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Deep neural networks and humans both
benefit from compositional language
structure

Lukas Galke 1,2 , Yoav Ram3,4 & Limor Raviv 2,5

Deep neural networks drive the success of natural language processing. A
fundamental property of language is its compositional structure, allowing
humans to systematically produce forms for new meanings. For humans,
languages with more compositional and transparent structures are typically
easier to learn than those with opaque and irregular structures. However, this
learnability advantage has not yet been shown for deep neural networks,
limiting their use asmodels for human language learning.Here,wedirectly test
how neural networks compare to humans in learning and generalizing differ-
ent languages that vary in their degree of compositional structure.We evaluate
the memorization and generalization capabilities of a large language model
and recurrent neural networks, and show that both deep neural networks
exhibit a learnability advantage for more structured linguistic input: neural
networks exposed to more compositional languages show more systematic
generalization, greater agreement between different agents, and greater
similarity to human learners.

Compositionality, i.e., whether themeaningof a compoundexpression
can be derived solely from the meaning of its constituent parts, has
been studied for decades by both computer scientists and linguists1–5.
In particular, languages differ in how they map meanings into mor-
phosyntactic structures6,7 and cross-linguistic studies find substantial
differences in the degree of structural complexity across languages8–14.
These differences can stem from multiple and often confounded
aspects of linguistic structure including the degree of
compositionality7, which can be quantified by correlating differences
in meaning with differences in form15. For example, the English term
“white horse” is compositional since its meaning can be directly
inferred given knowledge about its constituents “white” and “horse”. In
contrast, consider the equivalent German term “Schimmel”, whose
meaning cannot be derived from “weiß” (white) and “Pferd” (horse).
Crucially, compositionality directly affects our ability to make sys-
tematic generalizations in a given language and thus shapes its
immense expressive power—which also explains its high relevance in
machine learning1,2,16–24.

Importantly, cross-linguistic differences in compositional struc-
ture were suggested to impact human language learning and gen-
eralization in the real world25–27 as well as in lab experiments28–32, with
more compositional linguistic structures typically being easier to learn
for adult learners. In a large-scale artificial language learning studywith
adult human participants, the acquisition of a broad yet tightly con-
trolled range of comparable languages with different degrees of
compositional structure was tested28. Results showed that more
compositional languages were learned faster, better, and more con-
sistently by the adult learners, and that learning more structured lan-
guages also promoted better generalizations and more robust
convergence on labels for new, unfamiliar meanings. This is likely
because more systematic and compositional linguistic input allow
learners to derive a set of generative rules rather than rotememorizing
individual forms, and then enables learners to use these rules to pro-
duce an infinite number of utterances after exposure to just a finite
set32–36. This learnability and generalization advantage for more
structured linguistic input has far-reaching implications for broader
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theories on language evolution in our species (and potentially other
learning systems): A large body of computational models and experi-
mental work with human participants show that more systematic and
compositional structures emerge during cross-generational transmis-
sion and communicationprecisely because such structures are learned
better, while still allowing for high expressivity30,32–35,37–40. Hence,
popular theories of language evolution attribute the emergence of
systematic and compositional structure in natural languages to such
learnability pressures32,41, suggesting a causal role not only in language
learning, but also in shaping the way human languages are structured.
To what extent this advantage of linguistic structure carries over to
artificial learning systems is currently poorly understood—which is the
aim of the current study.

Despite an increasing body of work that reports striking simila-
rities between humans and large language models42–48, and despite
large language models being incredibly proficient at using language
and generalizing to new tasks with little to no new training data49–52,
research on emergent communication suggests that deep neural net-
works (the class ofmodels that underlies large languagemodels) show
no correlation between the degree of compositional structure in the
emergent language and thegeneralization capabilities of thenetworks.
In other words, unlike humans, artificial neural networks do not seem
to benefit from more compositional structure when they are made to
develop their own communicationprotocol, at leastwithout dedicated
intervention53–56 (but see ref. 57). Thus, this finding raises the question
of whether systematic and compositional linguistic structure is helpful
at all for deep neural networks, and to what extent compositionality
affects the memorization and generalization abilities of deep neural
networks learning a new language.

The mismatch with humans can potentially be explained by dif-
ferences in model design and experimental procedure58. For instance,
deep neural networks typically have immense model capacity due to
overparametrization59–64, which means they could easily memorize all
individual forms without the need to identify compositional
patterns23,58. A competing hypothesis is that neural networks do ben-
efit fromcompositional structure in thedata given that this structure is
reflected in the statistical patterns of the data which impacts the
optimization of the model parameters65,66. Specifically, in a language
with a higher degree of compositionality, the individual units of
meaning are reused in different contexts and thus appear more often
in the training data, such that these recurring units of meaning and
their contextualization patterns are learned better because of the
repeated presentation throughout training (see refs. 24,67).

Here, we explore this precise relationship between compositional
structure and generalization with deep neural networks. The central
question we aim to answer is: Do deep neural network models exhibit
the same learning and generalization advantage when trained onmore
structured linguistic input as human adults? Specifically, we investi-
gate whether the advantage of compositionality in language learning
and language use carries over to artificial learning systems, while
considering GPT-3.5 as a pre-trained large language model and a cus-
tom model architecture based on recurrent neural networks (RNNs)
trained from scratch. Our work contributes to the understanding of
deep neural networks and large language models, sheds new light on
the similarity between humans and machines, and, consequently,
opens up future directions of simulating the very emergence of lan-
guage and linguistic structure with deep neural network agents.

