enzymes 
include cutinases, lipases, and esterases [29], which can 
degrade plastics into smaller polymer intermediates and 
convert them into oligomers, monomers, water, and car-
bon dioxide (CO2) [30, 31]. Plastic degradation in soil 
provides additional carbon resources, creating favorable 
conditions for fungi that utilize these resources, promoting 
their persistence on plastics over time [16, 28, 32]. Addi-
tionally, Purahong et al. [8] suggest that PBSA can support 
distinct microbial communities, potentially affecting nutri-
ent cycling and soil health. As these communities adapt 
to use PBSA as a nutrient source, shifts in biodiversity 
may occur, favoring species that degrade these materials 
and potentially disadvantaging native species. Known fun-
gal species with the potential to degrade plastics include 
Aspergillus niger, A. flavus, A. oryzae [33], A. fumigatus, 
Fusarium solani, Pleurotus ostreatus, Penicillium chrys-
ogenum [34], and P. griseofulvum [29]. Interestingly, most 
of the fungi reported to be involved in plastic degrada-
tion also belong to the group of plant pathogenic species 
[35–37]. Plant pathogens have often been reported to be 
capable of degrading plastics [38, 39]. In agricultural field 
conditions, Juncheed et al. [9] investigated bacteria and 
fungi associated with PBSA degradation to identify and 
evaluate the presence of microbial plant pathogens. The 
important fungal plant pathogens, they detected in PBSA 
were Alternaria alternata, A. hordeicola, Cladosporium 
herbarum, Clonostachys rosea, and F. solani. The obser-
vation of fungal plant pathogens in both plastic-amended 
and non-plastic-amended soils indicates their natural 
presence in the environment. Moreover, biodegradable 
plastics might unintentionally support the persistence of 
these pathogens, potentially threatening crop health and 
agricultural productivity [9]. In contrast, the impact of 
fungal pathogens associated with PBSA degradation in 
forest ecosystems has not yet been thoroughly examined. 
However, fungi such as A. fumigatus [30], A. oryzae [40], 
Cladosporium [16], F. solani [41], and Penicillium [42] 
have been commonly reported on PBSA environments. 
Fungal plant pathogens play a significant role in the 
health and well-being of forest ecosystems by influenc-
ing the fitness and function of their plant hosts [43] and 
by affecting the host’s C uptake and biomass production 
[42]. The impact of plant pathogens in forests extends 
beyond ecological concerns and encompasses significant 
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economic repercussions [44]. In addition, they have led 
to increased costs associated with disease management 
and control measures [45]. However, the effects of plant 
pathogens associated with plastic degradation in forest 
ecosystems have rarely been explored. The specialized 
natural enemies (such as pathogens or herbivores) target 
specific plant species or individuals in species-rich com-
munities (the Janzen-Connell hypothesis) [46, 47]. These 
natural enemies can reduce the survival and growth rate 
of seeds and seedlings in areas near conspecific adults or 
in areas of high conspecific tree density, thereby main-
taining the diversity of plant communities in forests [48, 
49]. However, in anthropogenically managed forests where 
tree biodiversity is low, the influence of pathogens may 
be increasingly significant for tree biodiversity loss [50]. 
Hence, comprehending the composition and presence of 
plant pathogens in plastic is crucial for assessing potential 
risks to plant health, further evaluating the environmental 
risks associated with plastic pollution, and implementing 
knowledge-driven campaigns of plastic reduction in forest 
ecosystems. In this investigation, we focus on temperate-
managed forests, which are subjected to lower tree diver-
sity as compared to unmanaged forests.

Environmental factors, including soil pH, water con-
tent, and temperature, play a significant role in shaping the 
microbiome of the plastisphere on bio-based and biodegrad-
able plastics that degrade in agricultural soils [8, 51]. In 
forest ecosystems, Goldmann et al. [52] reported that the 
difference in dominant tree species and soil properties sig-
nificantly affects the soil microbial community, which may 
potentially influence the presence of microorganisms that 
can colonize plastics. Tanunchai et al. [16] also indicated 
that forest types and decomposition time of plastics in forests 
affect the microbial community composition of the plasti-
sphere microbiome in forest ecosystems.

