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A B S T R A C T

A significant number of patients develop chronic pain after surgery, but prediction of those who are at risk is 
currently not possible. Thus, prognostic prediction models that include bio-psycho-social and physiological 
factors in line with the complex nature of chronic pain would be urgently required. Here, we performed a 
translational study in male volunteers before and after an experimental incision injury. We determined multi- 
modal features ranging from pain characteristics and psychological questionnaires to blood plasma prote-
omics. Outcome measures included pain intensity ratings and the extent of the area of hyperalgesia to me-
chanical stimuli surrounding the incision, as a proxy of central sensitization. A multi-step logistic regression 
analysis was performed to predict outcome measures based on feature combinations using data-driven cross- 
validation and prognostic model development. Phenotype-based stratification resulted in the identification of 
low and high responders for both outcome measures. Regression analysis revealed prognostic proteomic, specific 
psychophysical, and psychological features. A combinatorial set of distinct features enabled us to predict 
outcome measures with increased accuracy compared to using single features. Remarkably, in high responders, 
protein network analysis suggested a protein signature characteristic of low-grade inflammation. Alongside, in 
silico drug repurposing highlighted potential treatment options employing antidiabetic and anti-inflammatory 
drugs. Taken together, we present here an integrated pipeline that harnesses bio-psycho-physiological data for 
prognostic prediction in a translational approach. This pipeline opens new avenues for clinical application with 
the goal of stratifying patients and identifying potential new targets, as well as mechanistic correlates, for 
postsurgical pain.
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1. Introduction

It is estimated that over 300 million surgical procedures are per-
formed worldwide each year, with a risk of acute as well as long-lasting 
negative consequences [1]. One example is post-surgical pain that rep-
resents a significant burden to patients and, if insufficiently treated, can 
delay recovery, and may cause long-term effects [2–5]. Early conse-
quences include an increased risk of complications after surgery, pro-
longed hospitalization, and the need for reoperation [2,3]. In the 
long-term, there is evidence for a high number of patients developing 
chronic postsurgical pain (CPSP) and opioid dependency. Both can limit 
the patient’s quality of life and imposes a substantial socio-economic 
challenge for both patients and society [2,4,5]. The importance of 
CPSP was highlighted by its inclusion in the International Classification 
of Diseases catalogue (ICD-11th version, [6]). CPSP is defined as pain 
that persists after a surgical procedure beyond the healing process, i.e., 
for at least three months after surgery [6]. The prevalence of CPSP varies 
between studies mainly because most studies are mono-centric trials 
using different methodologies, endpoints, and definitions of CPSP. In the 
largest European multicenter, prospective, non-interventional trial on 
this topic, it has been shown that 41 % of all patients reported pain six 
months after surgery, with approximately 10 % having 
moderate-to-severe pain that impact their daily life [7]. Because treat-
ment of CPSP is as intricate as other chronic pain states, prevention 
would be favorable. However, up to now, all drugs assessed for CPSP 
prevention failed [8]. One problem is the knowledge gap of mechanisms 
relevant for CPSP. As shown, the development of CPSP is multi-factorial 
and a complex bio-psycho-social contribution is most likely [4]. 
Furthermore, mechanisms of CPSP might even differ between patients 
and one treatment might not fit all. Thus, identifying these mechanisms 
and the factors responsible for the development of CPSP is of utmost 
importance for developing novel treatment strategies. Thus, pinpointing 
perioperative factors that positively (resilience factors) or negatively 
(risk factors) influence the development of CPSP, along with their 
relevance and interaction, appears to offer novel means of predicting 
patients at high risk [4,9,10]. However, none of the currently available 
"prognostic prediction models" are sufficiently effective [11], despite the 
fact that one of the most favorable model integrates a wide range of 
features, such as psycho-social and demographic ones [12,13]. Still, 
precision of prediction is only moderate as most likely it is missing 
important (e.g. biological) factors. Also, genetic factors failed to 
improve prediction within this model [13]. Remarkably, thus far, none 
of the prognostic prediction models have used unbiased proteomic 
analysis [14]; an unbiased proteomic approach might not only provide 
additional power to risk assessment but might also identify novel targets 
for treating CPSP.

Blood represents an easily obtainable diagnostic material in routine 
clinical practice. Blood plasma, with its diverse array of protein cate-
gorizations, including classical plasma proteins, tissue leakage proteins, 
and particularly signaling proteins such as hormones, growth factors, 
and cytokines, serves as a rich resource for modern biomarker discovery 
[15]. The presence and levels of these proteins may reflect the body’s 
physiological and pathological states, making plasma an accessible 
window into overall health and disease mechanisms [16]. Consequently, 
analyzing blood plasma enables the identification of biomarkers for 
diagnosing diseases, monitoring health conditions, guiding therapeutic 
interventions, or prognosticating outcomes [17], underscoring its crit-
ical role in medical research and personalized medicine. Recent tech-
nological advances in sample collection and processing have promoted 
the detection of several hundred proteins in a single sample using mass 
spectrometry (MS). However, because of the wide dynamic range and 
fluctuating abundances of numerous proteins, plasma proteomics re-
mains challenging [18]. Clinical laboratories often use highly optimized 
single-protein assays, allowing for a narrow/diagnostic snapshot while 
neglecting the complexity of (patho-)physiological conditions. In 
contrast, MS offers great potential for rapidly and robustly measuring 

several hundred proteins in a single human sample. Although MS ap-
proaches have not yet found their way into clinical routine guidelines, 
their versatile workflows, which allow for targeted as well as unbiased 
approaches, make them attractive for many clinical applications and 
research questions. To date, MS-based proteomics has been used in 
clinical settings in oncology, endocrinology, and rheumatology, sup-
porting medical decision tools and providing profound knowledge of 
underlying molecular mechanisms[18–24].

We hypothesize that unbiased proteome analysis will enable identi-
fication of biological predictors associated with and likely relevant for 
the development of different phenotypes after an experimental incision 
as a model of acute postoperative and chronic pain. Furthermore, inte-
grating psycho-physical and psycho-social features together with pro-
teomic data from blood plasma could enable unprecedented 
performance in predicting post-surgical outcomes. To evaluate this in a 
standardized setting, we performed MS-based proteome analysis in a 
well characterized human experimental model for post-surgical pain 
[25,26], and combined this with psychological, psycho-physical and 
demographic phenotyping. We harnessed these data to determine mul-
tiple trait prognostic features under standardized experimental condi-
tions and to develop prediction models for different phenotypes after 
experimental incision, in particular thosewith clinical relevance for 
postsurgical pain. Finally, by using an in silico drug repositioning 
approach, we identified drugs, which might revert the plasma protein 
signature identified in high pain responders.

2. Materials and methods

2.1. Study design

Upon recruitment, by notice boards at the university and medical 
campus Muenster, 26 male volunteers (age mean 23.9 ± SEM 3.6 years, 
Fig. 1A) gave written consent to be part of an incision-induced pain 
project after being informed about the study and experimental proced-
ure. Informed consent was obtained from all participants prior to their 
inclusion in the study. All volunteers passed the listed in- and exclusion 
criteria in Supplementary material 1. Volunteers in this study were 
obliged to have an identical breakfast three days in a row. All human 
experiments were approved by the University Hospital Muenster of the 
local Ethics Committee of the Medical Faculty (registration no 
2018–081-b-S), registered in German Clinical Trials Registry (DRKS-ID: 
DRKS00016641), in accordance with the latest version of the Declara-
tion of Helsinki, and in line with the WHO Guiding Principles on Human 
Cell, Tissue and Organ Transplantation. Data from skin biopsies per-
formed 24 hours after incision are included in a previous publication 
[27]. Comprehensive quantitative sensory testing, baseline 
psycho-social characterization, and blood sampling were performed 
before induction of incisional injury. An experimental incision was then 
made (Fig. 1B), and the incisional pain and hyperalgesic area were 
determined at fixed time points (Fig. 1C)

2.2. Chemicals and Reagents

Chemicals for an in-solution digest of plasma proteins were either 
purchased as a powder (ABC, IAA, SDC) or in liquid form (DTT, TCEP) 
from Merck Millipore/Sigma Aldrich (Germany). Protease for enzymatic 
digestion was a mixture of Trypsin/LysC, Mass Spec grade (Promega, 
USA). Ethyl acetate for surfactant removal was purchased from Merck 
Millipore/Supelco in hyper-grade purity (Lichrosolv). Acids for organic 
LC solvents or peptide clean-up were either purchased from Merck 
Millipore/Sigma Aldrich, Germany (TFA) or Thermo Scientifc, USA 
(FA). All MS-related solvents (water, ACN) were of hypergrade purity 
(Lichrosolv) and purchased at Merck Millipore (Supelco). C18 Micro-
Spin columns (6–60 µg capacity) were supplied by The Nest Group 
(USA).
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2.3. Psycho-physical baseline characterization by quantitative sensory 
testing