To allow for direct comparisons between humans and machines,
we carefully follow the experimental procedure and measures of a
recent large-scale preregistered language learning study with adult
participants28. We consider 10 input languages, each of which has
emerged independently and spontaneously through a group com-
munication experiment with adult human participants68. The lan-
guages describe four different novel shapes moving on the screen in a
different direction (0-360 degree), and vary in their degree of

compositional structure: ranging from fully idiosyncratic languages
with entirely different labels for two related meaning (e.g., ‘kuim’ and
’goom’ for the same shape moving into a different direction) to highly
structured languages, which re-use parts of the descriptive label (e.g.,
referring to the two scenes as ’fest-ii’ and ’fest-ui’). See Fig. 1. Neural
networks were then trained on the exact same stimuli presented to
humans and in the same order, using the same learning tasks, pro-
viding the same feedback during learning blocks, and evaluated with
the same memorization and generalization tests. Figure 1 shows the
recurrent neural network architecture and summarizes the experi-
mental procedure: Full details of the experimental setup, custom
recurrent neural neural network models, and how we employed large
language models are provided in the Methods section.

By evaluating the performance of small and large language
models across languages with varying degrees of compositional
structure, we show that more structured linguistic input results in
more systematic generalization, greater agreement between different
agents, and closer alignment with human learning patterns. Our find-
ings show that neural networks trained on highly structured languages
produce more transparent generalizations, with memorization and
generalization patterns that become increasingly human-like as lin-
guistic structure becomes more compositional. Implications of our
work extend to the design of artificial agents and the understanding of
human language learning, suggesting that the systematicity of lin-
guistic input plays a crucial role in shaping the learning dynamics of
both artificial and natural language systems.

Results
To preview our results, we find a consistent advantage of more sys-
tematic and compositional linguistic structure for learning and gen-
eralization, closely reflecting adult human participants. The
generalization behavior of both large languagemodels (pre-trained on
other languages) and recurrent neural networks (trained from scratch)
was far more systematic and transparent when the input languages
were more compositional. Moreover, recurrent neural network agents
displayed a higher agreementwith other agents as well as with humans
when the input was more compositional, leading to converging
transparent generalizations for new unseen input. A glossary of eva-
luation metrics can be found in Table 1. More detailed descriptions of
the metrics are provided in the Methods section.

More compositional structure leads to higher similarity to
humans and more systematic generalization of large
language models
We first test whether large language models benefit from composi-
tional structure when learning a new language. Such language
models are pre-trained to predict left-out words in web-scale corpora
of text data, leaving them with high competence in at least one lan-
guage, similar to adult human participants. Specifically, we employ
the large language model GPT-3.5 (version text-davinci-003) which is
capable of in-context learning, i. e., having the model tackle a new
task only based on a few examples in the prompt49,69. Wemake use of
this property to evaluate the model in learning the new languages.
For each input language, we insert the form-meaning pairs in the
prompt of the large language model, followed by a single meaning
for which the label needs to be completed. We repeat this procedure
multiple times to have the language model produce labels for the
memorization test (known meanings) as well as the generalization
test (new meanings).

In the generalization test, there is no true label in the input lan-
guage. To capture the degree to which new labels conform to the
labels of the input language (i.e., to what extent the generalization is
systematic), we correlate the pairwise label difference and the pairwise
semantic difference between the labels generated for new scenes and
the labels generated by the same agent for known scenes28.
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Strikingly, the results reveal that a higher degree of compositional
structure in the input language leads to generalizations that are more
systematic (see Fig. 2B), closely reflecting the pattern of adult human
learners (Fig. 2A). Table 2 shows examples of the final productions of
humans and large language models during generalization (more
examples are provided in Supplementary Tables 4 and 5).

In addition, we evaluate the production similarity as character-
level length-normalized edit distance between the generated labels
and labels produced by human participants during generalization. The
results show that, given more structured linguistic input, GPT-3.5 also
yields productions that are more similar to the productions of human
participants, calculated as the average similarity between GPT-3.5’s
production and all human productions for the same scene in the same
language (Fig. 3B). Analogously, Fig. 3A shows the similarity of humans
to other human learners during generalization.

We then conduct an error analysis to understand better whether
the memorization errors are similarly affected by the degree of com-
positional structure. We analyze the cases where the learning system
fails to memorize the correct label perfectly and calculate the pro-
duction similarity (1minus length-normalized edit distance). Again, the
results show the same pattern for adult human participants and large

language models (see Fig. 4A, B): When there is more structure in the
input language, the non-perfectly memorized productions are more
similar to the correct labels.

