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Abstract

Interfaces between peptides and metallic surfaces are the subject of great interest for possi-
ble use in technological and medicinal applications, mainly since organic systems present
an extensive range of functionalities, are abundant, cheap, and exhibit low toxicity. Exem-
plary applications are biosensors that may be sensitive to specific metabolites or harmful
compounds. However, these hybrid interfaces pose a challenge to computational modelling,
particularly regarding predicting the most relevant configurations at the surface, which
determines the electronic properties of the system as a whole. From a theoretical point
of view, predicting the most stable interface configuration requires searching through the
enormous structure space of flexible biomolecules with respect to the surface for different
configurations and performing computational calculations of their properties. However,
it is impossible to investigate those parts separately due to complex interactions during
adsorption. In order to capture these complex interactions, one has to employ accurate
theoretical methods, which are very computationally expensive. In this thesis, we provide
a comprehensive description of the complex nature of the interaction of selected amino
acids with metallic surfaces using state of the art dimensionality reduction techniques and
accurate ab initio theoretical methods and creation of tools tailored for the high-throughput
investigations of interface systems.

The theoretical methods used in the thesis are described in its first part. The second section
looks into the conformational space changes of Arginine (Arg) and its protonated counterpart
after adsorption on three noble metallic surfaces. Arg is an excellent testbed because it is
tiny enough to be treated using density functional theory, which is considered the best
compromise between accuracy and computational efficiency. At the same time, Arg is
complex enough due to a highly flexible side-chain that allows for hundreds of different
configurations in the gas phase alone. The examination of adsorption behaviour requires
creating a database by performing a large number of geometry optimizations of various
conformations and orientations. The investigation of that database includes creating a
low-dimensional representation of the conformational spaces using recent dimensionality
reduction techniques, followed by examining various bonding and charge transfer patterns
and how they affect the available conformational spaces.

The third section of the thesis is concerned with developing tools for the automated structure
search of interface systems and the modelling of self-assembly patterns formed after adsorp-
tion. Different geometry optimization algorithms and a flexible method of preconditioning
the quasi-Newton optimization algorithms are implemented in the GenSec package that
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Abstract

was developed. Together, these enable a more straightforward interface with a wide range of
quantum chemistry packages for sampling the conformational spaces of flexible molecules
in 1D (ions), 2D (surfaces), and 3D (cavities and molecules) systems. Structure search of the
conformational space of a flexible molecule using GenSec provided satisfactory results for
di-L-alanine adsorbed on Cu(110) surface.

iv



Contents

Acknowledgements

Abstract (English/Francais/Deutsch)
Abbreviations

List of Figures

List of Tables

1 Introduction

1.1 Aminoacidsandpeptides . .. ... ... ... ... i e
1.2 Recent applications of peptide-inorganic surface interface systems ... ...
1.3 Stateoftheart ....... ... .. ...
1.3.1 Experimental techniques ........... ... ... .. .. ...
1.3.2 Theoretical techniques . ... ...... ... .. .. ...
1.3.3 Globalstructuresearch. ... .......... ... ... . ... .. ....
1.3.4 Analysis of high-dimensionalspaces . . ......................
1.3.5 Overviewofthethesis ......... .. ... ... ... ... .. ....

2 Theoretical methods

2.1 Themany-bodyproblem.......... ... ... ... ... . ... . . . ...
2.2 The Born-Oppenheimer approximation. . . ........................
2.3 DensityFunctional Theory ... .......... 0.ttt

2.3.1 The Hohenberg-Kohntheorems ...........................

2.3.2 TheKohn-Shamequations . ............ ... ... ...

2.3.3 Exchange correlation functionals ..........................
2.4 Long-range van der Waals interactions . ..........................
2.5 Tkatchenko-SchefflervdWmethod ......... ... .. ... . ... . ......
2.6 Tkatchenko-Scheffler vdWs" method ... .........................
2.7 BasSiSSeLS . ...t
2.8 Charge transfer and binding energy calculations ....................
2.9 Modelling of the STMimages ........... ...ttt .
2.10 Forcefieldmethods ......... ... . ... . .

iii

E.

e 0 G~ W

12
12
13

17
17
18
19
20
21
22
24
26
28
29
30
33
33



Contents

3 Structure search and analysis of conformational spaces 39
3.1 Global structure search techniques ............... ... ... ... ...... 40
3.2 Geometry optimizations on the Born-Oppenheimer Potential Energy Surface 42

3.21 Localminimafinding............ ... ... .. .. . ... ... 43
3.22 Linesearchmethod ............ . ... . ... . .. .. ... . ... 44
3.2.3 Trust-regionmethod .......... ... ... . . .. ... ... 45
3.2.4 Preconditioning schemes for geometry optimizations ........... 46
3.3 Comparing molecules across structuralspace ...................... 47
The conformational space of a flexible amino acid at metallic surfaces 55
4.0.1 Computational setup . .......... ottt 57
4.0.2 Database Generation . ...............uuuiiiiinreinenn. 59
4.0.3 Structure spacerepresentation ................ .. ... 61
4.0.4 Electronic structure and trends across surfaces . ............... 70
4.0.5 Comparison of DFT with INTERFACEFF . .................... 79
4.0.6 Conclusions. .. ........ .ttt 84

Generation and search of the flexible molecules with respect to fixed surround-

ings 89
5.1 GenSec package for structure search of the interfaces . . .. ............. 89
5.2 Workflow of the GenSecpackage . .......... ... ... ... . ... ... 90
5.3 Structure generation . .. ... ... ... ...ttt 91
5.3.1 Internal degrees of freedom: dihedrals ...................... 91
5.3.2 Generating molecules with respect to fixed frames. .. ........... 92
5.3.3 Self-assembly generation with respect to fixed frames ........... 94
5.3.4 Constraintsofthesearch .......... ... ... . ... ... ........ 94
5.4 Database creation and filtering of the structures. . . ... ............... 95
5.5 Geometry optimizationworkflow .......... ... . ... . . L. 97
5.6 Preconditioner for geometry optimization . ... .......... ... .. ... ... 97
5.6.1 Lennard-Jones-like Hessianmatrix .. ....................... 98
5.6.2 Combining the preconditioners ........................... 103
5.7 Application to di-L-alanineon Cu(110) . .......... ... ... ... ... .. 104
5.7.1 Computationaldetails ................... ... . ... ..... 106
5.7.2 Generation of trial structures .................. ... ........ 107
5.7.3 Analysisofthesearch .......... ... ... ... ... ... ... .. .. 108
58 CONCIUSIONS . ...ttt 111
59 0utlook .. ... ... 112
Conclusions 115
Additional information on Arg and Arg-H* on metallic surfaces 119

Additional information on di-L-alanine molecule on Cu(110) 127



Contents

A Estimation of stabilizing interactions for di-L-alanine on Cu(110) 133
Bibliography 135

Curriculum Vitae 161

vii






Abbreviations

AA amino acid. 3-5, 8, 9, 11, 13, 14, 35, 40, 104, 107

AIMD ab initio molecular dynamics. 12

Arg Arginine. iii, xi—xiv, xix, 13, 55, 57-79, 81, 83-85

Arg-H' Arginine-H*. xi—xiv, xix, 13, 55, 57-62, 65-68, 70-79, 81, 83-85
ASE Atomic Simulation Environment. 90-92, 97, 101, 106, 108, 112,117

BFGS Broyden-Fletcher-Goldfarb-Shanno. 43, 44, 97, 98, 101, 102
BO Born-Oppenheimer. 18, 19

COM center of mass. 91, 92, 94-97

DFA density-functional approximation. 22, 25, 29
DFT density-functional theory. xiii, xiv, xix, 10-13, 17, 20, 22, 24, 26, 27, 30, 35, 40, 42, 55, 73,
74,79, 83, 84,116, 117

ES-IBD electrospray ion beam deposition. 9

fcc face-centered cubic. 35, 57, 101
FF force field. 11, 12, 17, 34, 35, 40, 47,90, 94, 111
FHI-aims Fritz Haber Institute “ab initio molecular simulations”. 29-31, 47, 101, 106

GenSec Generation and Search. 89, 90, 94, 97, 100, 101, 103, 107, 108
GGA generalized gradient-approximated. 22, 23

HEG homogeneous electron gas. 22
KS Kohn-Sham. 21, 29

LDA local density approximation. 22, 23
LDOS local density of states. 9

L) Lennard-Jones. xv, 34, 35, 47, 98-101, 103
LSM line search method. 44, 46

LZK Lifshitz-Zaremba-Kohn. 28

MD molecular dynamics. 12, 13, 40, 43
ML machine learning. 11, 13, 42, 44, 112

NAO numeric atom-centered orbitals. 29

ix



Abbreviations

NN neural networks. 44

PBC periodic boundary conditions. 31, 89, 94

PBE Perdew, Burke and Ernzerhof. xiv, xix, 23, 24, 57, 58, 60, 73, 77, 81, 83, 84, 101
PCA principal component analysis. 50

PES potential energy surface. 11, 12, 19, 34, 39-46, 102, 103

QM quantum mechanical. 33, 35

REMatch regularized entropy match kernel. 50
RMSD root mean square displacement. 102

SCF self-consistent field. 31
SOAP smooth overlap of atomic positions. 13, 48, 62, 65
STM scanning tunneling microscopy. 9, 10, 17, 30, 33, 104, 107, 108, 110, 111

TRM trust-region method. 45, 46, 101
TS Tkatchenko and Scheffler. 25-28

vdW van der Waals. 3, 11, 24-29, 34, 41, 57, 73, 94, 98, 100, 104

XC exchange-correlation. 21-23, 25, 27
XPS X-ray photoemission spectroscopy. 9



List of Figures

1.1

1.2

3.1

3.2

4.1

4.2

4.3

4.4

a) The general structure of a ¢-amino acid in its neutral, zwitterionic, and
anionic states. The amino group is highlighted in blue, the carboxylic/carboxy-
late group is highlighted in red, the a-carbon is highlighted in black, and the
side chain is highlighted in green; b) Schematic representation of the Alanine
amino acid in its neutral configuration. Red atoms are oxygen; blue atoms are
nitrogen; white atoms are hydrogen, and grey atoms are carbon. The R symbol
stands for the side-chain (highlighted with green dashes), here represented by
the CH; group. In (i) L-Alanine, with respect to the central C, carbon and in
(ii) a D-Alanine; c) Schematic representation of the formation of the peptide
bond: two amino acids with different side chains R; and R, react to form a
peptide via the production of awatermolecule. . . ................... 6
Scheme of the 20 most common ¢-amino acids present in nature, represented
intheirneutralform.. ... ........ .. . 7

a) Pictorial representation of the multiple local minima of PES of a flexible
molecule with respect to arbitrary coordinates. b) Examples of complex inter-
actions that appear during self-assembly processes on the surfaces ... ... 39
Atom-density-based structural representations, in which the structure is mapped
onto a smooth atom density constructed as a superposition of smooth atom-
centered functions that also reflect the chemical composition information.. 49

The picture shows a sketch of the electronic density rearrangement that hap-
pens when arginine and protonated arginine adsorb on Cu(111) surface. The
electron accumulation is depicted in red and electron depletion depicted in
blue. . ... 56
a) Pictorial representation of the arginine amino acid, including labels of
chemical groups and atoms. b) Protomers of Arg that are addressed in this
work. ¢) Protomers of Arginine-H" (Arg-H") that are addressed in this work. 57
a) Relative total energy convergence of with respect to k-grid mesh for different
5x6 slabs. b) Binding energy hierarchy calculated for different structures on
Cu(111) surface with different amount oflayers. . . . . ................. 58
Structures that were used for the surface unit cell size convergence test of
Arg@Cu (first row) and ArgH@Cu (second row). Image unit cell sizeis5x6.. 59

Xi



List of Figures

xii

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

(a-d) Correlation plots of relative energies of Arg or Arg-H" conformers on
Cu, Ag, and Au (111) surfaces. Each dot corresponds to the same conformer
optimized on the two surfaces addressed in each panel, color coded with
respect to the RMSD (heavy atoms only) between the superimposed optimized
structures without taking surface atoms into consideration. ...........

Ramachandran plots for Arg (left) and Arg-H" (right) in isolation. . .. ... ..
Labeling of all H-bond patterns considered in this thesis. . ... ..........

Low-dimensional map of Arg stationary points on the PES. Only points linked
to structures with a relative energy of 0.5 eV or lower are colored. Representa-
tive structures of all conformer families are visualized as well as their H-bond
distances (in turquoise) and longest distance between two heavy atoms (in
red) of the molecule. The maps are colored with respect to a) relative energy,
b) longest distance, and c) H-bond pattern. The size of the dots also reflect

their relative energy, with larger dots corresponding to lower energy structures.

Representative conformers with similar backbone structure but different H-
bonds within the molecule. The different H-bond pattern can cause energy

differences of up to 0.2 eV for similar structures, as discussed in the main text.

Representative conformers of the populated structure families within 0.5 eV
of the global minimum of isolated Arg-H" and low-dimensional projections of
all populated conformers onto the Arg map. Grey dots represent all structures
from the original map of isolated Arg in Fig. 4.10, and serve as a guide to
the eye. The maps are colored with respect to a) relative energy, b) longest
distance within the molecule, and ¢) H-bond pattern. ................

Electron density difference between Arg-H* and Arg calculated by neutraliz-
ing the charge and removing the hydrogen connected to the carboxyl group
(marked in green) from the lowest energy structure of Arg-H*. The isosurfaces
of electron density with value £0.005 e/Bohr® corresponding to the a) regions
of electron accumulation on Arg-H" and b) where the electron depletion on
Arg-H", both compared tOAIg. ... ...t

Low-dimensional projections of conformers of Arg adsorbed on a) Cu(111),
b) Ag(111), and c) Au(111), onto the gas-phase Arg map of Fig. 4.8. Only
conformers within 0.5 eV of their respective global minimum are colored.
Grey dots represent all structures from the original map of gas-phase Arg, and
serve as a guide to the eye. In each panel, representative structures are shown
from two perspectives: a side view where molecule and surface are shown
(bottom), and the corresponding top view (top) where only the molecule is
shown. The longest distance within each visualized conformer is reported in
red and H-bond lengths are reported in turquoise. . . .................

61

62

63

64

66

67

68



List of Figures

4.13

4.14
4.15

4.16

4.17

4.18

4.19

4.20

4.21

Low-dimensional projections of conformers of Arg-H* adsorbed on a) Cu(111),
b) Ag(111), and c¢) Au(111), plotted on the gas-phase Arg map of Fig. 4.8. Only
conformers within 0.5 eV of their respective global minimum are colored.
Grey dots represent all structures from the original map of gas-phase Arg, and
serve as a guide to the eye. In each panel, representative structures are shown
from two perspectives: a side view where molecule and surface are shown
(bottom), and the corresponding top view (top) where only the molecule is
shown. The longest distance within each visualized conformer is reported in
red and H-bond lengths are reported in turquoise. . ..................

Histogram of the longest distances of adsorbed molecules on different surfaces
Binding energies of Arg and Arg-H* on Cu(111), Ag(111) and Au(111) surfaces.

Harmonic free energies calculated for adsorbed structures within the lowest
0.1 eV total-energy range. Epgg corresponds to the total energy of the system
obtained at density-functional theory (DFT) level and Fy,pm corresponds to
the free energy of the system at 300 K calculated as described above.. . . . ..

Low dimensional projections of adsorbed Arg and Arg-H* on Cu(111), Ag(111)
and Au(111) color-coded with respect to the distance of the center of mass of
the molecule with respect to the surface. Grey dots represent all structures
from the original map of isolated Arg where the projection was made, and
serveasaguidetotheeye. .......... ...t

Projection of Arg and Arg-H" conformers adsorbed on the different metalic
surfaces on the low-dimensional map of gas-phase Arg, colored according to
the H-bond pattern. ... ....... ... . ... .

Orientation of the C,H group in a) up orientation (hydrogen pointing towards
vacuum) and b) down orientation (hydrogen pointing towards the surfaces).
¢) The amount of structures with up and down orientation within 0.1/0.5 eV
from the global minimum of each surface. . . . ................... ...

Low dimensional maps of Arg and Arg-H* adsorbed on Cu(111), Ag(111) and
Au(111) color-coded with respect to the orientation of the C,H group. Blue
correspond to up orientation and red correspond to down orientation of the
CoH group. . . ... e

Electronic-density difference averaged over the directions parallel to the sur-
face for the lowest energy conformers of Arg adsorbed on Cu(111) (a), Ag(111)
(b), and Au(111) (c), as well as of Arg-H* adsorbed on Cu(111) (d), Ag(111) (e),
and Au(111) (f). Positive values (red) correspond to electron density accumu-
lation and negative values (blue) correspond to electron density depletion.
In each panel, we also show a side and top view of the 3D electronic density
rearrangement. Blue isosurfaces correspond to an electron density of +0.05
e/Bohr® and red isosurfaces to -0.05e/Bohr®. .. ............ ... .....

71

72

74

75

76

76

77

Xiii



List of Figures

Xiv

4.22 Projected densities of states of the lowest energy structures on each surface.
Filled area corresponds to the occupied states below highest occupied state
(VBM) of the whole system. HOMO (black solid line) and LUMO (black dashed
line) are the states of the corresponding gas-phase molecular conformer calcu-
lated with the same geometry as it adopts when adsorbed. The Fermi energy
of the pristine slab is depicted with blue dashed line. . ................

4.23 Side and top views of the adsorbed structures of a) Arg on Cu(111) and b)
Arg-H* on Cu(111). Dashed black lines correspond to: average z position of
the atoms in the lowest layer of the surface (left), average z position of atoms
in the highest layer of the surface (middle), centre of the mass of the molecule
(right). Red/blue solid lines (and also red/blue regions) correspond to the
electron density accumulation/depletion with Perdew, Burke and Ernzerhof
(PBE)Ofunctional. . . ......... .. e

4.24 Energy differences upon hydrogen dissociation for selected conformers of Arg
and Arg-H" on all metallic surfaces. AE = Egep — E, Where Egep, is the total
energy of the dissociated structure after optimization (including the adsorbed
hydrogen) and E the energy of the optimized intact structure. A negative AE
indicates that deprotonationisfavored. . . . ........................

4.25 All structures that were analyzed for the calculation of the deprotonation
energies. AE is alsoreportedineachpanel. . .. .....................

4.26 Low-dimensional map of the conformational space of the Arg and Arg-H*
molecules adsorbed on the Cu(111) surface. The map was optimized consid-
ering all DFT and INTERFACE-FF structures. Green dots represent conforma-
tions obtained at DFT level of theory and red dots represent conformations
obtained after geometry optimization with INTERFACE-FE Close proximity of
the dots reflects their structural similarity. .. .................... ...

4.27 Comparison of the relative energies obtained from DFT optimized structures
and the same structures after post-relaxation in with the INTERFACE force
fleld. ...

5.1 Workflow of the GenSecpackage................. ... ... ......
5.2 a) 3D representation of a flexible molecule (di-L-Alanine); b) representation of
di-L-Alanine as undirected graph together with rotatable bonds automatically
identified using GenSec coloured in red, green, blue and orange. ........

80

81

81

82

83

83

90

92

5.3 Examples of self-assembled structures obtained with GenSec for F6-TCNNQ/MoS2

with 2 molecules in a (4x8) MoS, supercell. ........................
5.4 Examples of the orientations for two different conformers. Big blue vector
denotes main direction, smaller red vector denotes minor direction. Magenta
circle is a Na atom from which one can see three small vectors: red - x-axis,
green - y-axis and blue - z-axis. First number in brackets denotes a "self-
rotation" around main vector with respect to the "initial" orientation and
three other number represent direction of the mainvector.. . ...........

95



List of Figures

5.5 Representation of the construction of the approximated Hessian matrix using
different preconditioning schemes a) Representation of the different parts
of the system for which different preconditioning schemes can be applied
separately; b) the combined approximated Hessian matrix constructed using
different preconditioner schemes applied for different parts of the system. . 99

5.6 Performance gain for the geometry optimization of Lennard-Jones (L]) clus-
ters of different sizes using vdW preconditioning scheme, compared to the
unpreconditioned case.. . . ... ... e e 101

5.7 Performance gain for geometry optimization with Exponential precondition-
ing scheme applied to Cu bulk systems (left) and performance gain of the
Lindh preconditioning scheme applied to geometry optimization of different
conformers of Alanine dipeptide structures (right). .................. 102

5.8 Performance gain for geometry optimization of different randomly generated
conformers of Alanine dipeptide with reinitialization of the Hessian after the
conformational change exceed 0.1A. ... ... ... ... ................ 103

5.9 Performance gain for geometry optimization with different preconditioning
scheme applied to geometry optimization of hexane on Rh surface. ... ... 104

5.10 Two STM images of di-L-alanine on Cu(110) at low coverage. The molecules
were evaporated at a sample temperature of 248 K and scanning took place at
208 K to freeze out diffuzion: (a) 160 A x 160A, V; =—2.10V, I; =—0.34 nA.
(b) Two islands with parallel (P) or anti-parallel (A) di-L-alanine molecules
in adjacent rows: 90 A x 90 A, V; =—1.68V, I; = —0.34 nA. Reprinted from
Surface Science, Volume 545, Issues 1-2, Ivan Stensgaard, Adsorption of di-L-
alanine on Cu(110) investigated with scanning tunneling microscopy, Pages
L747-L752, Copyright 2003, with permission from Elsevier. . . . .......... 105

5.11 (a) STM image of di-L-alanine on Cu(110). All molecules in an island are
oriented parallel of antiparallel to the [332] direction as indicated by the two
directions of the arrows. The di-L-alanine was evaporated at a sample tem-
perature of 363 K and imaged at 198 K. Area: 250 A x 250 A, V; =—1.25V,

I, =—0.65 nA. (b) Formation of a domain boundary (marked with an arrow)
between two antiparallel domains. Adsorption temperature: 363 K, imaged at
268K, 100A x 100A, V; =—1.68V, I, =—1.52 nA. Reprinted from Surface Sci-
ence, Volume 545, Issues 1-2, Ivan Stensgaard, Adsorption of di-L-alanine on
Cu(110) investigated with scanning tunneling microscopy, Pages L747-L752,
Copyright 2003, with permission from Elsevier. ..................... 105



List of Figures

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Al

A2

Schematic model of the di-L-alanine surface layer on a Cu(110) substrate. The
size and orientation of the unit cell is indicated. The atoms of the molecules
are shown in shades of grey going from N (darkest) via O to C (lightest). Hydro-
gen atoms are left out. The molecule marked A in the upper right corner has
been rotated by 180° and shifted slightly to adopt the same local adsorption
geometry as the unrotated molecules. The position of the molecule before
rotation is shown as an outline. Reprinted from Surface Science, Volume 545,
Issues 1-2, Ivan Stensgaard, Adsorption of di-L-alanine on Cu(110) investi-
gated with scanning tunneling microscopy, Pages 1.747-1.752, Copyright 2003,
with permission from Elsevier.. . . . ....... ... ... . ... ...

a) Schematic representation of the di-L-alanine amino acid in its zwitterionic
configuration. Red atoms are oxygen; blue atoms are nitrogen; white atoms
are hydrogen, and grey atoms are carbon. b-d) Schematic representation of
CUL10). « vt e

Modelled STM images and structures 1-8 of di-L-alanine molecules adsorbed

on Cu(110) surface together with unit cell represented with black dashed lines.

proposed and relaxed structures. . . . . ... ... oo

Energy hierarchy of the obtained structures within 1 eV relative energy range.

Modelled STM image and structure of structure 7 after deprotonation together
with unit cell represented with black dashedlines ...................

Modelled STM image colored in oranges and experimental STM image col-
ored in grays of di-L-alanine on Cu(110) aligned in direction of strand grow.
Reprinted from Surface Science, Volume 545, Issues 1-2, Ivan Stensgaard,
Adsorption of di-L-alanine on Cu(110) investigated with scanning tunneling

microscopy, Pages L747-L752, Copyright 2003, with permission from Elsevier.

Side and top views of the adsorbed structures of Arg on Cu(111). Dashed black
lines correspond to: average z position of the atoms in the lowest layer of the
surface (left), average z position of atoms in the highest layer of the surface
(middle), centre of the mass of the molecule (right). Red/blue solid lines (and
also red/blue regions) correspond to the electron density accumulation/de-
Pletion. . ... e

Side and top views of the adsorbed structures of Arg on Ag(111). Dashed black
lines correspond to: average z position of the atoms in the lowest layer of the
surface (left), average z position of atoms in the highest layer of the surface
(middle), centre of the mass of the molecule (right). Red/blue solid lines (and
also red/blue regions) correspond to the electron density accumulation/de-
Pletion. . ... e e

106

109

110

110

111

112

120

121



List of Figures

A3

A4

A5

A6

B.1

B.2

B.3

B.4

B.5

Al

Side and top views of the adsorbed structures of Arg on Au(111). Dashed black
lines correspond to: average z position of the atoms in the lowest layer of the
surface (left), average z position of atoms in the highest layer of the surface
(middle), centre of the mass of the molecule (right). Red/blue solid lines (and
also red/blue regions) correspond to the electron density accumulation/de-
Pletion. . . ...

