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Introduction  

This supporting information file contains additional results and method details, specifically: 

• Details of the radiative kernel datasets employed in the research 

• A detailed description the local IRF optimization procedure 

• Results from the multiple linear regression analysis  

• Location of statistically robust ∑A by month  

• Statistical summary of robust monthly adjustments by adjustment type 

• Frequency distribution of robust monthly ∑A / IRF 

 

Text S1.  Optimizing local monthly IRF   

 The nine full and two ∆α kernel datasets employed in the research are presented in 

Table S1.   

Table S1.  Summary of the radiative kernel datasets employed in the research.  
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Complete TOA Kernel  Horizontal resolution 

(°lat × °lon) 

Vertical 

levels 

Reference 

GFDL 2 × 2.5 17 [Soden et al., 2008] 

CAM3 2.8 × 2.8 17 [Shell et al., 2008] 

ECHAM6 1.85 × 1.85 19 [Block and Mauritsen, 2014] 

ERAi 2.5 × 2.5 24 [Y Huang et al., 2017] 

CAM5 0.94 × 1.25 30 [Pendergrass et al., 2018] 

HadGEM2 1.25 × 1.9 38 [Smith et al., 2018] 

CloudSat 2 × 2.5 17 [Kramer et al., 2019] 

HadGEM3 1.25 × 1.9 85 [Smith et al., 2020] 

ERA5 2.5 × 2.5 37 [H Huang and Huang, 2023] 

All-sky TOA ∆α kernel    

ECMWF-Oslo 1 × 1 N/A [Myhre et al., 2018] 

CACKa 5 km × 5 km N/A [Bright and O'Halloran, 2019] 
a Eq. (17) of Bright & O’Halloran (2019) using state variable inputs from the CTRL simulation.  

 

Determining the most appropriate ∆α kernel to apply in any given grid cell and month as the 

basis of our IRF estimate involved several steps.  First, using the nine complete TOA kernel sets 

(Table S1, top) we computed monthly shortwave (SW) water vapor adjustments and averaged them 

into a single monthly estimate.  We then applied this to compute monthly “hybrid” SW cloud 

adjustments using the nine individual all- and clear-sky monthly ∆α kernel-based IRF estimates: 

 

𝐴𝑐𝑙𝑑-𝑆𝑊
𝑖 = (∆𝑆𝑊 − ∆𝑆𝑊𝑐𝑙𝑟) − (𝐼𝑅𝐹𝑖 − 𝐼𝑅𝐹𝑖,𝑐𝑙𝑟) − (𝐴𝑤𝑣-𝑆𝑊

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐴𝑤𝑣-𝑆𝑊
𝑐𝑙𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅)                               (S1) 

 

where the superscript denotes the kernel and sky condition, and the overbar denotes the multi-kernel 

mean.  For each grid cell and month, we then reconstructed the monthly SW forcing at TOA by 

summing the hybrid SW cloud adjustment (𝐴𝑐𝑙𝑑-𝑆𝑊
𝑖 ) together with 𝐼𝑅𝐹𝑖 and 𝐴𝑤𝑣-𝑆𝑊

̅̅ ̅̅ ̅̅ ̅̅ ̅ and identified the 

kernel (i) that yielded the lowest absolute deviation from ∆𝑆𝑊: 

 

𝑖 = min
𝑖
{|∆𝑆𝑊 − ∆𝑆𝑊𝑖̂ |}

𝑖=1

𝑛
                                                                                                      (S2) 

 

where ∆𝑆𝑊𝑖̂  is the reconstructed SW forcing (= 𝐴𝑐𝑙𝑑-𝑆𝑊
𝑖 + 𝐼𝑅𝐹𝑖 + 𝐴𝑤𝑣-𝑆𝑊

̅̅ ̅̅ ̅̅ ̅̅ ̅) and ∆𝑆𝑊 is the mean 

monthly SW TOA radiative forcing computed directly from model output.  

 We included two additional all-sky ∆α kernels in this procedure (Table S1, bottom) using 

instead the mean 𝐼𝑅𝐹𝑐𝑙𝑟 estimate from the nine complete ∆α kernel sets in Eq.’s S1 and S2 (i.e., 

𝐼𝑅𝐹𝑐𝑙𝑟̅̅ ̅̅ ̅̅ ̅̅  in lieu of 𝐼𝑅𝐹𝑖,𝑐𝑙𝑟) since clear-sky ∆α kernels were unavailable in these two additional datasets.  

We deemed this justifiable as differences in clear-sky ∆α kernels have been found to be negligible 

across models [H Huang and Huang, 2023].   

Figure S1 presents monthly frequency distributions for the locally “optimal” ∆α kernels 

identified and applied in our analysis (i.e., resulting from Eq. S2), while Figure S2 shows resulting 

deviations between monthly ∆𝑆𝑊 and that reconstructed using the locally optimal IRF (i.e., ∆𝑆𝑊 −
∆𝑆𝑊𝑖̂ ). 
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Figure S1.  Frequency distribution of the locally optimal ∆α kernel in each month. 
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Figure S2.  Difference between monthly TOA ∆SW (from RegCM5) and that reconstructed using 

locally optimal ∆α kernels.    

