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ABSTRACT
Aim: Land surface models (LSMs) currently represent each plant functional type (PFT) as an average phenotype, characterised 
by a set of fixed parameters. This rigid and constant representation is a limit in understanding the dynamics of highly diverse 
ecosystems, such as permanent grasslands, and their response to global change.
Location: France.
Time Period: 2001–2019.
Major Taxa: Grassland plant species.
Methods: We incorporated spatially explicit trait variability at the France scale in the ORCHIDEE land surface model to assess 
how the net primary productivity (NPP) will spatially vary over the years. More precisely, we focused on three key functional 
traits that govern the NPP of grassland ecosystems: specific leaf area (SLA) and leaf nitrogen content (LNC), as measured traits, 
and leaf lifespan (LLS) as an estimated trait. Community- weighted means (CWM) were implemented in various combinations 
with prescribed and spatially varying traits. We compared the outcomes of each NPP simulation to remotely sensed proxies of 
productivity by using the MODIS satellite- driven NPP products.
Results: The sensitivity of NPP to traits depends on climate conditions, such as temperature and water limitation. Considering 
trait variability decreases the NPP in the most productive regions (plains) and increases the NPP in the less productive regions 
(mountains) compared to the case with constant trait values. This leads to a more homogenous NPP across France. Compared to 
the observed MODIS NPP and FLUXCOM GPP, the simulation using varying traits improves the spatial NPP and GPP variations 
in several regions and most climate conditions.
Main Conclusions: Based on the existing trait data, we revealed that incorporating the CWM of traits in an LSM such as 
ORCHIDEE can be effectively performed. Improving the modelling and predictions by considering the relationships between 
biodiversity, functional biogeography, and ecosystem functioning is essential in current and future ecological research.

1   |   Introduction

Understanding vegetation dynamics and climate interactions at large 
spatial and temporal scales is a challenge in ecological research (Foley 

et al. 1996), especially in the current context of climate and land use 
changes. Land surface models (LSMs) and Dynamic global vegetation 
models (DGVMs) offer valuable tools to study ecosystem processes and 
their response to global environmental changes (Cramer et  al.  2001; 
Sitch et al. 2003; Krinner et al. 2005; Bonan 2008). These models are 
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developed and continuously updated based on scientific research, data 
collection, and model development (Fisher et al. 2018).

Trait- based ecology (TBE) (Lavorel and Garnier  2002; Violle 
et al. 2007) and the more recent emergence of functional biogeogra-
phy (Violle et al. 2014; Garnier, Navas, and Grigulis 2015) have shed 
light on the importance of considering measurable characteristics of 
individuals to understand ecosystem functioning, particularly in the 
modelling field (Reichstein et  al.  2014). Functional biogeography is 
defined as the analysis of the patterns, causes, and consequences of 
the geographic distribution of the trait diversity in forms and func-
tions (Violle et  al.  2014). Furthermore, the principle of scaling up 
from plant to community- level studies to evaluate trait- environment 
relationships has been pivotal to these disciplines (Shipley, Vile, 
and Garnier  2006; Enquist et  al.  2015; Chacón- Labella et  al.  2023) 
during the past years. Accordingly, functional traits have been used 
to predict ecosystem services and biodiversity responses across dif-
ferent environments (de bello et al. 2010; Lavorel and Grigulis 2012; 
Dias et al. 2013; Pan et al. 2021). Today, plant trait information can 
be found in multiple databases developed at local and global scales. 
Notably, the TRY plant trait database provides an unprecedented geo-
graphic coverage of trait measurements (Kattge et al. 2011, 2020). In 
recent years, efforts have been made in the land surface and dynamic 
global vegetation modelling field to include these data on plant func-
tional traits and their variability and plasticity (Pavlick et  al.  2013; 
Van Bodegom, Douma, and Verheijen  2014; Verheijen et  al.  2015; 
Sakschewski et al. 2015).

LSMs generally represent the diversity of plant species by a set of 
plant functional types (PFTs) defined by a combination of constant 
parameters, some of them being directly related to plant functional 
traits (Sakschewski et al. 2015; Peaucelle et al. 2017). PFTs are clas-
sified by three main categories (crop, grass, and tree), leaf longevity 
(deciduous, evergreen), photosynthesis type (C3 or C4), and climate 
zone (boreal, temperate, and tropical). A well- acknowledged caveat 
of these models is the lack of consideration of trait variability and 
functional diversity across space and time (Van Bodegom et al. 2012; 
Díaz et al. 2007, 2016). By neglecting the full spectrum of trait vari-
ability and the effect of climate on this variability within species and 
communities, the uncertainties in the LSMs predictions tend to in-
crease (Berzaghi et  al.  2020). The ORCHIDEE (Organising Carbon 
and Hydrology In Dynamic Ecosystem Environment) model, a widely 
recognised LSM (Krinner et  al.  2005), is not an exception, as its 
current representation of functional traits neglects the well- known 
variability of functional diversity in most biomes worldwide. Several 
studies have emphasised the importance of developing a new gener-
ation of trait- flexible vegetation models, but the lack of data was and 
still is the main barrier (Lavorel et al. 1997; Penone et al. 2014; Díaz 
et al. 2016).

Based on leaf data at the global scale, efforts have been made to de-
scribe a universal spectrum of leaf economic variation of key phys-
iological, chemical, and structural properties by modulating trait 
relationships by climate (Wright et  al.  2004). Community- weighted 
means (CWMs) is one of the methods used to calculate aggregated 
trait values within the community. For each trait, a mean value is 
computed by weighting the abundance of species within the com-
munity by the species trait values (Borgy et  al.  2017b). This metric 
accounts for the effect of species abundances, which is essential to 
study ecosystem functioning, such as net primary productivity (NPP) 
(Garnier et al. 2004). Here, we have introduced new research to incor-
porate CWMs in a terrestrial biosphere model, marking an advance-
ment in this field.

Building a bridge between functional biogeography and land surface 
modelling is a goal for both ecologists and modellers to forecast eco-
system functioning and services effectively. In this study, the main 
objective is to examine how LSM outcomes can be improved by incor-
porating CWMs of traits, using French permanent grasslands (FPGs) 
as a case study. Permanent grasslands are grasslands that have been 
used for at least 5 years to produce forage and that have not been 
ploughed or re- seeded during this period (Plantureux, Pottier, and 

Carrère 2012). Permanent grasslands provide major ecosystem func-
tions and services due to the high biodiversity, the ability to adapt to 
diverse environmental conditions, and the unique functional traits 
found in grassland species and communities. Thus, the enhancement 
of understanding the impact of functional biogeography on grassland 
productivity across space is a current topic of interest in the ecologi-
cal field. In ORCHIDEE, FPGs belong to a unique PFT (i.e., PFT 10), 
which represents the C3 herbaceous vegetation, including permanent 
grasslands. The objective of this paper is to integrate the functional 
biogeography of permanent grasslands into ORCHIDEE to simulate 
NPP for the 2001–2019 time period. We considered an explicit spatial 
distribution for three key traits of the leaf economic spectrum (LES) 
that govern NPP (Wright et al. 2004), and tested how individual traits 
alone or in combination influence NPP and community responses 
to environmental changes. We investigated the consequences of ac-
counting for trait variability on NPP spatial variations and examined 
how closely model outcomes align with remotely sensed proxies of 
NPP using MODIS data.