Before incision, a comprehensive battery of quantitative sensory 
testing (QST) was performed on both forearms on the volar aspect (one 
forearm represents the test area where the incision will later be made, 
the other forearm represents the control side) to assess the perception of 
non-painful and painful stimuli of different modalities established by the 
German Research Network in Neuropathic Pain (DFNS) [28]. Testing is a 
subjective (psycho-physical) method requiring testing of person coop-
eration. Briefly, thermal testing will be performed by using a TSA-II 
NeuroSensory Analyzer (MEDOC, Ramat Yishai, Israel). With this de-
vice, thermal detection (warm, cold), pain thresholds (painful heat and 
cold), and pain to a defined suprathreshold painful stimulus will be 
determined [29]. The Advanced Thermal Stimulator thermode (contact 
area of 16 x 16 mm) was placed on the volar forearm. Testing starts at a 
neutral temperature (32◦C) and increases (or decreases) with 1.5 ◦C/s 
up to a maximum of 50◦C (or down to a minimum of 0◦C). First, 
thresholds of cold (CDT) and warm (WDT) detection were measured 
three times each, followed by an assessment of pain cold (CPT) and heat 
(HPT) thresholds. Volunteers were instructed to press a button when 
sensation changes to warm/cold or become painful; then, the thermode 
immediately returns to the baseline temperature (32◦C). If the cut-off 
temperature (50◦C or 0◦C) was reached, the device automatically 
returns to the baseline temperature (32◦C) to avoid tissue damage. The 
mean value from the three measurements was taken as the heat and cold 
pain threshold. In addition, the pain intensity to a suprathreshold heat 
pain stimulus was assessed by application of three test stimuli (45, 46, 
and 47◦C, using a ramp of 8 ◦C/s and time at the target of 7 s). In 
addition, subjects will be asked about paradoxical heat sensations (PHS) 
during the thermal sensory limen (TSL) procedure of alternating warm 
and cold stimuli. Modified von Frey filaments (OptiHair2-Set; Marstock 

Nervtest, Schriesheim, Germany) that exert forces between 0.25 and 512 
mN (geometric progression by factor 2) was used to assess the me-
chanical detection threshold (MDT). The end of the von Frey filaments 
was provided with a rounded tip (0.5 mm diameter) to avoid sharp 
edges that may activate nociceptors. Threshold determinations were 
made using an adaptive method of limits by a series of alternating 
ascending and descending stimulus intensities (up-and-downrule), 
yielding 5 just suprathreshold and 5 just subthreshold estimates. The 
geometric mean of these 10 determinations was represented the final 
threshold. Standardized punctate probes performed the assessment of 
mechanical pain sensitivity and threshold with fixed intensities (8, 16, 
32, 64, 128, 256, and 512 mN), and a contact area of 0⋅2 mm diameter 
were used to determine mechanical pain sensitivity (MPS) and me-
chanical pain thresholds (MPT) [28,30]. Stimulators were applied at a 
rate of 2 s on, 2 s off in ascending order until the first percept of 
sharpness was reached to assess MPT. The final threshold was the geo-
metric mean of five ascending and descending stimuli series. To deter-
mine MPS the same stimuli were applied in a pseudo-random order with 
a 10-sec interval in 5 runs; subjects were asked to give a pain rating for 
each stimulus on a ’0–100’ numerical rating scale (’0’ indicating "no 
pain", and ’100’ indicating "most intense pain imaginable"). MPS was 
calculated as the geometric mean of all numerical ratings for each 
pinprick stimulus. QST parameters were measured in their physical 
dimension and were weighted by transformation to the standard normal 
distribution (Z-transformation). Z-scores indicate gain (above "0") or a 
loss (below "0") of function across QST-parameters.

2.4. Psycho-social baseline characterization by patient-reported outcome 
measures (PROMs)

Prior incision injury, volunteers have completed a set of psycholog-
ical questionnaires, including the Beck-Depressions-Inventar 2 (BDI-2), 

Fig. 1. Study design and methodology for predicting incisional outcome measures. (A) A total of 26 male volunteers (24 right-handed) with an average age of 
23.9 years (y ± SD) were enrolled in the study. (B) Experimental incision (INC) was performed with a scalpel on the volar lower am (side randomized). The skin 
incision had 4 mm length and 7 mm depth. The secondary hyperalgesic area to punctate mechanical stimuli around the incisional injury was determined 1 h post 
incision. (C) Twenty-four h before incision (baseline, BL), the volunteer was medically briefed, complete qualitative sensory testing (QST) was performed in the 
incision area, five different questionnaires were completed, and blood was collected. Quantitative mass spectrometry was used to identify blood plasma proteome. 
(D) Analysis of BL’s datasets allowed determination of the prognostic potential of single and combinatorial factors to predict pain phenotype, here, incisional pain 
graded on a numeric rating scale (NRS) and the dimension of the hyperalgesic area (HA) around the injury after incision.
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the state-trait anxiety inventory (STAI), the pain catastrophizing scale 
(PCS), the Life Orientation Test - Revised (LOT-R), and the pain sensi-
tivity questionnaire (PSQ) to identify possible risk factors for incision- 
induced pain. PSQ is a self-rating instrument for the assessment of 
pain sensitivity, validated in healthy subjects and chronic pain patients 
[31–35]. The volunteer completed the questionnaires himself in a quiet 
neutral room in the presence of a male experimenter. The order of the 
questionnaires was randomized a priori by an Excel list for each 
volunteer individually.

2.5. Blood sampling and plasma processing

Blood samples (5 ml) were collected by venipuncture of the contra-
lateral arm under sterile conditions. Winged blood collection sets (BD 
Vactuainer® Safety-Lok™, needle gauge 21) were used to collect the 
blood in EDTA tubes (BD Vactuainer®, K2EDTA, 1⋅8 mg/ml). All tubes 
were gently rotated eight times by hand after sampling. Blood cells, 
including platelets, were removed from plasma by centrifugation at 
2000 x g for 15 minutes in a refrigerated centrifuge (4◦C) to obtain blood 
plasma samples. The blood plasma was divided into 0.5 ml aliquots and 
stored at − 20 ◦C.

2.6. Experimental incision

The experimental incision followed a protocol previously described 
[26,30,36]. Briefly, the skin of one randomly chosen arm for incision 
was disinfected with 70 % ethanol. An incision of 4 mm width and 7 mm 
depth was ’applied’ with a sterile scalpel (No. 11), perforating the 
muscular fascia. A gauze swab stopped the bleeding of the wound with 
gentle pressing (Fig. 1B).

2.7. Determination of incisional pain and hyperalgesic area as outcome 
measures

Two outcome measures were defined as clinical relevant measures 
translating well to patients after surgery. First, volunteers were asked to 
rate incision-induced pain intensity (IncP) on a numeric rating scale 
(NRS, 0–100) at time zero (during incision), every minute until 
10 minutes, every five minutes until 1 hour after incision. The area 
under the curve (AUC) was determined for the first 60 minutes after 
incision, which represents acute incisional pain. This refers well to acute 
postsurgical pain intensity, a measure that is one primary outcome 
parameter to be assessed in clinical trials related to postsurgical pain 
[37]. Second, sensitivity to punctuate mechanical stimulation in the 
zone around the incision, namely the hyperalgesic area (HA), was 
determined 60 min post-incision using a conventional von Frey filament 
with 116 mN bending force. It was applied in eight imaginary lines at 
45◦, starting far distant from the putative hypersensitivity region 
centripetally directed towards the incision. All eight points were linked, 
transferred onto a paper, and the area was determined in Image J 
(https://imagej.nih.gov/ij/). As a proxy of central sensitization, the area 
of hyperalgesia surrounding the surgical incision in patients has been 
shown as a consistent predictor of CPSP in clinical studies [38–40] and 
was used to estimate preventive efficacy of treatments for CPSP [41].

2.8. Definition of responders for incision-induce outcome measures

Volunteers were stratified into responder types depending on the 
IncP and the extent of the HA. The mean of the entire cohort was 
calculated for both outcome measures. Being above or below the cor-
responding mean, volunteers were stratified into high (> mean) and low 
(< mean) responders, In the following, volunteers with a larger IncP 
(above the mean) and larger HAs (above the mean) are designated as 
high responders. Ultimately, we defined IncP and HA as reference pa-
rameters for psycho-physical, psychometric, and proteomic analyzes to 
determine incision injury single marker and multi-feature prediction 

signatures.

