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Abstract

Background To assess the integrity of the developing nervous system, the Prechtl general
movement assessment (GMA) is recognized for its clinical value in diagnosing neurological
impairments in early infancy. GMA has been increasingly augmented through machine
learning approaches intending to scale-up its application, circumvent costs in the training of
human assessors and further standardize classification of spontaneous motor patterns.
Available deep learning tools, all of which are based on single sensor modalities, are
however still considerably inferior to that of well-trained human assessors. These
approaches are hardly comparable as all models are designed, trained and evaluated on
proprietary/silo-data sets.
Methods With this study we propose a sensor fusion approach for assessing fidgety
movements (FMs). FMs were recorded from 51 typically developing participants. We
compared three different sensor modalities (pressure, inertial, and visual sensors). Various
combinations and two sensor fusion approaches (late and early fusion) for infant movement
classification were tested to evaluate whether a multi-sensor system outperforms single
modality assessments. Convolutional neural network (CNN) architectures were used to
classify movement patterns.
Results The performance of the three-sensor fusion (classification accuracy of 94.5%) is
significantly higher than that of any single modality evaluated.
ConclusionsWeshow that the sensor fusion approach is a promising avenue for automated
classification of infant motor patterns. The development of a robust sensor fusion system
may significantly enhance AI-based early recognition of neurofunctions, ultimately
facilitating automated early detection of neurodevelopmental conditions.

In recent years, we have seen a boom in the development of automated
solutions for the Prechtl general movements assessment (GMA). These
efforts utilize AI methods in the attempt to improve classic clinical assess-
ments by removing potential subjectivity in implementation and reducing
the long term costs associated with training and qualifying human
experts1–7. The original GMA, introduced in the late 1990s, is a validated
diagnostic tool based on a human gestalt appraisal of infants’ endogenously
generated motor functions to detect neurological impairments within the
first few months of life8. Classic GMA has become, alongside MRI and the
Hammersmith Infant Neurological Examination, HINE, a gold standard
diagnostic tool for the early detection and prediction of cerebral palsy, CP9.
Aside from detecting CP early, GMA has shown to identify prodromal

motor abnormalities in neurodevelopmental conditions like autism spec-
trum disorder (ASD), genetic disorders like Rett syndrome (RTT), and
disorders related to mothers’ viral infections during pregnancy, e.g., Zika
virus, Sars-CoV-2, HIV10–16. Compared to other diagnostic tools such as
MRI,GMAcanbe implementedby expertswithinminuteswithout theneed
of anyone touching the infant, while delivering unbeatable diagnostic
accuracy8,9. GMA, however, can only be performed by well-trained and
certified assessors. Access to qualified training is not always available. Also,
assessors need continuous practice and regular re-calibrations to ensure
high performance. Training and re-calibrating assessors are costly in the
long-run. Although assessors’ reliability has proven excellent across various
sites and studies17–20, human and environmental factors will remain an issue
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Plain language summary

Study of the movements of infants enables
evaluation of development. We explored
whether combining information obtained
from different types of detectors, able to
assess pressure, motion, and visually,
improved the accuracy of results. Different
ways to combine data from these different
detectors were tested, and it was found that
using all three together produced the most
accurate results. Our approach could be
further developed to allow more reliable
automated tools to detect problems with
development in infants, potentially leading to
earlier diagnosis and intervention in disorders
such as cerebral palsy.
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that could affect individual performance2. In regions and remote settings
with no experts on-site, applying GMA is still challenging. These are the
main reasons why GMA has not yet been globally established in daily
clinical routines. An ever-growing search for complementing avenues to
scale upGMAconsequentially arose, putting technological advancements at
the forefront formethod improvement and applied clinical research. Recent
automated GMA attempts mainly focus on identifying a single medical
condition by tracking and classifying a fraction ofmotor patterns which the
original GMA evaluates. We are still a long way away for the proposed AI
methodology to approach the utility of the original GMA, both in regards to
technology and diagnostic scope.

Different sensor modalities for AI-driven GMA have been devel-
oped, each with its own strengths and limitations1–7,21. Most of these
automated approaches were developed based on visual data with RGB/
RGB-D imaging sensors7,22–32, which is also the data source of ‘original
GMA’. Methods usingmarker-based body tracking33 or wearable sensors,
e.g., inertial measurement units (IMUs)34–41, encouraged by their success
in adult motion tracking, were also proposed for use in infants. Pressure
sensing devices have been employed in the assessment of general
movements5,21,42,43, since they are non-intrusive and easy to use, hence
being particularly suitable for clinical practice. At present, the develop-
ment of automated GMA approaches is still in its infancy, mostly based
on small datasets, with minimal data-sharing or pooling, and targeting
only a fraction or a specific aspect of the tasks involved in the standard
GMA. Most AI methods focus understandably on the classification of
fidgety movements (e.g., present or absent, typical or atypical1–7,21,29, a
general movements pattern of high diagnostic value for the early
detection of neurodevelopmental integrity at around three months post-
term age8,9,44. The classification performances of single modality methods,
irrespective of their task specifics and different participants samples,
compete with each other with an accuracy level of about 90%. Different
methodologies cannot be compared to each other as all models are
designed, trained and evaluated on proprietary datasets1–7,21,29,38,45–47.