2   |   Data and Methods

2.1   |   General Description of the ORCHIDEE Model

ORCHIDEE is a DGVM that includes two main modules: 
SECHIBA (mapping of hydrological exchange at the biosphere- 
atmosphere interface) and STOMATE (Saclay- Toulouse- Orsay 
Model for the Analysis of terrestrial ecosystems) (see—Krinner 
et  al.  2005, Figure  2). The SECHIBA module focuses on the 
energy- water- CO2 exchanges between the biosphere and the 
atmosphere and the water budget in the soil (Ducoudré, Laval, 
and Perrier  1992). The STOMATE module represents various 
processes, such as carbon allocation, maintenance and growth 
respiration, soil carbon dynamics, litter decomposition, and 
phenology (Viovy and de Noblet 1997).

In this study, we used the 2.2 version (rev. 6756) (Krinner 
et al. 2005) of the ORCHIDEE model that classifies ecosystems 
into 13 different plant functional types (PFTs). We focused on 
PFT 10, representing grasslands inhabited by C3 herbaceous 
species and the effect of the trait variability on the NPP dynam-
ics within this PFT.

2.2   |   Vegetation and Plant Trait Data

As a vegetation map, we used the spatial distribution of FPGs 
(Borgy et  al.  2017a), obtained by combining the European 
Corine land cover (CLC) and the Registre parcellaire Graphique 
database to map the grasslands at the France scale (Violle 
et al. 2015). The maps of community- weighted means (CWM) 
were gridded for traits of the leaf economic spectrum and were 
calculated by weighting the average value of species traits by 
the relative abundance of species found in the community. A 
total of 2930 species were included in the Divgrass database 
and used to derive the CWMs. A classification of four types of 
grassland—mesic, calcareous, mountainous, and ruderal—was 
defined thanks to a modularity analysis (Denelle, Violle, and 
Munoz 2020). The local species abundances were derived mainly 
from local vegetation relevés datasets, and the floristic data was 
completed by trait data using the TRY database, a global trait 
database initiative (Kattge et al. 2020), and other local databases 
(Borgy et al. 2017a). These CWM maps are called fixed CWM, 
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not specific CWM (Lepš et al. 2011), because a single mean trait 
value is attributed to species found in each habitat. The within- 
species variability in traits is not considered in the calculation 
method of Borgy et al. (2017a).

We used the derived map extended to the whole FPGs based on 
the direct measurements issued from the relevés. As shown in 
(Violle et al. 2015) for leaf dry mass content (LDMC), it was pos-
sible to derive maps of traits across all the FPGs using a linear 
regression between CWM and growing season length dependent 
on temperature and soil water (GSLtw) multiplied by nitrogen 
input. The same maps were derived for the specific leaf area 
(SLA, m2/kg) and the leaf nitrogen content (LNC, mg/g) (Borgy 
et  al.  2017a) using the LOESS (LOcally Estimated Scatterplot 
Smoothing) method (Gijbels and Prosdocimi  2010) instead 
of the linear regression to account for the nonlinearity of the 
relationships (Borgy, Personal communication). In the Borgy 
et  al.  (2017a, 2017b) approach, the community- level spatial 
trait variability at the France scale was mapped for only four 
traits: the specific leaf area (SLA), leaf nitrogen content (LNC), 
seed mass, and height for which a sufficient number of individ-
ual traits (NIV) per species is found. They reported that 17.4%, 
14.2%, 55.2%, and 30.2% of species had available trait data for 
SLA, LNC, SM, and height, respectively. In the absence of suf-
ficient direct measurements of Vcmax to derive a CWM map, 
Vcmax can be estimated from LNC. This estimation assumes a 
constant linear relationship between Vcmax and LNC as spec-
ified by Kattge et  al.  (2009). In this study, we used the CWM 
maps of two main traits based on empirical measurements, SLA 
and LNC. From LNC, we calculated the maximum rate of car-
boxylation (Vcmax, μmol/m2/s), an existent trait in the model, 
by applying the following equation for C3 herbaceous from 
(Kattge et al. 2009):

Vcmax(25) is the maximum photosynthesis rate per leaf area 
normalised to 25°C; LNCa is the leaf nitrogen content per unit 
leaf area; LNCm is the leaf nitrogen content per unit leaf mass; 
and SLA is the specific leaf area derived from the trait databases.

In addition to SLA and Vcmax, even if not mapped, a third im-
portant leaf trait is the leaf lifespan (LLS, days). In the absence 
of sufficient direct measurements of LLS to derive a CWM map, 
LLS can be estimated from SLA by assuming a constant lin-
ear relationship between LLS and SLA, as mentioned by Reich 
et al. (1999). As LLS is known to be coordinated with SLA and 
Vcmax (Reich et al. 1999), it is then important to also account for 
the spatial variability of this trait. Thus, we introduced a new pa-
rameterisation in ORCHIDEE to estimate LLS from SLA follow-
ing the leaf economic spectrum (LES) after (Reich et al. 1999) 
instead of considering LLS as a fixed parameter like in the stan-
dard ORCHIDEE.

These traits are linked by trade- offs based on the leaf economic 
spectrum (Sakschewski et al. 2015) and are important to study 
the ability of plants to manage resources for photosynthesis and 

growth. In ORCHIDEE, the standard parameter values of SLA, 
Vcmax, and LLS for C3 grasslands are fixed to SLA = 13 m2/kg, 
Vcmax = 50 μmol/m2/s, and LLS = 80 days. These standard pa-
rameter values have been calibrated for global- scale applications.

We then used the spatial mean of SLA and Vcmax from CWM 
maps used to redefine standard parameters adapted to FPGs. 
Likewise, we performed a phenological parameters recalibration 
to ensure the accurate representation of the French phenologi-
cal cycle, encompassing a correct start of the season and senes-
cence. For this purpose, we used the 16 days MODIS NDVI at 
0.05° resolution (http:// doi. org/ 10. 5067/ MODIS/  mod13 c1. 006) 
over FPGs to derive the beginning and end of the growing sea-
son (Moulin et al. 1997). The mean beginning and end of season 
over the period ranging from 2001 to 2019 were used to manu-
ally calibrate the main phenological parameters of ORCHIDEE 
(e.g., number of growing degree days, senescence temperature 
threshold).