2.9. Sample preparation: protein digestion and sample clean-up

Plasma samples were neither fractionated nor depleted. Plasma 
samples were allowed to thaw on ice and sonicated in 15 s intervals, 
depending on the degree of denatured components. 10 µL plasma, cor-
responding on average to 36,1 µg/µL were diluted in 5 mM TCEP, 1 % 
SDC in 100 mM ABC (DR buffer). Samples were denatured and reduced 
for 1 h at 60◦C with agitation in a thermoshaker. 15 µL of the denatured 
mixture was further diluted with 100 mM ABC in a 1:1 ratio and alky-
lated with 10 mM IAA at room temperature for 30 min (in the dark). 
Quenching of samples was obtained by adding 10 mM DTT final for 
15 min of incubation at room temperature. Samples were diluted with 
MS-grade H2O to perform protein hydrolysis in 50 mM ABC at pH 7,8 – 
8,0. Tryp/rLys-C was added 1:50 (enzyme: protein) and incubated 
overnight (16 hours) at 37◦C using a heated thermoshaker with heatable 
lid (40◦C) to prevent condensation within the Eppendorf tube.

Removal of detergents was obtained by phase transfer following the 
protocol by Masuda and Ishihama [42]. After discarding the 
surfactant-containing upper layer, the remaining peptides were desalted 
using solid-phase extraction (SPE). C18 MicroSpin (The Nest Group, 
USA) columns were used for SPE, adhering to the manufacturer’s in-
structions with the following modifications: bound peptides were 
sub-sequentially washed with 0.5 % TFA and 0.2 % TFA, two-step 
elution of peptides with 50 µL 50 % ACN, 0.1 % FA and 50 µL 80 % 
ACN, 0.1 % FA. Cleaned-up peptides were fully dried using a vacuum 
evaporator at 38◦C.

2.10. Liquid chromatography and mass spectrometry

Dried peptide samples were solubilized in MS buffer (1 % ACN, 
0.1 % FA) and sonicated for 2 min. Peptide concentrations were deter-
mined using a UV/VIS Spectrometer at 280 nm/430 nm (IMPLEN, 
Germany). Autosampler vials contained 100 ng/µL sample and iRT 
(Biognosys, Switzerland) peptides for prediction of peptide retention 
times upon chromatographic separation [43]. A pooled sample of V1-V3 
(100 ng/µL) was run before each acquisition queue to control for 
consistent system performance.

NanoLC-MS/MS analyzes were conducted on an Orbitrap Exploris 
480 mass spectrometer coupled with an UltiMate 3000 UHPLC System 
(Thermo Scientific, Germany). In a direct setup, 2 µL peptides were 
separated on an Acclaim PepMap column (75 µm x 15 cm, C18, 2 µm, 
100 Å) at a constant flow rate of 300 nl/min and injected to the mass 
spectrometer via a Nanospray FlexTM ion source (Thermo Scientific, 
USA). The mobile phase consisted of [A] 0.1 % FA, 1 % ACN and [B] 
0.1 % FA, 100 % ACN. MS acquisition included peptides eluting along a 
two-step linear gradient of 3–25 % B in 60 min and 25–40 % B in 
20 min. The high organic phase (80 % B, 10 min) and two subsequent 
short gradients (3–50 % B 10 min; 80 % B 4 min) within the same in-
jection cycle were without MS acquisition to ensure minimization of a 
column-and LC system-related carryover in a time-efficient manner. The 
column temperature was set to 40◦C constantly. MS raw data were ac-
quired in data-independent acquisition mode (DIA) in a scan range of 
350–1154 m/z. MS1 spectra were recorded at a resolution of 120,000 
and automatic gain control (AGC) target of 3e6 or 60 ms injection time, 
respectively. Corresponding MS2 scans were acquired at 30,000 reso-
lutions with an AGC value of 3e6 and auto for injection time. Each DIA 
segment contained 15 spectra of 18 Da windows with a stepped collision 
energy of 25, 27, and 30. A total of three full scans, each followed by 
symmetrically segmented isolation windows, was needed to cover the 
entire MS scan range. All spectra were recorded in profile mode.

2.11. Quantitative LC-MS data analysis

The raw DIA data files were processed with the open source program 
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DIA-NN 1.8.1 [44]. As a spectral library, an in-house library stemming 
from human plasma depletion experiments was used. The spectral li-
brary contained 4590 protein isoforms, 2889 protein groups and 17809 
precursors in 14923 elution groups. For the in vitro digestion, Trypsin/P 
was chosen and a maximum of three missed cleavages. Peptide length 
was set to 5–52 amino acids. Cysteine carbamidomethylation was cho-
sen as a fixed modification and as possible variable modifications N-term 
methionine excision, methionine oxidation, and/or N-term acetylation 
were set. The maximum number of variable modifications allowed was 
3. RT-dependent cross-run normalization and Robust LC (high accuracy) 
options were selected for quantification. The R package, DiaNN (http 
s://github.com/vdemichev/diann-rpackage; [44]) was used to extract 
the MaxLFQ [45] quantitative intensity of protein groups for all iden-
tified protein groups with q-value < 0.01 as criteria at precursor and 
protein group levels. Due to poor data quality, V7 was excluded from all 
analyzes. All raw data files have been uploaded to the Proteome 
Xchange Consortium[46] via the PRIDE partner repository with the 
dataset identifier PXD033592. Whenever a protein group had several 
proteins mapped, only the first mapped protein of each protein group 
was considered in all analyses downstream of the ROC analysis.

Blood collection and subsequent variations in sample handling and 
processing can lead to contamination of plasma. Geyer et al., 2019, 
investigated this issue systematically, and reported proteomic catalogs 
of contaminating cell types, namely erythrocytes, platelets as well as 
coagulation events [47]. We compared our identified and quantified 
protein groups with their so called “quality marker panels” and found 58 
putative contaminants. We did not exclude those per se from the ROC 
analysis as Geyer et al. reported that several of these proteins were still 
identified in pure plasma indicating a baseline level of contaminants due 
to imperfect de-enrichment or the life cycle of these cells. Instead, we 
excluded them only from downstream analyses after the ROC analysis, e. 
g., the Cytoscape, PharmOmics, and Interactome analysis. Any detected 
keratins (11 protein groups) were also excluded from mentioned 
downstream analyses.

2.12. Statistical analyzes, bioinformatic processing, and post-hoc 
analyzes

Feature-selection of prognostic marker and marker combinations 
was performed in the statistical environment R. If not reported other-
wise, data were analyzed using OriginLab PRO.

2.12.1. Functional analysis
Functional enrichment analysis of all 383 identified and quantified 

proteins at high confidence (0.7) was performed using the web-based 
STRING interface (https://string-db.org/ [48], analysis was performed 
on 23/02/2024).

2.12.2. Network analysis
Cytoscape (version 3.8.2, available at cytoscape.org) [49] was used 

to identify pain phenotype-specific protein networks (term-term-inter-
actions (TTI)-networks). Functional grouping within these networks was 
achieved using AutoAnnotate version 1.3. Analysis revealed signifi-
cantly enriched GO terms (p-values ≤ 0.05) within these functionally 
grouped networks, effectively reflecting the relationships between these 
terms.

2.12.3. Network-based drug repositioning with PharmOmics
The network-based repositioning tool within the open-source appli-

cation PharmOmics (http://mergeomics.research.idre.ucla.edu/runph 
armomics.php) [50] was used. As input genes, the high responder 
prognostic markers were taken. The analysis was run for both outcome 
measures (IncP, HA) separately. The signature type was set to "Meta", 
species to "Human" and as the background network we chose (i) "Sample 
Multi-tissue Network" (provided by PharmOmics) and (ii) a 
protein-protein interaction network created with STRING (https://strin 

g-db.org/) [48], analysis performed in January 2024) based on our own 
identified plasma proteins (yielding a network with 285 nodes). The 
output was filtered for the tissues "hematopoietic system" and "immune 
system".

2.12.4. Interactome analysis
To detect potential interactions between our high responder prog-

nostic markers with proteins expressed by human nociceptors, we used a 
curated ligand-receptor database via the web application https:// 
sensoryomics.shinyapps.io/Interactome/ [51]. The chosen dataset was 
“human_DRG_integrated” which is based on [52,53].

2.12.5. Logistic regression analyzes
This study aimed to propose prognostic prediction models for the 

pre-defined outcomes measures (IncP, and HA, Fig. 1D). Therefore, we 
employed logistic regression models in R to identify combinations of 
available candidates (i.e. covariates) that correlate with a high proba-
bility for high responders. We developed an analysis pipeline comprising 
the following steps: (I) data pre-processing, (II) model building, and (III) 
evaluation of model robustness. Data pre-processing applies normali-
zation per candidate and a linear shift to a beneficial data range for 
subsequent analysis. This data shift is introduced only for technical 
reasons and alters data in any relevant manner. Then, the normalized 
and shifted predictors are analyzed using the combiroc package[54]. A 
wrapper function has been programmed which allows to firstly analyze 
each candidate variable individually, filter predictors for a selected 
minimal AUC value and subsequently evaluate all combinations be-
tween all selected candidates. All models are fitted according to the 
comibroc default procedure, i.e. to fit logistic regression models. All 
combinations generated in step II are evaluated by leave-one-out 
cross-validation (LOOCV). We defined deviance measures by calcu-
lating the mean squared difference between the AUC from all volunteers 
and the individual LOOCV AUCs. We used the overall AUC and its 
deviance to rank each predictor or combination. The selection of the 
optimal predictor/combination is a multi-criteria optimization problem 
(maximize AUC & minimize deviance). Thus, more than one combina-
tion could be optimal in the sense of a Pareto front. In this case, an expert 
decision has been applied based on other criteria, e.g. applicability or 
feasibility of the specific measures in the clinical context. Our pipeline 
also allows restricting the search space to pre-specified subsets of com-
binations - e.g., we can restrict the algorithm to search within all com-
binations of maximal length three and pre-specify that each candidate 
shall be of a distinct dimension (e.g. 1x psycho-physical parameter + 1x 
psychological parameter + 1x blood plasma protein). The receiver 
operator curves (ROC) of the fitted logistic regression models yield AUC 
values.