Side and top views of the adsorbed structures of Arg-H* on Cu(111). Dashed
black lines correspond to: average z position of the atoms in the lowest layer
of the surface (left), average z position of atoms in the highest layer of the
surface (middle), centre of the mass of the molecule (right). Red/blue solid
lines (and also red/blue regions) correspond to the electron density accumu-
lation/depletion. . ........... ... i e

Side and top views of the adsorbed structures of Arg-H* on Ag(111). Dashed
black lines correspond to: average z position of the atoms in the lowest layer
of the surface (left), average z position of atoms in the highest layer of the
surface (middle), centre of the mass of the molecule (right). Red/blue solid
lines (and also red/blue regions) correspond to the electron density accumu-
lation/depletion. . ... ..... ... e

Side and top views of the adsorbed structures of Arg-H* on Au(111). Dashed
black lines correspond to: average z position of the atoms in the lowest layer
of the surface (left), average z position of atoms in the highest layer of the
surface (middle), centre of the mass of the molecule (right). Red/blue solid
lines (and also red/blue regions) correspond to the electron density accumu-
lation/depletion. . ... ... ... ...

Modelled STM images and structures 1-5 of di-L-alanine molecules adsorbed
on Cu(110) surface together with unit cell represented with black dashed lines
Modelled STM images and structures 6-10 of di-L-alanine molecules adsorbed
on Cu(110) surface together with unit cell represented with black dashed lines
Modelled STM images and structures 11-15 of di-L-alanine molecules ad-
sorbed on Cu(110) surface together with unit cell represented with black
dashedlines ............ . ... . i

Modelled STM images and structures 16-20 of di-L-alanine molecules ad-
sorbed on Cu(110) surface together with unit cell represented with black
dashedlines . ....... ... . . . . . .. ..

Modelled STM images and structures 21-23 of di-L-alanine molecules ad-
sorbed on Cu(110) surface together with unit cell represented with black
dashedlines ........ ... . ... i

Molecule-surface, intrastrand and inerstrand interactions for the lowest en-
ergy structures of di-L-alanine adsorbed on Cu(110) surface . . . .........

122

123

124

125

128

129

130

131

132

xvii






List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

Lattice constants (in A) of bulk metals determined with the PBE, PBE4+vdW
and PBE+vdW*™! functionals (light settings). . .....................

Relative binding energies (in eV) of relaxed Arg@Cu and ArgH@Cu for different
surface unit cell sizes with a 8x8x1 k-grid for the cell sizes less than 10x12
and 4x4x1 for the 10x12 unit cell. All numbers are reported with respect to
the binding energy for the structure A modelled with a 5 x 6 surface unit cell.
Fermi energies calculated with the PBE functional for the 4-layer slabs with
(111) surface orientation used in our calculations of the binding energies of
charged molecules to the different surfaces. All valuesineV.............

Number of calculated Arg and Arg-H structures in isolation and adsorbed on
Cu(111), Ag(111) and Au(111). . ..ottt e e i e

Calculated charge on the molecule with use of Hirshfeld partial charge analysis

and by integration of the electron density difference in the molecular region.

Valuesareinelectrons. . ......... ... ..,
Surface site adsorption preferences of chosen chemical groups in Arg and
Arg-H". All numbers are reported as a percentage of the total number of
conformers optimized with DFT (PBE+vdWs") and the INTERFACE-FE

57

60

60

60

79

84

Xix






List of Tables

[50mm] Does anybody really know the secret

Or the combination for this life and where they keep it?
It’s kinda sad when you don’t know the meanin’

But everything happens for a reason...

“Take a look around”, Limp Bizkit






|} Introduction

Because of the fascinating potential applications of hybrid organic-inorganic interfaces, ad-
sorption and self-assembly of organic molecules on surfaces are critical topics in nanoscience
and nanotechnology [1]. For example, amino acids that are the building blocks of peptides
and their oligomers are particularly intriguing because they are naturally biocompatible
and provide a rich functional space already at the amino acid (AA) level. The combinatorial
increase in molecular motifs made available by forming peptide bonds can further enlarge
this functional space. By immobilizing a bioorganic component on a substrate, an inorganic
part acts as a platform to support and capture interactions and reactions, which provide the
path for creating different bionanoelectronic devices.

In recent years, a tremendous effort has been expended to identify adsorbates’ structure on
surfaces and disentangle the processes behind self-assembly that would lead to the rational
design of materials and devices with desired properties.

From a theoretical point of view, this poses a challenge to computational modelling, particu-
larly regarding the prediction of stable configurations at the interface at different conditions,
which determines the electronic properties of the system as a whole. Even in the gas-phase,
single AA have rich conformational spaces, where they can have hundreds of distinct local
minima [2], and determination of them requires computationally expensive methods. After
adsorption on the surface, the conformational preferences of the AAs can change dramat-
ically due to a combination of factors, such as van der Waals (vdW), electrostatic or ionic
interactions, but also due to their reduced flexibility, as well as by intermolecular forces
and interactions with the surface itself [3, 4]. The systematic structure search of molecules
adsorbed on surfaces and creation of databases including energetic information from the
theoretical approaches is of high importance for revealing structure-property relationships
of the interface systems, for further developments of the theoretical methods able to describe
larger structures, and for disentangling of the mechanisms of self-assembly. However, such
studies are challenging as they require (i) accurate energetics for a system containing ele-
ments across the periodic table and where considerable charge rearrangement and chemical
reactions can occur (ii) sampling and representing a large conformational space, and (iii)
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dealing with structure motifs that can only be represented by unit cells containing hundreds
of atoms.

The scope of this thesis is the description of the complex nature of the interaction of AAs
with metallic surfaces and the creation of tools for high-throughput calculations for investi-
gations of interface systems. An exhaustive structure search for two AAs on three metallic
surfaces was performed with the use of ab initio methods that are required for analysis of
the electronic properties of the interface systems. The database created during the work
contains thousands of local minima and is available for further development of the meth-
ods that can accelerate the research of self-assembly phenomena. The databases were
analyzed with state-of-the-art unsupervised machine learning techniques that help reveal
structure-property relationships in that kind of system. Further, we developed a package
that automates the structure search of flexible molecules with respect to specified surround-
ings that connects to most of the electronic structure packages available today, making it
freely available and open source. We investigate the adsorption of a di-L-alanine molecule
adsorbed on Cu(110) surface using this package.

1.1 Amino acids and peptides

AAs are organic compounds that contain amino (—NH,) and carboxyl (—COOH) functional
groups, along with a side chain unique to each AA. AAs are known to be the monomer
units of peptides and are essential for the existence of life. In the form of proteins, AA
residues are the second-largest component of human muscles after water. Analyses of a
large number of proteins from nearly every possible source have revealed that all proteins are
made up of 20 “standard” AAs. Not all 20 types of AAs are found in every protein, although
most proteins contain the majority, if not all, of the 20 types [5]. In addition, AAs and
their derivatives are involved in processes as neurotransmitters - chemical messengers for
communication between cells. For example, diminished activity of serotonin (tryptophan
derivative) pathways plays a causal role in the pathophysiology of depression [6].

The most general formula to represent the common AA which is called ¢-amino acid, is
reported in Fig. 1.1 a: the molecule is distinguished by the presence of a a carbon atom
in the center, to which both the amino and carboxyl groups are attached. The rest of the
molecule is represented as a side chain (R group), the structure of which uniquely defines all
the common AAs. Depending on the molecule’s environmental conditions, AAs can exist in
three different chemical forms (see Fig. 1.1 a): i) the neutral form is common for isolated
molecules; (ii) the zwitterionic form is common for solid AAs crystals and for molecules on
poorly reactive surfaces and in solutions. This form appears when a proton is transferred
from the carboxylic group to the amino group of the same molecule, which maintains its
global neutrality; (iii) the anionic state is typical for AAs that interact strongly with a substrate,
resulting in chemical bond breaking/formation and deprotonation of the molecule.

Except for the smallest AA glycine, all other AAs are chiral (Fig. 1.1 b), which implies that they
have nonsuperimposable mirror images known as enantiomers of one another. Although
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there exist (L) and (D) enantiomers, the (L)-enantiomer is the only one found in living
beings; as a result, the vast majority of investigations have been conducted on (L)-type
molecules.

As one progresses towards more complicated and "realistic" biomolecules, one comes across
peptides, which are polymers of AAs connected by CO-NH peptidic bonds (Fig. 1.1 c). A
dipeptide, for example, is formed by the condensation of two AAs, i.e. the reaction between
one AA’s carboxyl group and the amino group of the second, with the elimination of one water
molecule. Peptides are chains of comparable (homopeptides) or different (heteropeptides)
AAs. Proteins are the "summum" of a peptide chain, where the sequence of AAs, their location,
and their three-dimensional layout regulate the biological activity of the molecule.

AAs exhibit a range of polarity and structural features. AA side chains can be nonpolar (e.g.
glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tryptophan),
polar (e.g. serine, threonine, asparagine, glutamine, tyrosine, cysteine), or charged (e.g.
arginine, lysine, histidine, aspartic acid and glutamic acid). Side chains may be nonpolar or
polar (neutral or charged). They may be aliphatic (e.g. alanine) or contain other functional
groups such as carboxylic group (e.g. glutamic acid), amino group (e.g. lysine), or sulphur
(e.g. cysteine). Additionally, they can be linear (e.g. glutamic acid) or have one heterocycle
(e.g. proline) or aromatic (e.g. tyrosine) ring in their side chain. The structures of the twenty
most frequent AAs, along with their three-letter notations and side-chain characteristics, are
depicted in Fig. 1.2. More comprehensive review considering other properties of AAs and
other AAs that are not specified by the “universal” genetic code that is common for almost
all life forms can be found in biochemistry textbook [5].

Even with the mentioned AAs, the chemical space of possible configurations is genuinely
immense, and peptides that can be formed of different sequences of AAs will vary a lot on
their structural configuration and properties, which presents an advantage for the rational
design of different nanodevices and functionalization of inorganic surfaces.

1.2 Recentapplications of peptide-inorganic surface interface sys-

tems
In this section, we would like to show some of the recent applications of peptide-metal
interfaces and thus showcase the great potential of such a field of research.

The use of peptides in solar cell applications, inspired by natural photosynthesis processes,
is arguably the most straightforward optoelectronic application. Appending a dye to the side
chain, or one of the ends, of a peptide, was shown to be effective in extending the absorption
spectrum and increasing photocurrent production capacities [7, 8] even when the peptide is
physically adsorbed on a gold surface [9]. In the presence of dyes with different excitation
wavelengths, the synthesis of mixed monolayers of helical peptides with opposing dipole
orientations towards the surface allowed the creation of a molecular photodiode system that
can switch photocurrent direction by varying the excitation wavelength [10]. The efficiency
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Figure 1.1 — a) The general structure of a ¢-amino acid in its neutral, zwitterionic, and
anionic states. The amino group is highlighted in blue, the carboxylic/carboxylate group is
highlighted in red, the a-carbon is highlighted in black, and the side chain is highlighted in
green; b) Schematic representation of the Alanine amino acid in its neutral configuration.
Red atoms are oxygen; blue atoms are nitrogen; white atoms are hydrogen, and grey atoms
are carbon. The R symbol stands for the side-chain (highlighted with green dashes), here
represented by the CHj group. In (i) L-Alanine, with respect to the central C, carbon and
in (ii) a D-Alanine; c) Schematic representation of the formation of the peptide bond: two
amino acids with different side chains R; and R, react to form a peptide via the production
of a water molecule.
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for quantitative modulation of the work function of a substrate [19].

Figure 1.2 — Scheme of the 20 most common ¢-amino acids present in nature, represented
in their neutral form.

of the organic solar cells can also be tuned by interfacial modification with an ultrathin
peptide layer that causes changes in the work function of the substrate [11] that is also highly
dependent on the peptide sequence and conformation of the backbone [12, 13].

Using peptides as molecular bridges and producing conductive wires is crucial for the next
generation of bioelectronic devices. The effectiveness of electronic transport is dependent
on the overall charge of protonating side chains which allow controlling I-V characteristics
of peptide junctions [14-16]. Self-assemblies on surfaces can provide the unique and flexible
way to implement ensembles of low-dimensional quantum confinement geometries [17],
for example, of fullerenes that are too mobile on the surface without such a template [18] or

Using peptide monolayers as an antifouling coating [20, 21] to inhibit the adherence of
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proteins and organisms to surfaces is one of the most potential applications in industry
and medicine. Promotion of cell adhesion and proliferation on biomaterials is essential for
the successful integration of implants [22]. Cell binding motifs, such as the Arg—Gly—Asp
peptide, can be anchored to the surface of a biomaterial to increase its mechanical and
biological characteristics [23]. It has been proven that titanium surfaces, a material that is
commonly utilized in the implant industry, can be functionalized with cell-binding peptides
by employing Cys AAs as the binding factor [24]. Also, the surface reactivity can be altered
by using the intrinsic chirality of AAs, which enables chiral separation and enantioselective
heterogeneous catalysis [25-27].

Another example is controlling the wettability of graphite surfaces using self-assembled
peptides by mixing distinct peptide types (hydrophobic and hydrophilic) in different ratios
[28]. The excellent stability of peptide nanostructures, as well as their vast surface area and
controlled wettability features, make them an appealing candidate for use as the dielectric
layer in supercapacitors [29, 30]. Also, AAs are non-toxic, relatively cheap and easy to produce
promising green corrosion inhibitors [31-35].

At the time of writing, the author can not stress enough the need for producing biosensors
targeted explicitly for detection of the pathogenic microbes and viruses, where organic
molecules provide high biocompatibility and tunable selectivity due to significant variations
of accessible chemical configurations [36-42].

Even though there are already many applications and devices, the fundamental mechanisms
that govern particular structures adopted on particular surfaces remain unclear. The follow-
ing section will be devoted to both state-of-the-art experimental and theoretical methods of
investigations of organic-inorganic interfaces.

1.3 State of the art

During past decades it has been proven that a large diversity of distinct molecular assemblies
may form via adsorption of organic molecules at inorganic surfaces. However, many aspects
of the interaction mechanisms of biomolecules and inorganic surfaces are still unclear.
Often, the shape of such self-organized structures may be adjusted by carefully controlling
the deposition circumstances such as temperature [43-45], coverage [46] or changing of the
substrate [47-50]. This section will offer a quick review of the methodologies that are used
to investigate the adsorption of AAs on inorganic surfaces.

1.3.1 Experimental techniques

Self-assembly processes between molecules start with the adsorption of individual molecules
from the gas phase (or liquid), then diffusion on the surface and further island formation
through molecule-molecule interaction. Using a crucible (Knudsen cell) to sublimate AAs
from a crystalline form under vacuum conditions is a standard method for generating organic
layers on the substrates [51]. Such a technique is limited to relatively small peptides (of up
to four AAs) and requires careful adjustment of the sublimation temperature since melting
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the powders can damage them. One of the most sophisticated approaches is soft-landing
electrospray ion beam deposition (ES-IBD) since the production of intact gas-phase ions by
electrospray ionization is not limited by low thermal stability [52-54]. Molecular ions are
decelerated before landing, preventing fragmentation and guaranteeing that the molecules
remain intact following deposition. The use of mass spectrometry, mass filtering, and soft
landing, all of which are essential to the ES-IBD process, ensures the intact and extremely
pure deposition of the selected species under ultrahigh vacuum [52, 55, 56].

The most fundamental tool to study the self-assembly patterns of molecules is scanning
tunneling microscopy (STM), which is based on the concept of quantum tunnelling. This
technique measures the tunnelling current as a function of the sharp conducting tip posi-
tion, applied voltage, and the local density of states (LDOS) of the sample since electrons
can tunnel across the vacuum between tip and sample when the bias voltage is applied
[57]. This technique allows one to determine the atomic positions in molecules and the
morphology of the substrate. STM allows to obtain a three-dimensional profile of a sam-
ple as an image and distinguish different adsorption patterns of a single peptide [58-60]
or how the self-assemblies look depending on the different chemical composition of the
adsorbates, substrate, and overall deposition conditions [25, 46, 61-65]. However, the inter-
pretation of STM images of molecules adsorbed on surfaces is not straightforward. First of all,
STM images are not a topography map but also include electronic information of both the
molecule and the underlying surface. In the case of chemisorbed systems, STM images carry
information about the chemical bonding that can be extracted only from complementary
investigations.

STM is often supplemented with spectroscopic studies that provide chemical state informa-
tion of the adsorbed molecules and the surroundings of the functional groups. For example,
AA adsorption can occur in different protonation states that can be described by proton
configuration of carboxyl and amino groups (neutral, anionic or zwitterionic) and by differ-
ent protonation configuration of Histidine AA. The occurrence of a zwitterionic form can
be evidenced by X-ray photoemission spectroscopy (XPS) that allows the investigation of
the core levels of the atoms present at the surface. The XPS analysis of core-level shifts will
immediately show the presence of a charged NH3 functional group, which causes an upshift
on the N 1s photoemission line [25]. It is also possible to estimate the relative co-existing
states of the same molecule adsorbed on the surface.

Additionally, a tunable X-ray source allows other types of spectroscopies, like near-edge X-ray
absorption fine structure (NEXAFS), where the X-ray adsorption features can be indicated
by the photoabsorption cross section for electronic transitions from an atomic core level
to final states in the energy range of 50-100 eV above the chosen atomic core level. When
employing differently polarized light, the directed electric field vector of the X-rays can only
excite those electrons able to move parallel to it, which gives them crucial information on
the chemical bonding orientation [49, 66, 67].
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Vibrational spectroscopy is another experimental technique that exploits the fact that
molecules absorb energy at specific frequencies which resonate with their vibrational modes.
Due to interactions with the surface, those specific frequencies are changed relative to
gas-phase frequencies but remain characteristic to the adsorption site’s chemical groups,
configuration, and geometry. On metal surfaces, reflection absorption infrared spectroscopy
(RAIRS) [68, 69] or high resolution electron energy loss detection (HEELS) [70, 71] can be
employed. However, due to many potential vibrational modes, additional methods are fre-
quently essential for the characterization of the adsorbed system. For more comprehensive
experimental techniques, we refer the reader to the reviews [61].

Unfortunately, experimental procedures cannot provide the system with information at the
needed level of resolution. The unknown tip geometry and electrical characteristics are
usually the most significant uncertainties encountered in detailed STM interpretation. Also,
surface diffusion is significant at room temperature, causing tip instability and affecting
atomic and electrical characteristics. One of the most significant experimental limitations
of spectroscopic approaches is that spectra are obtained by measuring the sample’s total
yield of electrons or photons. A direct link between the measured spectra and the sample’s
specific geometry is not guaranteed. Because of the limited resolution, high complexity
of the systems, technical difficulties, and cost of the experiments, theoretical approaches
become essential for accessing the properties that are not accessible through experiments,
resulting in a synergy of theory and experimental data that leads to a deeper understanding
of the processes that are taking place on the surface.

1.3.2 Theoretical techniques

In addition to experimental research, model computations are required to bring more in-
sights into the structure and characteristics of the molecule-surface systems. For example,
issues that can be addressed theoretically are the nature of the intermolecular interactions,
structure of adsorbates, charge configuration of the molecules, their chemical composition,
chiral recognition, orientation and preferred adsorption sites. In principle, the theoreti-
cal foundation suitable for addressing the problems mentioned above was already fully
established with the formulation of quantum mechanics in the first part of the 20th century.
However, as Paul Dirac once wrote: “The underlying physical laws necessary for the math-
ematical theory of a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble” [72]. We are restricted to different approximations that
allow us to model systems of different scales and the available computational power that
can treat such calculations.

For modelling systems that consist of hundreds of atoms per unit cell, the most popular
theoretical approach nowadays is DFT, which delivers a good compromise between accuracy
and computational efficiency. The fundamental theorem behind DFT is that the electronis
structure properties of non-degenerate systems are entirely determined by their ground-
state electron density, n(r), that alone governs the whole behaviour of the system. The
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so-called exchange-correlation functional, which is the n(r)-dependent energy contribution
caused by quantum-mechanical and many-body deviations from a mean-field description
of the electrons, is a fundamental piece of this approach. However, a precise equation for the
universal functional still has not been found, giving rise to many suitable approximations
for different systems. DFT will be discussed in more detail in the next chapter.

Pioneering works that used DFT were focused on small or rigid AAs, and on a minimal number
of trial configurations [73-77] due to the high computational cost of such calculations at the
time. Because the first DFT studies of complex systems did not account for vdW interactions,
they were affected by a errors in their predictions; however, they are now taken into account
in more modern functionals and approaches that result in a significant increase in the
quantitative agreement between the predictions and the experimental data [78]. With the
use of DFT, one can answer whether a chemical bond is formed between AA and a substrate,
what the energy hierarchy of different adsorbed conformational configurations is, as well
as determining charge distribution on the adsorbed structures and their height above the
surface [61, 79-83].

One of the first studies that were dedicated to larger AAs highlight the challenge of adequately
sampling the large structure space of flexible biomolecules [84] that is usually not feasible
with the use of DFT due to high computational cost. These studies have clarified that an
accurate potential energy surface (PES) is only one of the ingredients needed to correctly
predict the structure of peptides at surfaces, with the sampling of structure space being just
as important.

DFT calculations not only offer valuable information on their own, but also they can provide
the basis to cheaper theoretical approaches and used, for example, as a basis for a classical
force field (FF) parameterization [85-87] or for the training of machine learning (ML) models
[88-90]. These methods can be several orders of magnitude cheaper to evaluate compared
to DFT and, in some cases, FFs specifically developed for modelling simulations between a
protein and a surface may be a good approximation. However, to obtain high-quality results,
the FF parameters must be derived and calibrated for the systems of interest. Different FFs
exist for modelling AAs on metallic surfaces and the most famous ones are GolP-CHARMM FF
[85, 91] optimized for Au(111) and Au(100) slabs, AgP-CHARMM FF [86] that is parametrized
for simulations on Ag(111) and Ag(100) in aqueous solutions and INTERFACE-FF [87] which
includes a broad range of different surfaces available for modelling. The main drawback of
using FFs in simulations is their non-transferability to systems other than those to which
they were parametrized. Another limitation of these FFs is the inability to model chemical
reactions or to capture effects such as charge transfer. While more complex FFs exist, such
as bond order-based reactive FF (ReaxFF) [92] that in contrast to the previous FFs allows
bond breaking and formation reactions, such FFs require much larger training sets, which
can be a limiting factor for using them for various systems. To the best of our knowledge,
only one ReaxFF was designed to model adsorption of glycine on Cu(110) [93].

11
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1.3.3 Global structure search

The most challenging part of theoretical modelling is properly sampling the large structure
space of flexible biomolecules. Theoretical methods such as DFT and FF allow for the
calculation of the forces acting on nuclei based on the input geometry of the structure. It is
possible then to determine the nuclei arrangement that results in local or global minima of
the system with a given PES.

Finding the global minimum of the system implies sampling the conformational space of
complex molecular systems, which frequently arises in the context of molecular dynamics
(MD) simulations. With the use of MD methods, Newton’s law of motion is solved numerically
for the nuclei. Itis possible, then, to sample the most likely regions of the PES with an array of
different MD flavours, such as Born-Oppenheimer and Car-Parrinello [94]. These are usually
denoted as ab initio molecular dynamics (AIMD) simulations since the PES is constructed
using quantum mechanical approaches. Despite the very limited time scales that can be
simulated using AIMD (up to hundreds of ps), studies are employing such methods, for
example, to investigate the preferred chemical composition and adsorption sites of glycine
and lysine [95, 96], and to study peptide-silica interactions [97] or -sheet adhesion of gold
surfaces [98].

The exploration of PES with the methods described above can be very inefficient since, during
such simulations, the system can be trapped in some local minima, which limits the sampling
of the conformational space. There are different methods proposed in order to enhance
the sampling efficiency of MD simulations and these have been used for investigations of
protein-surface interactions [79]. We will discuss them in more detail in Section 3.1.

