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Figure S1: 



Fig. S1. Flg22-induced changes of [Ca2+]cyt in vascular tissues and whole plant of A. thaliana 

seedlings. (A) A comparison of the time profile of [Ca2+]cyt changes in the vascular system 

(vasculature GAL4 enhancer trap line KC274) and the collective cytosol of seedlings (pMAQ2) 

was made using a lowered (from 6s to 4s) measuring interval. Entire seedlings were treated with 

1 µM flg22 or water, and the luminescence was recorded. After flg22 treatment, two successive 

[Ca2+]cyt maxima (marked with arrowheads) were observed: the first peak occurred 1 min after 

flg22 application followed by a second, 3-4 min later (n=4). The time shifts of the Ca2+ response 

in either approach are marked with green vertical lines. (B) Time profile of [Ca2+]cyt changes in 

the Aeqcytfls2 line after different flg22 concentrations. (C) Comparison of the time profile of 

[Ca2+]cyt changes in the pMAQ2 line after different flg22 concentrations. The two successive 

[Ca2+]cyt maxima (marked with arrowheads) were found after 1 µM and 100 nM flg22 but not after 

10 nM. 



Figure S2. 



Fig. S2. Extracellular voltage recordings in response to remote epidermal flg22 application 

onto the A. thaliana midrib. The flg22 solutions (1, 10 or 100 nM) or bathing medium (control) 

were carefully dropped onto the abaxial epidermis. (A) Flg22 induced voltage shifts in A. 

thaliana wild-type plants but not in (B) fls2 mutant plants or (C) after a control treatment. Time 

points of flg22 application are marked with an arrow. Each measurement was repeated at least 4 

times. 



Figure S3: 



Fig. S3. Fluorescence microscopic observations of phloem mass flow in A. thaliana WT after 

mock treatment as a control for flg22 application (see Fig. 4). (A-D) Schematic drawings of 

setup and SE reactions to application of bathing medium. (A) The non-fluorescent membrane-

permeable ester 5(6)carboxyfluorescein diacetate (CFDA) was continuously applied to a cropped 

leaf tip and trapped by sieve elements (SEs). There, it was cleaved by esterases to form the polar 

(membrane-impermeable) fluorescent compound carboxyfluorescein (CF). Phloem transport of 

CF was observed by confocal laser scanning microscopy at cross-sections (vertical lines) upstream 

(1) and downstream (2) of the mock-solution infiltration site. The plants were treated with bathing

medium (2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 50 mM mannitol and 2.5 mM MES/NaOH

buffer, pH 5.7) without flg22. (B) CF was carried by mass flow through sieve tubes. (C) After 2

h, 100 µL of bathing medium was pressure-infiltrated via a 1 mL syringe, 0.5 cm at the right and

left side of the midrib between the veins in an areole area. (D) At different time points after mock

treatment (10 to 90 min), CF fluorescence in the phloem was examined in cross-sections up- (E)

and downstream (F) of the infiltration site. (E, F) In all mock treated plants, CF fluorescence was

always detected at both sides, up- and downstream the infiltration site (n=8). Transmission

channel, fluorescence channel and merged images are presented from left to right (E-F).



Figure S4: 



Fig. S4. Fluorescence microscopic observations of phloem mass flow in A. thaliana WT, 

Atseor1/2 KO and Atgsl7 KO mutants after 1 µM flg22 treatment. No CF fluorescence was 

observed downstream of the flg22 infiltration site of WT plants, indicating SEO (n=5), whereas 

CF fluorescence was always detected at both sides, up- and downstream the infiltration site of 

Atseor1/2 and Atgls7 mutants (n=5). 