This study fills important research gaps in understand-
ing the role of biodegradable plastic, specifically PBSA, 
in enhancing fungal plant pathogens in forest ecosystems. 
Prior research focused on the biodegradation of plastics in 
agricultural and aquatic environments, but limited attention 
has been given to forest ecosystems. We initially addressed 
this gap by investigating how PBSA degradation impacts 
fungal plant pathogen communities in both broadleaved and 
coniferous forest sites, and how environmental factors such 
as tree species, soil pH, and nutrient availability shape these 
communities. In this study, we re-analyzed a published data-
set on fungal communities involved in PBSA degradation 
[16], focusing specifically on fungal plant pathogens. The 
published dataset examined PBSA films placed on the leaf 
litter in forest sites dominated by broadleaved species (Fagus 
sylvatica (pBU) and Quercus robur (pEI)) and coniferous 
species (Picea abies (pFI) and Pinus sylvestris (pKI)). We 
aimed to understand how environmental factors, such as tree 

species, soil pH, nutrient availability, moisture content, and 
the physicochemical properties of the leaf litter, influence 
the composition and abundance of fungal plant pathogens 
associated with PBSA degradation.

Materials and Methods

Study Site, Experimental Setup, Designs, 
and Environmental Parameters

Details of the experimental setup have been published by 
Tanunchai et al. [51]. Briefly, the study site was in a man-
aged mixed forest in Thuringia, Germany (51° 12′' N, 10° 
18′ E), with mean annual precipitation ranging from 600 
to 800 mm, mean annual temperatures ranging from 6 to 
7.5 °C, and elevations from 100 to 494 m above sea level. 
The soil pH was acidic (5.1 ± 1.1; mean ± SD). PTT MCC 
Biochem Company Limited, Thailand, provided PBSA films 
(BioPBS FD92) as double-layer thin films with a thickness 
of 50 μm and 35% bio-based C (from corn). In November 
2019, PBSA films were placed on the leaf litter layer under 
the canopy of four different trees in a forest dominated by 
beech (Fagus sylvatica, BU), oak (Quercus robur (EI), 
spruce (Picea abies, FI), and pine (Pinus sylvestris, KI) with 
five independent biological replicates for each tree type. F. 
sylvatica, Q. robur, P. abies, and P. sylvestris were selected 
in this pioneering study as they represent the most wide-
spread species in global and European temperate forests [53, 
54], and are of significant value to forest productivity, ecol-
ogy, and economy [55]. After 200 and 400 days of PBSA 
exposure at each forest site, PBSA films and soil samples 
were collected in separate sterile plastic bags, transported 
on ice to the laboratory within 3 h, and stored at − 80 °C 
for further analyses. The soil pH and water content were 
determined and used as explanatory variables for micro-
bial responses. More details on the study site, experimental 
setup, design, and environmental parameters are provided in 
the Supplementary Material.

Characterization of the Fungal Plant Pathogenic 
Plastisphere Microbiome

The Illumina-based sequencing approach for plastisphere 
microbiome analysis has been previously published [8, 51]. 
The Qiagen DNA extraction kit showed a high yield of DNA 
concentrations at relatively low costs and short processing 
time [56]. In this study, we used the same established DNA 
extraction method to compare the plastisphere across dif-
ferent habitats. The extraction of soil microbiome is out of 
the scope of this study due to a limited budget and should 
be extended in the future study. Briefly, the PBSA samples 
were randomly cut in 12.5-cm2 pieces and cleaned. The 
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DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) was used 
to extract DNA from the microbial biomass that was firmly 
attached to the PBSA sample following the manufacturer’s 
instructions. The presence and quantity of genomic DNA 
was checked using the NanoDrop ND-1000 spectrophotom-
eter (Thermo Fisher Scientific, Dreieich, Germany). For fun-
gal amplicon library preparation, the internal transcribed 
spacer 2 (ITS2) region was amplified using the fungal uni-
versal primer pair fITS7 (5′-GTG​ART​CAT​CGA​ATC​TTT​
G-3′) [57] and ITS4 (5′-TCC​TCC​GCT​TAT​TGA​TAT​GC-3′) 
[58] with Illumina adapter sequences. Amplifications were 
performed in 20-μL reactions with 5 × HOT FIRE Pol Blend 
Master Mix (Solis BioDyne, Tartu, Estonia). The amplified 
products were visualized by gel electrophoresis and puri-
fied using an Agencourt AMPure XP kit (Beckman Coul-
ter, Krefeld, Germany). Paired-end sequencing of 2 × 300 
nucleotides from this pool (three technical replicates) was 
performed using a MiSeq Reagent kit v3 on an Illumina 
MiSeq system (Illumina Inc., San Diego, CA, USA) at the 
Department of Soil Ecology, Helmholtz Centre for Environ-
mental Research. The ITS rRNA gene sequences were sub-
jected to bioinformatics analysis. More details on bioinfor-
matics are provided in the Supplementary Material. Briefly, 
singletons or sequences that potentially represented artificial 
sequences were removed from the dataset. After rarefication, 
we obtained 2,683 rarefied fungal amplicon sequence vari-
ants (ASVs). Rarefaction curves demonstrated an adequate 
sequencing depth level for all samples (Figure S1). Thus, 
we used the observed richness as a measure of fungal plant 
pathogen diversity associated with PBSA degradation. Eco-
logical functions of each ASV were determined using Fun-
galTraits [59, 60]. Fungal plant pathogens were separated 
from other functional groups and used in this study.