2.3   |   Climate, Vegetation, and Soil Input Data

We used variables from the SAFRAN atmospheric reanaly-
sis (Vidal et  al.  2010) as meteorological forcing to drive the 
ORCHIDEE model. The SAFRAN dataset was designed to pro-
vide a long- term gridded atmospheric dataset with a resolution 
of 8 km at the France scale on an hourly time step. The computed 
variables used are rainfall, snowfall, mean air temperature, cli-
matology of surface pressure, specific humidity, wind speed, 
and solar and infrared radiation. We selected the meteorological 
data for the period extending from 1960 to 2019. We also used 
the annual CO2 atmospheric concentration as a forcing variable 
available for the 1860–2020 period. The source of CO2 data is 
attributed to the CO2 forcing provided within the context of the 
TRENDY intercomparison project (Friedlingstein et al. 2022). In 
addition, we used the vegetation map of the FPGs, CWM SLA, 
and CWM Vcmax maps as forcing parameters (Violle et al. 2015; 
Borgy et al. 2017a). The original 5 km maps were interpolated to 
the 8 km grid of the SAFRAN meteorological forcing.

2.4   |   Available Data for Simulation Comparison

At the France scale, the available NPP and GPP datasets are 
relatively scarce. On one hand, there are in situ flux measure-
ments available from the ICOS network (Sabbatini et al. 2018). 
This data is more reliable but limited to a small number of FPG 
sites. On the other hand, NPP and GPP spatially explicit esti-
mations are available at the French scale. The existing datasets 
are mainly derived from satellite observations or extrapolations 
based on site- specific measurements. Among these, the MODIS 
remote- sensed products estimate NPP (Running et  al.  1999; 
Neumann et al. 2016), while the FLUXCOM products estimate 
GPP based on flux measurements (Jung et al. 2020).

For the comparison with in  situ data, we studied three grass-
land sites of the Integrated Carbon Observation System (ICOS) 
network stations in France located in different geographical 
regions: Lusignan (plain grassland), Col du Lautaret (Alpine 
grassland, high elevation), and Laqueuille (Montane grassland, 
moderate elevation). These are the only three sites available for 

(1)Vcmax(25) = 6.42 + 40.96 × LNCa,

LNCa = LNCm ÷ SLA

(2)LLS = 30. 4 × 10
2.6215-log10 (SLA×5000)

0.9
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French grasslands that cover plains, mid- elevation, and high- 
elevation mountains. For these sites, net CO2 fluxes are esti-
mated by eddy- correlation, and the GPP and total ecosystem 
respiration (Reco) are estimated from the net flux using the fact 
that GPP is null during the night data (Sabbatini et al. 2018). The 
first step is to simulate the GPP in each site by ORCHIDEE in 
2023. The forcing variables are the meteorological data of each 
site (as detailed in Section 2.3) and the CO2 concentration. The 
second step is to process a comparative analysis with the ob-
served flux of GPP in 2023 in each site using daytime.

We conducted a comparative analysis between the simulated 
mean net primary productivity (NPP) values by the ORCHIDEE 
model in each of the five experiment cases (see—Table 1) and 
the satellite observations to assess the performance of the model. 
We compared the simulated mean NPP over the 2001–2019 pe-
riod to the estimated NPP from the moderate resolution imaging 
spectroradiometer (MODIS) NPP product available for the same 
period (MOD17A3HGF) (Running et al. 1999). The MODIS NPP 
is first based on the GPP. This GPP uses a maximum light use 
efficiency model calibrated for each vegetation type and modu-
lated by temperature and vapour pressure deficit. Then, NPP is 
estimated by subtracting the maintenance respiration from GPP. 
This maintenance respiration is estimated from a guess of plant 
biomass. This biomass is calculated from an empirical relation-
ship between biomass and maximum leaf area index. Satellite 
products that estimate NPP, such as MODIS, are based on mod-
elling because NPP cannot be directly mapped. This highlights 
the challenges and potential inaccuracies associated with using 
satellite- based products for NPP estimation.

First, we used the FPGs map at a 1 × 1 km scale to select only 
FPGs pixels from the global NPP MODIS dataset. Then, we re-
projected it to the 8 × 8 km SAFRAN atmospheric reanalysis 
map (Vidal et al. 2010). We used a second available NPP MODIS 
product developed in Europe for the 2000–2012 time period 

(Neumann et al. 2016) to assess the uncertainty related to the 
remote sensed estimation of NPP. We also performed Kruskal–
Wallis and post hoc Conover- Iman tests to evaluate potential 
simulated- estimated differences.

Then, we compared the simulated gross primary production 
(GPP) by the ORCHIDEE biosphere model at the France scale 
to the FLUXCOM GPP flux product. The FLUXCOM initiative 
aims to upscale the local eddy covariance (EC) flux tower mea-
surements to global scale estimates of GPP based on machine 
learning methods (Jung et al. 2020). The EC is a technique to 
estimate the CO2 and energy exchanges between Earth's sur-
face and the atmosphere. The time period is 2001–2015 in this 
comparison.

2.5   |   Simulation Experiments

We performed four distinct sets of simulations using the 
ORCHIDEE model. In the first set, we utilised the originally 
prescribed SLA and Vcmax for C3 temperate grasslands (namely 
fixstand). In the second set, we replaced the standard values 
with the mean CWM SLA and CWM Vcmax calculated from 
the CWM trait maps (namely, fixrecalc and fixrecalcllvar). For 
the third set, we integrated spatial SLA and Vcmax variability 
by including CWM SLA and CWM Vcmax maps in the model 
(namely, varllfix and varllvar). In opposition to SLA and Vcmax 
(thru LNC), LLS is not mapped but estimated by the model. For 
this reason, for the simulations based on variable traits, we con-
sider two sets of simulations: one with a fixed LLS as in the stan-
dard version of ORCHIDEE and another with an estimated LLS 
from SLA. To study the impact of the leaf lifespan (LLS), which 
is estimated by the model, we conducted two sub- simulations 
within the second and third sets: one with a standard con-
stant value for LLS, and the other with a varying LLS based on 
the SLA.

TABLE 1    |    Comprehensive overview of the set of simulation types executed using the ORCHIDEE model for the 1960–2019 time period. The 
standard SLA and Vcmax values are, respectively, 13 m2/kg and 50 μmol/m2/s. The recalculated SLA and Vcmax values are, respectively, 21 m2/
kg and 56.4 μmol/m2/s. When SLA and Vcmax values are variable, CWM SLA and CWM Vcmax are considered. In (a) and (b), the standard LLS is 
80 days. In (c) and (d), the recalculated LLS is 64 days. In (e), LLS is variable and estimated from the CWM SLA.