Figure S5: 



Fig. S5. Phylogenetic analysis for FLS2 sequences of several plant species. The protein 

sequence of putative VfFLS2 was compared to the protein sequences of AtFLS2 and other 20 

Arabidopsis members of the leucine-rich repeat receptor-like protein kinase family (pthr27000), 

to the FLS2 sequences characterized for different plant species (NbFLS2, OsFLS2, CsFLS2-1 and 

CsFLS2-2, VvFLS2) and to the sequences identified by Panther as AtFLS2 orthologs (ZmFLS2, 

HvFLS2, GmFLS2.1 and GmFLS2.2, CsFLS2.1 and CsFLS2.2). The percentage of replicate trees, 

in which the associated taxa are clustered in the bootstrap test, are shown next to the branches, 

only if bootstrap value was higher than 50. The tree is drawn to scale, with branch lengths in the 

same units as those of the evolutionary distances used to create the phylogenetic tree. 



Figure S6: 



Fig. S6. Forisome reaction in response to a remote flg22 application in V. faba. At a distance 

of nearly 20 mm, 2 cortical windows were cut into the midrib of a V. faba leaf without damaging 

the vascular system. Both windows were bathed in a buffer solution in order to recover for 2 h. 

One window was used for the application of 1 µM flg22, and the second one was used for 

microscopic observation of forisome reaction. We never observed a forisome dispersion following 

a remote application of flg22. SE = sieve element; SP = sieve plate; * = forisome; t = time after 

application 



Figure S7: 



Fig. S7. Forisome reaction in response to action potentials induced by local application of 

glutamic acid or GABA and variation potentials induced by sorbitol application in V. faba. 

The forisome reaction – dispersion and condensation – was microscopically monitored via 

observation windows made in the cortex (19). To this end, epidermis and cortical parenchyma cells 

of the midrib were removed with a fresh, sharp razor blade down to the vascular system without 

damaging the phloem. The tissue window was bathed into a buffer mock solution and recovered 

for 2h. Chemical stimuli – glutamic acid, γ-aminobutric acid (GABA), and sorbitol – were 

dissolved in the buffer solution and directly applied onto the tissue window. To check the 

intactness of the forisome, a heat stimulus was applied to the leaf apex at a distance of nearly 20 

mm from the observation window. (A, B) Neither glutamic acid (1 or 10 mM; n = 4) nor GABA 

(5 or 50 mM; n = 4) induced a forisome dispersion (upper rows), while the remote heat stimulus 

always provided evidence for forisome viability (lower rows). (C) Forisome dispersion was 

triggered by a hyper-osmotic shock with 1 M sorbitol. The treatment seemingly damaged the plant 

tissue and a heat stimulus had no effect. SE = sieve element; SP = sieve plate; t = time after 

application; * = forisome 



Figure S8: 



Fig. S8. Phytohormone determination in A. thaliana wild type (WT) and Atseor1/2 double 

knockout plants upon flg22 treatment. Leaf 8 was treated with 1 µM flg22. Leaves 8 and 13 

were harvested after the indicated time points and analyzed individually by LC-MS. (A) jasmonic 

acid (JA); (B) salicylic acid (SA). For all experiments, the bars represent the mean and standard 

error of the biological replicates (N=6). The asterisks indicate significant differences (p<0.05) 

between the control and treatment based on Student’s t-Test.  
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Fig. S9. Pathogen infection-related assays in A. thaliana wildtype (Col-0) and ΔAtSEOR1/2 

mutant plants. Pseudomonas syringae infection level in A. thaliana leaves three days after 

infection. Leaves of WT (Col-0) (green) and the ΔAtseor1/2 mutant line (blue) were infiltrated 

with Pseudomonas syringae pv tomato DC3000. Three days after the infiltration bacteria were 

isolated and grown on agar plates in different dilution Infection level (cfu/cm²) was determined by 

colony counting. The figure shows six experimental approaches (1-6). Sample sizes: 1 N=4; 2 

N=9WT/8ΔAtSEOR1/2; 3 N=6; 4 N=4; 5 N=12; 6 N=5. For all experiments, the bars represent the mean 

and standard error of the biological replicates. The asterisks indicate statistical significant(p<0.05) 

between the WT and ΔAtSEOR1/2 mutant line based on Student’s t-Test. 