More compositional structure leads to higher similarity to
humans and more systematic generalization with recurrent
neural networks
In addition to large languagemodels, we test a custom neural network
architecture trained from random initialization, which allows us to
conduct a close analysis of the learning trajectory. Our custom model
architecture is designed to simulate the exposure, guessing, and pro-
duction blocks that human participants have engaged in (see Fig. 1).
The architecture is inspired by image-captioning approaches70, the
emergent communication literature71, and in particular, our recent
review paper58 which suggested having shared model parameters
between generation and processing of a label. Our model consists of
two components: a generative component that facilitates the pro-
duction of a descriptive sequence of symbols (here, a label) for a scene,
while a contrastive component shapes the latent space and enables the
models to carry out guessing tasks during learning (i.e., given a label,
pick the correct scene froma set of distractors). Each component has a

Fig. 1 | Overview.Overview of input languages (Top), the experimental procedure
(BottomCenter) alongwith exemplary input data fromone language (BottomLeft),
and the model architecture (Bottom Right). Low-structured input languages show
no signs of systematicity or compositionality, whereas high-structured languages
are systematic and compositional with respect to both attributes: shape and angle.

For each language, we train the model for multiple rounds of exposure, guessing,
production. After each round, we conduct a memorization test to evaluate pro-
ductions for previously seen items and a generalization test evaluating the pro-
ductions for new items. Graphical elements in the upper part of this figure are re-
used and adapted with permission from Raviv et al.68.
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sequential recurrent neural network module to carry out the genera-
tion and processing of a sequence, respectively, for which we use the
well-known long short-term memory72. The symbol embedding that
maps each symbol of the sequence into a continuous vector is shared
between the generative and the contrastive component.Moreover, the
two components share the same encoder module that transforms an
input scene into a latent representation, which then serve as the initial
state of the generative component. Production tasks aremodeled by a
generative objective: Based on this initial state, the model generates a
label, character by character. This generated label is compared to the
target input language by character-level cross-entropy. Guessing tasks
are modeled by a contrastive objective73, which aligns the latent
representation of input scenes and corresponding labels and facilitates
selecting the correct scene from a set of distractors. As the encoder is
shared, the contrastive objective shapes the space of initial states of
the production model.

In total, we trained 1000 neural network agents with different
random seeds (100 for each of the ten input languages) and calculated
the following measures after each training round: the similarity
between networks’ productions and the input language; the similarity
between networks’ productions and the human learners’ productions
during memorization and generalization; the generalization score
capturing the degree of systematicity; and a convergence score cap-
turing the agreement between different agents. We evaluated these
measures after each of 100 rounds.

The results are shown in Fig. 5. Extended results can be found in
Supplementary Figs. 1–6. In the following, we present the results for

the learning trajectory organized along the two types of tests: mem-
orization and generalization, before presenting the final results
of RNNs.

Memorization trajectory. How well did neural agents memorize the
input languages? And how similar were their generated labels to those
produced by human learners during generalization? This is measured
by production similarity28, which captures the similarity between the
original label and the produced label by calculating the average nor-
malized edit distance between two labels for the same scene. We use
this measure in two ways: once to compare the generated labels to the
true label of the input language and once to compare the machine-
generated label to the human-generated label for the same scene.

Similarity to input languages during memorization. With sufficient
training rounds, all languages can be learned by all neural network
agents, reaching a production similarity of at least 0.8 (out of 1) by
round 60 (Fig. 5A). Structured languages are learned significantly
better (LME 1; β = 0.045, SE = 0.001, z = 62.865, p < 0.001), i. e., they
show a higher similarity with the input language. However, this
advantage tends to diminish over training rounds (LME 1; β = −0.005,
SE < 0.001, z = −54.978, p < 0.001).

Similarity to humans during memorization. We measure the similar-
ity to humans during memorization (i.e., comparing productions of
both learning systems after completing the training rounds) and the
memorization test data of the neural network agents after each

Table 1 | Glossary of Metrics

Metric Description

Production Similarity One minus length-normalized edit distance

Semantic Difference Sum of the difference in shape (1 if different and 0 otherwise) and the absolute difference in angles (divided by 180)

Structure Score Pearson correlation between (a) pairwise semantic differences and (b) pairwise length-normalized edit distances, where (a) and (b) are
calculated on all pairs of items in the original input language

Generalization Score Pearson correlation between (a) pairwise semantic differences and (b) pairwise length-normalized edit distances, where (a) and (b) are
calculated on all pairs between productions for memorized items and productions for generalized items

Convergence Score Average of all values for item-level production similarity for the same items between different learners trained on the same language

Human Label Similarity Item-level production similarity to (other) human learners, averaged across different human learners

True Label Similarity Item-level production similarity to input language

Fig. 2 | More structure in the input language leads to more systematic gen-
eralization for all three learning systems. Final generalization score achieved by
humans (A), GPT-3.5 (B), and recurrent neural networks (C) for each of the input
languages. The x-axis shows the structure score of the input languages. Each point
corresponds to the generalization score calculated for the entire input language.

This score reflects the degree to which learners systematically generalized new
labels relative to the labels they learned. For example, generalization score would
be high if learners successfully recombines previously used parts, e.g., combining
'muif' for the shape and 'i' for the direction into 'muif-i'. Error regions of the
regression lines are 95% confidence intervals estimated via bootstrapping.
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training round (Fig. 5B). More compositional input languages led to a
significantly greater similarity with human learners (LME 2; β = 0.097,
SE = 0.001, z = 81.429, p < 0.001). This effect became even stronger
over rounds (LME 2; β = 0.022, SE < 0.001, z = 208.708, p < 0.001).