1.3.4 Analysis of high-dimensional spaces

Analysing complex molecular systems with many degrees of freedom and interpreting of
their high-dimensional data is another challenge in understanding the structure-property
relationships of flexible molecules adsorbed on inorganic surfaces. There is no analytical
method to determine the configurations of the different peptide structures. One of the first
representations developed for the analysis of peptide structures was proposed by Ramachan-
dran, which uses dihedral angle rotations around the N-C, and C,-C bonds [99] to represent
the number of possible conformations for an amino-acid residue in a protein, as well as
the distribution of those data points. The Ramachandran approach generally proposes
quite a simple metric for qualitative analysis of the secondary structures and distinguishing
between amino-acids, but is not suitable for the analysis of the structural changes within
one system due to the small number of input parameters, and requires the extraction of
specific information such as dihedral angles. The modern approach for visualising the
complex conformational space in material science is to use machine learning techniques
for dimensionality reduction that rely on introducing suitable molecular descriptors of the
whole system and introducing a metric in high-dimensional space. The main properties of
such descriptors should be (i) invariance to transformations such as translations, rotations
and permutations of atom indexing; (ii) uniqueness that implies that systems different in
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structure will be mapped in different representations; (iii) Continuity with respect to changes
in atomic coordinates, which is required for stability of ML models and (iv) generality for the
ability to describe any system [100].

Different molecular descriptors are used in computational chemistry for representing molec-
ular systems, but most of them do not fulfil all the requirements listed above. For example,
descriptors widely used in chemoinformatics such as Simplified molecular-input line-entry
system (SMILES) [101], International Chemical Identifier (InChI) [102] that encode in a
one-line notation the connectivity, the bond type, and the stereochemical information and
fingerprints such as Extended-connectivity fingerprints (ECFPs) [103] violate (ii) and (iii)
due to lack of information about the spatial arrangement of atoms. Including the spatial
3D information can be done by using Cartesian coordinates and representation on internal
coordinates, but both violate requirement (i). The field of developing molecular descriptors
is quite active, with the Coulomb matrix [104], bag of bonds (BoB) [105], many-body tensor
representation (MBTR) [106, 107], and bonds angles machine learning (BAML) [108] recently
introduced. One of the descriptors that satisfy all the requirements above and can capture
local changes of the environment is smooth overlap of atomic positions (SOAP)[109, 110],
which is a general representation where the atom-centred local neighbourhood is a sum of
Gaussians located at atoms within the local environment. The density is expanded in orthog-
onal radial, and spherical harmonics basis functions [111]. This descriptor was successfully
applied in the visualisation of conformational spaces of biomolecules [109, 110, 112-115].
The overall performance of SOAP descriptors means it appears to be becoming increasingly
popular compared to other descriptors [107, 116, 117]. With these descriptors, similarities
between atomic configurations can be formulated [107] and dimensionality reduction tech-
niques can be applied [118]. Such techniques were applied for analysis of the MD trajectories
[112] and of the AA datasets [110].

1.3.5 Overview of the thesis

In this thesis, we present one of the most extensive and accurate studies of adsorbed AAs
(with use of DFT) in the literature up to date. Global structure search of systems with large
conformational space is one of the bottlenecks in modern computational studies, and one
of the parts of this thesis is explicitly dedicated to this problem.

This thesis is divided into five main chapters. The second chapter is dedicated to the theoreti-
cal foundation, mainly to the electronic structure calculation methods used in the thesis. The
third chapter is also theoretical and describes the methods for investigating and analyzing
conformational spaces of flexible molecules.

The fourth chapter describes the work that was done to investigate the conformational
space changes of Arg and its protonated counterpart Arg-H™ after adsorption on three noble
metallic surfaces [83]. Argwas chosen as a good testbed since it is small enough to be treatable
using DFT and at the same time challenging enough due to a very flexible side-chain which
allows for hundreds of possible configurations in the gas phase alone. Also, Arg is the most
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flexible among AAs [2] and least investigated while adsorbed on metallic surfaces [61]. The
analysis of the adsorption behaviour required the creation of a database by performing alarge
number of geometry optimizations of different conformations and orientations. The analysis
of that database includes producing a low-dimensional representation of the conformational
spaces using modern dimensionality reduction techniques and following analysis of different
patterns of bonding and charge transfer and how it can affect the accessible conformational
spaces.

The fifth chapter of the thesis deals with developing the tools for the automated investigation
of flexible molecules, which also enables the modeling of self-assembly patterns formed
after adsorption. Different geometry optimization algorithms are implemented together
with a flexible way of preconditioning the quasi-Newton optimization algorithms in the
package. Together, these allow a simplified interface with a wide variety of electronic struc-
ture packages ready to sample conformational spaces of flexible molecules with respect to
1D (ions), 2D (surfaces), and 3D (cavities and molecules) fixed frames. Also, it shows the
application of the package, described in the fourth chapter, where we showcase the structure
search algorithm on the di-L-alanine molecule adsorbed on Cu(110) surface and compares
our findings with experimental results.
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YA Theoretical methods

The essential ideas, notations, and approximations utilised in this thesis are introduced in
this chapter. We will explain and motivate the central approximation in condensed matter
physics and quantum chemistry after first explaining the many-body problem, which ad-
dresses the electrons as quantum objects. Next, we will present the theoretical technique
that will play a major role in this thesis: the density-functional theory (DFT). The fundamen-
tals of DFT will be covered, including a discussion of the most common approximations
and modern developments, such as the inclusion of the long-range correlation interactions.
This chapter will also discuss the basics of theoretical production of STM images and the
calculation of charge transfer effects. Also, a short overview of the FF techniques will be
covered at the end.

2.1 The many-body problem
A system composed of nuclei and electrons may be formally characterized in quantum
mechanics by solving the time-independent Schrédinger equation. It's non-relativistic form
is given by:

A¥ =EV, 2.1)

where H represents the non-relativistic time-independent Hamiltonian operator, E denotes
the total energy of the system, and ¥ is the many-body wave function of the system that
depends on electronic and nuclear degrees of freedom ¥ = ¥(r;; R;), where r; and R; cor-
respond to the electron and nuclei position vectors. Hamiltonian H in the absence of an
external electromagnetic field consists of five terms:

A

H=T,+ T+ Vee+ Vexe+ Vo (2.2)

where 7}, and T, are the nuclear and electronic kinetic energy operators, V,_. and V,_,, are the
electron—electron and nuclear-nuclear Coulomb repulsion, and V,y, is the electron-nuclear
Coulomb attraction. For simplicity atomic units are used where the electron mass m1,, the
elementary charge e, the reduced Planck constant # as well as the vacuum permittivity

17



Theoretical methods

factor 4me( are all set to unity. The Hamiltonian in Eq. 2.2 can be written explicitly as

o 1dE v 1 E, L&y L&z EdEzz
A=__ A N N Ve _— _ = , 2.3)

where the indices i, j refer to indexes of N electrons and I, J are indexes of M nuclei so
that Z; denote the nuclear charge, M; is the nuclear mass, r;; = {r,-—r j|, ri; = [r; —Ry|
and R;; = |R —R ]{ represent the electron-electron, electron-nucleus and nucleus-nucleus
distances respectively. In the above equation, the Laplacian operators V% and V2 include
differentiation with respect to the ith electron and I'th nucleus coordinates.

Since the nuclei and electrons are not constrained in general, the solution of Eq. 2.1 implies
a problem of 3N + 3M (4N considering the spin variables) degrees of freedom. Since exact
analytical solutions to the Eq. 2.1 are only accessible in a few limited cases, the following
sections discusses approximations that allow obtaining a numerical solution for the systems
relevant to the scope of this work.

2.2 The Born-Oppenheimer approximation

The Born-Oppenheimer (BO) approximation is a fundamental concept in electronic structure
theory that provides a significant simplification of Eq. 2.1 by decoupling the dynamics of
electrons and nuclei.

Because nuclei are significantly heavier than electrons for example, for a single proton, the
ratio is )
— N —X1, 2.4)

to a fair approximation, electrons in a molecule can be thought to be travelling in a field of
fixed nuclei. Within this approximation, the first term of Eq. 2.3, the nuclei’s kinetic energy,
may be ignored, and the last component of Eq. 2.3, the nuclei’s repulsion, can be assumed
to be constant. Any constant introduced to an operator increases the operator’s eigenvalues
and does not influence the eigenfunctions of the operator. The remaining components in
Eq. 2.3 are known as the electronic Hamiltonian H,, which only depends parametrically on
the nuclear coordinates R:

He(R) = j:a + Ve—e + Vext- (2.5)

that describes the motion of N electrons in a field of M point charges. The time-independent
Schrodinger equation for electronic part, considering v electronic eigenfunctions for H, will
be:

Het)o(;R)=ES(R)Y,(5R),, with v=1,...,N (2.6)

where E? is the electronic energy of the electron that moves in the field created by the point
charges produced by the given configuration of the nuclei. The total wavefunction ¥ can be
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expanded into a nuclear y and an electronic part v as:
B(r,R)= D 73R, (5 R), 2.7)
v

where y,(R) are functions of the nuclear positions and represent the coefficients of such
expansion. With the entire Schrodinger Eq. 2.1 and a left-side multiplication by (zp u(t R)|
followed by integration over the electronic coordinates and application of chain rules, the
equation becomes [119]:

Eu(R)= [T+ Vo + ES 7R

1 (2.8)
> oz 2V RIV 5 R) T+ (e RV 1,085 R)] 7,(R
v
where E now is the total energy of the system, where we applied the property
<¢,u(r; R) [ ,(x; R)> = 5yv 2.9)

The off-diagonal elements of the last two terms in the Eq. 2.8 are called non-adiabatic
contributions, describing the interaction between different electronic states. Within the BO
approximation, these terms are assumed to be zero:

(WulVily,)=(pu| Vi yy)=0for u# v, (2.10)

which means that the atomic motion does not induce electronic excitations. The elements
for (l/) i |V§| Y u) can be also neglected in comparison with electronic ones, since electron to
proton mass ratio is at least of the order 10~ (Eq. 2.4). With all these assumptions, the BO
PES, where the nuclei move, is defined as

VIOR)= Vo n(R)+ ES(R), (2.11)

where u = 0 is the electronic ground-state. It has to be noted that the BO approximation fails
when a transition between electronic states occurs. For example, when examining organic
molecules and UV photoabsorption, a conical intersection between the electronic ground
and excited states can be observed depending on the geometry of the molecule. In this
situation, the excited molecule undergoes an ultrafast non-adiabatic internal conversion,
which does not result in the emission of radiation, and violates the condition in Eq. 2.10
[120].

2.3 Density Functional Theory

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn “for his de-
velopment of the density-functional theory” and John A. Pople “for his development of
computational methods in quantum chemistry”. The initial work on Density Functional
Theory (DFT) was reported in two of Kohn'’s publications with Pierre Hohenbergin 1964 [121]

19



Theoretical methods

and with Lu J. Sham in 1965 [122]. The main advantage of the DFT approach is its compro-
mise between accuracy and computational cost, which made it a very popular and common
technique for the calculation of the properties of different systems from condensed matter
to isolated molecules. DFT is an electronic-structure calculation method that replaces the
N-electron wave-function v, with the electron density n(r) that depends only on 3 spatial
coordinates. From an N -electron wavefunction, the electron density can be obtained by
integration:

no(r):NJ |1p0(r,r2,...,rN)|2drz...drN, (2.12)

where N is the number of electrons in the system and the dependency on the spin is omitted
for simplicity.

The foundation of DFT began from the Thomas-Fermi model [123, 124], where the energy of
the system was expressed in terms of electron density based on the homogeneous electron
gas. Based on this idea, Hohenberg and Kohn developed the mathematical basis of modern
DFT that proves that all the ground-state properties of the system can be expressed as
functionals of the electronic density [125].

2.3.1 The Hohenberg-Kohn theorems
The electron density contains all necessary information about the system, as was shown by
Hohenberg and Kohn in 1964 through two theorems:

1. The external potential v.(r) is a unique functional of electron density n(r). This means
that the electron density, in fact, uniquely determines the Hamiltonian and thus all electronic
properties of the system, making it possible to describe the properties of the system as a
functional of n(r). The total energy of the system has the form

E[n(r)] :J Vext(r)n(r)dr+ F[n(r)] (2.13)

The first term depends on the actual system of interest under investigation and includes the
electron-nuclei attraction. The second term is universal in the sense that its form does not
depend on the number of electrons, nuclei positions and their charges:

Fln(r)]=T[n(r)]+ E,_[n(r)], (2.14)

where T[n(r)] is the kinetic-energy functional and E,_.[n(r)] is the electron-electron inter-
action functional.

2. The electron density that minimises the value of the energy functional is the exact ground-
state density ng:
E[ny]l < E[n(r)] (2.15)

The proofs of the two Hohenberg-Kohn theorems are straightforward and can be found
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elsewhere [126]. Elimination of the restriction to non-degenerate ground-states was provided
by Levy-Lieb [125]. However, these theorems do not give a practical method for solving the
equations and obtaining electron densities.

2.3.2 The Kohn-Sham equations

The idea of the Kohn-Sham scheme is to define a non-interacting system of N electrons
whose ground-state electron density exactly equals the ground-state density of real, inter-
acting system ny. The density is then constructed as a sum of single-particle Kohn-Sham
(KS) orbitals:

N
n(r)=>_ ¢ix)p;(x). (2.16)

The KS theorem ensures the existence of an effective external potential such that a system of
non-interacting electrons will produce exactly the same ground-state electron density. Then
one can rewrite the total energy functional in a way that includes well-defined terms:

E[n(r)]= Ts[n(r)]+ Vu[n(r)] + Exc[n(r)]""f Vext(r)n(r)dr, (2.17)

where Ty is the kinetic energy operator of non-interacting system and Vj;[n(r)] is the Hartree

term: N
Tyl =— > (9 0|v2| 90, 2.1
Viln(r)] = %JJ %drdr’, (2.19)

where the factor 1/2 is present to avoid double counting. The first three terms of Eq. 2.17 are
the functional F[n(r)], and the quantum-mechanical many-body complexity is described
by E,.[n(r)], the exchange-correlation (XC) functional that is unknown. E,[n(r)] includes
the difference between the true kinetic energy T[n(r)] and the kinetic energy of the non-
interacting system, as well as all the non-classical electron-electron interactions:

Ex [n(n)] = T[n(0)]—Ts[n(r)]+ Ve_[n(r)] = Vu[n(r)]. (2.20)
As in the Hartree-Fock method, applying the variational principle and minimizing Eq. 2.17

with respect to the electron density, with the constraint that any electron density must
conserve the total number of electrons, yields the set of single-particle KS equations [127]:

5S¢ (r)=€;¢;(r) (2.21)

(57 0+ 00) vl 1061 = 1,0 .22
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gp. 9Bln)] (1), (2.23)

|r—rj| P on(r)

where vy is called Hartree potential and v, is XC potential. Usually these three potential are

CAIGIC) I i1 1)
on(m NPT

combined in one effective single-particle potential:

veff(r) = vu(r)+ ch(r) + Vext(r)- (2.24)

Starting with a trial electron density and solving the set of single-particle equations from
Eq. 2.22 one can obtain a new set of eigenstates from which to obtain a new density, and
continuing this procedure minimizes the total energy self-consistently.

2.3.3 Exchange correlation functionals

Until now DFT in itself is a truly ab initio method if the exact form of the XC functional could
be written down. Since it is not known, approximations to it have to be made, which gives
rise to different density-functional approximation (DFA) that can be separated into different
types. The simplest is the local density approximation (LDA). The XC energy functional in
LDA is written as:

E M n(r)= J Exc[n(n)]n(r)dr, (2.25)

where e,.[n(r)] is the XC energy per particle of a uniform electron gas of density n(r). This
term can be divided into exchange and correlation terms e, [n(r)] = e4[n(r)] + €[ n(r)] which
leads to

Ey[n(r)]= E[n(r)]+ Ec[n(r)]. (2.26)

The exchange energy of the homogeneous electron gas (HEG) has an analytical form:

33\
E)I;DA:—Z(%) fn4/3(r)dr. (2.27)

The form of the correlation energy is unknown, but accurate approximations to it obtained
from Quantum Monte-Carlo calculations exist [128]. For systems such as bulk metals where
the electron density varies very slowly, the LDA is quite a good approximation. However,
it is known to fail for cases where the electron density cannot be taken as uniformly dis-
tributed.

The generalized gradient-approximated (GGA) functionals are the most straightforward
extension of LDA to inhomogeneous systems. This class of XC functionals, also known as
semi-local functionals, incorporate the gradient of the electron density Vn(r) to account for
non-locality:

Eg%n(r)]= f f(n,Vn)dr= f Exc(n(r)) Be(n(r), Vn(r)n(r)dr. (2.28)
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Numerous efforts have been made in recent years to design and parametrize a variety of
GGA functionals. The most popular GGA functional is the PBE functional [129] which is a
non-empirical functional, in the sense that all parameters are basic constants, and there is
no parametrization dependence on experimental data. GGA functionals outperform the
LDA in terms of total energies, atomization energies, energy barriers, and structural energy
differences. When used to analyze the structure of molecules, the GGA functionals produce
good results, however, they can greatly underestimate the binding energies of weakly bound
systems [130].

Another type of functionals consist of mixing of Hartree-Fock-exchange energy with the
exchange and correlation of the semi-local functional proposed by Becke [131]:

EMMn(r) = a EMF[n(n)] + (1 — ) ES“Mn(r)] + ES“n(r)], (2.29)

where the parameter « regulates the mixing. The exact exchange is taken from Hartree—Fock
theory [132]:

1 1
BT =—§;JJ ¢?(1‘1)¢;(1‘2)E¢j (r1)¢;(rz)dr dr, (2.30)

There are hundreds of different functionals nowadays [133] and an informal classification,
where XC functionals of similar capabilities are placed at the rungs of the “Jacob’s ladder” was
proposed by Perdew [134]. Comprehensive information about different types of functionals
can be found in the literature [135]. The functional that will be mostly used in this thesis is
PBE and in some cases PBEO [136, 137]. For PBE, the XC functional is expressed as

EPBE[n(r)] = EP*En(n)] + EPPE[n(r)), 2.31)

where the exchange functional EF®8[n(r)] is

EFPPE[n(r)] = f n(r)ePA n(r)] E(s)dr, (2.32)
where s
ex[n(r)]= —Z (%) n(r)'? (2.33)

is the exchange energy density in the uniform electron gas (see Eq. 2.27) with

n(r)= 3 i

_2 2.34
4 rd (234

where r; denotes the radius of a sphere that contains one electron on average. F(s) denotes
the GGA enhancement factor depending on a dimensionless density gradient s which is
defined as s = |Vn(r)|/(2kp n(r)), where kr = (3n2n(r))1/3 is the Fermi wave vector. The
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enhancement factor F(s) has to satisfy a formal conditions [129] and is expressed as

E(s)=1+«k (2.35)

C 1+us?/k’
with u = B (?/3), B =0.066725, and k = 0.804.

The correlation energy in PBE is expressed as the local correlation plus a correction term
H(r,,Z, t)[129] and has the following form

EFPPE[n(r)] =J drn()[ePA (ry, )+ H (15, ¢, 1)) (2.36)

where P4 is the correlation energy density in PW-LDA approximation [138], { is the magne-
tization density and ¢ is dimensionless gradient (See details in Ref. [129, 139)).

The functional PBEO mixes ay = 0.25 of exact exchange (E EX) to the PBE functional, having
the form:
EPPEO = ayEJ" +(1—ag) EPPF + EPPE, (2.37)

where the value ay = 0.25 was chosen based on considerations from fourth order many-body
perturbation theory [140].

2.4 Long-range van der Waals interactions

Even though the exact DFT would include all correlation effects, the approximations repre-
senting the state-of-the-art density functionals are typically unable to describe dispersion
and non-local correlation effects by construction [141]. However, the accurate incorpo-
ration of weak vdW interactions are especially crucial for calculation of the properties of
such systems as biomolecules [142-144], molecular crystals [145, 146] and interface systems
[130, 147-154] due to their collective nature. Even if after adsorption the molecule covalently
binds to the surface, the accurate description of the vdW interactions are crucial for such
kind of systems that makes it possible to obtain deviations in theoretical adsorption heights
within 0.1-0.2 A within experimental values [78]. A theoretically accurate method for a de-
scription of the vdW interactions was recently developed and takes into account electronic
screening and the many-body nature of the dispersion term [155].

There are many groups working on inclusion of the vdW corrections and introduction to
different approaches that also can be classified in the similar way as well-known “Jacob’s
ladder” of functionals introduced by Perdew [134] can be found in the literature [156]. One of
the most wide-spread way to account for vdW interactions nowadays are so-called pairwise-
additive dispersion correction schemes, where vdW energies are calculated analytically after
the convergence of the electronic self-consistency cycle [157-164]. The total energy in this
case will be:

Eior = Eppa + Evaw, (2.38)
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where Epp, is the total energy of the system obtained with particular DFA. The dispersion
contribution E, 4y is defined as the interaction between mutually induced charge fluctua-
tions arising from the instantaneous quantum mechanical excitations of electrons. At large
distances, the dispersion interaction can be expressed via a multipolar expansion of the
Coulomb potential, as a series in inverse powers of R and, by taking the first term 1/R° that
corresponds to the instantaneous induced dipole-induced dipole interaction that is the
main contribution, we get:

1 Cs,4B
Buw=—5 > =& (2.39)
AZB "AB

where the indices A and B refer to two different atoms, and the sum runs over all possible
combinations of atoms in the system, Cs 45 is the dispersion coefficient of the two atoms
and R4 is the interatomic distance between them. One drawback of using formula 2.39
is the fact that for small interatomic distances it is clearly diverges, and so the damping
function fyamp (Rap) is needed to remove this divergence and also to minimize the overlap
between the short-range contributions of the XC functional and of the vdW correction. In
this case the formula for dispersion correction looks like:

1 < Co,a8
Evqw = _E Z Rdeamp (Rag)- (2.40)
A#B ~AB

In the simplest approach the C; 45 coefficients are constant and isotropic. Such methods
do not include many-body dispersion effects such as screening in metals [165] and keeping
of the Cg coefficients constant neglect the environmental contributions. Obtaining the
Cs coefficients could involve experimental ionization potentials and polarizabilities [166],
however, this imposes a constraint on the list of components that may be handled to those
found in organic compounds.

The next step to increase the accuracy of the dispersion correction is to include environment-
dependent Cy corrections where the dispersion coefficient of an atom in a molecule depends
on the effective volume of the atom. The most popular schemes developed in this direction
are DFT-D3 by Grimme [159], Becke-Johnson model [167] and the method of Tkatchenko
and Scheffler (TS) [163]. Grimme’s model employs the concept of fractional coordination
numbers where the function calculating the number of neighbors continuously interpolates
between the tabulated reference values. Becke-Johnson model exploits the fact that around
an electron there will be a XC hole that produces non-zero dipole and higher-order electro-
static moments causing polarization in other atoms leading to an attractive dipole-induced
dipole interaction.

The way of fitting of the damping function is crucial since it defines the shape of the binding
curve that tat has to be compatible to XC functional of choice and to definition of vdW
radii of atoms [156] and giving rise to broader family of the different approaches [158, 168
170].
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The TS approach is much more cost effective compared to the Becke-Johnson model and
uses precalculated Cg coefficients instead of hole dipole moments. The extension of the
vdW-TS method tailored to model interface systems was used in this work and its scope will
be described in more details in the further section.