Physiochemical Analyses of Leaf Litter Layer

As PBSA is degraded in the leaf litter layer, we measure 
the leaf litter layer nutrients (C, N, Ca, Fe, K, Mg, and P) to 
investigate the effect of environmental factors on PBSA. The 
plastic degradation experiment was conducted in the leaf lit-
ter layer rather than in the soil because, in real-world scenar-
ios, plastic waste entering a forest accumulates on the topsoil, 
which is primarily covered by the litter layer—where micro-
bial activity is highest on the forest floor. The methods used 
for leaf litter layer physicochemical analyses have been pub-
lished in previous study [61]. To prepare for measuring Ca, 
Fe, K, Mg, and P, 100 mg of sample material was subjected 
to a microwave-assisted high-pressure digestion (Multiwave 
3000, Anton Paar, Graz, Austria) at a maximum microwave 
power of 1200 W and a maximum pressure of 60 bar follow-
ing the addition of 3–5 mL 65% HNO3, supra-pur (Merck, 
Darmstadt, Germany). Rotor 8SXF100 with reaction vessels 
made of TFM (tetrafluor-modified polytetrafluoroethylene) 

was used. The total digesting time was 50 min, including 
20 min of cooling at a microwave power of zero. To check 
for reagent and vessel contamination, a blank of solely nitric 
acid was used. Following digestion, the solutions were fil-
tered and transferred to 50-mL PE containers filled to the 
mark with ultrapure water (Millipore, Eschborn, Germany). 
The sample solution analyses were then performed using 
inductively coupled plasma–optical emission spectrometry 
(ICP-OES) “Arcos” (Spectro, Kleve, Germany) equipped 
with a 27.12 MHz free-running LDMOS generator and 
ORCA optical system. A three-point calibration was per-
formed using single-element standards given by Merck 
(Darmstadt, Germany) at the following concentrations: 10, 
50, and 100 mg/L for Ca, K, Mg, and P, and 0.5, 2.5, and 
5 mg/L for Fe. The total C and N contents were determined 
using an Elementar Vario EL III (Elementar Analysensys-
teme GmbH, Langenselbold, Germany). The total C and N 
contents were analyzed using an Elementar Vario EL III (Ele-
mentar Analysensysteme GmbH, Langenselbold, Germany).

Statistical Analysis

The effects of forest type and exposure time on fungal plant 
pathogenic relative abundance and fungal plant pathogenic 
ASVs richness were assessed through repeated analysis of 
variance (ANOVA) analysis using SPSS (as the dataset var-
ied by time series), incorporating the Jarque–Bera JB test for 
normality and Levene’s test to assess the equality of group 
variances. The effects of soil and litter layer physiochemical 
properties on fungal plant pathogenic community composi-
tions on PBSA samples were visualized using non-metric 
multidimensional scaling (NMDS) and tested using good-
ness-of-fit statistics based on observed relative abundance 
data and the Bray–Curtis distance measure.