Generalization trajectory. We evaluate the productions of neural
agents when they generalize, i.e., produce labels for new scenes that
were not part of the training data. We test the productions regarding
three aspects: the degree of systematicity, the similarity to humans,
and the generalization convergence between different agents. As with
large language models, we evaluate the generalization score. More
structured languages consistently led to significantly higher general-
ization scores (Fig. 5C) (LME 3; β = 0.088, SE = 0.001, z = 148.901,
p < 0.001), and this effect became stronger with time (β = 0.046,
SE < 0.001, z = 703.483, p < 0.001).

Similarity to humans during generalization. We measure the simi-
larity between the productions of neural network agents and humans
for new scenes (Fig. 5D), i. e., during generalization. Examples are
shown in Table 2. More structure in the input language led to a sig-
nificantly higher similarity between humans and neural agents (LME 5;
β = 0.132, SE = 0.002, z = 70.280, p < 0.001), which became stronger
over rounds (β = 0.046, SE < 0.001, z = 344.287, p < 0.001).

Convergence between neural agents during generalization. More
structured languages lead to better agreement between networks
(LME4;β=0.043, SE =0.001, z=49.027,p<0.001), such that, formore
structured languages, different neural agents learning the same input
language produced more similar labels for new scenes (Fig. 5E). This
effect became stronger over rounds (β = 0.009, SE < 0.001,
z = 121.740, p < 0.001).

Final results of RNNs. To compare our custom recurrent neural net-
work agentswith large languagemodels andwith humans, we visualize
the relationship between compositional structure of the input lan-
guage and final generalization performance in Fig. 2C. All three
learning systems (Humans, RNNs, and GPT-3.5) show the same trend:
more compositionality in the input language leads to more systematic
generalization.

Moreover,wecalculate the average similarity to generalizations of
human participants on the same language and item. Comparing the
productions during generalization, the results show that a higher
degree of structure in the input language leads to more similarity with
humans (see Fig. 3C). This pattern of compositional structure leading
to more human-like generalizations is present in both RNNs’ and GPT-
3.5’s generated labels—as well as when comparing humans to other
humans (see Fig. 3).

Lastly, we visualize the results of the memorization error analysis
for recurrent neural networks alongside humans and GPT-3.5 in Fig. 4.
The pattern is the same for all three different learning systems, be it
artificial or biological: more compositional structure leads to errors
that are more similar to the true label.

Discussion
Our results show that deep neural networks benefit from more struc-
tured linguistic input as humans do and that neural networks’ perfor-
mance becomes increasingly more human-like when trained on more

Fig. 3 | More structure in the input language leads tomore similarity to human
participants for both RNNs and GPT-3.5. Final similarity to humans during gen-
eralization: Final production similarity with (other) human participants during
generalization achieved by humans (A), GPT-3.5 (B) and recurrent neural networks
(C) for each of the input languages. The x-axis shows the structure score of the
input languages. Each point corresponds to the production similarity score

(calculated as length-normalized edit distance) between humans' productions and
models' productions for every item in the language. For example, a recurrent neural
network that produced 'muif-a' for shape 3moving in direction 360 degrees would
have a high production similarity to the majority of human participants who pro-
duced 'muif-i'. Error regions of the regression lines show 95% confidence intervals
estimated via bootstrapping.

Table 2 | Generalization examples from neural network and
human learners, showing labels generated for unseen scenes

Struct. Shape Angle Human RNN GPT-3.5

low 2 360 kokoke seefe tik-tik

4 45 woti kite hihi

3 150 ptiu mimi hihi

mid-low 3 225 wangsuus wangsoe wangsuus

4 225 gntsoe gntuu gntsii

1 135 sketsi gesh geshts

mid 3 60 powi powu-u-u powee

4 330 fuottoa fuotio fuottu-u-u

1 30 fewo-o-o-o fewen fewee

mid-high 1 30 fas-a fas-a fas-a

3 360 muif-i muif-a muif-i

1 225 fas-huif fas-huif fas-huif

high 4 60 smut-tkk smut-tk smut-ttk

2 360 nif-k nif-kks nif-k

1 315 wef-ks wef-kks wef-kks

The column GPT-3.5 corresponds to completions generated by the GPT-3.5 model text-davinci-
003 via in-context learning, where the training data is provided in context. The examples cover
the differently structured input languages from low to high.
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structured languages. This structure bias can be found in networks’
learning trajectories and even more so in the networks’ generalization
behavior, mimicking previous findings with humans. Although all
languages can eventually be (almost) perfectly learned, we show that
more structured languages are learned better and more similarly to
human productions. Deep neural networks and humans produce
nearly identical labels when trained on high-structured languages but
not when trained on low-structured languages. Moreover, networks
that learn more structured languages are significantly better at sys-
tematic generalization to new, unseen items, and crucially, their gen-
eralizations are significantly more consistent and more human-like.
This means that highly systematic grammars allow for better gen-
eralization and facilitate greater alignment between different neural
agents and between neural agents and humans. We have replicated
these results with small recurrent neural networks and with
transformer-based large languagemodels, showing that, together with
humans, all three learning systems show the same bias in systematic
generalization andmemorization errors. Thus, our findings strengthen
the idea that languagemodels are useful for studying human cognitive
mechanisms, complementing the increasing evidence of similarity in
language learning between humans and machines42–48.