2.5 Tkatchenko-Scheffler vdW method

The energy in the TS method is computed using the formula in Eq. 2.39, which is a sum
over pairwise interatomic Cg/Rg terms. The expression for the isotropic Cg coefficients
that describe the vdW interactions between two well-separated fragments is derived from
Casimir-Polder formula [171]:

3 oo
CBYAB:%j aA(iCO)aB(iCO)d(J), (2.41)
0

where a4(iw) is the average dynamic polarizability for atom A and w is the excitation fre-
quency. Retaining only the leading term of the Padé [172] series, the polarizability of spherical
free atoms can be approximated and gives:

0
a,

1 _
Y

(2.42)
where aOA is the static polarizability of atom A and w 4 is the effective excitation frequency.
After substitution into Eq. 2.41 with the static polarizabilities the integral can be solved
analytically and the Cg coefficient can be written as:

3 [OFYOF:
C =gt —222 2.43
6,AB= 504 B{w,twp) (2.43)

For the homonuclear C; 44 coefficient, the effective excitation frequency of atom A can be
expressed in terms of the static polarizability:

01— 4 Cs,nn
R

After that the expression for Cg 45 can be obtained by substitution of effective excitation
frequencies in Equation 2.43:

(2.44)

2C6,44Cs,8B

oy % '
20 Coant 0 CG,BB)
A B

Ce,aB = ( (2.45)

Then, the Cy coefficients can be accurately computed using the free-atom parameters ag
and C; 44 obtained from from high-level self-interaction corrected time-dependent DFT
reference data [173].
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from high-level self-interaction corrected TDDFT reference data For the atoms inside a
molecule or solid the proceeding formulation can be adapted to make the TS scheme
environment-dependent by introducing the proportional coefficient k, which comes from
assuming that the polarizability depends linearly on volume [174]: ki'*¢ gTe¢ = vfree \where
“free” refers to free atoms. By obtaining the effective volume of the atom inside a molecule
or solid the parameter k can be computed as ratio between effective volume and its free
value in order to rescale all the quantities introduced earlier. In the TS scheme the effective
volume is obtained from the electron density of the system and the Hirshfeld partitioning of
the density (via Hirshfeld weight w,(r)) [175]:

ksfast  viln()] [ rPwandr ,
ffree free o v/ free B frgnfree(r)dr =raln(r)], (2.46)
A A A A

where the electron density n(r) is taken from DFT calculations, n/f{ee(r) is the free atom
spherically averaged reference density and r = |[r—R,| is the distance between the nucleus
of atom A and the point r. The effective quantities are then determined from the free ones
as:

af)q,eff — yA[n(r)]ag’ free , (2.47)
ety = (raln@))’ cle, (2.48)
RYM = (paln(e) R ™, (249

where the R is vdW radius. The TS scheme was tested on a database of 1225 intermolecu-
lar Cg pairs and showed a mean absolute error of 5.5% compared to experimental results
irrespective of the employed XC functional [163].

As was mentioned above, the sum of pairwise Cg 45/ Rg 5 terms diverges for small interatomic
distances and the damping function has to be introduced (Eq. 2.40). The damping function
in the case of the TS method is a Fermi-type function:

1

S S VY B ,
1+exp[ d(SRRg;ff[n(r)] 1)]

where R, is the interatomic distance, R)ST = RY " + RY " is the sum of the vdW radii

fiy (Rag, R g[n(r)]) = (2.50)

associated with atoms A and B that depend on the electron density through the effective
volume (Eq. 2.49) and parameters d and sy are empirical values that need to be determined
for a given XC functional. The parameters d, that affects the steepness of the damping, and
the parameter sg, that scales the vdW radii and regulates the extent of the vdW correction
for a given XC functional, were fitted for different functionals with use of S22 database
[176].
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2.6 Tkatchenko-Scheffler vdWs"f method

In order to include the non-local collective response of the substrate surface in the vdW
energy the extension of the TS-vdW scheme (vdwswrt [177]) for modelling of interfaces relies
on Lifshitz-Zaremba-Kohn (LZK) theory [178, 179] for the vdW interaction between an atom
and a solid surface. This leads to a set of Cg coefficients that incorporate dielectric screening
of the bulk, and in the case of solids the reference vdW parameters have to be determined
taking into account atom-in-a-solid environmental effects [180]. In LZK theory the atom-
surface dispersion interaction beyond the distance of the orbital overlap is given by [179,
181]:

CgaS
(H —Ho)*’
where H is the distance between an adsorbate atom a and the topmost layer of the surface
S. The reference plane H, can be obtained from the jellium model yeilding Hy = /2, where
h is the interlayer distance of the solid. The term C3“S describes the dielectric response of
the bulk solid to the instantaneous dipole moment of particles and depends on the dipole
polarizability a(i w) of the adsorbate and dielectric function e4(i w) of the solid:

Eyqw ~— (2.51)

Cas_i +00 . )[es(ia))—l]d (2.52)
Y are es(iw)+1 - '

The screening effects inside the bulk are incorporated in the Eq. 2.52 by dependence on the
dielectric function eg(iw). Next step is determination of the vdW interaction between an
adsorbate atom a with a solid S by a summation of the pair potentials —Cs/R® between an
atom a and atoms s in the infinite half-space infinite of the solid S. After that, the connection
to LZK expression can be achieved by the relation:

TT
G305 =Ns (E)CG,as’ (2.53)

where ng is the number of atoms per unit volume in the bulk of the substrate, and

2C6,aaC6,ss
- : (2.54)

0

a5 Qq

0 CG,tm + a° C6,ss
a N

C6,as =

where the Cg 45, a‘s) and R? are the new set of parameters that depend on dielectric function
€s(iw) and thus inherit the many-body collective response (screening) of the solid. The
only difference from the TS method is that the effective quantities, that were including the
effects of polarization with use of the Hirshfeld weight, are now obtained from the LZK
parameters and not from the free atom reference. The dielectric function can be computed
from first-principles and was shown to reasonably agree with the results obtained from
reflection electron energy-loss spectroscopy (REELS) experiments [182]. In case of transition

28



2.7. Basis sets

metals, the inclusion of collective response of the solid leads to reducing the Cg coefficients
by up to a factor of ten compared to reference free atom values [130].

Investigating interface systems, the inclusion of the vdW parameters should only be applied
when appropriate: for example inside metal surfaces there are already good approxima-
tions from DFA functionals and inclusion of the vdW interactions, even if the results are
improved compared to experimental, can be considered as effect of cancellation of the errors
[150].

2.7 Basis sets
In order to solve the set of single-particle KS eigenvalue equations (Eq. 2.22) it is a common
technique to use basis functions to expand the single-particle orbitals:

(]51,(1'):26,“,5”(1‘) (2.55)

A basis set allows us to write the Schrédinger equation as a generalized eigenvalue problem:

thncnvzevzsmncnv» (2.56)
n n

where h,,,,, = <§ m |fzK § | & n) is the matrix element of the Hamiltonian, and s,,,,, = (£,,1€,)
is the overlap matrix element. A suitable choice of basis functions depends on the system
under investigation. For this thesis we use the all-electron/full potential Fritz Haber Institute
“ab initio molecular simulations” (FHI-aims) code [183, 184], which adopts the tabulated
numeric atom-centered orbitals (NAO) basis functions of the form:

u;(r)

ilr)=

Y m(Q) (2.57)

where the function u;(r) has radial symmetry and is numerically tabulated and Y;,,(2) are the
spherical harmonics. The particular form of the NAOs allows to include the radial functions
of free-atom orbitals and can be constructed using a Schrodinger-like radial equation:

1d> I(l+1)

2dr? r2

+ v;(r) + Veue(r) | ui(r) = €;u;(r) (2.58)

where [ is the angular quantum number. The potential v;(7) defines the shape of u;(r) and the
term v¢(7) is the confining potential, which ensures a decay to zero of the radial functions.
Minimal basis consists of the core and valence functions of spherically symmetric free atoms
by setting v;(r) to the self-consistent free-atom radial potential vgee. The construction of the
accurate and transferable basis sets that allow up meV-level total energy convergence relies
on addition of the candidate functions from a large pool of different radial functions (e.g.
hydrogen-like, cation-like or atom-like) with different confinement potential to minimal

basis set until no further significant improvement on total energy results [185].
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The analytical form of the confining potential is not unique and along with a smooth decay,
it must ensure that the function and its derivatives do not have any discontinuities. The
confining potential in FHI-aims is provided by:

0 r S rOnSet
S w
v (1) =1 g e (=) Tomser <7 < Taut (2.59)
+00 2 Teuts

where s is a global scaling parameter and w = 7. — F'onser S€ts the width of the region, where
potential is defined. The selection of the parameters 7., and ry,eet , is €ssential for both the
accuracy of the results and numerical efficiency. For example, a large value of r.,; would
result in extended radial functions, increasing the computational cost of the calculation.
Setting ryneer to a very small value will result in unphysical results since radial functions will
be limited in a very narrow region surrounding the atom.

In the case of periodic systems, the Kohn-Sham Eqgs. 2.56 are k-space dependent. This
leads to separate matrices h,,,(k), s;,,(k) and solutions ¢, (r) that have to be obtained for
different k-points in the first Brillouin zone. For that Bloch-like generalized basis functions
©;(r) that are centered in unit cells shifted by translation vectors T(N)[N =(N;, N, N3)] are
introduced in the code:

2ik(r) = _explik - T(N)]- ¢;[r—Ry+T(N)]. (2.60)
N

Such definition brings k-dependent matrix elements

Ry i) = (i || 2 )
= Z exp{ik-[T(N)—T(M)} (i || 0 n) (2.61)
M,N

with the real-space basis functions ¢;(r, M) and ¢;(r,N) that are centered in different unit
cellsM and N. In practice, all integration points and pieces of are mapped back to the original
unit cell in order to avoid breaking down lattice sums in Eq. 2.61 due to periodicity since the
integration volumes could extend over several unit cells in the integrals <g0,-, M }EKS| @], N>.
Since all basis functions are bounded by the confinement potential, only a finite number of
inequivalent real-space matrix elements are non-zero.

2.8 Charge transfer and binding energy calculations

The interaction of individual molecules with metallic surfaces constitutes one of the central
topics of surface science partially because experimental techniques such as the STM could be
easily operated on conductive substrates. The final electronic structure of interface system
can be calculated with accurate computational methods such as DFT. Understanding of the
mechanisms that leads to the particular adsorption pattern of the molecule and identifying
the molecular donor/acceptor parts can give more insights towards rational design and

30



2.8. Charge transfer and binding energy calculations

self-assembly processes of the interfaces. In this thesis we are interested in both neutral and
positively charged molecules adsorbing on metallic surfaces and in this section we would
like to address the procedure that we use to investigate adsorption.

While modelling the interface structures we must use periodic boundary conditions (PBC).
Organic-inorganic interface systems could incur a dipole moment in the direction perpendic-
ular to the surface due to charge rearrangements at the interface or due to polar adsorbates
which leads to appearing of the electric field that generates a potential gradient in the unit cell
compensating the potential shift induced by the system’s dipole moment. The interaction of
the interface dipole with this electric field also leads to charge rearrangements between ends
of the entire slab that in turn affects the total energy of the system. The most common way to
deal with the spurious polarization is to introduce discontinuity in the electrostatic potential
within the vacuum region and referred in the literature as “dipole correction” [186] and to use
large vacuum regions since the magnitude of this spurious electric field depends inversely
on the thickness of the vacuum region. In FHI-aims, the magnitude of dipole correction
is obtained from the gradient of the long-range Hartree potential term of the Ewald sum
(which is evaluated in reciprocal space). The surface plane is placed parallel to x y plane in
the deep vacuum region that is further than 6 A away from the nearest atom.

Simulation of charged unit cells is required for several physical problems such as dealing
with charged defects [187, 188] or when the electron transfer from the adsorbed molecules is
quenched and they can exhibit metastable charge-states [189, 190]. This brings the problem
that the repeated slab approach imply that all unit cells in the system carry a charge and such
a periodic arrangement of charges results in a diverging energy that prevents convergence of
the self-consistent field (SCF) algorithm. Basically, there is a Coulomb interaction between
the delocalized homogenous background charge and the excess charge that is localized
in the slab that significantly contributes to the total energy of the system. The spurious
energy contribution originates from the spurious net dipole of the unit cell and, hence, scales
linearly with the thickness of the vacuum region. Two types of approaches were developed
to deal with such cases. The first class neutralizes the interaction between charged cells
perpendicular to the substrate via a posteriori correction based on the dielectric profile of the
interface [191] or by interfering Poisson equation that describes electrostatic potential [192,
193]. The second class intentionally adds spatially localized countercharges into the system
ensuring charge neutrality of the such that leads to the absence of compensating background
charge. The virtual crystal approximation [187] provides a fixed number of free charge
carriers per volume, the Charge Reservoir Electrostatic Sheet Technique [194] models the
countercharges as a charged sheet, which is placed below the substrate and the generalized
dipole correction approach [195] introduces a monopole sheet as a “computational electrode”
and a dipole layer in the vacuum region.

In our case for adsorption of the both neutral and positively charged species the unit cell is set
to have neutral charge. After adsorption of the charged molecules on the surface the charge
transfer will occur from surface since it has infinite pool of electrons that will neutralize the
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unit cell. This comes from the fact that energy of lowest unoccupied orbital of the positively
charged molecules are way below the Fermi energy of the metallic surfaces. Having that, the
binding energies for neutral molecule adsorbed on the surface were calculated as

Ey, = Enol@surt — Esurf — Emols (2.62)

where Egesurt COrresponds to the total energy of the interface, Eg,; is the total energy
of the pristine metallic slab and E,,, the total energy of the lowest energy gas-phase con-
former.

For charged molecules, we considered the binding energy of a two-step reaction. First, the
interface is formed between the charged molecule and the clean surface:

Ep1 = Emort@surt — Esurf — Emol*» (2.63)

where E, ;- is the total energy of the most stable gas-phase conformer of the isolated charged
molecule. Second, an electron from the metal neutralizes the unit cell where the adsorbed
molecule is located, yielding

Ep2 = Emol@surt — Emol*@surt — £ fr (2.64)

where E; corresponds to the Fermi energy of the metallic surface. The final binding energy
is thus considered to be

E‘; = Ep1 + Ev2 = Enol@surt — Esurt— E f— Enort- (2.65)

To address charge rearrangements after adsorption on the surface, we compute the electron
density differences for selected with

AP = Pmol@surt — Psurf — LPmol» (2.66)

and in the case of neutral molecule and

Ap ™= Pmol@surf — Psurf — P ol (2.67)

in the case of charged molecule. In these expressions, poi@surf 1S the total electron density
of the interface, pq.s is the electron density of the slab without molecule, and p, and
Pmor* are electron densities of neutral and charged molecules with the same geometries as
in interface. The + sign denotes that the final density difference integrates to +1 electron
in the case of charged molecule. These densities allow us to identify charge build up on
particular functional group, as well as charge transfer to the surface.
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2.9 Modelling of the STM images

One of the ways to validate theoretical investigations is to directly compare experimen-
tal measurements with theoretically modelled properties of the system. In that respect
modelling of STM images can be a very useful tool to identify the system geometry. Using
Bardeen’s expression [196] one can write the current flowing from a metallic tip to the sample
as

IH=2”76 f |Mys|* N,(E—eV)N,(E)f,(E—eV)[1— fi(E)]dE, (2.68)

where V is the applied voltage, N;(E) and N,(E) are the density of states of the tip and the
sample respectively, f(E) is their Fermi-Dirac distribution. The effective matrix element M,
couples a tip wave function, ¥, to a substrate wave function, ¥, by the expression

hZ

5= %J (T Vo, — 0, VI dS, (2.69)

where the integral is taken over a surface separating the tip and sample.

For modelling STM images one of the most widely used approaches is the scheme proposed
by Tersoff and Hamman [197]. One of the main assumptions made within this model is that
complex electronic structure of the tip is assumed to be simple atomic s-wave-function since
only the orbitals that localized at the outermost tip atom are important for tunneling process
taking into account that this wave-function decays exponentially into the vacuum. The total
current flowing from the tip to the sample within the zero temperature approximation and
low bias voltage is:

2me?

I
h

V> IM,f? 5 (E— Ep) 5 (E, — Ep), (2.70)
N

where V is the voltage applied and the energy conservation is ensured by 6 -functions.

The advantage of the Tersoff-Hamann theory is that the tip ¥, wavefunction can be modelled
as a solution in a locally spherical potential with curvature R about its center r and asymptot-
ically the is chosen to have the form of an s-wave. So the matrix element M, is proportional
to the sample wavefunction evaluated at the tip center of curvature (M, o< U, (1)) leading
to:
[ o< VN, (EF)Z U, (10)]2 & (E, — Ep), 2.71)
N

where the sum represents the local density of states of the sample (LDOS) around the Fermi
level evaluated at the tip center.

2.10 Force field methods

In previous sections we addressed the methods for simulations of the interface systems at
quantum mechanical (QM) levels of theory of high computational costs, applicable only to
systems of few hundreds of atoms. In this section we briefly describe the applications and
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limitations of the FF methods that are less accurate but orders of magnitude cheaper to per-
form and thus enable the simulation of the systems that consist of millions of atoms.

Most commonly within classical FFs PES functions are expressed as a sum of bonded and
nonbonded interaction terms. Hence, the description of a of FF is given by its potential
energy Eg ot (R N ) thatis given as a function of positions R, ..., R 5 the N nuclei of the system
is given by

E;i (RN) Eponded (R N) + Enonbonded (R N) . (2.72)

For example in CHARMM?22 [198], one of the popular FF for simulation of biomolecules, the
“bonded” terms are of the following form:

k
Evonas (RY)= D 57 (R=Ro)’ (2.73)
bonds
Eangles (RY) = Z Ky (0 —0,) (2.74)
angles )
angles
Eqorsions (RY)= D ks 1+ costnr o)) (2.75)
orsions ‘ )
torsions
Elmpropers RN Z ke, (00— Cl)o) (2.76)
impropers
EUrey—Bradley (RN) = Z ku (u - u0)2 2.77)

Urey-Bradley

where 7 is the multiplicity of the function, ¢ is the phase shift, kz, kg, k:, k,, and k,, are
the bond, angle, dihedral angle, improper dihedral angle and Urey—Bradley force constants,
respectively; R, 8, 7, w, and u are the bond length, bond angle, dihedral angle, improper
torsion angle and Urey—Bradley 1,3-distance, respectively, with the subscript zero repre-
senting the equilibrium values for the individual terms. “Nonbonded” interaction terms are
included for all atoms separated by three or more covalent bonds and include electrostatic
interactions

qaqs
Ecoulomb (RN) = RAB’ (2.78)
A
and vdW intra- and inter-molecular interactions
RVdW R(\)/dW 6
Eyaw ( ZEAB ( i ) —2( T ) , (2.79)

where g, is the charge of the atom A, R4 is the distance between atoms A and B and 45
is the energy required to separate the atoms. In the Lennard-Jones (LJ) potential above,
the R(‘)’dW term is not the minimum of the potential, but rather where the LJ potential is
Zero.

34



2.10. Force field methods

In recent years a lot of effort has been invested to adapt biomolecular FFs to the simulation
of interfaces between biomolecules and inorganic materials which resulted in creation of
a class of general bio-inorganic FFs. One of these FFs is called INTERFACE FF, in which
LJ parameters for eight neutral face-centered cubic (fcc) metals (Ag, Al, Au, Cu, Ni, Pb and
Pd) based on experimentally determined densities and surface tensions under ambient
conditions have been added to CHARMM22 for the simulation of metal surfaces in contact
with biomolecules [87, 199, 200].

One of the greatest limitations of most common FFs is the inability to simulate chemi-
cal reactions that involve the formation or dissociation of chemical bonds. Modelling of
chemisorption processes require QM or employing of reactive FFs that have to be used with
great caution [92, 93]. Second disadvantage is the sensitivity of FF parameters to deviations
from the reference state, for which they were derived that imply nontransferability of the
parameters to different systems.

For much broader overview of different FFs designed for modelling of the protein-inorganic
surface interaction can be found in the review [79]. For modelling of AA adsorption on
metallic surfaces using INTERFACE FF we use NAMD package [201] and compare results
obtained with DFT in the Section 4.0.5.
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[45mm] And to the man he said, “Since you listened to your wife and ate from the tree whose
fruit I commanded you not to eat, the ground is cursed because of you. All your life you will
struggle to scratch a living from it.” Genesis 3.17 about curse of dimensionality (author’s
note)
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8] Structure search and analysis of
conformational spaces

A major challenge in computational chemistry is the search of low-energy conformers for a
given flexible molecule. Organic molecules that are flexible can adopt a number of energeti-
cally favourable conformations with varying chemical and physical characteristics (Fig. 3.1
a). As aresult, examining the attributes of a single randomly created conformer may result in
incorrect results. The environment, as well as interactions with other molecules and surfaces,
can all impact the likelihood of a given shape being adopted (Fig. 3.1 b). Further, it has been
shown that the bioactive conformation of drug-like molecules can be higher in energy than
the respective global minimum [202]. Structures that can be trapped in metastable local
minima during growth process, can be accessed at finite temperatures or under pressure. As
aresult, we aim at not just finding the conformer expressing the PES’s global minimum, but
at covering relevant portions of the available conformational space.

Figure 3.1 — a) Pictorial representation of the multiple local minima of PES of a flexible
molecule with respect to arbitrary coordinates. b) Examples of complex interactions that
appear during self-assembly processes on the surfaces
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3.1 Global structure search techniques

Finding the most stable configurations of assembly of atoms is a challenging problem due
to the fact that the number of stationary points in the particular PES can grow exponentially
with the number of atoms in the system. Finding the global minimum of the system, in
general, requires searching through many local minima which is effectively prohibitive for
large systems due to finite computational resources available. There is a broad field of
computational search techniques. Below we will briefly mention techniques based on MD
and then present a more in-depth characterization of other techniques more directly relevant
for this thesis. But first of all, it should be mentioned, that performance of all algorithms
that search for the global minimum of an energy function is the same when averaged over
all possible energy functions - this is known in literature as “no free lunch theorem” [203].
This implies, that there is no possible way to find algorithm that would perform better than
another in all scenarios.

MD-based techniques

Replica exchange molecular dynamics (REMD) simulations combine MD simulation with
the Monte Carlo algorithm and are used to sample the configurational space of a system, e.g.
at different temperatures or with a different Hamiltonian [204]. Structures locked in local
energy minima can traverse the energy landscape by exchanging the replicas, improving
Boltzmann-weighted sampling. Unlike a standard MD simulation, REMD allows sampling
various configurations in different potential wells separated by huge energy barriers.

Umbrella sampling is another standard method for enhancing the sampling of configu-
rational space of the system [205]. This technique defines a reaction coordinate as a link
between two thermodynamic states. The reaction coordinate is usually determined based on
a distance or an angle. The reaction coordinate is then divided into windows, each exposed
to a bias (umbrella) potential. Each window has its simulation to sample the area around the
associated coordinate point. The simulations are then reweighted to account for the biased
ensembles using, for example, the weighted histogram analysis method (WHAM) [206], or
its generalization [207]. Umbrella sampling method, for example, was used for simulations
of adsorption of AA side chain analogues on the TiO,(100) surface [208] using FF models.
There are subtleties in determining the best computationally efficient approach to apply the
umbrella sampling method, as outlined in the book [209].

MD simulations can be also evaluated using classical FFs followed by static DFT refinement
of the obtained data [91, 210, 211]. The main disadvantage of such approaches is that the PES
obtained from a FF or DFT can be very different, which will result in the need to reevaluate
all the sampled geometries using more accurate methods in order to obtain correct hierarchy
[212, 213].

Other techniques
One of the simplest methods to explore PES that allows to effectively overcome potential
energy barriers is a random search. Random search implies that next trial structure is
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not dependent on the information that was already accumulated during the search. Of
course, simply creation of assembly of atoms and calculation of their energies would be
far from effective. Concerning investigation of adsorbates on surfaces, to make such a
strategy efficient, one has to impose limits on the generated structures, by creating only
“sensible” structures. Structures that have some of the atoms that are very close to each
other cannot be in the local minimum. Those structures should not be investigated and this
already significantly decreases number of candidates that have to be calculated. Having
that one can apply criteria for non-bonded atoms, for example, their vdW radii should not
overlap which prevents modelling of unwanted chemical reactions. Concerning molecular
systems and surfaces, one already has a priori information on bonds in the system, most
of which should not change. After that different structures can be generated and followed
with geometry optimization (See Sec. 3.2) to find local minima. Application of the random
structure search to investigate organic-inorganic materials, in particular, the procedure of
generating different molecular conformers with respect to specified surrounding, will be
discussed in Chapter 5. Random structure search has been effectively utilized in the field
of materials research, demonstrating that even random sampling has a decent probability
of identifying low-energy basins[214-216]. The advantages of such strategy are the small
amount of the parameters that have to be set for the investigation of PES and covering
broader volume of PES without biasing of the search itself. Many other methods to some
extent depend on routines for producing random structures. More sophisticated techniques
that were developed in recent years by introducing bias for the structure search that aims to
find global minima faster [217].

For example, the heuristic technique ranks candidates in a search at each branching step
depending on the information provided to determine which branch to take next. One of the
most famous representatives among the class of heuristic methods are genetic algorithms
(GA) [218]. Based on the principle of evolution, new candidates have to exhibit high fitness
with respect to some function in order to survive in the natural selection. As a result, they
must devise strategies to maintain the diversity of genes within their populations, two
of which are well-known: chromosomal crossover during mating and mutation in-place.
Individuals with poor fitness will be removed after many generations of natural selection,
and the general fitness of the entire population will improve as a result of the selection
process. In principle, the “genetic code” is chosen as an array of relevant parameters for the
system at hand. Initially, a random set of candidate structures is generated then a fraction of
the population is selected with bias towards fittest, then those structures that were selected
are paired up for “recombination” and mutation step may be performed. New candidate
structures are added to the pool and the whole process is repeated. GA were applied to
investigations of molecular structures, clusters and crystals [219-221].

