Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Maximizing Nash Social Welfare in 2-Value Instances: Delineating Tractability

MPG-Autoren
/persons/resource/persons263365

Akrami,  Hannaneh
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons225687

Ray Chaudhury,  Bhaskar
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44628

Hoefer,  Martin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45021

Mehlhorn,  Kurt       
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons251338

Shahkarami,  Golnoosh
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2207.10949v5.pdf
(Preprint), 411KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Akrami, H., Ray Chaudhury, B., Hoefer, M., Mehlhorn, K., Schmalhofer, M., Shahkarami, G., et al. (2025). Maximizing Nash Social Welfare in 2-Value Instances: Delineating Tractability. Mathematics of Operations Research. doi:10.1287/moor.2023.0204.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-5EA7-9
Zusammenfassung
We study the problem of allocating a set of indivisible goods among a set of
agents with \emph{2-value additive valuations}. In this setting, each good is
valued either $1$ or $\sfrac{p}{q}$, for some fixed co-prime numbers $p,q\in
\NN$ such that $1\leq q < p$. Our goal is to find an allocation maximizing the
\emph{Nash social welfare} (\NSW), i.e., the geometric mean of the valuations
of the agents. In this work, we give a complete characterization of
polynomial-time tractability of \NSW\ maximization that solely depends on the
values of $q$.
We start by providing a rather simple polynomial-time algorithm to find a
maximum \NSW\ allocation when the valuation functions are \emph{integral}, that
is, $q=1$. We then exploit more involved techniques to get an algorithm
producing a maximum \NSW\ allocation for the \emph{half-integral} case, that
is, $q=2$. Finally, we show it is \classNP-hard to compute an allocation with
maximum \NSW\ whenever $q\geq3$.