Specifically, we find very similar effects of structure on general-
ization and on the similarity to humans across all three learning sys-
tems. While we find a different slope for humans and RNNs in the
memorization error analysis (likely due toRNNsbeing less impactedby
memorization difficulty given sufficient training), the general trend is
consistent: for both humans and artificial agents, exposure to more
structured languages leads to production errors that are nevertheless
more similar to the correct labels (i.e., their errors are less “wrong”).

We assume that the reason for the increased similarity between
machines and humans is that the ways to generalize are more trans-
parent in high-structured languages, while there are none or less
transparent generalization patterns available in low- and medium-
structured languages. This leads both humans and neural networks to
a higher production variation in lower structured languages, as dif-
ferent options on how to generalize are equally likely. This point is well
supported by results from humans, who indeed show increased con-
vergence between participants when learning higher structured
languages28 Our results thereby demonstrate that what is more trans-
parent for humans is also more transparent for deep neural networks.

Analyzing the learning trajectory of recurrent neural networks, we
find that languages with mid and mid-low structures often show an
advantage in both memorization and generalization during the early
stages of learning. This may be due to the fact that these mid-
structured languages trade off full expressivenesswithmore simplicity
(see Supplementary Table 1). For example, one of the mid-structured
languages includes a marker for “moving on the diagonal”, but does
not distinguish the direction of the movement (e.g., center to north-
east vs. center to south-west). As a result, the same label is used for two
distinct meanings, which is easier to learn in the first place (less var-
iation), but not sufficient to fully differentiate between items and thus
harming systematic generalization.

As for implications, our findings first and foremost support the
idea that languages’ underlying grammatical structure can be learned
directly from (grounded) linguistic input alone35,41,74–76. To ensure that
the advantage of more structured linguistic input does not stem from
the fact that the learning system was already proficient in a different
language—i. e., as are pre-trained languagemodels and adult humans—
we also also considered models trained from random initialization.
Therefore, our results predict that children would also benefit from
more systematic compositional structure in the same way adults do—a
prediction we are currently testing (preregistration:77).

Our findings have further implications for machine learning,
where systematic generalization beyond the training distribution (out-
of-domain) is of high interest17,19–21,78. Systematic in-domain general-
ization, as studied here, is a critical prerequisite for systematic out-of-
domain generalization. Specifically, we show that seeding a learning
system with well-structured inputs can improve their ability to sys-
tematically generalize to combinations that were not observed during
training. Even though our study is based on artificial languages, our
findings directly pertain to the natural language processing of real-
world languages. To confirm this prediction, we re-analyzed data from
Wu et al.14, who used theWug Test79 to test languagemodels’ ability to
predict different forms of unfamiliar words in a wide range of natural
languages. Indeed, we find that the Wug Test accuracy negatively
correlates with the degree of irregularity of the language (Spearman’s
ρ = − 0.96, p < 10−15; Kendall’s τ = − 0.86, p < 10−14). This strong negative
correlation suggests that natural languages with fewer irregularities, i.
e.,more consistently structured natural languages, are indeed easier to
learn for machines.

Fig. 4 | More structure leads to erroneously memorized examples being more
similar to the ground truth of the input language. Memorization error analysis
of humanparticipants (A), GPT-3.5 (B), and recurrent neural networks (C). The error
rates are 33.30% for humans, 7.39% for GPT-3.5 via in-context learning, and 13.87%
for RNNs after 100 epochs of training. The x-axis shows the structure score of the
input language. Each point corresponds to the production similarity score

(calculated as length-normalized edit distance) between an erroneously memor-
ized label for a given item and the correct corresponding label as it appears in the
input language. For example, 'wangsus' has a higher similarity with 'wangsuus' than
'gempt'. Error bands of the regression lines show 95% confidence intervals esti-
mated via bootstrapping.
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Crucially, there is a positive correlation between the degree of
linguistic structure and population size12,68,80,81, with low-resource lan-
guages (i. e., languages spokenby smaller communities forwhich there
is only very little training data available) typically having less struc-
tured languages. Since our study predicts that such languages are
harder to learn for deep neural networks, this results in a double
whammy for developing natural language processing systems for
small communities’ languages—exacerbating challenges of low-
resource language modeling82. Interestingly, the benefit of struc-
tured input could also explain the importance of highly-structured
programming languages in the data mix for training large language
models83.

Finally, our results are of high relevance to the field of emergent
communication. Emergent communication strives to simulate the evo-
lution of language with multi-agent reinforcement learning53,56,71,84–89.
However, as argued in the introduction, certain linguistic phenomena of

natural language appear to be hard to replicate in multi-agent reinfor-
cement learning54,55,58,90, which had raised the question whether com-
positionality is helpful for neural networks at all. We hypothesized that
these mismatches are caused by the lack of cognitive constraints58 era-
dicating the learnability pressure underlying human language
evolution37. Our findings support the importance of a learnability pres-
sure for compositional languages to emerge. By confirming a result
previously found in humans28 in deep neural networks, we take the first
steps to bring emergent communication closer to the field of language
evolution, supporting simulations of language emergence with neural
networks.

An interesting direction for future research is to investigate
potential differences in the amount of training that a neural network
needs compared to humans. Through anchoring our experiments in
human data, we were able to directly identify the point during training
at which recurrent neural networks equalize with human participants.