Another popular family of global geometry optimization techniques include Monte Carlo
based approaches, like basin-hopping [222] and minima hopping [223]. The basic strategy
in these algorithms is to find one of the local minimum of the system and then with the
trial moves escape from the basin and reach another local minimum. Then, with some
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probability that depends on a specified effective temperature use this new minimum as
new starting point. An example of such algorithm that works on internal coordinates plus
local translation and rotation of independent geometrical subunits, was demonstrated for
molecules adsorbed on surfaces and interfaces [224].

Also, ML algorithms can be used to approximate the PES [225, 226]. In the active learning
family, Bayesian optimization search techniques are used to fit a surrogate PES to the data
points acquired from DFT calculations, and then improve this potential by acquiring new
data points at places where the exploratory lower confidence bound acquisition function is
minimized [227-230].

3.2 Geometry optimizations on the Born-Oppenheimer Potential

Energy Surface

In the algorithms discussed in the last part of the previous section, the exploration of the
conformational space relies on the creation of sample points, followed by local geometry
optimizations. Finding local minima requires the computation of the derivatives of the
energy with respect to atomic positions (forces) and for more sophisticated and efficient
methods estimation of the second derivatives — the Hessian matrix. Here the basic concepts
of local structure optimization will be described, introducing the trust region and line search
methods, following the textbook by Nocedal and Wright [231]. The starting point to perform
local geometry optimization is obtaining the atomic forces, that are defined by —d E /dR.
Within density-functional-theory the energy derivative with respect to atom 7 is

dE @ 1<% ZoZg SE,[n()] 2n(r) ,
d_Ry_a_Ry Eu[”(ﬂ]"‘é%m +JT(I‘) 3R7, ar, (3.1

where the implicit R,-dependence of the electron density is taken into account in the second
term and the only term that explicitly depends on R, in E,[n(r) is the external potential.
Computations of the forces that arise by embedding each nucleus into the electrostatic fields
of the electron density and all other nuclei, corresponding to the first term of Eq. 3.1, are
performed using the Hellmann-Feynman expression [183]:

Na R,—R Z.(R, —
fHTF = Z Z?’Zay—ag_f n(r)y(—y:)d3r. (3.2)
PRIy v

In codes such as FHI-aims where an atom centered basis set is employed, the basis functions
¢; “move” with R,, which leads to additional force contributions (Pulay forces) that arise
from the second term in Equation 3.1

. (2EMnwion®) 5 Jop:
fpulay— f onm aRyd r= 2Rer,<

1 2
5V H ks €,

cpi>, (3.3)
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where f; are the occupation numbers, €; are the KS eigenvalues. For the details how to take
into account additional contributions such as grid effects and multipole correction to the
Hartree potential we refer to the original paper of FHI-aims [183].

3.2.1 Local minima finding

Apart from MD, any structure search technique heavily relies on geometry optimization
routines that, use energies and forces of the system to find the nearest local minimum of
the initial input geometry. The iterative nature of the geometry optimization procedure is
denoted with use of a label k, so that for a system with N particles let x; € R3N denote the
configuration at the kth optimization step, and the corresponding forces on the system at
step k is fi = f(xx). The necessary condition for a point on the smooth PES to be a local
minimum is the requirement that forces vanish:

f(xx)=0. (3.4)

and that the Hessian matrix H; = 0°E /0 x,% at this point x; is positive semidefinite. The
standard optimization schemes iteratively search for structures that minimize the energy of
a system until Eq. 3.4 is satisfied with desired accuracy usually this threshold is less than
10~2eV A1, The simplest methods such as steepest descent and conjugate gradient simply
follow calculated gradients and move the atoms in the direction of calculated forces. These
are guaranteed to converge, but are among of the most inefficient optimization techniques
since they tend to primarily follow the degrees of freedom for which the small displacements
lead to large energy changes which results in very poor convergence near the local mini-
mum. The most popular optimization technique is the quasi-Newton scheme that uses the
information about the second derivatives of the PES to search for the optimization direction
more efficiently [232, 233]. The basic idea is to approximate the PES by an harmonic model
with respect to xj:

1
M, (x + s) = xk—fkTSk+ES]szSk, (3.5)

where sy, is displacement. The calculation of the exact Hessian requires substantial compu-
tational effort, but for the optimization techniques described below this is not necessary
and instead an approximation to the Hessian is used, that is updated during the geometry
optimization process. The most widely used scheme for updating the Hessian matrix is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [232, 233],

HkAxkAkaHk AkafkT
AxIHAxe  AfTAx

Hi =Hp— (3.6)
where Axy = X311 — X and A fi. = fii1 — fr- In this method the initial guess Hy is important
and can dramatically improve the efficiency of finding of the local minima and, in some
cases, even lead to different results when different initial guesses are used [234]. A naive
choice of the initial guess is to take the scaled identity matrix H, = 8 - I where 8 > 0. This
scheme is very efficient if the PES is truly harmonic and the Hessian is explicitly known. The
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first assumption is valid when the structure is already near a local minimum. Usually when
dealing with flexible molecules it is impossible to generate the initial guess geometries to be
near local minima. Regarding the second term, the first guess for the Hessian matrix must
be chosen carefully since it can influence even the qualitative outcome of the optimization
[234]. Different preconditioning schemes perform quite differently for different materials
systems [235-237] and these will be discussed further in Sec. 5.6.

In recent years, applying a ML model in geometry optimization became a significant field of
research, but it is still in the very early stages of adoption. For example, a neural networks
(NN) was used to accelerate the saddle-point search by construction of an approximate
energy surface [238], and Gaussian Process Regression (GPR) can help to predict derivatives
and smoothness of energy function together with their uncertanities during the geometry
optimization [239, 240]. The area of active-learning application in geometry optimization
looks quite promising [241-245], however, the high flexibility adds a computational cost
since a large number of training points (on the order of tens of thousands) are required to
ensure that the NN PES has the proper form.

3.2.2 Line search method
Within an optimization algorithm, one has to define a search direction to displace the atoms.
One of the approaches for prediction of the search direction for optimization step is the line
search method (LSM). Starting from the quadratic model of the PES (Eq. 3.5), one needs to
obtain a search direction p,, along which the optimization step s is obtained according to a
step length a,,

Sp =0y Pp- 3.7)

Then the new configuration is obtained with x;,; = x; + s;. The search direction p;. for
which the energy decreases is the descent direction: fkT Pr > 0. From the harmonic model
the search direction, which is also called quasi Newton step for an approximate Hessian,
that minimizes the energy is

pr=H_' f. (3.8)

After finding the search direction one has to determine the step length «.. Estimation of the
step length is done by imposing Wolfe conditions on it [246, 247]:

E(xp+arpe) SE(xp)—aarfil pe, ¢ €(0,1), (3.9

T
fxx+aep) pe<efilpe cela,l). (3.10)

The last one is also called the Armijo condition [248] and assures a sufficient decrease in the
objective function along the search direction. The line search method with a BFGS update
for the approximate Hessian is summarized in Algorithm 1:
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Algorithm 1 BFGS line search
Require: x,, Hy,€>0
k<0
while || fi |, > €do
Get p,, from Equation 3.8.
Get a,, ensuring Wolfe conditions (Egs. 3.9, 3.10) are satisfied.
Xi+1 = Xg + S = X + Qg P
Update approximate Hessian < using Eq. 3.6

k—k+1
end

3.2.3 Trust-region method

Another approach that is widely used is the trust-region method (TRM) that assumes that
the harmonic model of the PES is correct within trust-region radius Ay near x;. The trial
step is then obtained by minimizing the quadratic model function:

Sk :argmian(xk+s,’§), (3.11)
S;ET]C

where T := {s}; : H sl’c‘” , <A k}. Then the quality of the harmonic model is calculated as the
ratio between the actual reduction of the total energy E when the trial step sy is taken and
the reduction that is predicted by the model function Mj.:

E (x)— E (X + $¢)

— (3.12)
P M (X)) — My (xx + Si)

If p,. is negative, the energy increases with the taken step. For negative and small values of
P the step is rejected, and the trust-radius is reduced. If p;. is close to one, the PES around
Xi is in agreement with the harmonic model, and thus the trust-radius can be increased,
and the step is accepted. The criteria for adjustment of the trust-radius can be summarized
in the following:

%Ak lfpk<711
Apr =1 min{2A,,Ana} P> 5 Allsalla =4k (3.13)
Ay else,

where A, .« is the maximum allowed displacement length that is defined for the geometry
optimization of the system. Iteration continues until the trust-radius is adjusted so that the
step is accepted. The iteration then continues until the convergence condition for the forces
H fr “oo < € is met. The TRM method is summarized in the Algorithm 2:
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Algorithm 2 BFGS TRM

Require: xy, Ay €(0,Apax), €>0
k—0
while || /||, > € do
Get s from Equation 3.11.
Get p from Equation 3.12.
Update trust-region radius < using Egs. 3.13
if p; > 7 then
‘ X41 = X+ Sk
Update approximate Hessian using Eq. 3.6
else
\ Xk+1 = Xk
end
k—k+1
end

The minimization in Eq. 3.11 can be solved approximately; for further details, we refer the
reader to textbook [85].

In conclusion, the LSM and the TRM optimization techniques are both reasonably simple
and robust. It is possible to classify both techniques as modified quasi-Newton approaches
since they are based on a quadratic model PES and do not require knowledge of the actual
Hessian. They are looking for stationary places at which the force disappears, and as a result,
they rely on the assumption of a smooth PES. Even though this assumption appears fair for
physical systems, it may not necessarily hold in all cases, especially if the system is far away
from the local minimum and the electronic structure changes dramatically with respect to
structural changes. However, it should be noted that both techniques are only capable of
locating local energy minima; the global energy minimum, on the other hand, requires, in
addition, sampling of the PES.

For the LSM, the step length is often determined iteratively until the Wolfe criteria are met.
For ab initio approaches, this can result in an unacceptably large number of energy and force
evaluations and may be unstable due to the numerical inaccuracies of the forces. Because
the TRM does not require any extra energy calculations to calculate the trust radius, it is
more suitable for ab initio structure optimization than the LSM. Thus TRM is the method
used in this thesis and default search strategy implemented in the global structure search
package discussed in Section 5.

3.2.4 Preconditioning schemes for geometry optimizations

The challenge for quasi-Newton optimization methods is that the Hessian is unknown and
has to be approximated for the guess geometry since the calculation of the exact Hessian
requires enormous computational effort - it requires 6N force evaluations, where N is
the number of atoms in the system. Another way to calculate the Hessian matrix is to
employ density functional perturbation theory, which is also computationally inefficient

46



3.3. Comparing molecules across structural space

[234]. Different ways to construct the initial guess of the Hessian matrix are proposed in the
literature. This is referred to as preconditioning, and it may be thought of as a coordinate
transformation to a new coordinate system with a better-conditioned optimization problem;
as a result, algorithms converge faster and are more robust. Different preconditioning
schemes perform with different efficiency for different systems: for example, for covalently
bonded periodic systems, the Exponential (Laplacian) preconditioning scheme was found
to be simple and effective [237]:

RAB

HEXP _ _ALL eXp (_a( Ryn o 1)) ’ RAB < RCUt and i - j
EA+EB+) " RAB >R ori#j

(3.14)

where i, j are Cartesian coordinates and R,,,, is the maximal nearest-neighbour distance:

Ry = max(min R4B) (3.15)

a is chosen arbitrarily to provide damping of atomic interactions, R.,; can be reasonably
taken as 2R, ,, and the scaling parameter u can be automatically identified from test displace-
ments of the atoms [249]. By setting ¢ =0 and y = 1 the Hessian reduces to the Laplacian
matrix, a generalization of which is used to represent undirected graphs.

For systems such as molecules in a gas phase or molecular crystals, the Exponential precondi-
tioner scheme does not perform as well as for bulk systems due to the wide range of different
interactions. For molecular systems, the use of internal coordinates [250, 251] and FF like
preconditioner techniques are much more efficient. For example, the FF model Hessian
in Lindh preconditioning scheme is described in the original paper [236] and introduces
the analytic form of the energy function that consists of quadratic terms for all distances,
angles, and dihedrals in the molecule. The positive-definite requirement for such a precon-
ditioning scheme is fulfilled by assuming that the current geometry is its local minimum.
This approach will also be used in the derivation of the Section 5.6, where we derive the
preconditioning L] scheme. Using a simple 15-parameter function of the nuclear positions,
the model Hessian can be constructed for any molecule with atoms from the first three
rows of the periodic table. This approach yields great performance and is implemented
in many electronic structure packages, including FHI-aims[252]. Other FF based initial
Hessian matrices take into account the many-body terms such as bond stretch, angles and
dihedrals that are specifically parametrized for a system under investigation and also be
used in combination with other preconditioning schemes tailored to systems like molecular
crystals [235].

3.3 Comparing molecules across structural space

The large quantities of high dimensional data obtained from structure searches and molec-
ular dynamics simulations require automated tools to produce representations, analyses
and classifications. The strategy for representing the high dimensional spaces in a human-
readable low-dimensional format usually consists of several steps: a) choosing a represen-
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tation for the molecules; b) calculating the dissimilarity covariance matrix between these
representations; c) performing a dimensionality reduction.

SOAP [111] is an elegant representation that is invariant to rotations, translations, and
permutations of equivalent atoms. The main idea of SOAP is to expand the molecular
structure into a set of local atomic environments 2" and then use their combinations to
measure a global similarity between structures. The local environment density around the
central atom is approximated as a sum of Gaussian functions with variance o? centred at
atom positions x; within the environment %"

2
p%(r)ZZexp(—(xi r)) 3.16)

2
iex 20

The similarity kernel between two local environments 2 and 2" is defined as

2
k(%,%’):fdﬁ : (3.17)
which is the overlap of the two local atomic environment densities integrated over all three-
dimensional rotations R. The self-similarity of any kernel should be unity, so the final
normalized kernel has a form

f P (t)p g (Rr)dr

k(2,2")=k(2,2) [V k@, 2k @2, 27). (3.18)

The integration over all rotations can done analytically if the atomic neighbourhood densities
are expanded in a basis composed of orthogonal radial basis functions g, and (angular)
spherical harmonics Y; ,,:

Pr®)=">" Cp1mgalT)Yim(x), (3.19)

n,l,m

where ¢, ; ,,, are expansion coefficients. From these coefficients, rotationally invariant quan-
tities can be constructed, such as the power spectrum that is given by

P ) nwrt =D CntamCpm (3.20)

m

The elements of the power spectrum are then collected into a unit-length vector p(Z’), so
that the SOAP kernel is given as [111]

k(2,2 )=px)-p(2). (3.21)

The numerical hyper parameters that have to be tuned are the maximal number of radial
and angular basis functions, the broadening width, and the cut-off radius. For the details of
the derivation of the SOAP kernels for multi-species environments we refer the reader to the
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detailed explanation in Ref. [115].

Figure 3.2 — Atom-density-based structural representations, in which the structure is mapped
onto a smooth atom density constructed as a superposition of smooth atom-centered func-
tions that also reflect the chemical composition information.

After the mathematical formulation to compare two local environments is established, the
next step is to introduce the global kernel to compare two structures. For two structures
with the same number of atoms N, one can compute an environment covariance matrix
that contains all the possible pairings of environments

Cij(AB)=k(2,27), (3.22)

where indices i, j run through all of the atoms contained in structures A and B. The simplest
way to introduce a global metric is to use the average kernel

_ 1 |1 NER 5
K(A,B)—mizjci,-(A,B)—lNZp(%,- )]- N;p(%j) (3.23)
The main drawback of this approach is that two very different structures can appear to be
very similar if their environments give the same fingerprints upon averaging.

Another possibility is to find the best matching between the environments of the two struc-
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tures

K(A,B)= max Cl](A B)P
P (N, N)

i jr (3.24)
by finding the permutation matrix P;; that maximizes the value of K(A,B). Here % (N, N)
is the set of N x N scaled doubly stochastic matrices whose rows and columns sum to
1/N,ie. > ;P i= > ibj=1 /N. This is a very computationally expensive procedure that
can be computed in polynomial time using the Hungarian Method [253]. This method has
discontinuous derivatives whenever the matching of environments change. This problem
can be solved by introducing the regularized entropy match kernel (REMatch) that combines
the features of average and the best-match kernel and smoothly interpolates between them.
It relies on ideas from optimal transport theory [254] that regularize this problem by adding
a penalty that aims to maximize the information entropy for the matrix P, ;:

K"(A,B)=TrP"C(A, B) (3.25)
P’ = argmin ZP,] —C;j(A,B)+7InP;), (3.26)
Pe?(N,N)%
where the entropy term E(P)=—>_, ibij In P;; introduces the regularization. This allows the

computation P;; with 0 (N 2) effort usmg the Sinkhorn algorithm [254]. For small values of y
this penalty becomes negligible and we obtain the best-match kernel. For the large values of
y the permutation matrix with the least informational content must be selected P;j =1/N 2
which reduces Eq. 3.25 to the average kernel limit. The definition of the distance would
be

D(A B)=+2-2K(A, B), (3.27)

where K(A, B) is the global similarity kernel.

After introducing the kernel-induced metric, one can calculate the dissimilarity matrix of
a set of structures and employ one of the dimensionality reduction schemes to obtain two
dimensional map that represents proximity relations between structures. The simplest
method among all the schemes is principal component analysis (PCA) which constructs a
linear combination of variables extracting the maximum variance from the input features.
PCA and its variances are widely applied in material science for analysing different systems
[255-261]. The interested reader can find more details on the dimensionality reduction
techniques such as ISOMAP [262, 263], t-SNE [264] applied to analyse biomolecular systems
in nice reviews [265-267].

For the dimensionality-reduced representation, we here chose to use the metric multi-
dimensional scaling (MDS) algorithm as implemented in the scikit-learn package[268].
This algorithm is similar to the Sketch-map algorithm previously employed in Ref. [110], but
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we found it to be more suitable for the data at hand, which is composed of decorrelated local
stationary-points, instead of structures generated from molecular dynamics trajectories. The
low-dimensional map is obtained through an iterative minimization of the stress function:

5= (D(AB)—d(A,B), (3.28)
A#B

where D(A, B) is the distance between structure A and B in high-dimensional space and
d(A, B) is the Euclidean distance in the low-dimensional space. The result of the procedure
will be set of two dimensional coordinates yy reflecting the mutual distances between
structures. For tracking the changes of the conformational spaces one can use one of the
two dimensional points as reference and project other structures with use of out-of-sample
embedding technique. Finding the low-dimensional coordinates x for structure with high-
dimensional representation & is done through minimization of the stress function 0p
considering the known low-dimensional coordinates for N structures yy and their high-
dimensional representations Xy

(D(Z, ZN)—d(x, x5))?, (3.29)

M=

5p=

n=1

where the sum runs over all structures in the reference dataset.
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[55mm] I am a dwarf and I'm digging a hole
Diggy, diggy hole! Diggy, diggy hole! a song of Simon Lane (Honeydew)
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The conformational space of a flexi-
ble amino acid at metallic surfaces

This chapter is dedicated to the description of single molecule adsorption on metallic sur-
faces. Amino acids are the building blocks of proteins when connected in a sequence via
peptide bonds (N-C,-C(0)),,, and can be great test systems for methodological developments
since they are small enough to be computationally feasible for modern accurate theoretical
methods and flexible enough to provide a challenge for their structure search.

In this chapter the adsorption preferences of the most flexible amino acid Arg and its charged
counterpart Arg-H* were investigated using an exhaustive conformational search. This
case is further complicated by the fact that after adsorption the neutral Arg and positively
charged Arg-H* undergo complex charge rearrangement (see Fig. 4.1). The adsorption was
modeled on three noble metal surfaces Cu(111), Ag(111) and Au(111), to study the adsorption
behaviour depending of the reactivity of the model surfaces. A depiction of the Arg molecule
including the labeling of the different chemical groups and specific atoms we will refer to
in the thesis is shown in Fig. 4.2(a). In this context we use the term protonation state to
distinguish between Arg and its singly-protonated form Arg-H*. We use the word protomers
to distinguish between different arrangements of protons within molecules of the same sum
formula, for example the protomers P1 to P5 of Arg or the protomers P6 and P7 of Arg-H™,
shown in Fig. 4.2(b) and (c).

Another important aspect to address is the chemical composition of Arg after adsorption.
In general, amino acids tend to adsorb in their zwitterionic form, when the molecule has
termination groups COO™~ and NHY [61]. However, deprotonation is also possible, with
the anionic (COO™ and NH,) and an extra hydrogen atom being adsorbed on the surface
[269].

In order to establish the conformational preferences of adsorbed Arg and Arg-H, the relative
energies of these conformers must be calculated. This can be done using DFT, which can
also describe any charge rearrangements that occur following adsorption. In addition,
DFT provides insights on the modification of molecular energy levels when forming an
interface [73, 211, 270] that are crucial to understanding transport phenomena in molecular
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Figure 4.1 — The picture shows a sketch of the electronic density rearrangement that happens
when arginine and protonated arginine adsorb on Cu(111) surface. The electron accumula-
tion is depicted in red and electron depletion depicted in blue.

electronic devices. Information on the particular preference of adsorption sites and binding
energy strengths that depend on the interacting groups are important in understanding
self-assembly patterns that are formed on surfaces [271, 272].

The starting point for this investigation was the creation of a database with thousands of
stationary states of different conformers on metal surfaces. The procedure of this database
generation with a description of the computational setup and convergence tests is described
in the next section. A shortened version of this chapter was published in International
Journal of Quantum Chemistry [83].
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Figure 4.2 —a) Pictorial representation of the arginine amino acid, including labels of chemical
groups and atoms. b) Protomers of Arg that are addressed in this work. c¢) Protomers of
Arg-H™ that are addressed in this work.

4.0.1 Computational setup

For modeling the adsorbed molecules, we first had to create model slabs on which to perform
an exhaustive structure search. The bulk lattice constants for Cu, Ag and Au were determined
by optimizing the fcc unit cell with convergence criteria set to 0.001 eV/A for the final
forces, 10~ e/Bohr?® for the charge density, and 10~° eV for the total energy of the system,
and a 30x30x30 k-grid mesh was used for the sampling of the Brillouin zone. The lattice
constants, obtained with the PBE functional[273] are shown in Table 4.1. We also compare
the PBE lattice constants with those obtained including pairwise vdW dispersion from
the original Tkatchenko-Scheffler scheme (+vdW)[163] and with the one that includes an
effective electronic screening optimized for metallic surfaces (+vdWs"™)[130].

Table 4.1 — Lattice constants (in A) of bulk metals determined with the PBE, PBE+vdW and
PBE+vdWs"! functionals (light settings).

Method | Cu Ag Au
PBE | 3.633 | 4.156 | 4.157
PBE+vdW | 3.545 | 4.077 | 4.114
PBE+vdWsu | 3.604 | 4.022 | 4.173
Exp [274] | 3.598 | 4.079 | 4.064

Since the PBE lattice constants for Cu, Ag, and Au are already in good agreement with
experimental data [274] (Table 4.1) and with previous works [150, 275], and given the absence
of a systematic improvement by the inclusion of these types of vdW interactions [130] in
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metals, we chose to use the simplest setup and proceed with PBE lattice constants for
generating the metal slabs.

For simulations of Arg adsorbed onto surfaces, a 5 x 6 surface unit cell with 4 x 4 x 1 k-point
sampling was employed. The slab contains 4 layers, and we added a 50 A vacuum in the z
direction in order to separate periodic images of the system. Convergence plots in Fig. 4.3
show that this is sufficient to obtain the correct energy hierarchy for different conformers.
However, a surface unit cell of this size does not completely isolate neighboring molecules
on the surface plane. In order to estimate the magnitude of this spurious interaction, we

Figure 4.3 — a) Relative total energy convergence of with respect to k-grid mesh for different
5x6 slabs. b) Binding energy hierarchy calculated for different structures on Cu(111) surface
with different amount of layers.

calculated binding energies for three Arg and three Arg-H" structures adsorbed on Cu(111)
using different surface unit cell sizes. These structures are shown in Fig. 4.4. As shown in
Table 4.2, the relative binding energies change by no more than 50 meV when reaching a
10 x 12 cell. Furthermore, the energetic hierarchy of the structures does not change with
increasing the unit cell size and to save computational resources we proceed with a 5x6 unit
cell size.