Name of simulation

SLA and Vcmax values LLS value

Standard Recalculated Constant Variable Constant Variable

a. Fixstand ✔ ✔ ✔ (80 days)

b. Fixrecalc ✔ ✔ ✔ (80 days)

c. Fixrecalcllvar ✔ ✔ ✔ (64 days)

d. Varllfix ✔ ✔ (64 days)

e. Varllvar ✔ ✔

Name of simulation Simulation description

a. Fixstand Fixed trait values in the standard ORCHIDEE version

b. Fixrecalc Fixed recalculated mean trait values from data with a standard LLS value

c. Fixrecalcllvar Fixed recalculated mean trait values from data with a recalculated mean LLS

d. Varllfix Variable trait values with a standard LLS fixed

e. Varllvar Variable trait values with a variable LLS
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For all types of simulations on ORCHIDEE, we used a model 
spin- up for 20 years, using the first 10 years of climate in a loop, 
which is a sufficient duration to reach an equilibrium state for 
NPP and biomass pools in FPGs (Messina et al. 2016). Then, we 
conducted six consecutive series of simulations for 10 years each 
with actual climate ranging from 1960 to 2019. In this study, we 
selected the simulated NPP for the 2001–2019 time period con-
sidered as the common years for comparing the simulated NPP 
to the estimated MODIS global NPP.

Finally, a fourth set of simulations was performed to make a 
sensitivity analysis of NPP to SLA and Vcmax considering the 
observed range of values over France. The NPP sensitivity 
analysis was conducted by evaluating the difference between 
the simulated NPP with maximum SLA (respectively, Vcmax) 
and the NPP with minimum SLA (respectively, Vcmax) nor-
malised by the mean NPP (see Table S1). We defined the SLA 
and Vcmax minimum and maximum values, respectively, as 
the average values of the 2nd and 98th percentiles of each trait 
map data. To evaluate NPP sensitivity to each of the two traits 
(i.e., SLA and Vcmax), we first fixed the other trait to its mean 
value. This simulation will be called hereafter “decoupled” 
(Table  S1a). But, as SLA and Vcmax are correlated, we did a 
second set of simulations when the associated trait (i.e., Vcmax 
when considering SLA, SLA when considering Vcmax) was cal-
culated by averaging the values of the associated trait for pixels 
with values close to the minimum and maximum. This simu-
lation will be called hereafter “coupled” (Table S1a). Thus, we 
performed two sets of simulations: one with the SLA/Vcmax 
extreme value associated with the Vcmax/SLA mean value cal-
culated from data and a second by coupling both SLA/Vcmax 
extreme values (see- Table S1).

For comparison with in situ data, we performed two simulations 
(namely fixrecalcllvar and varllvar) in each of the three French 
sites (i.e., Lusignan, Col du Lautaret and Laqueuille). The pre-
scribed SLA/Vcmax and simulated LLS values for the three on- site 
simulations are presented in Table S2. To compare the simulations 
with each other and with the satellite observations, we did not di-
rectly look at the NPP but at the deviation of NPP for a given pixel 
to the spatial mean NPP for a given year, named Δ. Δ is calculated 
for each simulation by subtracting the simulated NPP from the av-
erage NPP of each of the following simulation types (i.e., fixrecalc, 
fixrecalcllvar, varllfix, and varllvar). On the other hand, Δ for the 
MODIS estimated NPP is calculated by subtracting the NPP val-
ues from the average of MODIS NPP. 𝜀sim = abs (Δsim—Δmodis) is 
the absolute error between a simulated and estimated Δ. The error 
difference between two simulations 𝛿𝜀 = (𝜀sim1–𝜀sim2) gives the 
increase or decrease of error in one simulation compared to the 
other one. Then a negative value of 𝛿𝜀 indicates a better agreement 
of NPP of sim1 than NPP of sim2 with MODIS NPP, while a posi-
tive value indicates the opposite case. The same methodology in Δ 
and 𝛿𝜀 is applied to compare the simulated GPP to the FLUXCOM 
GPP for the 2001–2015 time period.

Finally, we evaluated the NPP- climate relationships con-
sidering two climate variables: the mean annual tempera-
ture (MAT) and the growing season length defined from 
temperature and precipitation (GSLtw) as defined in (Borgy 
et al. 2017a).

3   |   Results

3.1   |   Trait Mean Values and Maps

Figure 1 shows the spatial distribution of the absolute values 
of CWM of SLA, Vcmax, and LLS, respectively. The spatial 
distribution of the difference between CWMs and the de-
fault ORCHIDEE values, respectively, for SLA, Vcmax, and 
LLS estimated from the CWM SLA (Equation 2). is shown in 
Figure S5. The mean trait values of SLA and Vcmax recalcu-
lated from data at the France scale are 21.5 ± 0.028 (SE) m2/
kg. and 56.4 ± 0.05 (SE) μmol/m2/s, respectively. The observed 
range of SLA is 16 m2/kg to 24 m2/kg and for Vcmax, it is 53 
μmol/m2/s to 66 μmol/m2/s, which corresponds to a range of 
LNC of 18 g/kg to 34 g/kg. Kattge et al. 2011 report an observed 
range of SLA (at the species level) for C3 grasses of 6 m2/kg to 
55 m2/kg and an LNC range from 10 g/kg to 48 g/kg. Then, the 
observed range of SLA and LNC is close to the lower values of 
the observed range in C3 grasslands based on the TRY data-
base. The mean LLS value simulated by the model is 64 days. 
The recalculated mean SLA is there almost twice the original 
prescribed value (13 m2/kg). The Vcmax is slightly higher than 
the standard value (50 μmol/m2/s), and LLS is shorter than the 
standard value (80 days).

We mainly observe two clusters (Figure 1). The first one rep-
resents almost 80% of FPGs, corresponding to moderate and 
low- elevation grasslands. These grasslands have a higher 
SLA than the mean but in a narrow range between the mean 
(21.5 m2/kg) and the maximum (23.4 m2/kg) value. The re-
maining 20%, which are mainly located in high- elevation and 
some mid- elevation grasslands, have a largely lower SLA than 
the mean between 15 and 17 m2/kg. This large difference in 
the size of these two clusters makes the mean SLA and Vcmax 
values very asymmetric compared to the range of values and 
then close to the upper bound of the SLA range (respectively 
lower bound for Vcmax).

Regions with lower SLA values have the highest Vcmax and 
LLS values (Figure 1). Then symmetrically to higher mean SLA, 
the mean Vcmax and the mean LLS are close to the minimum 
boundary of the Vcmax and the LLS range values.

3.2   |   Sensitivity of NPP to Trait- Based Model 
Parameter Variation in Response to Climate

Figure 2 shows the sensitivity, for each pixel, of simulated NPP 
to the trait range in response to MAT and GSL, each trait cou-
pled by the other one. Results for the decoupled mode are shown 
in Figure S7. The sensitivity to SLA and Vcmax is always positive 
in the decoupled cases (Figure S7) but becomes negative for SLA 
in the coupled mode (Figure 2) (i.e., higher SLA induces lower 
NPP because of the associated decrease of Vcmax). Likewise, the 
range of sensitivity variation (especially for Vcmax) is lower in 
coupled mode. The sensitivity of NPP to Vcmax is higher com-
pared to SLA (Figures 2 and S7). The sensitivity of NPP to SLA 
increases with increasing MAT or GSL, but, on the contrary, it 
decreases for Vcmax. The linear regression slope of NPP sensi-
tivity response to SLA and Vcmax is lower for GSL than for MAT 
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6 of 16 Journal of Biogeography, 2025

in coupled and decoupled cases (e.g., slope = 0.0001 vs. 0.004 for 
sensitivity to SLA in coupled mode). For SLA, the positive rela-
tionship between sensitivity and MAT or GSL is only true for 
temperatures above 280 K (approximately 8.8°C) or GSL greater 
than 220 (Figures 2a,c and S7a,c). In particular, for MAT there 
is a bell- shaped response around 277 K (approximately 3.8°C; 
Figures 2 and S7a).