Fig. 5 | Learning trajectory of recurrent neural networks’ memorization and
generalization performance.More structured languages lead to better and faster
reproduction of the input language (A), to better generalization on unknown
scenes (C), better agreementwith humanparticipants duringmemorization (B) and
generalization (D), and higher convergence between networks (E). A Production
similarity between labels generated by neural agents and labels of the input lan-
guage. (B): Production similarity between labels generated by neural agents and
labels generated by human participants.CGeneralization score of labels generated
by neural agents for new scenes that were not part of the training data.

D Production similarity between labels generated by neural agents and labels
generated by human participants for unseen scenes. E Convergence score mea-
sures the similarity between labels generated for unseen scenes by different neural
agents. Stars mark the round at which neural agents first exceed the final perfor-
mance of human participants. Input languages are grouped into 5 bins. Each line is
the averageof 200neural agentswith a different random initialization. A starmarks
the epoch at which the RNN agents exceed human performance. Results are cut off
for visualization at epoch 60, full results in SI.
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However, the location of this point depends on various factors such as
the amount of data, the number of parameters that are optimized, and
the number of optimization steps —which makes it challenging to
predict this point in advance. While we have identified this point
through analyzing the learning trajectory, our analysis does not
depend on it, as all measures including the similarity between humans
andmachines are calculated based on productions taken at the end of
training.

Furthermore, we have chosen to work with an input representa-
tion that we deemed easiest to process for each type of learning sys-
tem. Since the particular way in which agents represent the visual
worldwas not the object of the current study, our rationale herewas to
provide each learning system with a representation that is easiest or
most natural to process. Human participants would have likely had a
harder time finding patterns in attribute-value vectors, consisting of 6
numbers, than in short video clips with moving objects. In contrast,
operating on raw pixels is expected to introduce more difficulty for
machine learning models in terms of disentangling representations85.
Futurework could examinewhether neural nets segment visual stimuli
in a similar way as humans in grounded language learning.

In conclusion, our findings shed light on the relationship between
language and language-learning systems, showing that linguistic
structure is crucial for language learnability and systematic general-
ization in neural networks. Our results suggest that more structured
languages are easier to learn, regardless of the learning system: a
human, a recurrent neural network, or a large language model. Thus,
generalization capabilities are heavily influenced by compositional
structure, with both biological and artificial learning systems benefit-
ting from more structured input by facilitating more systematic and
transparent generalizations. In future work, we will analyze how this
learnability bias formore structure affects neural networks engaged in
collaborative communication games, and test how this kind of sys-
tematic structure arises in the first place in emergent communication
simulations. Moreover, our findings give a clear prediction that chil-
dren would benefit from more structure in the linguistic input, which
we will test by conducting a learnability study with children.

Methods
Input languages
The input languages with different degrees of compositional structure
come from a previous communication study in which groups of
interacting participants took turns producing and guessing labels for
different dynamic scenes, creating new artificial languages over time68.
Tenof the final languages created by thesegroups then served as input
languages for a follow-up study on language learnability with
humans28. For our experiments, we used the same ten input languages.
These input languages are considered the ground truth. Each of the ten
input languages contains a set of 23 label-scene mappings. Each scene
comprises one of four different shapes moving in different directions
between 0 and 360 degrees. The languages vary in their degree of
compositional structure, with structure scores ranging from
0.09 to 0.85.

Topographic similarity to quantify compositional structure
Crucially, the ten input languages have different degrees of structure,
ranging from languages with no structure to languages with con-
sistent, systematic grammar. Each language has a structure score
represented by topographic similarity15, quantifying the degree to
which similar labels describe similar meanings. The topographic
similarity is measured as the Pearson correlation between all labels’
pairwise length-normalized edit distances and their corresponding
pairwise semantic differences. The semantic difference between two
scenes is calculated as the sum of the difference in shape and the
difference in angles28. The difference in shape is zero if the two scenes
contain the same shape, and one otherwise. The difference in angles is

calculated as the absolute difference divided by 180. The topographic
similarity of a language is then calculated as the pairwise correlation
between all semantic differences and all normalized edit distances. For
a complete list of input languages and their structure scores, see
Supplementary Table 1.

Human learning data
Aside from the input languages, we use reference data from 100
human participants learning these input languages28. The participants
were different from those who created the languages. A hundred
participants, ten per input language, engaged in repeated learning
blocks consisting of passive exposure (in which the target label-
meaning mappings were presented on the screen one by one), gues-
sing trials (in which participants needed to pick the right scene from a
set of possible distractors), andproduction trials (inwhichparticipants
needed to generate a descriptive label for a target scene based onwhat
they had learned). During training, humans received feedback on their
performance.

Large language models
For the large languagemodels, we supplied the full training data of the
respective input language to GPT-3.5: 23 lines consisting of shape-
angle pairs in a textual format, and the corresponding target label.
These 23 lines were followed by a single line that only contained shape
and angle but no word. GPT-3.5 was made to predict the most likely
word as completion, for which it could take into account the 23 triples
presented in the prompt. In the memorization task, the target word
appears earlier in the prompt, which means that the perfect solution
would be to simply copy this word. In the generalization task, we gave
GPT-3.5 a combination of shape and angle not present in the training
data (and not in the prompt). The model generated the most likely
descriptive word for the new shape-angle pair.