Results

Fungal Plant Pathogens Detected in PBSA After 200 
and 400 Days of Exposure

Apart from fungal saprotrophs, fungal plant pathogens 
contributed to the second highest relative ASV abundance, 
especially in coniferous trees at 200 days (Fig. 1A). Over-
all, PBSA plastics under different tree species at 200 and 
400 days were colonized by 2,683 fungal ASVs, of which 
318 were classified as fungal plant pathogens. The 318 
ASVs belonged to 108 genera (Table S1). The fungal plant 
pathogenic community detected in PBSA was dominated 
by Dothideomycetes (represented by Plenodomus, Venturia, 
Phoma, and Paraphoma). These groups contributed up to 
77% of the total fungal plant pathogenic relative abundance 
across the different forest types (broadleaved or coniferous 
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forests) and exposure times (Fig. 1B, Fig. 4, and Table S2). 
Interestingly, Leotiomycetes (represented by Collophora, 
Lophodermium, and Phacidium) were highly detected on 
PBSA degraded under Q. robur dominated forest (pEI) at 
200 days but were almost absent after 400 days of exposure. 
In contrast, Eurotiomycetes, represented by Veronaea, were 
highly detected in F. sylvatica dominated forest (pBU) at 
400 days (Fig. 1C, Fig. 4, and Table S2). Our results revealed 
three distinct patterns of fungal plant pathogens. First, the 
relative abundance of Plenodomus was low at 200 days but 
increased (over 25%) at 400 days across the different for-
est types (Fig. 4 and Table S3). Second, the fungal genera 
Alternaria, Leptosphaeria, Collophora, Taphrina, Chaeto-
sphaeronema, and Zymoseptoria were detected at 200 days, 

but they almost completely absent at 400 days. Finally, in 
coniferous forest type, the relative abundances of Venturia, 
Lophodermium, and Phacidium were observed across PBSA 
exposure times (Fig. 1C and Fig. 4).

Distinct Fungal Plant Pathogens Have Been 
Associated with PBSA Degradation in Temperate 
Forests

At 200 days of PBSA exposure, the fungal plant pathogenic 
relative ASV abundance in coniferous forest type was higher 
(34.0 ± 9.4 to 34.5 ± 7.8; mean ± SE) compared to broadleaved 
forest type (7.4 ± 1.9 to 9.7 ± 2.6; mean ± SE; Fig. 2A). In all 
forest sites, higher plant pathogenic ASV richness on PBSA 

Fig. 1   Composition of overall 
fungal functional groups (A) 
and composition of fungal plant 
pathogens [class level (B) and 
genus level (C), considering 
only classes or genera with 
ASV relative abundances ≥ 1%; 
the rest of the fungal classes and 
genera were pooled as “others”] 
on poly(butylene succinate-co-
adipate) (PBSA) after 200 and 
400 days of exposure under four 
tree species Fagus sylvatica 
(pBU), Quercus robur (pEI), 
Picea abies (pFI), and Pinus 
sylvestris (pKI) at two sampling 
times (200 and 400 days). Func-
tional annotation was carried by 
using FungalTraits
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were detected at 200 days (30.8 ± 4.7 to 39.4 ± 2.7; mean ± SE), 
which significantly decreased after 400 days of exposure 
(16.0 ± 1.8 to 24.2 ± 1.1; mean ± SE, Fig. 2B).

Forest Type Affect Community Composition 
of Fungal Plant Pathogens

Forest type (R2 = 0.51, P = 0.001) and exposure time 
(R2 = 0.54, P = 0.001, Table S4) significantly affected the 
fungal plant pathogenic community composition. NMDS 
based on Bray–Curtis similarity was used to compare the 
fungal plant pathogenic community composition on PBSA 

plastic after 200 and 400 days of exposure. Fungal plant 
pathogens present in broadleaved and coniferous forest 
types exhibited notable differences in community com-
position (Fig. 3).