3.3   |   Evaluation Against MODIS NPP 
and FLUXCOM GPP Products

The median NPP is higher when the mean SLA and Vcmax values 
calculated from CWM trait maps are prescribed or when using the 
variable trait distribution compared to the case with default trait 
values regardless of the value of LLS (80 or 64 days) (Figure 3I). The 
median of MODIS GLOBAL (M = 768.35) is almost at the mean 
between the median NPP in the fixstand case (M = 695.73) and the 
median NPP of the other four simulations (M = 881.77, M = 866.56, 
M = 872.22, M = 866.93). However, the median NPP in the fixstand 
case is very close to the MODIS EURO median (M = 672.97) and 
is the only simulation in the range of the observed MODIS NPP. 
However, it should be noticed that the difference between the 
median of the two MODIS products (medians difference = 95.38) 

is very similar to the difference observed between the median of 
each simulation (i.e., fixrecalc, varllfix, fixrecalcllvar, varllvar) 
and the median of MODIS GLOBAL mentioned above (Figure 3I). 
This was also observed when Cluster 1 of 80% of pixels mainly lo-
cated in plains, and Cluster 2 of 20% of pixels mainly located in the 
mountains, were studied separately but with lower range values in 
Cluster 1 (Figure 3II,III). The Kruskal–Wallis test reveals a signif-
icant difference between the NPP median values of the five exper-
iment cases and the two NPP MODIS products (Figure 3I,II,III). 
The post hoc Conover- Iman test shows a significant difference 
between the medians of all pairs of experiments and the two 
MODIS products (p_value < 0.05), except for the ‘Fixstand- Modis 
global’ and ‘varllfix- varllvar’ cases (Figure 3I). In both clusters, 
the Conover- Iman test shows a significant difference between the 
medians of pair groups (Figure 3II,III).

‘fixrecalc’ and ‘fixrecalcllvar’ show the highest correlation 
(R2 = 0.51; Table 2), but, on the contrary, ‘varllfix’ and ‘varllvar’ 
show a lower RMSE (62 and 64 gC/m2/year), indicating that the 
use of varying traits gives a better accuracy in the simulated 
NPP compared to the estimated MODIS GLOBAL NPP.

The different simulations show relatively similar NPP range val-
ues over France (300 < NPP < 1155 gC/m2/year) (Figure S1b,c), but 

FIGURE 1    |    Community weighted mean (CWM) maps of (a) the specific leaf area (SLA) in m2/kg, (b) the maximum rate of carboxylation (Vcmax) 
in 𝜇mol/m2/s, and (c) the estimated leaf life- span (LLS) in days. ORCHIDEE default values of SLA, Vcmax and LLS are respectively: 13 m2/kg, 50 
μmol/m2/s and 80 days.
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‘fixstand’ is systematically lower (218 < NPP < 827 gC/m2/year) 
except for high- elevation regions (Figure S1a, zone a). The global 
range of annual NPP simulated by ORCHIDEE in all temperate C3 
grasslands (i.e., PFT 10) in fixed stand case ranges from 150 gC/
m2 to 1100 gC/m2. The simulations at the France level then cover a 
large range of simulated NPP across all temperate grasslands. For 
MODIS NPP, the distribution is more complex. In particular, the 
southwest of Massif Central shows a higher NPP (800 < NPP < 900 
gc/m2/year) than the rest of the region (650 < NPP < 800 gc/m2/
year) (Figure S1d, zone b), whereas simulated NPP is close as in the 
different simulations in this region (the majority of NPP ranging 
between 850 and 950 gC/m2/year). Similar patterns are observed 
in Cotentin (850 < NPP < 1000 gC/m2/year) (Figure  S1b; zone a, 
S1c and S1d) except for the ‘fixstand’ case where NPP is lower than 
800 gC/m2/year. MODIS gives a lower NPP for the other surround-
ing regions (i.e., mountain, Mediterranean and some plain zones) 
(Figure S1d, zones d) (250 < NPP < 800 gC/m2/year), compared to 
the simulated NPP when fixed or variable traits from data are used 
(400 < NPP < 1000 gC/m2/year) (see Figure S1b–d). There is also 
a large difference in the south of the Alps (Figure S1c, zone e), 
where simulated NPP is close to the mean NPP (around 850 gC/

m2/year) over FPGs, whereas it is lower in the MODIS estimated 
NPP (mean NPP = 620 gC/m2/year).

The simulations with variable traits (i.e., varllfix) compared to 
fixed traits (i.e., fixrecalc) show, on average a decrease of 25 gC/
m2/year in the plains and west of the Massif Central and an in-
crease of 22 gC/m2/year in the high and mid- elevation moun-
tains (Figure S3a). The contrast between plains and mountains 
is increased when comparing the ‘varllvar’ and ‘fixrecalcllvar’ 
cases, showing a decrease of 21 gC/m2/year in plains and west 
of the Massif Central (Figure  4, zones a and b respectively), 
which also correspond to high SLA/low Vcmax (Figure S5a,b) 
and an increase of 38 gC/m2/year in high- elevation and some 
mid- elevation mountains (Figure 4, zones c and d respectively), 
where low SLA and high Vcmax are seen (Figures 4 and S5a,b). 
The same pattern is seen when comparing ‘varllvar’ to ‘varll-
fix’ case (Figure S3d), indicating that considering the variable 
LLS enhances the difference between spatially variable traits 
and fixed traits simulations. The large asymmetry in trait dis-
tribution (i.e., SLA mean close to the highest values and Vcmax 
means close to the lowest values) (Figure S5a,b), also explains 

FIGURE 2    |    Scatterplots of NPP sensitivity to SLA and Vcmax versus MAT and GSL (a) SLA vs MAT coupled (b) Vcmax vs MAT coupled (c) SLA 
vs GSL coupled (d) Vcmax vs GSL coupled. The time period is 2001–2019.
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8 of 16 Journal of Biogeography, 2025

that a majority of pixels have a lower NPP than when using the 
mean trait but with a moderate decrease, whereas there are 
fewer pixels where NPP is higher but with a large increase.