3. Results

3.1. Volunteer characterization through pre-incisional sensory 
phenotyping, psychological profiling, and plasma proteome analysis

A cohort of 26 male volunteers, with a mean age of 23.9 years (SD, 
± 3.64), was enrolled in the study with specific inclusion and exclusion 
criteria (Fig. 1A; Supplementary material 1). Baseline (BL) character-
ization was performed to assess potential prediction of post-incisional 
outcome parameters with psycho-physical assessments (QST) and psy-
chological patient-reported outcome measures (PROMs). The results of 
the QST suggest a sensory profile that is non-pathological, with slight 
differences observed between the control and test regions (Fig. 2A, 
Supplementary material 2). Cold and warm detection thresholds were 
(mean ± SD) − 1.32 ± 0.53◦C vs. − 1.53 ± 0.92◦C (CDT) and 2 ± 0.86◦C 
vs. 2.2 ± 0.69◦C (WDT). Pain thresholds showed similar trends, with 
CPT at − 13.38 ± 7.6◦C (control) and − 11.83 ± 8.49◦C (test), and HPT 
at 9.88 ± 3.9◦C vs. 10.20 ± 3.43◦C. Mechanical thresholds were com-
parable, with MDT at 1.33 ± 1.53 mN vs. 1.23 ± 1.36 mN, and MPT at 
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55.82 ± 32.11 mN vs. 74.4 ± 142.88 mN.
The pre-incisional PROMs data show that the experimental cohort 

exhibits a psychological and pain sensitivity profile that is clinically 
inconspicuous (Fig. 2B-E, Supplementary material 3). The BDI-2 score 
was 4 (median) [95 % CI, 4–7.3], within the "clinically unremarkable" 
range. Optimism and pessimism scores from the LOT-R Test were 10 
[8.2–10.1] and 9 [7.8–9.5], respectively, also clinically unremarkable. 
Within the range of 16.2–19.3, the total LOT-R score was 19. No sig-
nificant catastrophizing was showed by a PCS score of 12 [9.1–14.9]. 
The PSQ yielded minor, moderate, and total scores of 2.2 [1.8–2.4], 3.9 
[3.3–4.4], and 3.1 [2.6–3.4], all within normal limits. The STAI scores 
for State (X1) and Trait (X2) were 34 [31.3–36.1] and 35 [33.4–39.6], 
showing no significant anxiety symptoms. Considering our quality and 
cut-off criteria (please see methods for details), we identified and 
quantified 383 protein groups (hereafter coined "proteins") across 

samples (Fig. 2F-H, Supplementary material 4; Supplementary Table 1). 
Out of the total 383 protein, 58 were identified as potential blood con-
taminants [47] and 11 were keratins. Due to inadequately high lipid 
concentration in the blood plasma, one volunteer was excluded from all 
subsequent analyzes. In accordance to the Human Protein Atlas (https 
://www.proteinatlas.org/humanproteome/), identified proteins could 
be categorized into blood plasma proteins, tissue leakage proteins,and signal 
proteins, like cytokines or hormones usually found in the low concen-
tration range (Fig. 4G). To gain more insights into the predicted function 
of quantified proteins, we performed Gene Ontology (GO) enrichment 
analysis and REACTOME pathway analysis using the STRING web 
interface (please see methods for additional details; Supplementary 
material 4; Supplementary Table 1). As expected, a significant portion of 
the top results were associated with their role in oxygen and nutrient 
transportation, immune response, and blood clotting.

Fig. 2. Pre-incisional psycho-physical phenotyping, psycho-social characterization and unbiased proteome profiling of blood plasma proteins in male 
volunteers. (A) Detection of pre-incisional somatosensory perception to natural stimuli (thermal and mechanical) was achieved by a complete quantitative sensory 
testing (QST) battery on both forearms. The contralateral forearm served as the control side. Z-scores above ’0’ show a gain of function (more sensitive) and below a 
loss of function (less sensitive). Values above or below two-fold standard deviation (SD, dotted line) show pathological QST-scores, (Violin Plots, Median ± 95 % CI). 
Abbreviations: CDT, cold detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain 
sensitivity; MPT, mechanical pain threshold; PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warmth detection 
threshold; WUR, wind-up ratio. (B) The individual distribution of the Beck Depression Inventory (BDI) and Pain Catastrophizing Scale (PCS) scores are shown, which 
illustrate the psychological profiles of the study participants regarding depression and pain catastrophizing, (Violin Plots, Median ± 95 % CI). (C) The individual 
distribution of the Pain Sensitivity Questionnaire (PSQ-Total, Moderate, and Minor) scores are shown, which illustrate the psychological profiles of the study 
participants regarding stress perception (Violin Plots, Median ± 95 % CI). (D) Individual scores of the Life Orientation Test (LOT-Optimism, LOT-Pessimism, and LOT 
Summation) scores, illustrating the psychological profiles of the study participants in terms of optimism and pessimism, (Violin Plots, Median ± 95 % CI). (E) In-
dividual distribution of the State-Trait Anxiety Inventory (STAI X1, X2) scores, illustrating the psychological profiles of the study participants in terms of anxiety 
levels, (Violin Plots, Median ± 95 % CI). (F) Identification and quantification of 383 pre-incisional blood plasma proteins. When comparing the 383 proteins with 
quality marker panels for blood plasma samples, 58 assumed contaminations and 11 keratins were found. (G) UniProtKB keyword annotations and their enrichment 
across the protein abundance spectrum. Exemplary proteins contributing to keywords are highlighted in red. ALB, albumin; SERPINA1, serpin family A member 1; 
HP, haptoglobin, ORM1, alpha-1-acid glycoprotein 1; HRG, histidine-rich glycoprotein; KLKB1, plasma kallikrein; F12, coagulation factor XII; C2, complement C2; 
IGLV9–49, Immunoglobulin Lambda Variable 9–49; MASP1, Mannan-binding lectin serine protease 1; F7, coagulation factor VII; S100A8, S100 calcium binding 
protein A8; ICAM2, Intercellular adhesion molecule 2; CRISP3, Cysteine Rich Secretory Protein 3. (H) The heatmaps show z-weighted median intensities of the 383 
quantified plasma proteins for each of the 25 volunteers.
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3.2. Determination of primary outcome measures after incision injury

Up to one hour after the experimental incision injury, both outcome 
measures were assessed. The intensity of IncP was highest at the time of 
incision and declined rapidly within the first ten minutes 
(Supplementary material 5). Integration of the AUC for each volunteer’s 
NRS values provided individualized NRSAUC values, showing a signifi-
cant reduction in IncP over time (***P < 0.001). HA was determined in 
response to punctate mechanical stimuli one hour after incision, 
revealing an average size of 68.65 cm2 (SD, ± 50.9) across the cohort 
(Supplementary material 5).

3.3. Predictive modeling of post-incisional outcome measures using 
integrated pre-incisional multi-modal features

Using the IncP as primary outcome, stratification of the volunteers 
resulted in 9 individuals classified as high responders (with a range of 
36.1–458.5) and 16 individuals classified as low responders (with a 
range of 1.7–30) (Fig. 3A). By evaluating individual pre-incisional multi- 
modal features and incorporating them, we created prognostic predic-
tive models for this outcome measure. Prognostic proteome signatures 
were ranked and selected using logistic regression analysis, revealing 
the best performing proteins. ROC-curves and the corresponding AUC 
(ROCAUC) determined features for either high- (ROCAUC ↑) or low re-
sponders (ROCAUC ↓) for proteome, psycho-physical parameters, and 
multiple-construct psychological profile. To sum up, among the 383 

blood plasma proteins that were identified, 70 proteins displayed an 
ROCAUC > 0.6, while 72 proteins showed an ROCAUC < -0.6 (Fig. 3B, 
Table 1) for IncP across all protein categories. QST parameters, such as 
CPT and WUR were determined to be features for high responders, while 
the (MDT was observed to be linked with low responders (Fig. 3C). 
Stress, as measured by the PSQ in both total and moderate forms, was 
used as a feature to identify high responders (elevated) among psycho-
logical metrics (Fig. 3D). On the other hand, the evaluation of disposi-
tional optimism at the individual level, as measured by the LOT, served 
as a feature for individuals with low responses (↓) (Fig. 3D).