PBSA as Home for Fungal Plant Pathogens 
in Temperate Forests

We observed a notable presence of fungal plant pathogens 
in PBSA degraded in the forest. At 200 days of PBSA expo-
sure, Q. robur-dominated forest harbored the highest num-
ber of fungal plant pathogenic ASVs (112 ASVs), followed 

Fig. 2   The fungal plant pathogenic ASV relative abundance (A) and 
fungal plant pathogenic ASV richness (B) on PBSA after 200 and 
400 days of exposure under four tree species Fagus sylvatica (pBU), 

Quercus robur (pEI), Picea abies (pFI), and Pinus sylvestris (pKI) at 
two  sampling times (200 and 400 days). Standard error and median 
line of five replicate measurements are indicated

Fig. 3   Non-metric multidimen-
sional scaling (NMDS) ordina-
tions of fungal plant pathogenic 
community composition in 
poly(butylene succinate-coadi-
pate) (PBSA) under all tree spe-
cies, based on relative sequence 
abundance data and Bray–Cur-
tis distance measures. Blue 
tones: broadleaved trees; green 
tones: coniferous trees. Data are 
presented for PBSA samples 
under four tree species Fagus 
sylvatica (pBU), Quercus robur 
(pEI), Picea abies (pFI), and 
Pinus sylvestris (pKI)
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by F. sylvatica-dominated forest (99 ASVs). P. abies and 
P. sylvestris-dominated forest showed an equal number of 
fungal plant pathogenic ASVs (83 ASVs). The fungal plant 
pathogenic ASVs at 400 days of each tree species signifi-
cantly decreased. Q. robur and P. sylvestris-dominated forest 
harbored 61 ASVs of fungal plant pathogens, followed by P. 
abies (48 ASVs) and F. sylvatica (44 ASVs). Among the 318 
fungal plant pathogenic ASVs, 216 ASVs were connected to 
only one tree species, indicating the specialist nature. While 
11 ASVs were detected in all four tree species, demonstrat-
ing a generalist capability (Figure S2 and Table S5).

Factors Determining Fungal Plant Pathogenic 
Community Composition

The exposure time, site locations, leaf litter layer water con-
tent, and N:P ratio significantly affected the fungal plant 
pathogenic community composition in both forest types 
(R2 = 0.38–0.74, P < 0.05–0.001, Table 1). The PBSA expo-
sure time was the main factor shaping the composition of 
the fungal plant pathogen community in broadleaved forest 
type (R2 = 0.74, P < 0.001). The soil water content, leaf litter 
layer water content, leaf litter layer pH, Fe content, and N:P 
ratio were also significantly correlated with the fungal plant 
pathogenic community composition in broadleaved forest 
type (R2 = 0.40–0.63, P < 0.01–0.001, Table 1). The fungal 
plant pathogen community obtained in coniferous forest 
type was mainly shaped by latitude, longitude, and leaf lit-
ter layer water content (R2 = 0.70–0.74, P < 0.001, Table 1). 
Dominating tree species, tree type, timepoint, plot factors, 
and factors from the leaf litter layer (except N, Ca content, 
and C:N ratio) also significantly shaped the fungal plant 
pathogenic community in the plastisphere (R2 = 0.21–0.66, 
P < 0.05–0.001, Table S4).

Discussion

The Role of PBSA as a Novel Habitat for Fungal Plant 
Pathogens in the Forest Ecosystem

Presence of PBSA in forest ecosystems caused a temporal 
increase (Fig. 2) of fungal plant pathogens, which was sig-
nificantly reduced over time. The decrease in fungal plant 
pathogen richness may be due to the alteration of polymer 
structures as degradation progresses and an overgrowth of 
some fungal plant pathogens, especially Plenodomus. This 
can lead to the emergence of various polymer-based and 
microbially induced metabolites, which in turn may favor 
the colonization of different fungi better adapted to these 
conditions, outcompeting the initial plant pathogens [8]. A 
previous study [62] also investigated the fungal community 
composition in leaves and needles at the same study site. 

They detected 52, 51, and 50 fungal plant pathogenic ASVs 
in leaves of F. sylvatica, and needles of P. sylvestris, and P. 
abies, respectively. Different patterns of fungal plant patho-
gen colonization between leaves and on PBSA may be attrib-
uted to the chemical compositions of the substrates. Leaves 
are primarily composed by cellulose, hemicellulose, lignin, 
sugars, fatty acids, organic acids, and mineral substances 
[63, 64]. These complex matrices provide a diverse range 
of C and energy sources for microbial communities. In con-
trast, plastics like PBSA are synthetic polymers made up of 
repeating units of the same monomers including, succinic 
acid, adipic acid, and 1,4-butanediol, which are derived from 
renewable resources such as corn and sugarcane [17, 65]. 
The distinct nature of the two substrate types could influ-
ence the distribution and activity of fungal communities. 
Importantly, PBSA-degrading fungi outcompete other fungal 
species in utilizing this synthetic substrate due to their capa-
bility to produce plastic-degrading enzymes [66, 67], pro-
viding them with a competitive advantage in colonizing and 
degrading plastic materials in forest environments. Although 
PBSA itself does not act as a hub for fungal plant patho-
gens, its degradation in forest ecosystems correlates with 