We had to make certain technical choices when using GPT-3.5.
First, we chose a consistent input representation (Javascript Object
Notation). We do not insert a task description to avoid potential bias.
Instead we purely rely on next-token prediction. Second, we set the
sampling temperature to zero, which controls the randomness of the
generation, such that we obtain deterministic generations. Third, we
do not impose any restrictions on the characters that canbe generated
but rely on its ability to detect this pattern from the training data.
Fourth, we do not feed back GPT-3.5’s previous productions into the
prompt. Lastly, GPT-3.5’s tokenization procedure (how text is split into
subword tokens) could have been problematic for applying it to our
artificial languages. However, we found that GPT-3.5 still reaches high
memorization performance, which suggests that tokenization is not a
problem. We have confirmed that the words of the artificial languages
are tokenized as expected with OpenAI’s Tokenizer (https://platform.
openai.com/tokenizer): falling back to one token per character.

Custom recurrent neural network architecture
Our custom model architecture (see Fig. 1, right) is based on two
components: a generative component and a contrastive component.
The generative component is conditioned on the input scene and
generates a label letter by letter. The contrastive component ensures
that the matching scenes and labels are close in the representation
space and non-matching pairs are apart from each other. For proces-
sing the sequence of letters, each component uses a recurrent neural
network, for which we use the well-known long short-term memory
(LSTM)72. In the following, we describe the input representation before
we describe the two components and their interactions. The models
were implemented in PyTorch91, version 2.3.

Scenes were shown to human participants as short videos28. For
the recurrent neural networks, we use a simplified representation of
the scenes. The rationale for choosing this input representation over
images is that both humans and models receive the respective easiest
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possible input type to process, allowing for a fair comparison92,93. For
the recurrent neural networks, we employ a one-hot encoding of the
shape concatenated with a sine and a cosine transformation of the
angle. The sine–cosine transformation promotes a similar treatment of
angles that are close to each other, while each unique angle can be
distinguished. For example, shape 2 (between 1 and 4)moving at a 90-
degree angle is converted to a vector (0, 1, 0, 0, 1, 0), shape 3 with 45
degrees is converted to (0, 0, 1, 0, 0.71, 0.71), and shape 4 with 135
degrees is converted to (0, 0, 0, 1, 0.71,−0.71).We refer to the resulting
6-dimensional vector representation of the input as a scene x. By using
this input representation, we focus on the ability of systematic gen-
eralization in language learning rather than the ability to learn disen-
tangled representations. If the neural networks were trained on pixel
input instead, the task would be more challenging as neural networks
would need to learn disentangled representations on the fly85.

Within the generative component, the input scene x is first
encoded to a latent representation h by ENCODER, a feedforward
network (we use a multilayer perceptron with one hidden layer), such
that we obtain a latent representation h = ENCODER(x). This latent
representation h is then used as the initial state of the recurrent neural
network WRITER. The WRITER sequentially produces a sequence of
letters, i. e., a label, as output. This WRITER consists of three modules:
an input embedding for previously produced characters, an LSTM cell,
and an output layer that produces the next letter.

For the contrastive component, we use another recurrentmodule
READER that reads a label m sequentially (i. e., letter by letter) while
updating its state. As for the WRITER, we again use an LSTM. A fully-
connected layer transforms the final state into a latent representation
z, such that z = READER(m), where m is the input label. The reading
component is used for contrastive learning, i. e., they are trained so
that the hidden representation of the label z matches the representa-
tion of the corresponding scene h = ENCODER(x), which is used as the
initial hidden state of the generative WRITER module.

To ensure that the contrastive training procedure affects the
generative component, we couple the two components: First, the
embedding (i. e., the mapping between the agent’s alphabet and the
first latent representation) parameters are shared between the input
layer of READER, the input layer of WRITER, and the output layer of
WRITER. Second, the same encoder module is used in both the gen-
erative and the contrastive components (see Fig. 1).

The output dimension of ENCODER, the hidden state sizes of
READER and WRITER, and the embedding size are all set to 50. A
sensitivity analysis of the hidden size on the dependent variables of
interest is provided in Supplementary Figs. 13–15. Similarly toNakkiran
et al.59, larger hidden sizes led to a faster increase inmemorization and
generalization.

Training procedure
We train the recurrent neural networks for multiple training rounds as
in the experiments with human participants28. Each training round
consists of three blocks: exposure, guessing, and production block,
described in detail in the following. As typical in neural network
training, we train the network with backpropagation and stochastic
gradient descent, where the gradient is estimated based on a small
number of examples (minibatches)94,95. The batch size, which also
determines the number of distractors, is set to 5, reflecting human
short-term memory constraints96. Only in the guessing block, we set
the batch size to 1 and use the same distractors as in the experiments
with human participants, instead of other exemplars from the
same batch.

In the exposure block, human participants were exposed to
scenes with the corresponding target labels. Therefore, we train the
deep learning models using a loss function with two terms: a gen-
erative and a contrastive loss term.Thegenerative loss,Lgen, is a token-
wise cross-entropy with the ground-truth label of the original

language. The contrastive loss, Lcon, promotes similar latent repre-
sentations of scenes and labels that correspond to each other and
contrasts representations that do not. Specifically, we use the nor-
malized temperature-scaled cross-entropy loss (NTXent)73. We use
other scenes in the same batch as distractors for the contrastive loss
term. The final loss function is L=Lgen +αconLcon. The factor αcon
determines the relative weight of the loss terms. For the main experi-
ment, we useαcon =0.1. A sensitivity analysis using other values forαcon
is provided in Supplementary Figs. 16–18.