Following an analysis of the outcome measure HA, we determined 12 
volunteers as high responders, displaying a HA range of 63.5–184 cm2. 
Furthermore, 13 individuals were identified as low responders, exhib-
iting a range of 1–63.5 cm2 (Fig. 3E). Interestingly, on the proteome 
level, 60 proteins exhibited an ROCAUC value greater than 0.6 for HA. 
Additionally, 55 proteins were characterized by an ROCAUC value lower 
than − 0.6 (Fig. 3F, Table 2), again in all protein categories. The prog-
nostic QST parameters for individuals classified as high responders were 
determined to be the WDT, HPT, MDT, VDT, and WUR (Fig. 3G). PROMs 
for depression (BDI-2), PCS, LOT, and PSQ-Minor served as indicators 
for identifying individuals classified as high Responders for HA 
(Fig. 3H).

By employing data-driven prognostic predictive models of two or 
three QST parameters, there was a slight elevation in the mean ROCAUC 
for IncP from 0.62 [0.43–0.73] to 0.67 [0.38–0.76], ΔAUC= 0.05), as 
opposed to using only one parameter (0.53 [0.37–0.79]) (Fig. 4A, 

Fig. 3. Prognostic value of pre-incisional blood plasma proteome profile, psycho-physics, and psycho-social phenotype for post-incisional outcome 
measures. (A) Volunteers were asked to judge the ongoing pain caused by the incision using the Numeric Rating Scale (NRS; 1–100). Integrated data from the first 
hour after the incision were analyzed, and the area under the curve (AUC) were plotted. Twenty-five volunteers were stratified into low (N = 16;) or high (N = 9) 
responders depending on pain ratings. (B) Prognostic value of each of 383 pre-incisional blood plasma proteins for high (70 proteins) and low responders (72 
proteins) for incisional pain. (C) Prognostic value of all parameters of psychophysical testing for high (CPT and WUR) and low responders (MDT) for incisional pain. 
(D) Prognostic value of PROMs for high (PSQ-Total, PSQ-Moderate) and low responders (LOT-Optimism, LOT-Summation) for incisional pain. (E) Upon incision 
injury, hyperalgesic area (HA) was assessed post 1 h (HA) in 25 volunteers. Phenotyping was achieved by determining the total cohort’s mean HA (68.65 cm2). 
Volunteers with a lower HA were categorized as "low responders" (N = 13), and those with higher mean as "high responders" (N = 12). (F) Prognostic value of each of 
383 pre-incisional blood plasma proteins for high (60 proteins) and low responders (55 proteins) for hyperalgesic area post-incision (HA). (G) Prognostic value of all 
parameters of psycho-physical testing for high (WDT, HPT, MDT, VDT, WUR) for HA. (H) Prognostic value of PROMs for high (BDI, PCS, LOT-Optimism, and PSQ- 
Minor) for HA. Abbreviations: CDT, cold detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, 
mechanical pain sensitivity; MPT, mechanical pain threshold; PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, 
warmth detection threshold; WUR, wind-up ratio; BDI, Beck Depression Inventory; PCS, Pain Catastrophizing Scale; PSQ-Total, Pain Sensitivity Questionnaire-Total; 
PSQ-Moderate, Pain Sensitivity Questionnaire-Moderate; PSQ-Minor, Pain Sensitivity Questionnaire-Minor; LOT-Optimism, Life Orientation Test-Optimism; LOT- 
Pessimism, Life Orientation Test-Pessimism; LOT Summation, Life Orientation Test Summation; STAI x1, State-Trait Anxiety Inventory Form X1; STAI x2, State-Trait 
Anxiety Inventory Form X2.
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Supplementary material 6). A similar picture can be witnessed with 
PROMS (Fig. 4A). Similarly, integrating 2 (0.67 [0.43–0.83]) or 3 (0.66 
[0.42–0.76]) PROMs also led to an increase in accuracy for IncP 
(Supplementary material 7). The prognostic value for IncP does not 
become more accurate by combining a QST parameter and a PROM 

Table 1 
Predictive value for pre-incisional blood plasma proteines (only proteins > 
I0.6I ROCAUC were considered) for the outcome measure IncP.

Protein ROCAUC

CETP 0.93
IGHV4-34 0.84
IGHG1_IGHG2 0.80
IGKV3-20_IGKV3D-20 0.79
JCHAIN 0.78
IGHG1_IGHG4 0.78
IGLV1-36 0.78
IGLC7_IGLL5 0.76
IGHD 0.76
IGHV4-4 0.76
IGLV1-51 0.75
IGKV3-11 0.74
IGLC7 0.74
IGKV1-27_IGKV1-8 0.72
IGKV2-40_IGKV2D-40 0.72
IGKV3D-20 0.72
TGFBI 0.72
IGHA1 0.71
IGHG1_IGHG3_IGHG4 0.71
IGLV2-14 0.71
IGKC 0.71
IGHV4-28 0.70
FCGBP 0.70
IGKV1-39_IGKV1D-39 0.70
IGHV3-23_IGHV3-74 0.69
IGHV3-38 0.69
IGLV3-21 0.69
NRP1 0.69
IGLV1-44_IGLV1-47 0.69
IGKV3-7 0.69
C7 0.68
ICAM2 0.68
IGHV4-34_IGHV4-4 0.68
IGKV3D-15 0.68
IGLL5 0.67
KIF20B 0.67
HRG 0.67
IGLV3-19 0.67
IGLV3-25_IGLV3-27 0.66
KRT2_KRT5 0.66
SAA1 0.66
IGHV3-33 0.66
IGHG1 0.65
IGHV1-2 0.65
IGKV1-33_IGKV1D-33 0.65
QSOX1 0.65
IGHV3-13_IGHV3-20_IGHV3-43_IGHV3-7 0.65
IGLV1-44 0.65
LYZ 0.65
KRT9 0.64
C8G 0.64
ANG 0.63
CFHR5 0.63
IGHV1-3 0.63
IGKV1D-8 0.63
IGLV3-21_IGLV3-9 0.63
IGLV3-10_IGLV3-25 0.63
ALB 0.62
IGKV3-20 0.62
ITIH3 0.62
TFRC 0.62
GP1BB 0.62
IGKV2-30 0.62
MINPP1 0.62
IGKV4-1 0.61
IGLV1-40 0.61
LRG1 0.61
APMAP 0.60
FBLN1 0.60
IGLV2-8 0.60
SERPINA7 − 0.76
HPX − 0.75
CFH − 0.74

(continued on next page)

Table 1 (continued )

Protein ROCAUC

SELENOP − 0.74
APOM − 0.74
CST3 − 0.72
APOC1 − 0.72
PCYOX1 − 0.71
RBP4 − 0.71
C1R − 0.71
APOA4 − 0.70
FCGR3A − 0.70
MST1 − 0.70
PEPD − 0.70
DBH − 0.70
ITIH4 − 0.69
APCS − 0.68
LUM − 0.68
C1QC − 0.67
SERPING1 − 0.67
PI16 − 0.67
APOC3 − 0.67
KLKB1 − 0.67
SAA4 − 0.67
APOD − 0.66
AZGP1 − 0.66
IGKV1-17 − 0.66
APOA2 − 0.65
APOC4 − 0.65
ATRN − 0.65
CFI − 0.65
LPA − 0.65
MASP1 − 0.65
CRISP3 − 0.65
CFHR2 − 0.65
F2 − 0.65
ORM1 − 0.65
SERPINF2 − 0.65
APOC2 − 0.64
F10 − 0.64
FN1 − 0.64
IGHV5-51 − 0.64
C6 − 0.63
PTGDS − 0.63
S100A8 − 0.63
APOE − 0.63
C1S − 0.63
HP_HPR − 0.63
LPA_PLG − 0.63
ANPEP − 0.63
C2 − 0.62
F13B − 0.62
BCHE − 0.62
HABP2 − 0.62
PLG − 0.62
PROS1 − 0.62
PTPRJ − 0.62
TF − 0.62
C5 − 0.61
GC − 0.61
HBB − 0.61
HBB_HBD − 0.61
IGF2 − 0.61
CA2 − 0.61
S100A9 − 0.61
CFHR1 − 0.60
ENO1 − 0.60
F11 − 0.60
HP − 0.60
IGHG2_IGHG3 − 0.60
IGHV3-7 − 0.60
SERPINA1 − 0.60
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(0.63 [0.42–0.83], Fig. 4A, Supplementary material 8). The prognostic 
values of QST (Supplementary material 9), PROMS (Supplementary 
material 10), and the combined use of both for the outcome parameter 
HA showed a comparable pattern (Fig. 4B). The model’s accuracy in this 
scenario was 0.62 [0.49–0.78] (Fig. 4B, Supplementary material 11).