Table 1   Goodness-of-fit statistics (R2) of environmental and PBSA 
variables fitted to the nonmetric multidimensional scaling (NMDS) 
ordination of fungal plant pathogenic community based on relative 
abundance data and the Bray–Curtis distance measure

Bold letters indicate statistical significance. *P < 0.05, **P < 0.01, 
and ***P < 0.001

Factors Broadleaved for-
est type

Coniferous 
forest type

Plot factors
  Tree species 0.01 0.42***
  Soil water content 0.51** 0.21
  Soil pH 0.26 0.60***
  Latitude 0.14 0.70***
  Longitude 0.53** 0.70***
PBSA factor
  Exposure time 0.74*** 0.53**
Leaf litter layer factors
  Leaf litter layer water content 0.40* 0.74***
  Leaf litter layer pH 0.63*** 0.30
  C 0.11 0.41*
  N 0.14 0.65**
  Ca 0.01 0.39*
  Fe 0.41** 0.12
  K 0.07 0.53**
  Mg 0.26 0.20
  P 0.28 0.07
  C:N ratio 0.21 0.64***
  C:P ratio 0.25 0.10
  N:P raio 0.45*** 0.38*



	 P. Nonthijun et al.  155   Page 8 of 15

an increase in the number of fungal plant pathogens. We 
found the enrichment of fungal plant pathogens at 200 days 
of PBSA exposure. This period is the stage of decomposi-
tion that microbial activities for plastic depolymerization 
and the utilization of polymer C potentially occur [8]. These 
processes involve the breakdown of the long polymer chains 
into monomers, water, and CO2, which can be utilized by 
microbes [31, 68]. Furthermore, the decomposition of added 
organic materials, including bio-based and biodegradable 
plastics, in soil also stimulates the soil organic matter break-
down, called the “priming effect,” which results in a signifi-
cant release of carbon from both the added plastic and the 

native soil organic matter [69]. Thus, it may be inferred that 
PBSA indirectly contributes to the proliferation of fungal 
plant pathogens by serving both as habitat and additional C 
source for fungal plant pathogenic inoculation in temperate 
forest ecosystems.

Fungal Plant Pathogens Detected on PBSA During 
Degradation in Temperate Forests

This study provides insights into PBSA colonizers/decom-
posers that can act also as fungal plant pathogens. In line 
with previous studies, we detected dominant fungal plant 

Fig. 4   The occurrence of top 40 fungal plant pathogens detected on 
PBSA after 200 and 400  days of exposure under four tree species 
Fagus sylvatica (pBU), Quercus robur (pEI), Picea abies (pFI), and 