All the electronic structure calculations were carried out using the numeric atom-centered
basis set of the all-electron code FHI-aims [183, 184]. We used the standard light settings of
FHI-aims for all species with use of PBE+vdWs"! functional, except when stated otherwise.
Relativistic effects were considered by the zeroth order regular approximation (ZORA) [276,
277]. To prevent an artificial relaxation of the metal surfaces, we did not use vdW interactions
between metal atoms since we created slabs with PBE lattice constants. We also fixed the
two bottom layers of the slabs in all optimizations. A dipole correction was applied in the z
direction to compensate for the dipole formed by the asymmetric surface configurations.
With this setup, we placed different conformations of Arg and Arg-H* in different orientations
with respect to the slab and performed a geometry optimization with the BFGS algorithm
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Figure 4.4 — Structures that were used for the surface unit cell size convergence test of Arg@Cu
(first row) and ArgH@Cu (second row). Image unit cell size is 5 x 6.

using the trust region method, until all forces in the system were below 0.01 eV/A . Database
generation is described in the next section.

For reference, we report the values we used for E; at each surface in Table 4.3.

4.0.2 Database Generation

The sampling of the structure space of Arginine in two protonation states on metallic surfaces
was performed by starting from a previously published dataset comprising the stationary
points of isolated amino acids and dipeptides [2, 278]. For Arg, 1206 structures are present
in the database. In order to reduce the number of possibilities, but keeping a representative
share of the structures, we considered the 300 lowest energy conformers, the 27 highest
energy conformers, and 125 conformers uniformly spanning the energy range in between.
For the Arg-H* amino acid, all 215 structures present in the gas-phase data set were used in
this study.

We distinguish upstanding positions of the molecules where the largest eigenvector of the
rigid-body moment of the inertia tensor is approximately perpendicular to the surface
plane, from flat lying positions with an arrangement parallel to the surface. For Arg, 3 flat
lying configurations per structure were generated by randomly placing the molecule flat on
the Cu(111) surface and then rotating it by 120° around the principal axis. Two upstanding
configurations were generated for the 25 of gas-phase structures by first placing the molecule
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Table 4.2 — Relative binding energies (in eV) of relaxed Arg@Cu and ArgH@Cu for different
surface unit cell sizes with a 8x8x1 k-grid for the cell sizes less than 10x12 and 4x4x1 for
the 10x12 unit cell. All numbers are reported with respect to the binding energy for the
structure A modelled with a 5 x 6 surface unit cell.

Arg@Cu ArgH@Cu
slab size A B C A B C
5x6 | 0.000 | 0.011 | 0.216 | 0.000 | 0.080 | 0.035
6x6 | -0.011 | -0.013 | 0.190 | -0.050 | 0.041 | -0.017
6x7 | -0.021 | -0.030 | 0.174 | -0.055 | 0.029 | -0.033
10x12 | -0.048 | -0.053 | 0.151 | -0.044 | -0.007 | -0.057

Table 4.3 — Fermi energies calculated with the PBE functional for the 4-layer slabs with (111)
surface orientation used in our calculations of the binding energies of charged molecules to
the different surfaces. All values in eV.

Cu Ag Au
Slab E; | -4.73 | -4.30 | -5.02

in a random upright orientation, and then flipping it. For Arg-H* a similar procedure was
adopted: flat lying positions were created by 90° rotations around the principal axis and
upstanding configurations were created for 27 structures. In summary, we considered a total
of 1156 conformers of Arg@Cu(111) and 914 conformers of Arg-H*@Cu(111).

Every optimized structure that fell within a range of 0.5 eV from the global minimum on
Cu(111) were transferred to Ag(111) and Au(111) and further optimized. In addition, we
randomly picked 105 Arg-H" structures representing the higher energy range on Cu(111)
to be further optimized on Ag(111) and Au(111). Moreover, for Arg 180 randomly picked
structures representing the higher energy range were considered on Ag(111) and 61 on
Au(111). The total amount of calculated structures for each case is summarized in Table
4.4.

We checked that this strategy ensured a sufficient sampling of the low-energy range of
both Arg and Arg-H* on Ag(111) and Au(111) by analyzing the alterations in relative energy
hierarchies on the different surfaces. In Fig. 4.5, each dot corresponds to a conformer that
was optimized first on the Cu(111) surface and then post-relaxed on Ag(111) or Au(111).
Within the lowest 0.5 eV range, we do not observe any significant rearrangement of the

Table 4.4 — Number of calculated Arg and Arg-H structures in isolation and adsorbed on
Cu(111), Ag(111) and Au(111).

Gas phase | Cu(111) | Ag(111) | Au(111)
Arg 1206 1156 327 209
Arg-H* 215 914 718 721
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Figure 4.5 — (a-d) Correlation plots of relative energies of Arg or Arg-H* conformers on Cu,
Ag, and Au (111) surfaces. Each dot corresponds to the same conformer optimized on the
two surfaces addressed in each panel, color coded with respect to the RMSD (heavy atoms
only) between the superimposed optimized structures without taking surface atoms into
consideration.

energy hierarchy with respect to the Cu(111) surface. The energy hierarchies of both Arg
and Arg-H" on the Ag(111) and Au(111) surfaces are almost identical. The most pronounced
outliers in all plots correlate with a higher root mean square displacement (RMSD) of the
molecular atoms (i.e. disregarding the surface-adsorption site), thus pointing to a structural
rearrangement of the molecule.

4.0.3 Structure space representation

As was mentioned in the introduction, the simplest and one of the oldest representations
developed for analysis of peptide structures was the Ramachandran plot, which can be
seen in Fig. 4.6. As one can see the dihedral angles of the Arg and Arg-H* conformers are
distributed in 8 clusters, but this information is not enough to draw conclusions about
structure-property relationships, since Arg has 4 rotatable dihedral angles. Therefore, we
proceed to analyse the database of isolated molecules and introduce further notation for
later color coding of the results.

We analyse the structure space of all systems considered by employing a dimensionality
reduction procedure that makes it more intuitive to understand the high-dimensional space.
Following Ref. [110], we represent the local atom-centered environments of the structures
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Figure 4.6 — Ramachandran plots for Arg (left) and Arg-H™ (right) in isolation.

through SOAP[109] descriptors. We then obtain the similarity matrix between different
conformers with the REMatch algorithm [115]. We used SOAP descriptors with a cutoff of 5.0
A, a Gaussian broadening of o =0.5 A and an intermediate regularization parameter y=0.01
defined in Sec. 3.3. SOAP kernels were calculated only considering the heavy atoms in the
molecule (disregarding metal and hydrogen atoms) and were obtained using the GLOSIM
package [115, 279].

For the dimensionality-reduced representation, we here chose to use the metric multi-
dimensional scaling (MDS) algorithm as implemented in the scikit-learn package[268].
This algorithm is similar to the Sketch-map algorithm previously employed in Ref. [110],
but we found it more suitable for the data at hand, which is composed of decorrelated local
stationary-points, instead of structures generated from molecular dynamics trajectories. In
short, the low-dimensional map was obtained considering all calculated structures of Arg in
the gas-phase and through an iterative minimization of the stress function, according to the
procedure described in Section 3.3. We then projected structures in different environments
onto the pre-computed map of gas-phase Arg by fixing the parameters of the map and finding
the low-dimensional coordinates of the adsorbed molecules. The coordinates obtained as a
result of the iterative metric MDS are not explicitly shown as axes on the plots since they are
correlated to the descriptors used for the structural representation, which does not allow for
a direct physical interpretation. These scatter plots just offer a visualization of the similarity
matrix in lower dimensions. In order to classify structural patterns, we employ the following
notations: We represent the protomers by the labels shown in Fig. 4.2(b) and (c). We identify
the presence of strong intramolecular hydrogen bonds (H-bonds) whenever the distances
between the hydrogen connecting donor and acceptor are below 2.5 A. We label the H-bond
pattern between two atoms in the molecules according to the nomenclature shown in Fig.
4.7. We further classify the structures according to the longest distance between two heavy
atoms in the molecule. After describing of the results obtained for isolated Arg and Arg-H*
molecules we will proceed to the description of adsorbed structures on surfaces.
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Figure 4.7 — Labeling of all H-bond patterns considered in this thesis.

The unconstrained structure space: Arg in isolation

We start by analysing the unconstrained conformational space of Arg in isolation, which
is formed by more than 1200 local stationary states [2, 278]. In order to rationalize the
different structural arrangements in this space, we utilize the dimensionality-reduction MDS
algorithm and build a two-dimensional map. On this map, shown in Figure 4.8, each dot
represents one structure. A close proximity between dots implies similarities between the
heavy-atom arrangement between the conformations. This is the low-dimensional map that
is taken as a reference for comparison throughout this manuscript.

We proceed to color-code the dots on the map according to different properties. In Fig. 4.8(a)
we show the map colored by the relative energy AE, of each structure with respect to the
global minimum. We only color structures with AE,,; < 0.5 eV. The region with AE < 0.1
eV is colored red and is represented by 32 different structures that occupy different parts of
the map. The dominant protomer among these conformers (29 out of 32, >90%) is the one
labeled P1 in Fig. 4.2, i.e. non-zwitterionic. However, the lowest energy structure, labeled a
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Figure 4.8 — Low-dimensional map of Arg stationary points on the PES. Only points linked to
structures with a relative energy of 0.5 eV or lower are colored. Representative structures of
all conformer families are visualized as well as their H-bond distances (in turquoise) and
longest distance between two heavy atoms (in red) of the molecule. The maps are colored
with respect to a) relative energy, b) longest distance, and c) H-bond pattern. The size of
the dots also reflect their relative energy, with larger dots corresponding to lower energy
structures.
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in panel (a) of Fig. 4.8, is protomer P3, with a shared proton between the carboxylic and the
guanidino group. This structure is compact, with the longest distance within the molecule
of only 5.01 A and presenting two strong intramolecular H-bonds. Zwitterionic protomers,
denoted as P4 and P5 in Fig. 4.2, do not appear in the gas-phase.

Inspecting the map in Fig. 4.8(a), it is clear that low-energy conformers are almost exclusively
present in the upper hemisphere of the plot. This can be rationalized in terms of the structural
motifs that occupy these two halves of conformational space: In Fig. 4.8(b), we color-code
the dots in terms of the longest extension of the conformers. While the upper hemisphere
features compact structures, the lower hemisphere of the map is populated by extended
conformers (with longest extensions between 7.5 A and 10.0 A). Many of them do not contain
any H-bonds, or contain only one H-bond between the carboxyl and amino group. Extended
conformers of Arg are energetically unfavoured in the gas-phase as the formation of strong
H-bonds is crucial for the stabilization of Arg in isolation. Comparing the different plots
in Figure 4.8, we see that the low-energy structures with AE,,; < 0.1 eV are indeed compact
with one or two H-bonds.

In Fig. 4.8(c), we identify in total 13 different configurational families with respect to the
number and character of H-bonds in the molecule, with AE, < 0.5 eV. Representative
structures of all families are shown in panel (a). This family classification helps us understand
why in Fig. 4.8(a) there are structures of higher energies in similar regions as structures with
lower energies. Even though these structures are typically in the same protomeric state and
have a similar arrangement of heavy atoms, the carboxyl group can rotate, giving rise to
different H-bond patterns. These different patterns can give rise to energy differences of
up to 0.2 eV, as exemplified in Fig. 4.9. Including hydrogens in the SOAP descriptors used
to build the 2D map could provide a better energy separation, but would prevent us from
comparing different protonation states, as shown in the next section.

Adding a proton: Arg-H" in isolation

Arg-H" is the most abundant form of Arginine under physiological pH conditions [280], and
we thus investigate changes of the conformational space introduced by the addition of a
proton to the Arg amino-acid. To that end, we plot a projection of all stationary points of
the Arg-H" PES with AE, < 0.5 eV (referenced to its own global minimum) onto the map
that was previously created for Arg. In Fig. 4.10(a), we color the dots in the map according to
AE,q, in Fig. 4.10(b) according to the longest distance between heavy atoms in the molecule,
and in Fig. 4.10(c) according to the H-bond pattern. The grey dots in the maps represent all
points in the Arg map of Figure 4.8 and are shown for ease of comparison.

The unique conformation types of Arg-H* can be grouped into 8 different families in this
energy range, which are represented in Fig. 4.10(a). Most families only have one H-bond
and there are no zwitterionic protomers. This means that in isolation only the protomer
P6 is populated. It is worth noting that under physiological conditions (in solution), the
zwitterionic protomer P7 is preferred.
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Figure 4.9 — Representative conformers with similar backbone structure but different H-
bonds within the molecule. The different H-bond pattern can cause energy differences of
up to 0.2 eV for similar structures, as discussed in the main text.

There are only two (very similar) structures with AE, < 0.1 eV in this case. The global
minimum, labeled a in Fig. 4.10(a), contains two H-bonds within the molecule, between
atoms N-Ne¢ and O1-Nr (see Fig. 4.2). This particular structure resembles the lowest-energy
structure of Arg with a proton added to the carboxyl group. This protonation results in an
extension of the molecule by around 1 A. That correlates with the location of the lowest-
energy structure being slightly shifted on the map towards the region containing more
extended structures.

The structure space of Arg-H* is contained within the conformational space of Arg and
also drastically reduced in number when if compared to Arg: There are only 108 structures
with AE, < 0.5 eV, compared to 1179 structures in the Arg case. In this energy range,
regions of the map with very compact and very extended structures are not populated in this
protonation state. This can be traced to the constraint imposed by the addition of the proton,
that make extended structures less stable due to the strong driving force to neutralize the
charge imbalance created by the proton on the guanidino group. To rationalize why the
most compact conformers are also less populated, we show in Fig. 4.11 the electron-density
differences between the lowest energy Arg-H* conformer and an Arg conformer created by
fixing the same Arg-H" structure, but neutralizing the charge and removing the hydrogen
connected to the carboxyl group. This modification yields the same covalent connectivity
observed in the global minimum of Arg. We show isosurfaces corresponding to electron
accumulation in Arg-H" in red and electron depletion in Arg-H" (accumulation in Arg)
in blue. We observe a density surplus between the O1 and N7 atoms in Arg, favoring the
formation of a stronger H-bond leading to a more compact structure.
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Figure 4.10 — Representative conformers of the populated structure families within 0.5 eV of
the global minimum of isolated Arg-H" and low-dimensional projections of all populated
conformers onto the Arg map. Grey dots represent all structures from the original map of
isolated Arg in Fig. 4.10, and serve as a guide to the eye. The maps are colored with respect
to a) relative energy, b) longest distance within the molecule, and c) H-bond pattern.
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Figure 4.11 - Electron density difference between Arg-H" and Arg calculated by neutralizing
the charge and removing the hydrogen connected to the carboxyl group (marked in green)
from the lowest energy structure of Arg-H*. The isosurfaces of electron density with value
+0.005 e/Bohr?® corresponding to the a) regions of electron accumulation on Arg-H" and b)
where the electron depletion on Arg-H*, both compared to Arg.

Adsorption of Arg on Cu, Ag, Au (111) surfaces

We now turn to the analysis of the conformational space of Arg when in contact with metal
surfaces, namely Cu(111), Ag(111), and Au(111). In Figure 4.12, we show map-projections of
the stationary points with AE,; < 0.5 eV (referenced to the respective global minimum) of
Arg adsorbed on the three surfaces. The conformational space of Arg upon adsorption is
reduced and the adsorbed conformers occupy similar regions of the map as the conformers
of Arg-H". We will learn in the following that this is mainly due to the formation of strong
bonds with the surface that result in steric constraints of the space, and also partially due to
electron donation from the molecule to the metallic surfaces.

The lowest energy structure lies on the same part of the map on all surfaces, which is different
from the area where the gas-phase global minimum of Arg was located. These conformers,
labeled ain Figure 4.12(a), (b) and (c), form a strong H-bond between atoms O1 and Ne. The
longest distance within the molecule lies between 7.20-7.35 A in all cases. This structure
binds strongly to all three surfaces through both its amino and carboxyl groups.

Other low-energy structures on all surfaces form strong bonds to the surfaces only through
the carboxyl group, as exemplified by the structure labeled b in all panels of Fig. 4.12. These
bonds are formed most favorably on fop positions, i.e. vertically on top of a surface metal
atom. In particular for Cu(111), the atomic spacing of the Cu atoms on the surface favors both
oxygens to bind on fop positions simultaneously. The favorable formation of these bonds is
connected with the fact that all conformers with AE, < 0.2 eV are in the protomeric state
P3, in which the carboxyl group is deprotonated. The bonds to the surface and a favorable
vdW attraction effectively flatten the molecular conformation, thus energetically favoring
more elongated structures. Protomers of type P1, which were dominant in the gas-phase,
only appear with AE, > 0.3 eV on Cu and Ag, and with AE,.; > 0.2 eV on Au. Zwitterionic
protomers P4 and P5 are again not observed. Regarding the intramolecular H-bond patterns,
within 0.5 eV from the global minimum we can identify 7 different families on Cu(111), and
6 families on both Ag(111) and Au(111). These families contain H-bonds where the carboxyl
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Figure 4.12 — Low-dimensional projections of conformers of Arg adsorbed on a) Cu(111), b)
Ag(111), and c) Au(111), onto the gas-phase Arg map of Fig. 4.8. Only conformers within
0.5 eV of their respective global minimum are colored. Grey dots represent all structures
from the original map of gas-phase Arg, and serve as a guide to the eye. In each panel,
representative structures are shown from two perspectives: a side view where molecule and
surface are shown (bottom), and the corresponding top view (top) where only the molecule
is shown. The longest distance within each visualized conformer is reported in red and
H-bond lengths are reported in turquoise.
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group predominantly participates. All families are represented in Fig. 4.18.

Adsorption of Arg-H" on Cu, Ag, Au (111) surfaces

Finally, we characterize the conformational-space changes arising from the simultaneous
addition of a proton and the adsorption onto metallic surfaces. In Figure 4.13, we show the
projection of the low-dimensional representations of Arg-H* conformers adsorbed on Cu,
Ag, and Au(111) onto the map of isolated Arg conformers. These projections, in particular
the comparison of the plots in Figs. 4.12 and 4.13, reveal that the conformational space of
adsorbed Arg-H" is larger than the one of adsorbed Arg. While Arg-H* features more than
500 conformers within AE, < 0.5 eV, Arg only counts about 150 conformers in the same
energy range. Interestingly, the adsorption of Arg-H* to a metal surface also results in an
increase of the occupied structure space in comparison to isolated Arg-H* (108 structures
with AE < 0.5 eV), shown in Fig. 4.10. In fact, the structures occupy similar regions of
the map as the ones occupied by Arg-H*, with the addition of extended structures that are
located in the bottom of the map.

We identify 4 different families on Cu(111) and 3 on Ag(111) and Au(111) with AE,; < 0.1
eV. Representative conformers of these families are shown in Fig. 4.13. The lowest energy
conformer, labeled a in Fig. 4.13(a)-(c), appears on all surfaces at the same region of the
map as for adsorbed Arg. The largest distance within the molecule lies around 7 A and it
also has a strong H-bond linking the carboxyl-O and the N¢ atoms. The structure, however,
does not present the same orientation to the surface as compared to the lowest energy
conformer of Arg, and does not form strong bonds with the surface. With the exception of
the extended structure on Cu(111), labeled d in Fig. 4.13(a), all conformers with AE < 0.1
eV on all surfaces contain one intramolecular H-bond involving either carboxyl-O and Ne
atom (labeled a), backbone N and N¢ atoms (labeled b) or carboxyl O and a N7 atom (labeled
¢). Compared to adsorbed Arg, adsorbed Arg-H* structures become on average 1.0 A more
extended as shown in Fig. 4.14. The protomer P6, the only one present in the gas-phase, is
dominantly populated also on the surfaces. However, we do observe a few conformers in
the zwitterionic P7 state. These structures are at least 0.2 eV higher in energy than than the
global minimum.

With respect to the number of bonds that Arg-H" forms with the surface, the picture is very
different from adsorbed Arg. Within the lower 0.15 eV, we do not observe short (strong)
bonds of O or N atoms to the surfaces. This lack of constraint by the surface contributes to
the increased structure space of adsorbed Arg-H* in comparison to Arg. In addition, the
molecule accepts electrons from the surface, becoming less positively charged, as we discuss
in detail in the next section. We conclude that Arg-H* interacts with the metallic surfaces
mostly through van der Waals and electrostatic interactions.

4.0.4 Electronic structure and trends across surfaces
In the previous section we focused on structural aspects of the adsorbed molecules and the
most prominent bonds the molecules make with the metallic surfaces. In the following, we
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Figure 4.13 - Low-dimensional projections of conformers of Arg-H* adsorbed on a) Cu(111),
b) Ag(111), and c¢) Au(111), plotted on the gas-phase Arg map of Fig. 4.8. Only conformers
within 0.5 eV of their respective global minimum are colored. Grey dots represent all struc-
tures from the original map of gas-phase Arg, and serve as a guide to the eye. In each panel,
representative structures are shown from two perspectives: a side view where molecule and
surface are shown (bottom), and the corresponding top view (top) where only the molecule
is shown. The longest distance within each visualized conformer is reported in red and
H-bond lengths are reported in turquoise.
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Figure 4.14 — Histogram of the longest distances of adsorbed molecules on different surfaces

will discuss different aspects of the molecule-surface interactions, with the goal of identifying
trends across these systems.

Figure 4.15 - Binding energies of Arg and Arg-H* on Cu(111), Ag(111) and Au(111) surfaces.
We begin by analysing the binding energies between the molecules and surface, which are
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shown in Fig. 4.15. The binding energies for all surfaces were calculated as discussed in
Section 2.8. The larger negative values in Fig. 4.15 correspond to stronger binding of the
molecule to the surface. In the case of adsorbed Arg, many conformers bind to Cu more
strongly than to Ag and Au, with the binding of the deprotonated carboxyl group of Arg to the
Cu(111) surface geometrically favored as discussed above. In the case of adsorbed Arg-H™,
there is no pronounced difference in binding strengths to the different surfaces, and the
values are comparable to the binding energies obtained for Arg adsorbed on Cu(111). This
correlates with the observation that the interaction of Arg-H* with the surfaces happens
mostly through dispersion and electrostatic interactions. Despite the strong binding to the
surface, it is also visible from comparing Figs. 4.12 and 4.13 that the interaction of Arg-H*
with the surface does not strongly template the conformations of this molecule, implying
alow corrugation (i.e. homogeneity) of the molecule-surface interaction and allowing for
a larger variety of conformers with similiar energies. This is in contrast to the molecule-
surface interation of Arg, that is more inhomogeneous due to the formation of bonds through
specific chemical groups. In realistic applications, the thermal energy will result in vibrational
contributions to the stability of a conformer, potentially changing the energy hierarchy. In
order to address the question about thermal stability of adsorbed structure, the free energies
at finite temperatures within the harmonic approximation [281, 282] can be calculated:

Fharm(T) = Epgs + Fip(T), (4.1)

where Fpgg is the total energy obtained from DFT (PBE+vdWs"! functional), and we have
used textbook expressions for the harmonic vibrational Helmholtz free energy F,,(T):

N6 g
. — 7t _ p,Bhw;
E(T) Z[ , +kgTIn(1—e ),
where N is the total number of atoms in the molecule (metal atoms were not displaced and
were taken into account in external field), kg is Boltzmann constant, T is the temperature,
w; are vibrational frequencies obtained by diagonalization of Hessian matrix with use of
developing version of phonopy-FHI-aims [283, 284]. For the adsorbed conformers, rota-
tional contributions are completely neglected since rotation around all principal axes of the
molecule become internal vibrational modes of the system.

We have estimated harmonic vibrational free energies for representative conformers with
AE, < 0.1 eV in each surface. In contrast to what has been reported for longer helical
peptides [285, 286], the global minimum remains the same in all cases, as reported in Fig.
4.16. For Arg-H* we observe relative energy rearrangements of up to 50 meV at 300 K, which
changes the relative energy hierarchy of conformers less stable than the global minimum.
Therefore, vibrational effects must be considered in order to obtain an accurate energy
hierarchy at a given temperature.

We then focus on the distance between the molecule and the surfaces. We define this quantity
by measuring the distance of the center of mass (COM) of the molecule with respect to the
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Figure 4.16 — Harmonic free energies calculated for adsorbed structures within the lowest 0.1
eV total-energy range. Epgg corresponds to the total energy of the system obtained at DFT
level and Fya, corresponds to the free energy of the system at 300 K calculated as described
above.

surface plane defined by the top layer of surface atoms. These distances are collected in Fig.
4.17. The COM is closer to Cu(111) than to Ag(111) and Au(111) for both Arg and Arg-H*,
because of higher reactivity of Cu. In addition, in all surfaces, Arg lies closer than Arg-H*, in
agreement with the observation that Arg forms covalent bonds to the surface. The extended
structures of Arg-H™, at the bottom of the maps, tend to be closer to the surface than those
that have H-bonds within the molecule, likely due to the stronger vdW attraction to the
surface by extended conformations.