In contrast, data-driven prognostic predictive models of 2 or 3 pro-
teins resulted in improved accuracy for both outcome measures, with a 
mean value of 0.81 [0.67–0.99, ΔAUC= 0.13] for IncP (Fig. 4A, Sup-
plementary material 12, 13) and 0.85 [0.7–0.96, ΔAUC= 0.13] for HA 
(Fig. 4B, Supplementary material 14, 15), when compared to the utili-
zation of only one protein. Prognostic predictive models, including a 
protein and a QST parameter or a protein and a PROM did not increase 
the mean accuracy for both outcome measures compared to the single 
protein but increased predictability compared to a single PROM or QST 
parameter (Fig. 4A, B). The combination of all three feature dimensions 
resulted in a framework that views post-incisional outcomes from a 
molecular, sensory, and psychological perspective, reflecting the com-
plex nature of underlying processes (Fig. 4A, B). On average, an accu-
racy of 0.76 [0.32–0.97] and 0.74 [0.34–0.96] was achieved for high 
responders for IncP and HA, respectively. The prognostic predictive 
models for both outcome measures differed in their composition, while 
the accuracy of the prediction was comparable.

Table 2 
Predictive value for pre-incisional blood plasma proteines 
(only proteins > I0.6I ROCAUC were considered) for the 
outcome measure HA.

Protein ROCAUC

ORM1_ORM2 0.77
CLEC3B 0.77
FGA 0.77
LCP1 0.76
HP 0.75
C1QA 0.75
C9 0.73
F9 0.73
C1S 0.73
CFH 0.71
HPX 0.71
LBP 0.71
ORM1 0.71
TFRC 0.71
CFHR5 0.71
FGG 0.71
KRT2_KRT5 0.71
SERPINA10 0.71
C1QB 0.70
HP_HPR 0.69
SERPINA3 0.69
ORM2 0.69
IGKV1D-8 0.69
KRT1 0.69
C4B 0.68
C8G 0.68
PRG4 0.68
SERPIND1 0.68
C8B 0.68
KRT9 0.68
IGKV1-33_IGKV1D-33 0.67
TF 0.66
KRT10 0.66
KRT2 0.66
PI16 0.66
F10 0.66
PEPD 0.65
APOL1 0.65
CFI 0.65
CPB2 0.65
IGHV1-2 0.65
PCOLCE 0.65
IGLV1-40 0.64
IGLV4-69 0.64
LGALS3BP 0.64
MBL2 0.64
C5 0.63
CAT 0.63
FGB 0.63
PLG 0.63
F13B 0.62
IGHV4-4 0.62
CFP 0.61
IGLV3-21_IGLV3-9 0.61
KRT83_KRT86 0.61
PROS1 0.61
S100A8 0.61
SAA4 0.61
CP 0.60
IGLV1-51 0.60
APOC3 − 0.78
BTD − 0.77
PGLYRP2 − 0.73
IGLL1 − 0.70
ATRN − 0.69
IGHV3-43D − 0.69
LPA − 0.69
SHBG − 0.69
MINPP1 − 0.69
HRG − 0.68
IGKV2-40_IGKV2D-40 − 0.68
TGFBI − 0.68

(continued on next page)

Table 2 (continued )

Protein ROCAUC

C7 − 0.66
IGHG1_IGHG2_IGHG3_IGHG4 − 0.66
IGHG2_IGHG3 − 0.66
C4A − 0.66
IGF2 − 0.66
SELL − 0.66
APOE − 0.65
IGHG2 − 0.65
SERPINA5 − 0.65
GP1BA − 0.65
MSN − 0.65
IGFBP3 − 0.64
IGKV3-7 − 0.64
FCGR3A − 0.64
GP1BB − 0.63
HABP2 − 0.63
IGHA1 − 0.63
IGHA1_IGHA2 − 0.63
A2M_PZP − 0.62
CRISP3 − 0.62
IGKC − 0.62
IGKV2-24_IGKV2D-24 − 0.62
TUBB4B − 0.62
CORO1A − 0.62
IGHG2_IGHG3_IGHG4 − 0.62
IGHV1-18 − 0.62
IGHV4-28 − 0.62
IGLV2-18 − 0.62
HSPA1A_HSPA1B_HSPA1L − 0.61
PTGDS − 0.61
ADAMTS13 − 0.61
APOC2 − 0.61
CETP − 0.61
IGFALS − 0.61
IGHG1_IGHG3 − 0.61
IGKV4-1 − 0.61
A2M − 0.60
BCHE − 0.60
HSPB1 − 0.60
IGHV3-13 − 0.60
CRTAC1 − 0.60
IGHV3-49 − 0.60
PARVB − 0.60
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3.4. Molecular insights into peripheral and central sensitization post- 
incision: prognostic prediction models and network-based drug 
repositioning

Next, we aimed at exploring molecular signatures and pathways 
within pre-incisional proteome signatures to identify mechanisms un-
derlying low and high responder phenotypes in outcome measures (IncP 
and HA). We focused on those proteins with prognostic value based on 
our prior ROC analysis (AUC >0.6 and <-0.6). Comparing low (Fig. 5A) 
and high (Fig. 5B) responder categories for both outcome measures, we 
observed distinct and overlapping protein signatures. Term-term- 
interaction (TTI) network analysis was performed for IncP (Fig. 5C) 
and HA (Fig. 5D), uncovering terms that were enriched in high re-
sponders for both outcomes measures, highlighting clusters related to 
the innate immune and complement system. The identification of pre- 
incisional proteins in the cascades of the complement system in high 

responders for both outcomes could potentially reflect a pre-incisional 
low-grade inflammatory condition

We then employed network-based drug repositioning offered by the 
species- and tissue-specific drug signature online platform PharmOmics, 
which leverages existing therapeutic drugs to modulate disease- 
associated signaling networks (https://mergeomics.research.idre.ucla. 
edu; [50]). Network drug repositioning was conducted based on high 
responder proteome signatures (Supplementary Table 2). Upon filtering 
the results relevant for the hemopoietic and immune system, we ob-
tained 29 significant hits for high responders (Top15 listed in Table 3, 
Supplementary Table 2). Remarkably, "antidiabetic" drugs, specifically, 
the Peroxisome proliferator-activated receptor gamma (PPARγ) ago-
nists, Pioglitazone and Rosiglitazone, were associated with proteome 
signatures in high responders, while Pioglitazone was associated in IncP 
(Fig. 5E), and Rosiglitazone in HA (Fig. 5F). The 
protein-protein-interaction (PPI)-network analysis showed the presence 

Fig. 4. Improved accuracy in predicting post-incision outcomes using data-driven combinations. (A) For IncP, data-driven prognostic prediction models using 
multiple QST parameters or PROMs resulted in a slight increase in predictive accuracy compared to using a single parameter. QST and PROMs combined did not 
improve accuracy. Multiple proteins improved IncP model accuracy. Integrating proteins with QST and PROMs proved beneficial. Molecular, sensory, and psy-
chological factors formed a comprehensive predictive framework for IncP, despite similar accuracy across models. (B) For the outcome HA, a similar pattern was 
observed. Combining QST, PROMs, or both offered no significant model improvement. Improved HA prediction resulted from multiple proteins. Results improve with 
protein-QST-PROM combinations. Integrating all three feature dimensions provided a multifaceted perspective, though HA prediction accuracy remained compa-
rable. Prediction accuracy was similar across top 10 combinations, emphasizing the need for multi-dimensional analysis of post-incision responses. Abbreviations: 
CETP=Cholesteryl Ester Transfer Protein, CGT=Cystathionine Gamma-Lyase, C1QA=Complement C1qa, CLEC3B––C-Type Lectin Domain Family 3 Member B, 
DBH=Dopamine Beta-Hydroxylase, HPT=Heat Pain Threshold, 5, ORM1 =Orosomucoid 1, ORM2 =Orosomucoid 2, PCP=Pyridoxal Phosphate, TGFBI=-
Transforming Growth Factor Beta Induced, BDI=Beck Depression Inventory, PCS=Pain Catastrophizing Scale, PSQ-MOD= Pain Sensitivity Questionnaire-Moderate, 
STAI x1 = State-Trait Anxiety Inventory Form X1, STAI x2 = State-Trait Anxiety Inventory Form X2, CDT=Cold Detection Threshold, CPT=Cold Pain Threshold, 
MPT=Mechanical Pain Threshold, VDT=Vibration Detection Threshold, WDT=Warmth Detection Threshold, WUR=Wind-Up Ratio. Mean ROCAUC [min- 
max range].
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of five drug proteins (C1QB, C3, CLU, ANG, NRP1) for Pioglitazone in 
IncP and three proteins as targets (C1QB, C3, PPBP) for Rosiglitazone in 
HA.

