Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

EFX Allocations and Orientations on Bipartite Multi-Graphs: A Complete Picture

MPG-Autoren
/persons/resource/persons45021

Mehlhorn,  Kurt       
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons302525

Rathi,  Nidhi
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2410.17002v2.pdf
(Preprint), 368KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Afshinmehr, M., Danaei, A., Kazemi, M., Mehlhorn, K., & Rathi, N. (in press). EFX Allocations and Orientations on Bipartite Multi-Graphs: A Complete Picture. In Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems. New York, NY: ACM.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-6A9E-6
Zusammenfassung
We consider the problem of selecting a committee of $k$ alternatives among
$m$ alternatives, based on the ordinal rank list of voters. Our focus is on the
case where both voters and alternatives lie on a metric space-specifically, on
the line-and the objective is to minimize the additive social cost. The
additive social cost is the sum of the costs for all voters, where the cost for
each voter is defined as the sum of their distances to each member of the
selected committee.
We propose a new voting rule, the Polar Comparison Rule, which achieves upper
bounds of $1 + \sqrt{2} \approx 2.41$ and $7/3 \approx 2.33$ distortions for $k
= 2$ and $k = 3$, respectively, and we show that these bounds are tight.
Furthermore, we generalize this rule, showing that it maintains a distortion of
roughly $7/3$ based on the remainder of the committee size when divided by
three. We also establish lower bounds on the achievable distortion based on the
parity of $k$ and for both small and large committee sizes.