Pinus sylvestris (pKI). The yellow-red  colour legend represent the 
respective relative sequence read abundances of each plant pathogen
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pathogens belonging to genera Plenodomus, Venturia, 
Phoma, Paraphoma, Veronaea, Herpotrichai, and Alternaria 
on PBSA samples in our forest sites (Fig. 4). These fungi are 
often reported in the soil or on leaves/needles in undisturbed 
environments [62, 70–72]. Among the dominant fungal plant 
pathogen genera, Plenodomus showed the highest relative 
abundance at 400 days (45.9% of the fungal plant patho-
gens) across all tree species (Fig. 1C). This genus includes 
several well-known plant pathogens that affect economically 
significant crops, primarily in the Brassicaceae family [67], 
causing stem canker or blackleg in oilseed and wasabi crops 
(P. lingam and P. biglobosus [73]), and mal secco disease 
of twigs and branches in citrus plants (P. tracheiphilus [74, 
75]). Although Plenodomus was abundant on PBSA dur-
ing degradation in both forests, there are no reports of its 
pathogenicity in broadleaved and coniferous trees. Phoma 
has been reported as a fungal plant pathogen that causes root 
decay and stem and needle defoliation in Pinus sylvestris, 
Pinus sibirica, and Picea obovata [76]. Likewise, Lopho-
dermium [77–80] and Phacidium [81–84] have also been 
reported as significant fungal plant pathogens in P. sylvestris 
and P. abies. Furthermore, Alternaria has been reported as a 
fungal plant pathogen in F. sylvatica [85] and Q. robur [86]. 
Nectria has been reported as the primary causal agents of 
root dieback in coniferous trees [87] and are associated with 
cambial necroses in F. sylvatica [88, 89]. Furthermore, some 
dominant fungal plant pathogens, such as Plenodomus [90], 
Phoma [91], and Veronaea [92] have demonstrated the abil-
ity to synthesize phytotoxins. These fungal plant pathogens, 
such as members of Plenodomus [93], Venturia [41, 94], 
Phoma [95, 96], Paraphoma [97, 98], Veronaea [99], and 
Alternaria [14, 100] have been reported to produce lipase, 
cutinase, and/or esterase enzymes that are described to be 
effective for PBSA degradation. These enzymes can play 
different roles, depending on the substrate type. They can 
facilitate the fungal plant pathogenic infection on host plants 
[101–103]. On the other hand, these enzymes also play a 
crucial role in plastic degradation [66, 67]. This suggests 
that the fungal plant pathogens detected in this study can 
potentially serve as candidates for PBSA degradation in for-
est ecosystems.

Environmental Factors Shaping the Fungal Plant 
Pathogenic Community

The environmental factors, including pH, nutrient availabil-
ity, and moisture content, are one of the determinants that 
affect microbial community structure [104]. Furthermore, 
tree species identity are influential factors contributing to 
variations in microbial communities within both the forest 
floor and soil [105, 106]. These factors can influence the 
distribution and abundance of microbial taxa, ultimately 
shaping the dynamic patterns of microbial communities in 

the plastisphere [16, 107]. Fungal plant pathogenic com-
munity composition on PBSA exposed in both forest types 
was correlated to many factors, including tree species, expo-
sure time, plot factors, and leaf litter layer factors (mainly 
site location, water content, pH, and N:P ratio, Table 1 and 
Table S4), which contribute also to different fungal plant 
pathogenic community patterns (Figs. 3 and 4). This find-
ing aligns with a previous study [108] who investigated the 
susceptibility of trees to disease and the effects of forest site, 
tree type, and latitude on fungal plant pathogen community 
composition. In addition, a decrease in soil pH may limit 
fungal growth and reproduction, leading to an alteration 
in the fungal community composition [109, 110]. Proper 
water content is crucial and therefore shapes the diversity 
and composition of fungal communities, primarily through 
microbial dispersal and impact on soil texture and avail-
ability of nutrients necessary for fungal growth [110, 111]. 
Veresoglou et al. and Lekberg et al. [112, 113] indicated that 
variations in the N:P ratio in soil can affect the community 
composition of fungal plant pathogens, as high N content 
supports their growth and tends to increase their disease 
severity [36]. Fungi require phosphorus for vital cellular 
components such as chromosomes and ribosomes, as well 
as for producing ATP, the energy currency of the cell [114]. 
Thus, the availability of phosphorus in the soil can affect the 
growth and metabolism of fungi, leading to changes in their 
community composition [115–117].