The difference in COM distances to the surfaces between Arg and Arg-H" is apparently
related to the preferred orientations of the chiral center of the molecule to the surface. The
chiral C, carbon can point its bonded hydrogen towards the surface (labeled down in the
following), or towards the vacuum region (labeled up in the following). Examples of these
different molecular orientation are shown in Fig. 4.19(a).

The dominant orientation with respect to the surface is different in the cases of Arg and Arg-
HT, as evidenced by the numbers presented in Fig. 4.19(b). The lower energy structures are
mostly in the up orientation for Arg and mostly in the down orientation for Arg-H* (see also
map in Fig. 4.20), consistent with the typically smaller distance to the surface for adsorbed
Arg. However, despite the different orientations of their C,H groups, the lowest energy
structures for both molecules adsorbed on each surface have very similar conformations.
Since the addition or removal of a proton can apparently alter the preference of the chiral-
center orientation, we propose that it could template different chiralities of self-assembled
super-structures on the surface [27].
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Figure 4.17 - Low dimensional projections of adsorbed Arg and Arg-H* on Cu(111), Ag(111)
and Au(111) color-coded with respect to the distance of the center of mass of the molecule
with respect to the surface. Grey dots represent all structures from the original map of
isolated Arg where the projection was made, and serve as a guide to the eye.
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Figure 4.18 — Projection of Arg and Arg-H™* conformers adsorbed on the different metalic
surfaces on the low-dimensional map of gas-phase Arg, colored according to the H-bond
pattern.

Figure 4.19 — Orientation of the C,H group in a) up orientation (hydrogen pointing towards
vacuum) and b) down orientation (hydrogen pointing towards the surfaces). c) The amount
of structures with up and down orientation within 0.1/0.5 eV from the global minimum of
each surface.

We then investigated the rearrangement of the electronic density upon binding of the
molecules to the different surfaces. In Fig. 4.21 we show the electronic density rearrangement
created by the lowest energy conformer at each surface, integrated over the axis parallel to
the surface, overlaid on the side-view of the 3D density rearrangement. In addition, we show
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Figure 4.20 — Low dimensional maps of Arg and Arg-H* adsorbed on Cu(111), Ag(111) and
Au(111) color-coded with respect to the orientation of the C,H group. Blue correspond to
up orientation and red correspond to down orientation of the C,H group.

a top view of the density rearrangement in each case. Examples of further conformers are
summarized in the Appendix. The data shows that Arg donates electrons to the surface, while
Arg-H™" accepts electrons from the surface. We have checked this propensity for selected
conformers by integration of the electronic density rearrangement around the molecule
and by calculating the Hirshfeld charge remaining on the molecule for the full database (see
Table 4.5). When comparing Hirshfeld charges on the molecule and those obtained from
the electronic density rearrangement, we observe that Hirshfeld charges are always 0.3-0.5 e
underestimated, making them an unreliable method to analyse charge trasfer.

In addition, we observe that the depletion and accumulation of charge is not uniform through
the lateral extension of the molecule. This behavior is consistent with the level alignment
predicted by the PBE Kohn-Sham energy levels, as shown in Fig. 4.22. However, we note
that quantitative values of charge transfer are often inaccurate at this level of theory, as
characterized in Refs. [287, 288]. Optimally tuned range-separated hybrid functionals would
yield more accurate values, but their computational cost is prohibitive for the use in this
whole database. Nevertheless, hybrid-functional calculations (PBEO) of selected conformers
(Fig. 4.23) confirm the qualitative trend. Therefore, we conclude that the protonation state
again critically impacts these systems, in this case by qualitatively changing the redistribution
of electronic charge.
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It was observed experimentally that amino acids can undergo deprotonation on reactive
surfaces [289-294]. Here we also investigated whether deprotonation of Arg and Arg-H" was
favorable on any of the surfaces studied here. In Arg, we found it most favorable to detach
the proton from the guanidino group, while for Arg-H™, it was most favorable to detach the
proton from the carboxyl group. We chose three representative conformers at each surface:
the lowest energy structure and two others with different H-bonds within the molecule.
We placed the detached proton at a distance of at least 2.5 A from the molecule and fully
optimized the dissociated structures. Comparing the energy difference between the final

Figure 4.21 - Electronic-density difference averaged over the directions parallel to the surface
for the lowest energy conformers of Arg adsorbed on Cu(111) (a), Ag(111) (b), and Au(111)
(c), as well as of Arg-H™ adsorbed on Cu(111) (d), Ag(111) (e), and Au(111) (f). Positive values
(red) correspond to electron density accumulation and negative values (blue) correspond
to electron density depletion. In each panel, we also show a side and top view of the 3D
electronic density rearrangement. Blue isosurfaces correspond to an electron density of
+0.05 e/Bohr® and red isosurfaces to -0.05 e/Bohr>.
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Table 4.5 — Calculated charge on the molecule with use of Hirshfeld partial charge analysis
and by integration of the electron density difference in the molecular region. Values are in
electrons.

Conformer | Hirshfeld | Integral | Conformer | Hirshfeld | Integral
Arg@Cu Arg-H*@Cu
a 0.11 0.19 a 0.29 0.85
b 0.03 0.30 b 0.30 0.85
c 0.04 0.31 c 0.31 0.84
d 0.08 0.26 d 0.43 0.88
e 0.01 0.24 e 0.46 0.85
f 0.11 0.30 f 0.38 0.82
Arg@Ag Arg-H*@Ag
a 0.04 0.15 a 0.28 0.83
b -0.08 0.23 b 0.30 0.83
c -0.03 0.24 c 0.31 0.82
d -0.06 0.21 d 0.43 0.86
e -0.13 0.16 e 0.46 0.85
f 0.05 0.14 f 0.36 0.86
Arg@Au Arg-H*@Au
a 0.06 0.05 a 0.32 0.86
b -0.01 0.29 b 0.29 0.86
C 0.00 0.30 C 0.34 0.85
d -0.10 0.25 d 0.48 0.91
e 0.01 0.23 e 0.49 0.90
f 0.06 0.31 f 0.43 0.92

and initial states gives a lower limit for the dissociation barrier:
AE = Egissociated — Elowest- (4.2)

The results are summarized in Figs. 4.24 and 4.25. They show that, however, only the de-
protonation of Arg-H* is favorable on Cu(111), such that Arg-H* would be predominantely
deprotonated. However, we have not observed any spontaneous dissociation upon optimiza-
tion of Arg-H* on Cu(111), leading us to conclude that, although favorable, this dissociation
of H does not occur without a barrier. In all other surfaces, the barrier for dissociation would
be rather high for both molecules.

4.0.5 Comparison of DFT with INTERFACE FF

Comparing DFT results with existing FFs is usually beneficial since it helps develop less
expensive and more accurate potentials. All the local minima obtained at DFT level of theory
were optimized with the INTERFACE-FF [213] using the NAMD package [201]. Calculations
were performed with periodic boundary conditions with the same cell size and number
of Cu atoms as in the DFT calculations. We obtained parameters for certain protonation
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Figure 4.22 — Projected densities of states of the lowest energy structures on each surface.
Filled area corresponds to the occupied states below highest occupied state (VBM) of the
whole system. HOMO (black solid line) and LUMO (black dashed line) are the states of the
corresponding gas-phase molecular conformer calculated with the same geometry as it
adopts when adsorbed. The Fermi energy of the pristine slab is depicted with blue dashed
line.
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Figure 4.23 - Side and top views of the adsorbed structures of a) Arg on Cu(111) and b) Arg-H*
on Cu(111). Dashed black lines correspond to: average z position of the atoms in the lowest
layer of the surface (left), average z position of atoms in the highest layer of the surface
(middle), centre of the mass of the molecule (right). Red/blue solid lines (and also red/blue
regions) correspond to the electron density accumulation/depletion with PBEO functional.
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Figure 4.24 — Energy differences upon hydrogen dissociation for selected conformers of Arg
and Arg-H" on all metallic surfaces. AE = Egep — E, where Egep is the total energy of the
dissociated structure after optimization (including the adsorbed hydrogen) and E the energy
of the optimized intact structure. A negative AE indicates that deprotonation is favored.

states from existing parametrization of Arg and Arg-H* available from CHARMM FE For the
calculation of Arg, two protomers P1 and P3 had to be prepared.
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Figure 4.25 — All structures that were analyzed for the calculation of the deprotonation
energies. AE is also reported in each panel.
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Figure 4.26 — Low-dimensional map of the conformational space of the Arg and Arg-H"
molecules adsorbed on the Cu(111) surface. The map was optimized considering all DFT
and INTERFACE-FF structures. Green dots represent conformations obtained at DFT level
of theory and red dots represent conformations obtained after geometry optimization with
INTERFACE-FE Close proximity of the dots reflects their structural similarity.

Figure 4.27 — Comparison of the relative energies obtained from DFT optimized structures
and the same structures after post-relaxation in with the INTERFACE force field.

From Fig. 4.26, we conclude that both levels of theory represent a similar conformational
space. However, Fig. 4.27 shows the comparison of the relative energies obtained from DFT
optimized structures and the same structures after post-relaxation in with the INTERFACE-FE
Dots on the diagonal line represent an optimal correlation. The red area marks structures that
lie in the lower 0.5 eV energy range in DFT but above the 0.5 eV energy range in INTERFACE-
FE The green area marks the structures that are in the lower 0.5 eV energy range regardless of
the level of theory. The grey area marks the structures that are above the 0.5 eV energy range
in DFT but below the 0.5 eV energy range in INTERFACE-FE From this, we conclude that DFT
(PBE+vdW*") and the INTERFACE-FF yield very different energy hierarchies. Furthermore,
Table 4.6 shows that DFT and the FF yield different adsorption site preferences for the amino
and carboxyl groups. In particular, DFT predicts that O will adsorb almost exclusively on top
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sites, consistent with the accepted adsorption site preference of CO groups on the pristine
Cu(111) surface. The FF predicts a larger population of other adsorption sites, in particular
hollow sites, compared to DFT.

Table 4.6 — Surface site adsorption preferences of chosen chemical groups in Arg and Arg-H*.
All numbers are reported as a percentage of the total number of conformers optimized with
DFT (PBE+vdW*") and the INTERFACE-FE

Arg@Cu(111) Arg-Ht@Cu(111)
Amino Carboxyl | Amino Carboxyl
Adsorption site | DFT | FF | DFT | FF | DFT | FF | DFT | FF
Top 80 53 | 76 48 | 59 50 | 70 45
Bridge 9 18 | 14 18 | 18 20 | 15 22
Hollow-FCC 5 13 | 4 17 | 13 15 |7 16
Hollow-HCP 6 16 | 5 17 | 10 159 18

INTERFACE-FF is not reliable for estimation of the energy hierarchies of the molecules,
even though the conformational spaces of DFT and FF are very similar. To go beyond single
molecules we still need better FFs or ML potentials.

4.0.6 Conclusions

One of the results of this chapter is the creation of the database of Arg and Arg-H" adsorbed
on three metal surfaces (Cu(111), Ag(111) and Au(111)) containing thousands of structures
optimized using DFT. This database is publicly available to download via NOMAD repository
[295]. In order to accelerate the development of parametrization of FFs and the training
of ML potentials, it is necessary to share these databases to overcome the bottleneck of
computationally expensive DFT geometry optimizations, which are required for obtaining
relevant information about structure-property relations of interface systems.This is required
to achieve the synergy between theory and experiment, in which computational findings
may shed light on characteristics of systems that are not accessible via experiment.

Then, using a state-of-the-art dimensionality reduction method, we investigated the confor-
mational spaces of Arg and Arg-H* in isolation and after adsorption on metal surfaces. The
unsupervised dimensionality reduction technique appeared to be a very powerful tool for
the rapid analysis of systems with a large number of degrees of freedom. We managed to
easily conclude that all structural motifs of all adsorbed systems are already represented in
the conformational space of Arg. In comparison to isolated Arg-H*, the number of accessi-
ble conformations substantially increased after adsorption. Another intriguing discovery
that might be easily overlooked without conformational analysis is that the lowest energy
structures of adsorbed Arg and Arg-H* have remarkably similar conformations since they
occur in the same regions of the low-dimensional maps. A closer examination of these lowest
energy structures reveals that the dominating orientation of the C,H group relative to the
surface varies between Arg and Arg-H". This feature should be studied further for other
systems since it may govern the templating of various chiralities of self-assembled structures
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on the surface. Additionally, a visual depiction of the accessible regions of a conformational
space can be provided. For example, spiral-like conformations that lack H-bonds are un-
favourable for both Arg and Arg-H™, while extended structures are favourable for just Arg-H™.
After that, we have specifically investigated why different parts of the conformational space
become accessible or are excluded depending on the protonation state and the environ-
ment, demonstrating the importance of bond formation and charge rearrangement in these
systems.

Arg adsorption occurs through the formation of strong bonds with the surface, with carboxyl
and amino groups playing major roles. The surface bindings limit the conformations of
this molecule, reducing the number of possible configurations with respect to the numbers
observed in the gas-phase. In contrast, Arg-H* receives electrons from the surface and
becomes less positively charged, which leads to the number of allowed conformations to
increase compared to isolated Arg-H", which is due to the weakening of intramolecular
H-bonds.

After adsorption on Cu, Ag, and Au surfaces, we analyzed the patterns observed for Arg and
Arg-H'. When the substrate is changed, the relative energy order of conformers is mainly
conserved, which is a pretty counterintuitive observation. The average adsorption height
of the molecules is following the trend: Cu(111) < Ag(111) < Au(111), and Arg is always
closer to the same respective surface than Arg-H". Most adsorbed Arg conformers bind
to Cu(111) surface more strongly than to Ag(111) or Au(111). However, adsorbed Arg-H™"
has similar binding strengths to all surfaces as Arg adsorbed on Cu(111). The computation
of dissociation energies leads us to the conclusion that deprotonation of Arg-H* is only
energetically favourable on Cu(111).

Finally, we show that while INTERFACE-FF may sample the relevant conformational space
of these adsorbed molecules, it cannot capture consistent energy hierarchies. Databases
like the ones we established will be a valuable source of data for future parameterization
and development of cheaper potentials.

In general, there is no accessible collection of isolated local minima conformers to start
a structure search from, for any random system of interest. Few suitable packages exist
for such tasks, and all methods for creating starting structures with different molecular
orientations with respect to the surface must be established manually. In the following
chapter, we will present a package that will assist in carrying out these calculations, paving
the way for the acceleration of database development for interface systems.
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[50mm] It turns out that any repetitive endeavour — whatever the industry — can be automated
within the context of rising digitisation. “Fully Automated Luxury Communism: A Manifesto”,
Aaron Bastani
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Generation and search of the flexi-
ble molecules with respect to fixed
surroundings

The previous chapter was devoted to the study of single molecule adsorption on various
surfaces, and it required a significant degree of human engagement in terms of data produc-
tion, data organization, and data interpretation. In order to capture the trends across all the
amino acids on different surfaces, such work should be performed for other systems as well.
However, it is not common to have an available structure database for gas-phase structures
that are useful as beginning structures. Moreover, in cases where the adsorption pattern is
composed of repeating templates, it is best to take into account PBC in order to perform the
structure search. In the age of high performance computers, the workflow should make use
of parallelization in the data acquisition process. Existing software packages that are capable
of performing sampling of conformational spaces are typically coupled to a small number
of specific electronic structure packages, which limits the usefulness of such packages in
practice. Also structure search packages are not tailored to sample flexible adsorbates and
their assemblies with respect to specified surroundings e.g surfaces or cavities. In response
to these challenges we have developed a program that addresses all of these issues and is
meant for sampling the conformational spaces of flexible molecules and their assemblies on
surfaces. In this chapter we present an automated workflow that allows us to easily generate
and perform geometry optimizations.

5.1 GenSec package for structure search of the interfaces

Random structure search is the basis for more sophisticated methods such as Bayesian
optimization [227] and evolutionary algorithms [217, 220], and is the method employed in
the Generation and Search (GenSec) package. Random structure search is also used in crystal
structure prediction [216, 296] and shows a decent probability of identifying low-energy min-
ima [214, 215]. The efficiency of the random structure search can be increased dramatically
first by imposing constraints on the generated structures, avoiding clashes between atoms
and keeping the database of previously calculated structures in order to avoid repetitive
calculations. Starting from the procedure for generating different conformers of the isolated
molecules, we then describe the extension of such procedures to enable simulations of these
conformers with respect to fixed surroundings (fixed frames) that can be, in general, 1D (e.g.
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ions), 2D (e.g. surfaces) or 3D (e.g. solids) static references. In short, GenSec performs a
quasi-random global structure search, with the ability to choose different internal degrees
of freedom and sample them with respect to specified fixed surroundings. The geometry
optimizations are performed by a connection with the Atomic Simulation Environment (ASE)
[297] environment, which can be connected to many electronic structure and FF packages
and offers the choice of a variety of geometry optimization routines, which we have improved
as detailed in Section 5.6. The connection to the ASE database support makes it possible to
perform multiple searches in parallel with shared access to the information obtained from
all the searches.

GenSec is written using Python 3 and distributed under the GNU Lesser GENERAL Public
License and available from:

https://github.com/sabia-group/gensec

5.2 Workflow of the GenSec package

The workflow of GenSec consists of the three main steps (Fig. 5.1):
1. Random generation of a candidate structure with specified constraints
2. Comparing the generated structure with the structures already contained in the databases

3. Performing a geometry optimization if the structure is unique, and adding all optimiza-
tion steps from the geometry relaxation as well as the local minima to the database

Figure 5.1 — Workflow of the GenSec package.

The search performs a user-specified number of unique relaxations, or the algorithm stops
if it cannot find any more unique structures within the user-specified number of trials. The
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processes of structure generation and geometry optimization can be parallelized and run
independently, and the details of each step are described in the following sections.

5.3 Structure generation

The generation of structures is implemented as a standalone procedure, and can generate
structures via multiple independent processes, while creating a central database, where the
unique unrelaxed structures are stored. The generation of these structures is based on the
internal degrees of freedom of the molecule, such as the dihedral angles, position of center
of mass (COM), and orientation of the molecule. Starting from the generation of different
conformers of isolated molecules, we then extend the procedure to generate self-assemblies
on surfaces.

5.3.1 Internal degrees of freedom: dihedrals

The very first step is to identify the connectivity of the molecule. ASE allows reading the
molecule 3D coordinates from a template in multiple chemical formats (Fig. 5.2 a), after
which it creates the connectivity matrix based on the covalent radii distances between atoms.
If the spheres of two atoms defined by their atomic covalent radii that are tabulated in ASE,
overlap, they will be counted as bonded atoms. This connectivity matrix is then represented
as a undirected graph that reflects the bonding information between atoms as shown on the
Fig. 5.2 b. The dihedral angle for organic chemical systems is defined as the angle between
two planes both of which are defined by three atoms that are connected by two bonds and
both of the planes have to share the bond that is not the terminal bond of both planes [298].
For producing different conformers with the same chemical bonding we are interested in
changing of dihedral angles of those planes, where the shared bond is freely rotatable. The
rotatable bonds are identified from the graph in Fig. 5.2 b) with the following rules:

1. First select all the atoms that have two or more bonds - potentially they will be two
central atoms forming the dihedral angle if they are not in a cyclic structure

2. Exclude the atoms with exactly 4 bonds, three of which are terminating atoms. Such
exclusion removes e.g. CH3 terminating groups

3. Exclude the atoms with three bonds for which two of the atoms are terminating hydro-
gens - with that we also exclude groups such as NH,

4. Finally exclude the atoms that have two bonds, one of which is a terminating hydrogen
which appears in carboxyl group

With this procedure the rotatable bonds of the molecules can be automatically identified
after construction of the connectivity matrix of the template molecule and in the case of
di-L-alanine only four rotatable bonds will be identified and used for creating of the different
conformations. It should be mentioned that we pay additional attention to exclusion of
the rotatable groups containing light hydrogen atoms. These exclusion can be allowed
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Figure 5.2 — a) 3D representation of a flexible molecule (di-L-Alanine); b) representation of
di-L-Alanine as undirected graph together with rotatable bonds automatically identified
using GenSec coloured in red, green, blue and orange.

since during geometry optimization light atoms will anyways move if necessary resulting in
preferred orientation of the whole chemical group with respect to the rest of the molecule. If
particular rotatable bonds are of interest during the search, this information can be anyways
manually specified in the parameters file. The only thing left to address is that the rotatable
bonds obtained with the algorithm described above can occur in cycles, which creates
redundant degrees of freedom. To exclude the rotatable bonds that appear in cycles we use
the networkx package [299] that uses Johnson'’s algorithm to detect cycles in a graph [300].
The rotatable bonds are then excluded by simple filtering that requires at least one of the
central atoms not to be in a cycle.

After that, random values of the dihedral angles can be applied to these rotatable bonds
through the ASE interface. The resulting molecule is checked for internal clashes by con-
structing the connectivity matrix again and comparing it with the initial template. The
procedure described up to this point enables the generation of random isolated conformers.
In order to model adsorbed species, additional degrees of freedom such as orientation and
positioning of the molecule with respect to fixed frames had to be implemented.

5.3.2 Generating molecules with respect to fixed frames

In order to sample the configurational space of rigid molecules with respect to fixed frames
we added two additional degrees of freedom to a template molecule: the orientation and
positioning of the COM of the molecule. The COM of the molecule is a simple translational
degree of freedom, which locates the molecule relative to a specific origin in Cartesian
coordinates. The COM is defined as r*=>_, myry /Y., my, where m;. and ry. are the mass
and coordinates of the k-th atom in the molecule.

For the orientation of the molecules we must introduce a notation to describe the orien-
tation of the molecule, which is not trivial in the case of the flexible structures. Rotations
are performed with using Hamilton’s quaternions [301], which are closely related to the
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geometrically intuitive angle and axis notation. These are presented as an ordered set of 4
real quantities which we write as

q9=[90 %, G2 g3],

or as a combination of a scalar and a vector

q=I[qo,V],

where v=[q,, g», g5]. In order to use quaternions for spatial rotations around some unit vector
[v|=1 on angle @, we can use a unit quaternion q = [cos(6/2), vsin(8/2)], with rotations
implemented as the action of an operator Rq on a 3-dimensional vector:

Ry)=R(q)-x,

where x are Cartesian coordinates of atoms in the system and R(q) is a matrix which in
component form can be written as follows:

1-2g2-2G 21q2—2q0G3 261 G5+ 2G0q>
R@) =200 +2q095 1-2G2—2q7 2q,9:—2q0q |- (5.1)
2451 —2G0q>  2G3G2+2q0q1 1 —2q7 —2q;

In order to describe a rotation of the molecule such that it can be compared to other rotations,
we use the orientation associated with the eigenvectors of the inertial moments of the rigid
molecule. The moment of inertia matrix is given by

I=ka((l‘k'1‘k)E—l'k ®ry), (5.2)
3

where my and ry = (xi, yi, z) are the masses and coordinates of k-th atom in the molecule,
E is the identity tensor and ® is the tensor product. The eigenvector with the lowest corre-
sponding eigenvalue (shortest principal axis) is chosen as the main vector of the molecule.
The eigenvector with the corresponding largest eigenvalue (longest principal axis) is chosen
as the minor vector of the molecule. The signs of these axes are determined by drawing the
vector from the first to the last atom of the molecule and calculation of its dot products with
principal axis. The principal axis for which the dot product with this vector is positive are
chosen to be main and minor vectors. By default those atoms are literally chosen as first to
last heavy atoms provided in template file, but also can be manually defined by user tailored
for particular system of interest. The main vector is aligned to the z Cartesian axis and minor
vector aligned to the x Cartesian axis - this orientation is considered the “initial” orientation
for a particular molecule. All other orientations of the molecule are treated with respect to
its “initial” orientation. The representation that is stored as an internal degree of freedom
has a human-readable notation similar to quaternions: it is composed of the main vector of
the molecule and the angle through which one would have to rotate the molecule around
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this axis in order to put the molecule in the “initial” orientation, with the main vector aligned
with the z-axis. This also allows for a discretization of the space of orientations. There are
three principal axis that are obtained for each molecule and only two of them are needed to
identify the “initial” configuration of the molecule.