In the guessing block, we use the same loss function as in the
exposure block. The contrastive loss term Lcon mirrors the task in
which human participants had to select the correct scene against the
distractors given a label. The generative loss term Lgen is used so that
the model does not “forget” how to generate97. Notably, the guessing
task itself could be also carried out by having the models generate a
descriptive label for each scene and then select the closest one to the
given label in terms of edit distance. However,we opted for optimizing
shared parameters through a contrastive loss to ensure that the
guessing task would also have an effect on the production task (and
vice-versa).

In more detail, the latent representation z = ENCODER(x) of the
scene x should be closest to the latent representation z0 = READER(m)
of the corresponding labelm. The difference from exposure training is
that in the guessing block, we use the identical distractors used in
experiments with humans, whereas, in the exposure block, we use the
other scenes from the same batch. The trajectory of guessing accuracy
during training is shown in Supplementary Fig. 7.

In the production block, a scene was presented to human parti-
cipants, who had to produce a label. We again use the same generative
loss as in the previous block, Lgen, to model the production block. In
the production block, however, we omit the contrastive loss term and
train only on generation. Thus, the loss function for the production
block is L=Lgen.

The parameters are randomly initialized by He initialization98, the
default initialization method in PyTorch. We employ the widely used
Adam optimizer99 to carry out the optimization of the loss function
with the default learning rate of 10−3. As common in machine learning,
we have to make certain decisions about the neural network archi-
tecture design, optimization procedure, and hyperparameters. All
these decisions may impact the results. However, we have varied
relevant hyperparameter settings and found that the results are robust
and do not dependent on specific settings of the hyperparameters
(see Supplementary Methods and Supplementary Figs. 19 and 20).

Measures
Production similaritymeasures the overlap between two sets of labels.
It is computed as one minus the normalized edit distance between
pairs of labels. For our analysis, we use production similarity once to
quantify the similarity between the generated labels and the ground
truth of the input languages, and once to quantify the similarity of
labels generated by neural network agents with labels produced by
human learners. For example, a recurrent neural network that pro-
duced ’muif-a’ for shape 3moving in direction 360degreeswould have
a high production similarity to themajority of humanparticipants who
produced ’muif-i’.

The generalization score measures the degree of systematicity
during the generalization test28. We take two sets of scenes: a training
set, onwhich the agentswere trained, and a test set, onwhich the agents
were not trained. We then do the following for each agent. First, we take
two sets of labels: one previously generated for each training scene by
the agent and another that we let the agent generate for each test scene.
Second, the difference between train and test scenes is measured by
pairwise semantic difference. Semantic difference is calculated as
in topographic similarity. Third, the difference between generated labels
for the train and test scenes is measured by pairwise normalized edit
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distance. Finally, we compute the Pearson correlation between these
two differences across all scenes. Then, we take the average correlation
coefficient across all agents as the generalization score.

The convergence score measures the similarity in the general-
ization test between agents that learned the same language.We take the
test set on which the agents have not been trained and let each agent
produce a label for each scene. We compute the pairwise normalized
edit distance between all generated labels per scene so that if we have n
test scenes and k agents, we compute n � kðk�1Þ

2 distances. We then
compute the average distance across both scenes and labels and take
one minus the average distance as the convergence score. Therefore, if
all agents produce the same label for each test scene, we would get a
convergence score of 1. Conversely, if each agent produced a different
label for the same scene, the convergence score would be zero.

Statistical analyses
We trained 100 differently-initialized neural network models over 100
rounds for each of the ten input languages. The testing in each round
consisted of 23 memorization and 13 generalization examples. This
makes a total of 2.3M memorization and 1.3M generalization test
results subject to statistical analyses. Significance was tested using
linear mixed-effects models, as implemented in the Python package
statsmodels100 (version 0.13), for production similarity (LME 1), gen-
eralization score (LME 3), generalization convergence (LME 4), as well
as production similarity to humans in memorization (LME 2) and
generalization (LME 5). We use the structure score and the logarith-
mized round number in all measures as a fixed effect. The number of
rounds was logarithmized following scaling laws of neural language
models60. Both the structure score and the logarithmized round
number were centered and scaled. We consider two random effects:
the random seed for initialization (which also determines the input
language) and the specific scene. Normality was tested via QQ-plots on
the residuals. For LME 5, scaling the log-transformed round number to
unit variance hindered convergence, so the log rounds were only
centered. The full results of the statistical models are provided in
Supplementary Table 2, with partial regression plots shown in Sup-
plementary Figs. 8–12. In Supplementary Table 3, we provide an
additional analysis of production similarity to ground truth at rounds
10, 40, 70, and 100.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The input data used in this study are available in the OSF database
under accession code https://osf.io/d5ty7/101. The results data gener-
ated in this study have been deposited in the Zenodo database under
accession code https://doi.org/10.5281/zenodo.14205452102.

Code availability
The source code for reproducing our experiments has been deposited
in the GitHub database under accession code https://github.com/
lgalke/easy2deeplearn103.
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