Practical Implication and Outlook

Plastic pollution is one of the serious environmental pol-
lutions in terrestrial ecosystems. PBSA is an alternative 
bioplastic to replace conventional non-biodegradable 
plastics such as PE and PP due to their similar proper-
ties. They can be widely applied in terrestrial ecosystems 
such as in agriculture or forestry. As biodegradable plas-
tics can be broken down into CO2 and water by microbes, 
they are expected to be left decomposed in the field site to 
save time and labor. Previous studies [9, 55] have raised 
concerns on the potential enrichment of fungal plant 
pathogens during PBSA degradation in agricultural soils. 
We aimed to compare this finding with PBSA degrada-
tion in temperate forest ecosystems to properly manage 
plastic waste. We found in both agricultural and forest 
ecosystems a similar pattern of the dominant fungal taxa 
that colonized PBSA [8, 9, 16]. These colonizers include 
Phoma, Plenodomus, and Venturia. However, these fungal 
colonizers can also act as pathogens for specific hosts, 
highlighting the impact on ecosystem health. PBSA could 
serve as a temporary habitat for fungal pathogens. Never-
theless, it should be noted that our interpretation of plant 
pathogens is based solely on high-throughput sequencing, 
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bioinformatics, and annotation tools. Future studies should 
also use cultivation-dependent methods, including pheno-
typic characterization, to support these findings. Further-
more, microclimates such as UV light, air temperature, 
and humidity can also affect the colonization of fungal 
plant pathogens on PBSA. A previous study indicate 
that tropical regions exhibit unique environmental con-
ditions, including higher microbial activity and specific 
soil properties [118] that may accelerate the degradation 
rates of biodegradable plastics. Conversely, unmanaged 
forests might exhibit different degradation dynamics due 
to minimal human intervention, resulting in more stable 
or complex microbial communities that could influence 
plastic degradation differently [119]. Specifically, in a 
humid subtropical climate, BioAgri (PBAT blended with 
starch) was already degraded by ∼20% after 6 months, but 
not in a Mediterranean climate with lower mean tempera-
tures. The different microclimates may lead to physical 
and chemical property changes, and thus directly and/or 
indirectly affect the colonization of potential fungal plastic 
degraders/fungal plant pathogens. Thus, our findings may 
not fully transfer to the degradation of other bioplastics 
in other climate zones. pH is also one of the influencing 
factors that predict the composition of different natural 
substrates such as deadwood [120, 121], leaf, and needles 
[60]. A previous study [16] also showed that pH in soil 
and litter layer affects the microbial community composi-
tions, and thus the degradation of PBSA plastic in broad-
leaved- and coniferous-dominated forests. Nevertheless, 
our studies enlighten that PBSA can be degraded in both 
agricultural and forest soils in the subcontinental climate 
region of Central Germany and have a similar pattern of 
fungal plant pathogenic colonization, even though the two 
study sites are located more than 100 km away from each 
other. Although the ITS marker is widely used and often 
regarded as the universal barcode for fungi due to its high 
variability across species, it is not sufficient for classify-
ing all fungal species. This limitation arises from (i) its 
inability to reliably resolve closely related species and (ii) 
the availability of ITS reference sequences, which cover 
less than 1% of the estimated 6 million extant fungal spe-
cies [122, 123]. Nevertheless, within the ribosomal cistron 
regions, the internal transcribed spacer (ITS) region offers 
the highest probability of accurate identification across 
a broad range of fungi, exhibiting the most distinct bar-
code gap between inter- and intraspecific variation [124]. 
For more precise classification, especially at the species 
level, additional markers or multilocus approaches—such 
as LSU (large subunit rRNA), SSU (small subunit rRNA), 
and protein-coding genes like TEF1, RPB1, and RPB2—
can be employed.

Overall, we suggest removing plastics from forests 
after use regardless of their biodegradability and properly 

decomposing the plastic waste at the decomposing site. 
The investigation of plant pathogen colonization on during 
degradation should be extended to cover other plastic types 
and additional microclimate conditions. Evaluating the pro-
longed exposure of PBSA and other biodegradable plastics 
in different forest types to understand their potential effects 
on tree health, soil health, and overall biodiversity. Expand-
ing studies to other forest ecosystems, which may exhibit 
different microbial community dynamics and plastic degra-
dation processes due to varying environmental conditions. 
Potential long-term impacts on ecosystem biodiversity and 
resilience should be deeply investigated in long-term studies.

Conclusion

This study revealed a broad diversity of fungal plant path-
ogens were detected on PBSA across forest types. PBSA, 
serving as a degradable substrate led to an enrichment 
of fungal plant pathogens, particularly noticeable after 
200 days of PBSA exposure. However, a significant decline 
in fungal plant pathogen richness occurred after 400 days, 
suggesting a temporary enrichment phenomenon. The fungal 
plant pathogenic community was primary influenced by soil 
and leaf/needle-based parameters, underscoring the critical 
role of environmental conditions in forest ecosystems, as 
observed in leaf and deadwood decomposition processes. 
These finding offer valuable insights for knowledge-based 
seminars aimed at improving forest cleaning strategies to 
combat plastic waste. Additionally, further investigation is 
warranted to determine whether these enriched fungal plant 
pathogens exert any adverse effects on the health of trees 
and shrubs, particularly in light of anticipated stress due to 
global warming.
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