Looking at the response of simulated and MODIS NPP to MAT 
shows a high positive correlation for MAT less than 280 K 
(Figure 5a). Above 280 K, there is no more increase of NPP with 
increasing MODIS NPP, whereas NPP continues to increase 
in both fixrecalcllvar and varllvar simulations. However, over 
280 K, the slope of the response of NPP to MAT is lower for 
‘varllvar’ (28 gC/m2/year per K) than ‘fixrecalcllvar’ (40.3 gC/
m2/year per K). This implies a lower sensitivity of NPP to MAT 
changes in the ‘varllvar’ case, as supported by the Pearson cor-
relation coefficient R = 0.78 for ‘varllvar’ and R = 0.88 for ‘fixre-
calcllvar’ (Figure 5a). Varllvar is then better in agreement with 
MODIS than fixrecalcllvar. The response of NPP to GSL, for both 
simulation and MODIS, shows a rapid increase in NPP with in-
creasing GSL but only for GSL lower than 200 days. However, for 
GSL higher than 200 days, the increase of NPP with increasing 
GSL is limited with a large dispersion (Figure 5b).

As described in Section 2.5, we defined the parameter 𝛿𝜀 to mea-
sure the increase or decrease of the discrepancy between vari-
able traits or fixed traits simulations compared to MODIS NPP. 
Negative values indicate an improvement of the simulated NPP 
compared to MODIS NPP, while positive values indicate the op-
posite case.

Compared to MODIS NPP and FLUXCOM GPP, 𝛿𝜀 of NPP and GPP 
is improved in both variable trait simulations compared to fixed 

trait simulations in most of the low- elevation regions (excluding 
the Cotentin (Figure 6a, zone a, and Figure 6b)) and high- elevation 
regions (except the south of the alps; Figure 6a, zone b and c, and 
Figure 6b). By contrast, 𝛿𝜀, is positive in the Mediterranean region 
(Figure 6a, zone c, and Figure 6b), where MODIS NPP gives a dif-
ferent pattern than simulations as discussed previously (i.e., south-
west of the Massif Central and the Cotentin for instance) (Figure 6, 
Zones d & a respectively, & Figure S4).

More particularly, FLUXCOM shows more contrasted results 
with a stronger improvement and a more pronounced degra-
dation in certain regions (Figure 6b). Despite these variations, 
FLUXCOM reveals a very high spatial coherence in areas where 
either improvements or degradations are observed compared to 
MODIS (e.g., a,b,c, and d zones) (Figure 6a,b).

We then looked at the response of 𝛿𝜀 (varllvar vs. fixrecalcll-
var) to the two MAT and GSL climate variables. Since there 
are both positive and negative 𝛿𝜀 for all climate conditions, we 
calculated the mean 𝛿𝜀 for each value of MAT of GSL to see if, 
on average, 𝛿𝜀 is positive or negative, considered as the mean 
error between varllvar and fixrecalcllvar cases (Figure 7a,b). 
We can see that, for GSL lower than 345 days and MAT less 
than 287 K, 𝛿𝜀 is negative, indicating that varllvar is more 
in agreement with MODIS than fixrecalcllvar (Figure  7a,b). 
The variability for 𝛿𝜀 in response to MAT, as estimated from 
permutated data, is high, reflecting both the low number of 
samples and also the fact that there are contrasting results for 
these regions, with both negative and positive values. On the 
contrary, for GSL > 345 days and MAT > 287 K, 𝛿𝜀 is positive, 

FIGURE 3    |    Distribution of the simulated net primary productivity (NPP), estimated MODIS GLOBAL NPP for the 2001–2019 time period, es-
timated MODIS EURO for the 2000–2012 time period, and FLUXCOM GPP for the 2001–2015 time period. (I) All grasslands are combined, (II) 
Cluster 1 (80% of FPGs), (III) Cluster 2 (20% of FPGs). Kruskal–Wallis p_value is lower than 0.05 (significant difference) in (I), (II) and (III). In (I), the 
Conover- Iman p_value for each pair of experiment cases is lower than 0.05, except for the ‘fixstand- modis euro’ (a,a) and ‘varllfix- varllvar’ (b,b) cases, 
where the p_value is higher than 0.05 (not a statistically significant difference). In (II) and (II), no significant difference between all pairs of groups.
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indicating that variable traits give results less in agreement 
with MODIS (Figure 7a,b). Results for variable trait cases are 
largely improved for low values of GSL/MAT, whereas they 
are only slightly less good for higher values.

3.4   |   On- Site GPP Evaluation Against ICOS Flux 
Tower Data

We also compared the varllvar and fixrecalcllvar GPP simula-
tions with in situ measurements of carbon fluxes from the flux 
tower of the ICOS network. From the measured carbon net flux, 
a flux of GPP is estimated and compared to the simulated flux 
(simulations performed using the in  situ half- hourly meteoro-
logical parameters measured at the sites). Figure  8 shows the 
difference between simulated and observed GPP fluxes with a 

smoothing timestep of 10 days. The simulated GPP in the varll-
var and fixrecalcllvar cases at Lusignan and Laqueuille is lower 
than the observed GPP (GPP DT) in 2023 during the growing 
season (Figure 8a,c). At Col du Lautaret, this is only true for the 
period from January through the end of June 2023, as the simu-
lated GPP became higher than the observed GPP after July 2023 
in both simulations (Figure 8b).

The differences between simulated GPP in the varllvar case and 
the fixrecalcllvar case (which uses the standard constant traits 
for France) are very similar at Lusignan (Figure 8a). This is not 
surprising, as the local value of SLA/Vcmax in varllvar and 
LLS is close to the mean CWM values used in fixrecalcllvar. In 
contrast, Figure 8c shows that using site- specific trait values at 
Laqueuille (where CWM has higher Vcmax/LLS and lower SLA) 
reduces the underestimation of GPP by ORCHIDEE compared 
to the observed GPP, particularly in the summer (i.e., June and 
August). This trend is also observed in early summer 2023 (i.e., 
June and July) at Col du Lautaret. However, from July, the sim-
ulated GPP in varllvar becomes higher than the observed GPP, 
with a greater positive error in the varllvar case (Figure 8b). At 
Col du Lautaret there is a large drop in GPP after July, which 
is not represented in ORCHIDEE, which maintains a high GPP 
until September. Since varllvar has a higher GPP than fixrecal-
cllvar, the positive difference after July is enhanced.

4   |   Discussion

A major result is that introducing the spatial variability of 
traits reduces the NPP spatial variations and gives a better 
agreement with MODIS NPP. This is due to the decrease in 
the simulated NPP in the plain and some of the mid- elevation 
grasslands (with higher SLA and lower Vcmax/LLS), which 
are the most productive, whereas, on the contrary, an increase 
on NPP high mountain and Mediterranean grasslands (with 
lower SLA and higher Vcmax/LLS) which are less productive. 
The robustness of the results is revealed when assessing the 
simulated GPP by ORCHIDEE LSM using an independent 
product based on flux tower observations rather than remote- 
sensing data (i.e., FLUXCOM GPP). Indeed, the two maps in-
dicate a very similar pattern in regions where incorporating 
community- level spatial trait variability improves the NPP/
GPP simulation relative to the observations (Figure 6a,b). In 
addition, on- site evaluations support this idea, since using lo-
cally adapted trait values (especially at high- elevation grass-
lands (i.e., Col du Lautaret and Laqueuille) for each local trait 
has the highest deviation from the standard one) improves 
GPP simulation during the growing season. This is also in 
agreement with a study where considering plant functional 
traits correlations strongly influences the simulated GPP of 
C3 grasslands by the Australian land surface model (CABLE 
LSM) (Wang et  al.  2023) and reduces the uncertainty asso-
ciated with model predictions. Furthermore, the results af-
firmed that GPP and NPP are improved in multiple PFTs, 
including C3 grasslands, after the inclusion of trait- based data 
in JULES LSM (Harper et al. 2016, 2018).