Figure S10: 



Fig. S10. Hypothetical models of events in response to flg22 recognition by above-ground 

plant parts. Speculative model of a cascadic Ca2+ influx initiated by FLS2-mediated flg22 

sensing in epidermal cells. The essence of the model is that successive gating of diverse ion 

channels with increasing gating threshold concentrations and Ca2+ transport capacities stepwise 

enhances cytosolic free Ca2+ concentration. Binding flg22 to FLS2 activates gating of ligand-

activated Ca2+-permeable channels located in the plasma membrane (lower abscissa). The 

resultant depolarisation activates voltage-activated Ca2+ permeable channels (lower abscissa) so 

that the cytosolic Ca2+ concentration is further enhanced to such an extent that Ca2+-dependent 

Ca2+ permeable channels residing in the endomembrane system (upper abscissa) are gated. In 

turn, the extra Ca2+ elevation triggers such a massive release of ions that mechanosensitive Ca2+-

permeable channels in the plasma membrane (lower abscissa) are activated leading to a collapse 

of cell turgor. Involvement of voltage-activated channels initiates the propagation of an AP, 

while the engagement of mechanosensitive channels initiates a VPs. Ca2+ thresholds (stippled 

lines) are indicated on the left ordinate, Ca2+ influx (right ordinate) is given in arbitrary units. 



Figure S11: 



Fig. S11. Origin, propagation modes and impact of successive electric potential waves. 

Model of two successive Ca2+ waves triggered by application of flg22 and transformed into an 

AP and VP, which appear near the site of infection as one merged EPW, but diverge further 

along the pathway. Divergence is due to the higher propagation speed of the AP. The AP is a 

self-amplifying EPW, enabled by voltage-activated Ca2+ channels located in the plasma 

membrane of SE/CCs, accomplishes a steady, but low Ca2+ influx below the occlusion threshold, 

but propagates more rapidly and over far longer distances than the VP. It impacts on the Ca2+ 

signatures of cells along the pathway and serves in this manner and act as defence-triggering 

alarm or priming signals to distant plant parts (43) that modulate phytohormone production. The 

VP is an electrical signal through SEs that originates from the mechanosensitive Ca2+ channels in 

SE-flanking cells. This is due to a wave of turgor loss, decreasing with the distance from the site 

of perception. As a consequence, Ca2+ influx into SEs and associate VPs fade with the distance 

travelled, and forisomes will disperse along the sieve-tubes until Ca2+ influx falls below the 

threshold for Ca2+-induced forisome dispersion. This explains the distance-limited VP effect on 

forisome dispersion (Fig. 8). Only close to the site of flg22 application, the quantitative Ca2 

influx exceeds the threshold needed for sieve plate occlusion, because Ca2+ influx via 

mechanosensitive Ca2+ channels decrease with the distance from the site of stimulation until final 

extinction. 



Table S1. 

Primers used for qRT-PCR. 

Target Sequence Reference 

AtActin2 Fwd 5´- GGAATCCACGAGACAACCTA -3´ 

Rev 5´- ATCTTCATGCTGCTTGGTGC -3´ 

70

AtFLS2 Fwd 5´- ACTCTCCTCCAGGGGCTAAGGAT -3′ 

Rev 5´- AGCTAACAGCTCTCCAGGGATGG -3′ 

81

AtRPS18B Fwd 5´- GTCTCCAATGCCCTTGACAT -3′ 

Rev 5´- TCT TTCCTCTGCGACCAGTT -3′ 

82

AtSEOR1 Fwd 5´- TCCTAAGCCATCACTCGTCTTCA -3′ 

Rev 5´- CCGTATTTCACGGCCAAAGCA -3′ 

83

AtSEOR2 Fwd 5´- GGCCTTGGTTCATCCCAAACC -3′ 

Rev 5´- TGGAACCCACACAACCTCGTA -3′ 

65

PsGAPA Fwd 5´- GATGGCATCTCAGTTGATGGAAAG -3´ 

Rev 5´- CTGTCCACAAACACTCCAGTTCCT -3´ 

75

VfFLS2 Fwd 5´- CGTTGCACACTTCAAAGGCA -3´ 

Rev 5´- CGCTTGTGCCATTTCCAACA -3´ 

this study 
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