5.3.3 Self-assembly generation with respect to fixed frames

Fixed frames, with respect to which the sampling of the configurational space is performed,
can be of any form i.e., atoms, molecules, 2D periodic structures and 3D cavities. After some
unique configuration of the molecule is generated, the distances between all the atoms of the
molecule and the fixed surrounding are calculated and, if all of them exceed a certain value
(no overlaps found) that can be specified before the search, the structure can proceed to
geometry optimization. When dealing with periodic structures with particular PBC one has
to take care of potential clashes of the molecule with its periodic images. Using the minimum
image convention, all the atoms are mapped inside the unit cell, and checked for clashes,
which in the case of a single molecule is also done with the creation of the connectivity
matrix that is constructed taking into account PBC.

Having specified the template molecule and the fixed surroundings, one can set the number
of molecules that should be produced in the unit cell. GenSec will then produce molecules
in an iterative way and assign to them specified values for internal degrees of freedom, that
can be the same or different. For example, one can sample molecules with the same confor-
mations but having different orientations, or with the same overall orientation (for example
flat lying) but with different conformations. This allows us to impose some constraints on
the generated structures. In the case of generating multiple molecules, the distance between
atoms of the molecules can be specified according to the goals of the search.

Examples of self-assembled structures obtained with GenSec for F6-TCNNQ/MoS, with 2
molecules in a (4x8) MoS, supercell were used for investigation of the temperature-dependent
electronic ground-state charge transfer in vdW heterostructures [302] and can be found in Fig.
5.3. GenSec automates routine tasks and does not require using any FFs for the generation
of self-assemblies.

5.3.4 Constraints of the search

Without imposing constraints, the number of configurations to sample is too large. For real
life applications specific orientations and positions of molecules with respect to specified
surroundings have to be targeted. The allowed COM space in GenSec can be specified by a
range of points in the x, y, and z directions. For each direction, one can specify the boundaries
and number of points that lie within those boundaries. For example, in order to generate all
the structures that lie in the same 2D plane, the boundary for the direction perpendicular to
this plane must contain only one particular value, which is very useful for modelling planar
assemblies on the surfaces.

In the case of orientations, the discretization is performed on the angle of self-rotation. This
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Figure 5.3 — Examples of self-assembled structures obtained with GenSec for F6-
TCNNQ/MoS2 with 2 molecules in a (4x8) MoS, supercell.

is quantified by specifying the allowed angle of rotation. For example, if the number equals
60, six rotations of the molecule will be generated, and if the number is 360 self-rotations are
basically forbidden. In this case the vector, associated with the principal axes corresponding
to the lowest eigenvalue of the moment inertia tensor will solely identify the orientations.
The main vector of the molecule is sampled from a uniform distribution between specified
maximum and minimum values for ¢;, ¢> and g3. An example of different orientations and
their notations are reflected in Fig. 5.4.

Having set these routines, one can produce an arbitrary amount of molecules per unit cell
with specified orientations and conformations, that will be clash-free structures ready for
geometry optimization. However, before geometry optimization, which can be very time
consuming, we check the generated configurations against the database, and only if the
configuration is unique, is a geometry optimization performed.

5.4 Database creation and filtering of the structures

Here we describe how the uniqueness of a randomly generated structure is checked. The
database is created in the SQLite3 format, which is a self-contained, server-less, zero-
configuration database. Every row in the database contains atom positions and calculated
forces on all atoms together with internal degrees of freedom that represent the system.
The internal degrees of freedom are stored in the database separately with the notation
“t” for torsion angle numbers which are automatically identified, “q” for orientation, that
has 4 values for each molecule and “c” for COM, that has three values that are defined with
respect to the Cartesian origin. For a given configuration, one can easily create a query that
will extract all the configurations from the database with the same corresponding torsion
angles values within a given threshold. If the number of filtered structures is more than one,
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Figure 5.4 — Examples of the orientations for two different conformers. Big blue vector
denotes main direction, smaller red vector denotes minor direction. Magenta circle is a Na
atom from which one can see three small vectors: red - x-axis, green - y-axis and blue - z-axis.
First number in brackets denotes a "self-rotation" around main vector with respect to the
"initial" orientation and three other number represent direction of the main vector.

the initially generated structure is not unique and should not be further optimized. This
procedure easily extends to multiple molecules. If the number of structures is more than one,
and if checks on the orientations and COMs are specified, then each filtered structure will
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be compared to the structure under trial. If the distance between COMs of structures within
one system is more than specified value (default is 0.5 A ), the structures will be considered
as different. For the orientations, the self-rotation and the angle between the main vectors
of the molecules are checked separately. If both the difference between self-rotations and
the angle between main vectors are greater than specified values (the default values are 30°
in both cases), those structures will be considered different. If the generated structure is
unique, it will proceed for geometry optimization, deleted from the database of generated
structures. After relaxation, the trajectory will be added to the database of trajectories, and
the local minimum will be added to the database of local minima.

We also implemented restarting procedure that is very important in the workflow of the
GenSec, since it provides seamless way of continuing of the unfinished processes and con-
tinuing of the database generation especially when multiple parallel processes utilized for
structure search.

5.5 Geometry optimization workflow

One of the strengths of GenSec is that it straightforwardly interfaces with the ASE environ-
ment, which allows us to perform energy and force evaluations using the most popular
electronic structure packages, as well as empirical potential codes. These packages can
be used to obtain energies and forces of the system at each step of geometry optimization
to find local minima. The structures from every step of these geometry optimizations are
stored in the database that helps to find the new unique trial structure more efficiently and
provide more data for training of potentially cheaper potentials. The limitations on the size
of the database is limited by capabilities of SQL

The bottleneck of exhaustive searches is ab initio geometry optimizations that can be sped
up with the use of preconditioning of geometry optimization algorithms. There are some
routines already available for geometry optimization in ASE. However, in the following, we
describe the preconditioning of the BFGS algorithm that takes into account an approximate
Hessian matrix that contains information about connectivity and physical interactions in the
system. This allows the algorithm to make a better choice for the next step towards finding
the local minima. This implementation is tailored explicitly for interface systems, and its
description and performance will be described in the following section.

5.6 Preconditioner for geometry optimization

Having routines for sampling different parts of the conformational space of a system, it is
necessary to minimize the system’s energy. It was shown that the energy hierarchy of the
structures for which only single-point calculations were performed could change dramat-
ically after their geometry optimization [303]. The most popular geometry optimization
algorithms are quasi-Newton algorithms that require input information about the energy
and forces of a configuration and iteratively find the local minima of the system. Based on
the forces and energies of adjacent steps, the algorithm updates the approximate Hessian

97



Generation and search of the flexible molecules with respect to fixed surroundings

matrix. One of the most successful schemes is the BFGS algorithm, which was described in
Section 3.2. However, the potential energy surface of the system can be highly anisotropic,
which results in a poor performance (slow convergence) of the geometry optimization. In
order to make the shape of the potential more isotropic, one can use preconditioners that
perform a metric transformation of the coordinate system, thus making the shape of the
potential energy surface smoother and improving the efficiency of finding the nearest local
minima.

By default, the initial Hessian matrix is a scaled identity matrix, and initializing the Hessian
matrix with some information about the system can improve the speed of convergence of
the geometry optimization algorithm. A combination of the Hessian matrix with different
preconditioning schemes showed a performance gain when applied to molecular crystals
[304], for example. For modelling condensed phase systems, the best performance is demon-
strated using the Exponential preconditioner [249]. For modelling gas-phase molecular
systems, the force-field-like preconditioner proposed by Lindh et al. [236] is widely used
due to its simplicity. Specifically for the interfaces, we propose a scheme that allows us
to combine these different approximations and apply them to the corresponding parts of
the system, i.e. Lindh applied to the molecular part and Exponential to the solid part. We
also introduce a vdW part that allows us to calculate a L] Hessian matrix based on the vdW
parameters developed in the TS-vdW method that can be applied to the parts of the Hessian
where it can play an important role. The pictorial representation of the proposed scheme
can be found in Fig. 5.5. First, we describe the workflow of the L] preconditioning scheme
and then show some results for model systems where the combined preconditioning scheme
was applied.

5.6.1 Lennard-Jones-like Hessian matrix
Here we would like to introduce preconditioning scheme that could treat vdW bonded
systems. First, we introduce notations used in the scheme:

A,B€{0,.,N —1},A# B - interacting atoms,
i,j<€{0,1,2} - cartesian axes, (5.3)

0, is Kronecker delta.

We derive the Hessian starting from a Lennard-Jones 12-6 potential:

[T [ AR IO S o 5
AB RAB RAB) | (RAB)12 (RAB)6’ ’
where indices A and B denote different atoms,
R =((x} —xM), (xf — x), (xf — x{) (5.5)
RAB = xB _ x4 (5.6)
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Figure 5.5 — Representation of the construction of the approximated Hessian matrix using
different preconditioning schemes a) Representation of the different parts of the system
for which different preconditioning schemes can be applied separately; b) the combined
approximated Hessian matrix constructed using different preconditioner schemes applied
for different parts of the system.

is the distance between atoms A and B and

IRAB| = R = /(xB — x2 +(x8 — x2 + (x8 — x2)2. (5.7)

The Cy coefficients are taken from [305, 306]. So we proceed to take the first derivative:

dEj; _ 6Cs pap_ 12Ci2 pap

dxA RS R14

(5.8)

A B
Rigw + Rygw

5 , one can derive Cj,

By assuming that L] potential adopts a minimum at R}\f =
from Eq. 5.8 as
1
cl= 5CGAB *(RP)°, (5.9)

as discussed in [163].

After that we take the second derivative and get:

6C, 12C
OER _ a(R_SG)RAB 6Cs ORMP a( ngz)RAB_ 12C;, ORAE
ax;“aij 8x]3 ! R8 8ij 3x]B i R14 8xf
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After simplification the L] Hessian will be:

B_ A B__ A
U _M(XB_XA)_IGSCQ(Xj xj)(xB_xA)_(s_cs_lzclz) B
(3A+0),(3B+j) — R10 i i R16 i i RS R14 1]
(5.11)

However, in practical simulation, we want to employ preconditioning scheme at situation
that may be far from the ideal minimum of such a potential. In that case this constructed
Hessian will not be positive definite. To overcome this issue we apply the strategy as in the
Lindh approach for constructing the Hessian matrix, where the Hessian is estimated for a
particular configuration as it would be if that configuration was a minimum [236]:

0E 1 Y 0%E
E(R)=E _R (Ri_R?)_"E.Z (Ri_Rtp)aRiaRj(Rf_R;))—i_m

i=1 =RY i,j=1

Mz

(5.12)
where the second term cancels to zero. Our model Hessian is then

Y _ O2E(R{P) _48GRGPRIT 6 168C1 R Ry’ 120,
B4+D6B+) " JRAG RE Irgn=rit mr=rif = pABy0  (gABRCUT T (RABys T (paBpa®i
(5.13)

Obviously, values RZ.AB can be far from equilibrium values and this will lead to Hessian matrix
R#B is scaled to the length of R{\?

be not positive definite. Instead, the i in order to satisfy the
assumption that the system is near the local minimum:

AB
RAB = RAB m (5.14)
0i i R :

With use of prefactor coefficient p 4 for the whole Hessian matrix we set the vdW interaction
at the distances larger than 2 x R{'® to be negligible, basically setting preconditioning only
for nearest neighbour atoms:

pAB:exp[aAB ((RS‘B)Z—RZ)], (515)
by fitting of the the parameters a,p for each pair of R{*2. Finally we get

HLI 32 (RAB)

(3A+0)(3B+]) ~ PAB WlR B_RAB,RAB=RAD (5.16)

This scheme is implemented in GenSec and available with use of the flag “vdW” for precon-
ditioning of the geometry optimization. The scheme was tested on model L] Ar,, clusters,

100



5.6. Preconditioner for geometry optimization

where 7 reflects the number of atoms in the cluster, the local minima of which were taken
from the database [307]. For all the minima random displacements of 0.01 A were applied
for each atom. The BFGS TRM method was used for geometry optimization. The geometry
optimizations were carried out with the vdW preconditioning scheme and with the scaled
identity matrix using 70 as the scaling factor (default in ASE) as initial Hessian (which is also
will be noted as unpreconditioned case). The performance gain is calculated as the number
of steps required to reach the local minima for unpreconditioned case divided by the number
of steps required to reach the same local minima with use of initial preconditioned vdW
Hessian matrix, and shown as a function of cluster size in Fig. 5.6.

Figure 5.6 — Performance gain for the geometry optimization of L] clusters of different sizes
using vdW preconditioning scheme, compared to the unpreconditioned case.

Identical structures are obtained with and without application of the preconditioner, and our
preconditioning scheme shows significant performance gains for these systems, where the
only force acting on the atoms is L] force. Now we proceed to the combination of the different
Hessian schemes, and apply the combined Hessians to model interface systems.

Next we adapted the Exponential and Lindh preconditioning schemes described in Sec. 3.2.4
into the workflow of GenSec. To test the performance of the Exponential preconditioner,
we optimized bulk N x N x N fcc Cu unit cells were optimized using Effective Medium
Theory (EMT) potential implemented in ASE [308], and to test the Lindh preconditioning
scheme we used PBE with light settings implemented in FHI-aims to relax different Alanine
dipeptide conformers obtained with GenSec. The results are shown in Fig. 5.7 - in both cases
a significant performance gain is observed.

Randomly generated geometries can be far away from any local minima. Especially for
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Figure 5.7 — Performance gain for geometry optimization with Exponential preconditioning
scheme applied to Cu bulk systems (left) and performance gain of the Lindh preconditioning
scheme applied to geometry optimization of different conformers of Alanine dipeptide
structures (right).

flexible molecular systems, the local environments can change dramatically during geometry
optimization due to torsional rotations. In this case, the local PES cannot be approximated
quadratically. To overcome this issue, one of the approaches could be to restart the BFGS
procedure and reinitialize the Hessian matrix during the geometry optimization. One way
to do this is to “reset” Hessian matrix after some fixed number of steps. By contrast, we
restart and update the Hessian matrix depending on the change of the root mean square
displacement (RMSD) value between snapshots in the geometry optimization trajectory:

RMSD = (5.17)

where d; is the distance between the atomic positions. Randomly created flexible molecules
are usually far away from a local minimum which means that harmonic approximation of
quasi-Newton procedure that was initially made will not be valid after several optimization
steps and reinitialization of the Hessian matrix allows the BFGS algorithm to find local
minima faster. For the same set of conformers of Alanine dipeptide presented in Fig. 5.7 we
applied this scheme, where the Hessian matrix was reinitialized after the RMSD exceeded
the specified value. The definition of the RMSD value is system specific and should be
chosen with caution in order to obtain the best performance results - choosing the value
to be too small will reinitialize the Hessian update too often, which could lead to decrease
of performance of BFGS algorithm. Harmonic approximation could be valid if the atom
displacements are within 0.2 A from their equilibrium positions [234]. The results in Fig. 5.8
show that this strategy can be twice as efficient compared to the case where preconditioning
was applied only at the initialization step.
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5.6.2 Combining the preconditioners

Having all of the preconditioning schemes implemented in GenSec, we created the model
system of one hexane molecule adsorbed on Rh surface to test the performance of the
combined preconditioner illustrated in Fig. 5.9. The system can be clearly separated into
molecular and surface parts, and the strategy for applying the different preconditioning
schemes is the following: the constructed initial Hessian can be obtained for the whole
system using Exponential or Lindh. One can apply different preconditioning schemes to
different parts, i.e, Exponential for the substrate part and Lindh for the molecular part. For
the Hessian matrix elements that correspond to off-block-diagonal elements, that do not
correspond solely to molecular or substrate part, one can apply the vdW preconditioning
scheme, or simply set those elements to 0.

Figure 5.8 — Performance gain for geometry optimization of different randomly generated
conformers of Alanine dipeptide with reinitialization of the Hessian after the conformational
change exceed 0.1 A .

Lindh term, if A, B are in molecule
Hgzatiy@p+j)={ vdWor 0 if A, B belong to different parts of the system (5.18)

Exponential if A, B are in surface

For the model system the effects of applying the different preconditioning schemes are shown
in Fig. 5.9. The PES was constructed using adaptive intermolecular reactive bond order
(AIREBO) potentials [309, 310] for carbohydrates, embedded atom model (EAM) interatomic
potential for Rh atoms [311, 312] and LJ potential for interactions between molecule and
surface. It is clear that applying a combined preconditioner is more efficient than applying a
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Figure 5.9 — Performance gain for geometry optimization with different preconditioning
scheme applied to geometry optimization of hexane on Rh surface.

single preconditioning scheme to the whole system. Inclusion of the vdW preconditioning
scheme doesn't give a significant performance gain in this case. This is likely because the
vdW forces are never the largest forces in the optimization path. Nevertheless, this strategy
can be efficient, and applying it to the broader range of systems with different potentials will
be the scope of future investigations.

The package is open-source and ready for usage. Tutorials and documentation can be found
at https://github.com/sabia-group/GenSec

5.7 Application to di-L-alanine on Cu(110)

Having presented the GenSec package, we now provide an example of how it can be applied to
asystem that has been previously investigated experimentally, namely di-L-alanine adsorbed
on the Cu(110) surface. STM was utilized to investigate the sub-monolayer formation of
this peptide, which is the smallest possible chiral peptide consisting of two AAs (L-alanine),
on Cu (110) [313]. At low coverages, these molecules nucleate along the [332] direction,
forming small, predominantly one-dimensional islands. Coverage increase results in forming
elongated, [332]-directed islands. At higher coverages, up to one monolayer, the islands
merge to form phase barriers across domains with opposite orientations. In Fig. 5.10 and
Fig. 5.11, we reproduce the experimental STM images from Ref.[313].

We investigated the adsorption of di-L-alanine on Cu(110) at DFT level of theory. In order
to compare experimental and theoretical results we proceeded with comparing of the STM
images obtained for the lowest energy structures obtained during structure search. We
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Figure 5.10 — Two STM images of di-L-alanine on Cu(110) at low coverage. The molecules
were evaporated at a sample temperature of 248 K and scanning took place at 208 K to freeze
out diffuzion: (a) 160A x 160 A, V; =—2.10V, I; =—0.34 nA. (b) Two islands with parallel
(P) or anti-parallel (A) di-L-alanine molecules in adjacent rows: 90 A x 90 A, V; = —1.68
V, I; =—0.34 nA. Reprinted from Surface Science, Volume 545, Issues 1-2, Ivan Stensgaard,
Adsorption of di-L-alanine on Cu(110) investigated with scanning tunneling microscopy,
Pages L747-1.752, Copyright 2003, with permission from Elsevier.

Figure 5.11 — (a) STM image of di-L-alanine on Cu(110). All molecules in an island are
oriented parallel of antiparallel to the [332] direction as indicated by the two directions of the
arrows. The di-L-alanine was evaporated at a sample temperature of 363 K and imaged at
198 K. Area: 250 A x 250 A, V; =—1.25V, I; =—0.65 nA. (b) Formation of a domain boundary
(marked with an arrow) between two antiparallel domains. Adsorption temperature: 363 K,
imaged at 268 K, 100 A x 100 A, V; =—1.68V, I, =—1.52 nA. Reprinted from Surface Science,
Volume 545, Issues 1-2, Ivan Stensgaard, Adsorption of di-L-alanine on Cu(110) investigated
with scanning tunneling microscopy, Pages L747-L752, Copyright 2003, with permission
from Elsevier.

105
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Figure 5.12 — Schematic model of the di-L-alanine surface layer on a Cu(110) substrate. The
size and orientation of the unit cell is indicated. The atoms of the molecules are shown in
shades of grey going from N (darkest) via O to C (lightest). Hydrogen atoms are left out. The
molecule marked A in the upper right corner has been rotated by 180° and shifted slightly to
adopt the same local adsorption geometry as the unrotated molecules. The position of the
molecule before rotation is shown as an outline. Reprinted from Surface Science, Volume
545, Issues 1-2, Ivan Stensgaard, Adsorption of di-L-alanine on Cu(110) investigated with
scanning tunneling microscopy, Pages L747-1L752, Copyright 2003, with permission from
Elsevier.

analyzed the characteristics of the structures found by the random search, which one seems
to be the experimental structure, and how it compares with the structure originally proposed
in Ref. [313] and can be found in Fig 5.12(a).

5.7.1 Computational details

The electronic structure calculations were carried out using the numeric atom-centered
orbital all-electron code FHI-aims [183, 184]. We used the standard light settings of FHI-aims
for all species. For modeling the adsorbed molecules, a surface 1 x 1 x 2 unit cell with 6 x 6 x 1
k-point sampling was employed. The fcc(110) copper slab was produced using ASE package
with lattice vectors directions [332], [111] and [110] that resulted in 4 layers in the slab with
parameters a=8.52 A and b=6.29 A compared to experimental 8.48 A and 6.29 A lattice
vectors lengths in [332], [111] respectively. The lattice parameter employed was 3.63 A as in
our previous works [83]. In order to isolate periodic images we added a 100 A vacuum in
the z direction and also employed the dipole correction. We employed the PBE+vdWs®!
functional [130] which contains an effective screening of the vdW interactions optimized
for metallic surfaces. The two bottom layers of the surface was constrained and a geometry
optimization was performed until all forces in the system were below 0.01 eV/A .
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5.7. Application to di-L-alanine on Cu(110)

STM images were produced with Tersoff-Hamman approximation [197] with modelled
applied voltage of -2 eV. This voltage was chosen based on the experimental values of the
applied voltage for STM picture recording.

Figure 5.13 — a) Schematic representation of the di-L-alanine amino acid in its zwitterionic
configuration. Red atoms are oxygen; blue atoms are nitrogen; white atoms are hydrogen,
and grey atoms are carbon. b-d) Schematic representation of Cu(110).

An example of the di-L-alanine molecule and of the Cu(110) unit cell surface that we used
for structure search can be found in Fig. 5.13.

5.7.2 Generation of trial structures

Trial structures were randomly produced using GenSec package with one molecule per unit
cell. From the experimental study, we learned that we could apply a few constraints in the
search. We restrict trial structures to be extended along the [332] direction. The structures
were generated in zwitterionic state since Fig. 5.10(a) shows evidence that the molecules
within a single-row island are aligned in the same direction at low coverage. This evidence
points to a model in which the terminal carboxylic group of one molecule forms a hydrogen
bond with the terminal amino group of another molecule. The zwitterionic character of
alanine in its solid-state [68], would be a good match for this type of relationship. However,
it is impossible to rule out the possibility of deprotonation during the adsorption process,
which would result in the formation of an anionic molecule. Investigations of tri-L-alanine
for low coverage adsorption on Cu(110) revealed that the AA was bonding in the anionic
form [314].
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Ten searches were conducted in parallel, sharing the databases that blacklist trial candidates
and geometry optimization trajectories obtained from different searches. Machinery im-
plemented in GenSec allowed to perform such a structure search in a high-performance
computing infrastructure by utilizing SQLite3 database features in ASE. After sampling of 500
structures we stop the structure search and select all the structures that fall within 1 eV energy
range relative to the lowest energy structure and proceed to analysis of the results.

5.7.3 Analysis of the search

The structure that was proposed in Ref. [313] would bind with O1 and O2 oxygen atoms at the
atop position to the same upper rod of the Cu(110) surface and atoms C1, N1 and N2 would
adsorb also at atop positions on the neighbouring upper rod. Oxygen atom O3 and C2 from
methyl group should not be connected to the surface. We manually prepared this structure
and performed geometry optimization. This structure is depicted in Fig. 5.12 together with
its STM image. As one can see, the patterns on STM images recorded experimentally and
theoretically produced do no match: there are no interweaving bright and weak spots and
their connectivity between neighbouring strands is absent.

After we performed structure search only 23 unique structures in our database fall within 1
eV from the lowest energy structure. The structures either remain in the zwitterionic state or
undergo a deprotonation and adopt an anionic state. For all the 23 structures, we modelled
STM images and created repeated images for easier visual comparison. One can clearly see
that the patterns can differ considerably from each other. The particular pattern observed
in experiment (interweaving of bright and faded spots along a strand, with connections
between strands that reminds of a tadpole) is very similar to the ones obtained for structure
7 (Fig. 5.14). All the lowest energy structures together with their STM images can be found
in Appendix B.1-B.5 and we proceed to more detailed analysis of the eight lowest energy
structures found during the search (Fig. 5.14). The exact structure that was proposed in
Ref. [313] was not found during structure search. We prepared this structure manually and
performed geometry optimization for it, which results in the structure 8 (Fig. 5.14) but higher
by 30 mEv in energy from it due to slightly different adsorption pattern (Fig. 5.15). During
geometry optimization C1 atom does not bind to the surface and points towards the vacuum
region and thus, we can conclude that structure originally proposed in Ref. [313] is not stable.

The structures denoted 1,2,3 and 17 undergo deprotonation of the molecule adsorbed on
the