Coupling the LLS with SLA and Vcmax enhances the contrast 
between increased/decreased NPP regions compared to the 
case where LLS is 64 days, as LLS is, like Vcmax, anti- correlated 

TABLE 2    |    Standardised major axis (SMA) analysis of the simulated 
NPP in each of the 5 cases of the experiment (Y axis) in function of the 
estimated NPP by MODIS at global scale (X axis). R2: Squared correlation 
coefficient of the SMA, int: Intercept, CI: Confidence interval. Slope and 
intercept test p_value is lower than 0.05 (heterogeneous slopes) between 
each simulation and MODIS NPP. Kruskal–Wallis p_value is lower than 
0.05 in all cases. The Conover_iman post hoc test p_value is lower than 
0.05 in the 1–2, 1–3 and 2–3 pairs of groups.

Simulated 
NPP (Y) R2

Slope (Slope 
low CI–Slope 

high CI)

Intercept 
(int low CI–
int high CI) RMSE

1. Fixstand 0.46 0.86 
(0.84–0.88)

20.39 
(3.67–37.12)

65

2. Fixrecalc 0.51 1.03 (1–1.05) 80.92 
(61.95–99.88)

73.7

3. Fixrecalcllvar 0.51 1.03 (1.01–1.06) 67.16 
(48.12–86.2)

74

4. Varllfix 0.5 0.88 (0.86–0.91) 175.74 
(159.28–
192.21)

64

5. Varllvar 0.48 0.84 
(0.82–0.86)

211.73 
(195.8–227.66)

62

FIGURE 4    |    Net primary productivity (NPP) difference between 
pairs of simulations (varllvar vs. fixrecalcllvar) for the 2001–2019 time 
period. Zones a,b,c, and d represent the areas cited in Section 3.3.
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10 of 16 Journal of Biogeography, 2025

to SLA. The reduction of the range of NPP in the varllvar simu-
lation is also visible in the relationship between MAT and NPP 
(Figure 5a). Compared to fixrecalcllvar, varllvar has a higher 
NPP for the lowest values of MAT and a lower NPP value for 
higher MAT. We can also see in this figure that, even if the 
response of NPP to MAT is almost linear for both simulations, 
there is a small saturation of NPP for higher MAT in varllvar, 
which is more in agreement with MODIS NPP, for which there 
is a large saturation of NPP on high MAT. The comparison be-
tween MODIS NPP and ORCHIDEE simulation also shows that 
simulated NPP is highly correlated to MAT, which is not the 
case for MODIS. This is not surprising since modelling cannot 
reflect all the local variability that impacts surface reflectance 
(and then MODIS NPP) that is independent of climate condi-
tions (Wang et al. 2023). Spatially, looking at how the varllvar 
case better agrees or disagrees with MODIS NPP using the 𝛿𝜀 
metrics (Figure 6) shows that there are regions where variable 
trait simulation is in better agreement with MODIS but also 
regions where the agreement is less good. However, it is im-
portant to notice that better agreement can be found for both 
pixels with low SLA/high Vcmax (where the simulated NPP 
is increased) and for the opposite case where SLA is high and 

Vcmax is low (where the simulated NPP is decreased), indicat-
ing that the reduction of the NPP spatial variations over France 
considering variable traits is in better agreement with obser-
vations. Even if the correlation coefficient is more reduced in 
variable trait simulation cases, the RMSE is also reduced, in-
dicating a lower dispersion. Examining the average response 
of 𝛿𝜀 to climate for both MAT and GSL (Figure  7a,b) shows 
that simulation with trait variability is improved in regions 
with low MAT or GSL whereas it is on the opposite slightly de-
graded in regions with high MAT/GSL. The spatial distribution 
𝛿𝜀 (Figure 6) indicates that for regions with low MAT/GSL (i.e., 
mountains except for the south of the Alps) (Figure 6 regions 
b and c), 𝛿𝜀 is largely negative, whereas for regions with high 
MAT/GSL (plains), there are well- delimited regions where 𝛿𝜀 
is negative but also positive (e.g., the Cotentin, Figure  6 re-
gion a or southwest of the Massif Central (Figure 6 region d)). 
Hence, the fact that we consider the specific traits of mountain 
grassland (i.e., low SLA, high Vcmax) in varllvar increases the 
simulated NPP, leading to improved results. On the opposite 
side, for other types of grasslands (where SLA is increased and 
Vcmax is decreased), the result largely depends on the region 
considered, which emphasises that considering only the local 

FIGURE 5    |    Scatterplots between the mean simulated/estimated NPP for the 2001–2019 time period in function of (a) MAT (Kelvin) and (b) GSL 
(days).
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11 of 16

FIGURE 6    |    (a) Net primary productivity (NPP) absolute error (𝛿𝜀) between varllvar and fixrecalcllvar compared to MODIS NPP for the 2001–2019 
time period. Zones a,b,c and d represent the areas cited in Section 3.3. (b) Gross primary productivity (GPP) absolute error (𝛿𝜀) between varllvar and 
fixrecalcllvar compared to FLUXCOM GPP for the 2001–2015 time period.
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characteristics of SLA/Vcmax/LLS is not sufficient to repre-
sent the spatial diversity of grassland productivity. It can be 
related to the fact that we consider only a limited number of 
traits. This indicates that, in the future, it would be important 
to also consider other traits. It should also be noted that trait 
maps were obtained by a non- linear fit of site data using cli-
mate (see Section 2.2). It allows covering all the FPGs and is 
more suitable to use in a modelling approach, but some specific 
local features and the level of trait variability that is unrelated 
to climate are not captured by the modelling process of Borgy 
et  al.  (2017a). These features could be related to the human- 
induced nitrogen and phosphorus inputs (Li et al. 2022), plant–
soil interactions influenced by biotic and abiotic interactions, 
and the intraspecific or interspecific trait variations (Zheng 
et al. 2022), which have a significant impact on the net primary 
productivity of grasslands.