Recently, DuBreuil et al. showed that human serum could excite 
dorsal root ganglion (DRG) neurons in vitro [55]. As DRG are exposed to 

proteins circulating in the blood, we looked for potential interactions 
between the blood proteins defining the pre-incisional protein signature 
of high responders with receptors expressed in human DRG (see Sup-
plementary Table 3 for all potential ligand-receptor interactions) by 
using the Sensoryomics Interactome resource from the Center for 

Fig. 5. Molecular mechanistic understanding and network-based drug repositioning analysis for pre-incisional biomarker signatures. (A) Pre-incisional protein 
patterns for low responders. A total of 51 unique proteins were identified for IncP and 34 for HA in low responders, with an overlap of 10. (B) Pre-incisional protein 
patterns for high responders. A total of 50 unique proteins were identified for IncP and 37 for HA in high responders, with an overlap of 10. (C) Enriched term-term 
interaction (TTI)-network analysis for IncP, highlighting terms only present in high responders, particularly clusters related to the innate immune system and the 
complement system via the classical and alternative pathways. (D) TTI-network analysis for HA, emphasizing terms exclusively present in high responders, with a 
focus on the complement system and innate immune response pathways. The data reveals significantly enriched GO terms, as indicated by P-values below 0.05, after 
applying the Benjamini-Hochberg correction. These terms are observed within a functionally grouped network, which accurately represents their interconnected 
relationships. Each node corresponds to a molecular function or process. Node colors are associated with phenotyping (high responder in magenta shades; low- 
responder in cyan shades). Gray shades reflect unspecific terms which belong to both responder types. (E) Protein-protein-interaction (PPI) network drug reposi-
tioning results for IncP, showing the presence of the PPARγ agonist Pioglitazone and its associated drug protein proteins (CLU, C3, C1QB), including ANG and NRP1 
as input proteins. (F) PPI-network drug repositioning results for HA, indicating the PPARγ agonist Rosiglitazone and its associated drug proteins (C3, PPBP), with 
C1QB also identified as an input protein.
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Advanced Pain Studies (https://sensoryomics.shinyapps.io/Interactom 
e/). Several blood proteins of the PPI-network displayed in Fig. 5 E, F 
were found to be reported as potential ligands of receptors expressed in 
human nociceptors (e.g., SAA1, C1QB, ANG, C5, QSOX1, C1QA, ALB). 
Interestingly, some (e.g., C1QB, ANG) of these may be directly targeted 
by aforementioned antidiabetics (suggested by the drug repositioning 
approach, Fig. 5 E, F) or indirectly targeted within the PPI-network (e.g., 
SAA1, C5, QSOX1, C1QA, ALB, HRG, LYZ).

4. Discussion

Although guidelines and procedure-specific evidence-based recom-
mendations for postsurgical pain management exist [56,57], a high 
number of patients still experience severe pain after surgery, which 
impacts not only their quality of recovery but also long-term outcome, 
including CPSP [4,58]. Because certain patients are more susceptible to 
experiencing acute pain and developing CPSP, timely identification of 
high-risk patients for severe postsurgical pain and CPSP is imperative, 
but still poses a significant challenge. While several models for the 
prediction of CPSP have been developed, most exhibit significant limi-
tations, e.g. a high risk of bias that affects their reliability [11]. Another 
current challenge is the incomplete understanding of the underlying 
mechanisms relevant for developing CPSP, e.g. by addressing compre-
hensively the bio-psycho-social aspect of chronic pain in such models 
[11,14,59]. Most prediction models rely on demographics (age,sex 
and/or gender), or preoperative pain characteristics, while incorpo-
rating molecular markers or psychological factors (or best both) remains 
limited [11,14]. In fact, no previous study has employed unbiased blood 
proteome profiling, neither in an experimental or clinical setting, and 
combining it with other factors to integrate proteins into prognostic 
prediction models. To date, only models incorporating hypothesis-based 
approaches with a specific protein panel have been established and 
documented for CPSP [59–61].

We show here that our multi-modal framework, including unbiased 
proteome analysis effectively enabled the identification of high and low 
responders for relevant outcome measures related to pain after surgery. 
Several factors qualified as adequate predictors of high responders, 
including psychological characteristics and psycho-physical testing, and 
combining factors, improved prediction value. Nevertheless, the overall 
predictive accuracy of models include these features remains moderate 
[11,62,63]. However, including findings from our unbiased blood 
plasma proteome analysis enhanced prediction accuracy. We acknowl-
edge the experimental design and small volunteer cohort. Still, our 
study, designed as a proof-of-concept study, highlights for the first time 
the promising role of proteins, identified with an unbiased approach, in 
predicting with high accuracy severe acute and chronic postsurgical 
pain phenotypes. Future prospective trials, e.g. in large patient cohorts, 

should confirm our results and determine proteomic profiles predicting 
pain phenotypes including CPSP.

A synergistic effect on predictive capability may be achieved by 
incorporating clinical parameters with proteome analysis. By inte-
grating an unbiased proteomic approach with advanced sensory testing 
and PROMs, we achieved an even more accurate predictive capability. 
These data postulate that integrating plasma proteome signatures ac-
quired prior to surgery may facilitate the prediction of CPSP in an 
integrative approach [59]. Interestingly, the multi-feature prognostic 
predictive models were composed differently for each outcome measure, 
yet the accuracy of the prediction remained comparable, emphasizing 
the distinct nature of post-incisional outcomes. These results support the 
bio-psycho-social complex nature of (postoperative) chronic pain. 
Certainly, translational approaches in larger cohorts and validation of 
our results in patients are required before these results can be trans-
ferred to clinical practice. The success of introducing such pipelines into 
clinical routine also needs to consider time and economic factors while 
providing high-throughput and standardized features [64]. This in-
volves developing streamlined protocols that balance patient/provider 
burden with model predictive power. Practicability and scalability of 
prognostic predictive models in clinical settings can be improved 
through efficient and cost-effective methods. However, if validated for 
clinical use, analysis of blood plasma by using for example ELISAs ex-
hibits several advantages for clinical proteome profiling given that it is 
easy-to-be-collected (following standardized procedures) and small 
volumes suffice for downstream molecular analysis [15,16,47].

Integrating proteomics in prediction models may not only improve 
pre-surgical diagnostic prediction of those patients with a high risk of 
severe acute pain and CPSP after surgery. It might additionally enable 
the development of (new) preventive treatment approaches, including 
the identification of new drug targets. Therefore, by analyzing pre- 
incisional TTI-networks, we sought to understand the molecular mech-
anisms of high versus low responders regarding both outcome measures. 
Most intriguingly , proteomic features of responder types pointed to-
wards the involvement of the innate immune system in high responders 
for both outcome measures. These findings are in accordance with 
recent studies in patients with neuropathic pain post-surgery [65]. The 
results suggest that high responders display a low-grade inflammatory 
status. Low-grade inflammation refers to a mild state of inflammation 
representing chronic, yet subtle activation of the immune system [66, 
67]. Unlike acute inflammation, chronic low-grade inflammation is 
typically asymptomatic [66]. Proteins identified by us as being relevant 
for prediction of high responders, such as LRG1, TFRC, LYZ, or SAA1, 
play critical roles in chronic low-grade inflammation. The involvement 
of these proteins lies in their ability to promote immune cell migration, 
enhance inflammatory signaling pathways, and modulate tissue 
remodeling, all of which are critical factors in the maintenance of 
persistent inflammation. For example, LRG1 is known to enhance im-
mune cell infiltration and activation, contributing to prolonged in-
flammatory responses [68]. SAA1 acts as an acute-phase reactant and 
chemokine, accelerating response to inflammation and perpetuating 
immune activation in chronic conditions [69] by interacting with formyl 
peptide like receptors 1 and 2 (FPLR1 and FPLR2) in human monocytes 
and neutrophils. This protein facilitates chemotaxis and augments cal-
cium flux, resulting in the activation of mitogen-activated protein ki-
nases (MAPKs) and nuclear factor kappa B (NFκB) pathways, 
subsequently leading to the secretion of tumor necrosis factor alpha 
(TNFα), interleukin-8 (IL-8), and monocyte chemotactic protein-1 
(MCP-1) [70,71]. The occurrence of low-grade inflammation can 
enhance the release of cytokines and other signaling molecules, thereby 
sensitizing pain receptors. Chronic stress, an unhealthy diet, obesity, 
lack of exercise, smoking, chronic infections, and autoimmune disorders 
can all contribute to low-grade inflammation [72,73]. Ongoing in-
teractions between the immune and nervous system can exacerbate and 
sustain nociceptive signals and be accompanied by the release of 
pro-inflammatory cytokines and other mediators. In the future, the 

Table 3 
Network-based drug repositioning with PharmOmics: detailed Z-Scores, rank-
ings, and p-values.