 

Text S2.  Multiple linear regression analysis  

For a data subset defined by all locations (grid cells) and months experiencing statistically 

robust ∑A (as ∆N – IRF with FDR ≤ 5%), we carried out multiple linear regressions (ordinary least 

squares) to better understand the relationship between the adjustments, local climate background 

states, and the local perturbed surface fluxes.  Results are presented in Table S2, from which we draw 

the following insights:  i) Combined with either ∆FC or IRF, the state of the local climate background 

(i.e., various state variables from the CTL run) is insufficient in explaining the variation in ∑A 

(Models 1 vs. 2);  ii) Combined with IRF, perturbations to the surface radiative over the turbulent heat 

fluxes explain a greater proportion of the variation in ∑A (Models 3 vs. 5); iii) Combined with IRF, 

the local surface perturbation (as ∆RSNL and ∆RSNS) can explain nearly all the variation in ∑A.  The 

latter is important because the strong correlation between the surface and TOA radiative flux 

perturbations suggests minimal convolution by non-local (advected) signals caused by ∆FC in other 

grid cells.  This assertion is strengthened when fitting Model 4 using only those locations where ∑A 

was considered to be noise in any given month (i.e., when FDR > 5%), where R2 and rRMSE reduced 

notably to 0.47 and 73%, respectively. 

 

Table S2.  Summary of regression goodness-of-fits and other results.  “RSDS” = downwelling 

shortwave radiation incident at surface; “RLDS” = downwelling longwave radiation incident at surface 

(W m-2); “RSNS” = net shortwave radiation at surface (W m-2; positive downward); “RSNL” = net 

longwave radiation at surface (W m-2; positive downward); “H” = sensible heat flux (W m-2); “λE” = 

latent heat flux (W m-2); “RH” = relative humidity (%); “Tas” = Air temperature near the surface 
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(converted to °C); “RMSE” = root mean squared error; “rRMSE” = relative RMSE, or RMSE 

normalized to the standard deviation in ∑A.  Subscript “0” denotes the CTL state.  

 

Model 

ID 

Model  Coefficients R2 RMSE 

(rRMSE) 

1 ∑A = k1∆FC + k2RSDS0 + k3RLDS0 + 

k4RH0 + k5Tas0 

k1 = -0.018; k2 = -0.036; k3 

= 0.025; k4 = 0.103; k5 = 

0.169 

0.30 2.33 (84%) 

2 ∑A = k1IRF + k2RSDS0 + k3RLDS0 + 

k4RH0 + k5Tas0 

k1 = -0.313; k2 = -0.036; k3 

= 0.046; k4 = 0.083; k5 = -

0.028 

0.43 2.11 (76%) 

3 ∑A = k1IRF + k2∆H+ k3∆λE + k4RH0 

+ k5Tas0 

k1 = -0.684; k2 = 0.636; k3 

= 1.30; k4 = -5.96 × 10-4; k5 

= 0.059 

0.53 1.90 (68%) 

4 ∑A = k1IRF + k2∆RSNL+ k3∆RSNS  k1 = -1.08; k2 = -0.342; k3 = 

1.01 

0.97 0.53 (19%) 

5 ∑A = k1IRF + k2∆RSNL+ k3∆RSNS+ 

k4RH0 + k5Tas0 

k1 = -1.03; k2 = -0.260; k3 = 

0.980; k4 = -4.77 × 10-3; k5 

= 9.80 × 103 

0.98 0.49 (17%) 
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Figure S3.  Distribution of statistically robust ∑A – or where the null hypothesis was rejected at FDR 

≤ 5% in time and space.   

Text S3.  Disaggregation of statistically robust monthly forcing and adjustments in re-/afforested 

regions 

Averaged over all months and re-/afforested grid cells where positive statistically robust ∑A 

occurred, mean ∑A was 3.42 W m-2 or 51% of the mean IRF (Fig. S4A).  Averaged over all months 
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and re-/afforested grid cells where negative statistically robust ∑A occurred, mean ∑A was -1.59 W m-

2 or -26% of the mean IRF (Fig. S4B). 

 

 

Figure S4.  Same as Figs. 2D & E of the main article but computed only for the months when 

statistically robust ∑A occurred.  

 For the positive subset Acld-LW reinforced Acld-SW although this was offset by Ata and Ats.  For the 

negative subset Acld-LW played less of a role such that ∑A was dictated largely by negative Acld-SW and 

Ata (Fig. S4B).   

 Collectively for all months and grid cells where statistically robust ∑A occurred, median 

monthly ∑A / IRF was -15%, with half the occurrences residing between -34 and 45% (Figure S5).   



 

 

8 

 

 

Figure S5.  Statistical distribution of statistically robust monthly ∑A / IRF.  Bin sizes are 50%.  

  

Text S4.  ERF residual comparisons  

The residual term ϵ of Eq. (2) in the main article is a measure of the level of agreement 

between ∆N (i.e., the ERF based on model output) and IRF + ∑A (i.e, the ERF based on kernel 

reconstruction).  Figure S6 indicates that the reconstructed annual mean ERF based on the locally 

optimal IRF (Text S1) relative to one based on a multi-kernel mean IRF generally led to lower ϵ over 

many parts of Europe, except for the Scandes mountain and Balkan regions. 
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Figure S6.  Annual mean ϵ (as ∆N – IRF – ∑A) when IRF is based on:  a) the local monthly optimal 

∆α kernel; b) the mean ∆α kernel from the nine full kernel datasets (Table S2, top). 

 

 

Text S5.  Disaggregation of statistically robust mean annual adjustments in remote regions  

In remote grid cells where statistically robust ∑A occurred (Fig. S7B) only positive 

adjustments (∑A) were found, having an annual mean of 0.015 W m-2 driven by the LW water vapor 

adjustment (Fig. S7A,).  However, the annual mean ϵ was found to be negative and larger in 

magnitude than the re-constructed annual mean ∑A, indicating that the actual annual mean adjustment 

(as ∆N) in remote regions was negative.   
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Figure S7.  A) Annual mean of statistically robust adjustments in remote (i.e,. ∆FC < 1%) grid cells; 

B) Location of remote adjustments (red cells) relative to local adjustments (gray cells). 
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