Looking at the sensitivity of NPP to the observed range of 
SLA/Vcmax on FPG allows an understanding of how this sen-
sitivity is dependent on climatic conditions. The anticorrela-
tion between SLA and Vcmax values is also reflected in the 
NPP sensitivity to these parameters. Hence, NPP sensitivity 
to SLA increases with increasing MAT or GSL but decreases 
for Vcmax. The sensitivity of NPP to Vcmax is always higher 
than to SLA. For this reason, coupling SLA with correspond-
ing Vcmax induces a negative sensitivity of NPP to SLA (i.e., 
NPP decreases with increasing SLA). Except for the response 
of NPP sensitivity to SLA for MAT (Pearson R = 0.45 for decou-
pled and R = 0.7 for coupled), the relationship between the sen-
sitivity of NPP to SLA/Vcmax for MAT or GSL is relatively less 
pronounced (e.g., R = 0.2 for the sensitivity to SLA for GSL).

Considering mean SLA and Vcmax values calculated from trait 
data increases the productivity of FPGs compared to the SLA 

and Vcmax values prescribed in the current parameterisation 
of ORCHIDEE. Prescribing global- scale functional trait val-
ues in the ORCHIDEE model does not consistently represent 
the plant diversity found in the real C3 permanent grasslands 
(Peaucelle et  al.  2019), and seems to be farther from the ob-
servations than prescribing fixed or variable trait values from 
trait data. The variation of plant traits to represent the land-
scape heterogeneity in LSM and the projections of temporal 
and spatial dynamics of model parameters (i.e., traits, ecosys-
tem properties) are grand challenges to predict the future of 
the terrestrial surface and biosphere (Butler et al. 2017; Fisher 
et  al.  2015; Fisher and Koven  2020). The median NPP simu-
lated with the trait data (both with the mean and the variable 
traits) is higher than the median NPP of the two MODIS prod-
ucts, whereas the original ORCHIDEE simulation is in the 
lower range of observations. However, the global MODIS NPP 
is exactly at the mean between the original simulation and the 
others. Likewise, the difference between the simulations (i.e., 
fixrecalc, varllfix, fixrecalcllvar, and varllvar) and the global 
MODIS, is similar to the uncertainty between the two MODIS 
products. Indeed, even if the two remote sensing products are 
based on the same MODIS sensor, there is a difference in the 
median of the two products. A very close pattern is observed 
when comparing simulated NPP with the two MODIS products 
after disentangling the two clusters (i.e., 20% of regions with 
low SLA/high Vcmax and 80% of regions with high SLA/low 
Vcmax). The Figure  S2 shows the spatial difference between 
those two products. Global MODIS gives a higher NPP com-
pared to European MODIS in most of France except in the 
Massif Central. Then, there are no regions where both prod-
ucts are fully consistent and demonstrate that MODIS NPP 
should be considered with caution. While the simulations 
based on trait data showed a higher NPP compared to both re-
mote sensing estimations, considering the uncertainty in these 

FIGURE 7    |    Error difference (𝛿𝜀) averaged for each MAT/GSL between varllvar and fixrecalcllvar versus (a) MAT and (b) GSL. The greyed zone 
represents the variability when permutating data from 10,000 permutations.
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estimations, the simulated NPP lies within a reasonable range 
of the MODIS estimation.

It should be noticed that the original low SLA value is associ-
ated with greater leaf lifespan (LLS), which is coherent with 
the observed SLA/LLS from trait data. However, considering 
the low prescribed SLA value shows a not consistent associated 
prescribed Vcmax value with the SLA/Vcmax observed relation-
ship based on the trait database (i.e., Vcmax in the model is too 
low regarding the observed Vcmax). The low SLA and Vcmax 
explain the low simulated NPP in the standard version com-
pared to simulations with recalculated or variable trait values 
based on the trait data.

5   |   Conclusion and Perspectives

This study showed that the NPP sensitivity to both SLA and 
Vcmax is partly dependent on climatic conditions. The most con-
strained climates (particularly mountainous and Mediterranean 
regions) exhibit a stronger sensitivity to traits. Based on the 

CWM trait maps, the distribution of traits is highly asymmet-
rical and essentially separated into two clusters: plains and 
mountains.

Simulations based on spatially distributed traits, compared to 
a simulation only based on the mean values of the traits, show 
higher NPP in mountainous regions with low SLA and high 
Vcmax and on the contrary, a lower NPP in low- elevation re-
gions with high SLA and low Vcmax. This effect is stronger 
when we consider the third trait: the leaf life span (LLS), calcu-
lated from the leaf economic spectrum. As a result, taking into 
consideration the spatial traits variation reduces the NPP range 
over France and creates a more uniform distribution of NPP 
across France. In other words, local species distribution and 
abundance play a role in the regulation of the NPP in response 
to climate. The comparison between the spatial NPP simulated- 
estimated distribution showed that the reduction of the spatial 
NPP when varying all traits is more in agreement with remote 
sensing- based NPP. This is supported by the improvement of 
the 𝛿𝜀 in both regions where NPP is increased or decreased (in 
variable traits cases compared to spatially fixed traits cases). 

FIGURE 8    |    Differences between simulated GPP by ORCHIDEE LSM and observed GPP in daytime (DT) at three sites in France: (a) Lusignan, 
(b) Col du Lautaret, and (c) Laqueuille.
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Considering the relationship between SLA and LLS gives the 
best agreement. However, the improvement is more evident in 
cold regions than in cooler ones, where well- defined regions 
show both improvement and degradation of results compared 
to MODIS NPP. This can be because only three leaf traits are 
considered in this study and do not account for all the local con-
ditions such as soil characteristics, land use, etc.

This work underscores the importance of linking functional 
biogeography and land surface models (LSMs). Despite the un-
systematic improvement of productivity in each simulation, con-
sidering the spatial variability of SLA, Vcmax, and LLS shows 
a better compromise, regardless of the coherence between trait 
values and the proximity to the satellite observations with a bet-
ter representation of NPP.

In this paper, we have shown that the introduction of CWM 
trait maps is an effective and doable approach to repre-
sent more realistically the plant diversity in FPGs in an LSM 
such as ORCHIDEE. To integrate other CWM trait maps in 
ORCHIDEE, providing continuous maps of other functional 
traits in France, Europe, or the global scale is needed to study 
the primary productivity variation by accounting for other traits 
of the leaf economic spectrum. Therefore, due to the complexity 
of the functional biogeography framework, going towards a trait- 
flexible model based on the existing databases leads to a better 
representation of trait trade- offs and plasticity. We acknowl-
edge that the present approach is limited by the lack of trait 
measurements. For instance, Vcmax and LLS were estimated 
through relationships with other traits rather than being mea-
sured directly. Likewise, only three foliar traits were considered, 
whereas other important traits are needed to improve the sim-
ulation of NPP. This probably explains the fact that accounting 
for trait variability improves simulations only in certain parts of 
France. Another limitation is the use of fixed CWM, which does 
not allow the consideration of the local variation of traits for a 
given species (i.e., intraspecific trait variability). In the future, 
in the ecological and modelling field, emphasising the study of 
both productivity and its temporal stability will be essential for 
a more resilient ecosystem and more sustainable and effective 
land management. This emphasises the need to increase the 
in situ measurements both in space and in time.
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