Drug Tissue Z_score Rank P-value

Atorvastatin hematopoietic system − 3.59 0.9968 0.000
Immunosuppressant immune system − 2.55 0.9959 0.005
Alkylating agent immune system − 2.55 0.9951 0.005
Rosiglitazone hematopoietic system − 2.51 0.9951 0.006
Infliximab hematopoietic system − 2.50 0.9943 0.006
Cyclophosphamide immune system − 2.48 0.9935 0.007
Anti-TNF-alpha antibody hematopoietic system − 2.47 0.9927 0.007
Rosuvastatin hematopoietic system − 2.46 0.9967 0.007
Antimetabolite immune system − 2.39 0.9959 0.009
Arsenic trioxide hematopoietic system − 2.31 0.9783 0.010
Fludarabine immune system − 2.27 0.9934 0.012
COX inhibitor hematopoietic system − 2.27 0.9759 0.012
Antidiabetic hematopoietic system − 2.24 0.9918 0.013
PPARγ gamma agonist hematopoietic system − 2.21 0.9910 0.013
Etoposide immune system − 2.17 0.9780 0.015
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proteome signature could not only enable us to identify those patients 
with low-grade inflammation and at risk for negative pain outcomes, but 
it might also facilitate their prevention.

Intriguingly, our results suggest that targeting the low-grade 
inflammation in patients at risk may curb postoperative complications 
in future clinical scenarios. Along these lines, we employed a compu-
tational network-based approach to repurpose available drugs. Drug 
repositioning identifies new uses for existing drugs, accelerating devel-
opment and offering cost-effective treatments. Using this approach, we 
identified PPARγ agonists such as Rosiglitazone and Pioglitazone as 
potential modulators of low-grade inflammation [74] associated with 
identified protein networks. Indeed, local Rosiglitazone administration 
reduced hypersensitivity in a mouse incision pain model, dampening 
post-incisional inflammation and hypersensitivity by modulating 
macrophage polarity [75]. Also, the PPARγ agonist Pioglitazone has 
been reported in several preclinical studies to exert an 
anti-hypersensitivity effect in a variety of pain models ranging from 
inflammatory, post-incisional, to neuropathic pain [76–79]. Considering 
evidence in preclinical studies for PPARγ agonists in attenuating pain, 
further studies to investigate the underlying mechanisms and the site of 
action are warranted [77]. Even though underlying mechanisms may be 
complex, our data may offer an intriguing hypothesis: We observed that 
several identified blood proteins could serve as ligands for nociceptors in 
DRG (e.g., SAA1, C5, QSOX1, C1QA, ALB, HRG, LYZ;Supplementary 
Table 3). Thus, targeting these blood proteins with repositioned drugs 
may directly or indirectly - via effects on protein networks - modulate 
DRG physiology and function.

While a clear advantage of drug repurposing is that the safety profile 
characteristics of the compound in question are already known, the 
effective dosage and time point of intervention would need additional 
investigations. Along these lines, network-based medicine aims to 
harness potential synergistic drug combinations that target multiple 
signaling pathways within disease-associated networks [80–82]. For 
example, in the context of our results, it is conceivable that 
anti-inflammatory drugs, immunomodulators, and metabolic modula-
tors may be combined at lower doses to synergistically target inflam-
matory pathways and, in parallel, reduce potential side effects. 
Certainly, large study cohorts are required to predict effects (both 
therapeutic and adverse effects) and drug-drug interactions when 
combining multiple drugs and their interactions.

While the development of novel analgesics has historically been 
challenging, with ample setbacks, drug repurposing and network med-
icine may offer a valuable alternative approach for future pain 
management.

5. Limitations

The development of prognostic prediction models is associated with 
several difficulties that must be addressed to ensure their robustness 
[11]. In this proof-of-concept study, we employed a tightly controlled 
experimental model for post-surgical pain, using a small, homogeneous 
sample of young male participants. This design aimed to minimize de-
grees of freedom, reduce the overestimation of multi-feature models, but 
limits the external validity and generalizability to broader populations. 
Furthermore, model over-fitting is a concern due to a large number of 
variables, especially with the unbiased protein list. To improve validity, 
models should be tested on independent and larger cohorts with varied 
sex and/or gender and age [11].

Our efforts to enhance model accuracy by combining molecular data 
with psychological or psycho-physical factors did yield slightly better 
performance compared to using individual psychological or psycho- 
physical features alone. This may be due to the complexity and vari-
ability in how different data types interact. Proteomic data is (semi-) 
quantitative and high-dimensional, while psychological and psycho- 
physical data is more qualitative and subjective. Integrating these 
disparate data types can introduce noise and complicate modeling. 

Increasing the number of variables without adding predictive power 
may lead to model overfitting, where models perform well on training 
data but poorly on new data [83]. Future studies should focus on (i) 
increasing sample size, (ii) using independent datasets for validation, 
and (iii) performing longitudinal monitoring. Adopting this stepwise, 
iterative process will help refine the methods established here, ulti-
mately advancing toward clinically meaningful predictions of chronic 
post-surgical pain in diverse patient populations.

6. Conclusion

This study integrated unbiased blood plasma proteomics, psycho- 
physical, and psychological profiles to develop data-driven prognostic 
prediction models for distinct pain-related outcome measures following 
an experimental incision. These outcomes include pain intensity (IncP) 
and mechanical hyperalgesia (HA), which serves as a proxy of central 
sensitization [84,85] and as a predictor of chronic pain in patients after 
surgery [40,41,86]. Applying data-driven multi-feature combinations 
resulted in an enhanced accuracy of prognostic prediction models, 
effectively capturing multiple aspects relevant for pain, with proteins 
being most predictive. Protein network analysis revealed a 
pre-incisional low-grade inflammatory response in high responders, 
potentially contributing to heightened IncP and pronounced HA. 
Network-based drug repositioning highlighted PPARγ agonists as 
possible treatment options for low-grade inflammation in high re-
sponders. Our integrative approach, which combines multi-level data--
driven prognostic prediction models, proteomics and network-based 
drug repositioning, is highly valuable for future clinical studies. It may 
be used for large clinical cohorts to better understand and predict both 
acute and chronic postsurgical pain (CPSP), and to develop new, 
target-specific drugs and drug combinations.
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Abbreviation (description)

AUC Area Under the Curve — A statistical measure used in this 
context to evaluate pain intensity over time.

BDI Beck Depression Inventory — A self-report questionnaire used 
to assess the severity of depression.

CDT Cold Detection Threshold — The point at which cold is 
detected as a stimulus.

CPT Cold Pain Threshold — The lowest temperature at which cold 
becomes painful.

CPSP Chronic Post-Surgical Pain — Pain that persists after a 
surgical procedure for at least three months, beyond the 
healing process.

DIA Data-Independent Acquisition — A mass spectrometry 
technique used to quantify proteins by acquiring data from all 
peptides in a sample, regardless of their abundance.

HA Hyperalgesic Area — An area around the incision site that 
exhibits increased sensitivity to mechanical stimuli, used as a 
proxy for central sensitization.

HPT Heat Pain Threshold — The lowest temperature at which heat 
becomes painful.

ICD International Classification of Diseases — A globally used 
diagnostic tool for epidemiology, health management, and 
clinical purposes.

IncP Incisional Pain — Pain intensity measured immediately after 
an incision.

LOOCV Leave-One-Out Cross-Validation — A statistical method used 
to validate predictive models by testing one data point at a 
time.

MDT Mechanical Detection Threshold — The minimum stimulus 
required to produce a mechanical sensation.

MPS Mechanical Pain Sensitivity — The sensitivity to pain caused 
by mechanical stimuli.

MSA Mass Spec Analysis — Refers to the process of analyzing mass 
spectrometry data to identify proteins.

MS Mass Spectrometry — A technology used to identify and 
quantify proteins and other biomolecules by measuring their 
mass-to-charge ratio.

PCS Pain Catastrophizing Scale — A questionnaire to assess the 
degree to which a person catastrophizes their perception of 
pain.

PPARγ Peroxisome Proliferator-Activated Receptor Gamma — A type 
of nuclear receptor that regulates gene expression and is 
associated with metabolism and inflammation.

PPI Protein-Protein Interaction — The physical contacts between 
two or more proteins within a cell.

PSQ Pain Sensitivity Questionnaire — A measure used to evaluate 
an individual’s sensitivity to pain.

QST Quantitative Sensory Testing — A method to assess sensory 
nerve function by applying stimuli such as temperature or 
pressure to the skin.

STAI State-Trait Anxiety Inventory — A tool used to measure both 
the transient state and the long-term trait of anxiety in 
individuals.

VDT Vibration Detection Threshold — The lowest intensity of 
vibration that can be felt by the subject.

WDT Warm Detection Threshold — The point at which warmth is 
detected as a stimulus.

WUR Wind-Up Ratio — A measure of increased pain sensitivity 
caused by repeated stimulation.
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