Targeting a higher accuracy, we proposed a multi-sensory recording
setup and sensor fusion approach for automated GMA, utilizing different
combinations of video cameras, pressure sensing device, and IMUs5,37,38,46–48.
The rationale behind the sensor fusion approach is that each motion
tracking modality captures different types and dimensions of movement
information (e.g., position and amplitude in space, body parts involved,
force, velocity, frequency, direction, angular velocity and acceleration, etc.)
which other sensors may miss or are unable to track directly. If different

inputs are integrated, they may compensate and boost each other towards
better performance. This approach needs to be empirically tested. To the
best of our knowledge, there exists no public-accessible multi-sensory
dataset of general movements, while no study has carried out any empirical
comparisons of utilities of different sensing modalities, let alone their
combinations, for analyzing infant motor functions and enhancing classi-
fication accuracy.

To fill in this knowledge gap, we perform classification experiments
using convolutional neural network (CNN) architectures, and different
sensor modalities and their combinations to address three research ques-
tions: (1) Do performances of different sensor modalities differ from each
other for the same task (i.e., tracking and classifying fidgety vs. non-fidgety
movements)? (2) Does sensor fusion outperform single modality assess-
ments and lead tohigher accuracy in infantmovement classification? (3) Is a
sensor fusion approach with non-intrusive sensors sufficient for accurate
movement tracking and classification?

The main contributions and outcomes of this work are as follows.
We present and share a labeled and fully synchronized multi-sensory
(pressure, inertial, and visual) dataset of infant movements. We propose
a sensor fusion approach and undertake a deep learning-empowered
comparison of these three sensor modalities and their various combi-
nations for movement classification. We provide evidence that multi-
sensory approach has great potential to further improve movement
classification. We compare two different sensor fusion approaches, early
(using one neural network) vs. late (combining outputs of multiple
neural networks) sensor fusion, and discuss their value for the automated
classification of motor patterns. This work informs future endeavors
utilizing AI methods with respect to clinical evaluation of movements
such as spontaneous general movements in infants at high risk for
adverse neurological outcomes.

Methods
Method overview
Aflowdiagramof the study pipeline is shown in Fig. 1. In this studywe used
data collected and pre-processed by our research group at iDN’s BRAIN-
tegrity lab, Medical University of Graz, Austria, and Systemic Ethology and
Developmental Science (SEE) Labs, University Medical Center Göttingen
and Heidelberg University, Germany29,46. We collected and segmented
19451 data units from 51 biweekly assessed participants21,29. The study
aimed to analyze the ontogeny of humanbehavior and typical cross-domain
development during the first months of human life46. The project was
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Fig. 1 | Flow diagram of the study pipeline. N corresponds to the number of
snippets (5 s data units) in each step. T1-T7 correspond to seven recording sessions
in biweekly intervals, starting at 4 weeks post-term age. FM- and FM+ corresponds

to the absence and presence of fidgety movements, respectively. VID -- video data,
MAT -- pressure mat data, IMU -- inertial measurement unit data.
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approved by the Institutional Review Boards of the Medical University of
Graz, Austria (27-476ex14/15) and the University Medical Center Göttin-
gen, Germany (20/9/19).

In this study, we adopted movement data captured by three different
sensormodalities: a 2DRGB camera, a pressure sensingmat, and six inertial
measurement units (IMUs). For movement classification based on video
data, we used skeleton features as presented in prior studies29,45. For
movement classification based on pressure mat data, we used center of
pressure (CoP) features as presented in a prior study21. Data from the IMUs
and IMU-based classification are reported here for the first time. Based on
our previous work, for the movement classification we used convolutional
neural network (CNN) architectures, which is superior for the current task
compared to other classification methods such as multi-layer perceptron
(MLP), support vector machine (SVM) and long short-term memory
(LSTM) network21.

We compared the performance of movement classification when (a)
using single sensor modalities, (b) using two-sensor fusion (combina-
tions of two different sensor modalities), and (c) using a three-sensor
fusion model (a combination of all sensor modalities). For the evaluation
and comparison of these approaches, we used a 9-fold cross-validation
procedure where test sets contained data only from infants not included
in the training sets.

In the following sections, we provide details on data acquisition and
processing, movement analysis, and classification.

Dataset
Participants. 51 infants born between 2015 and 2017 frommonolingual
German-speaking families were sampled. All parents of the participating
typically developing (TD) infants provided written informed consent to
study participation and publication of depersonalized data. Infant
inclusion criteriawere: uneventful pregnancy, uneventful delivery at term
age (>37 weeks of gestation), singleton birth, appropriate birth weight,
uneventful neonatal period, inconspicuous hearing and visual develop-
ment. All parents completed high-school or higher level of education and
had no record of alcohol or substance abuse.

We post-hoc excluded one infant due to a rare genetic disorder diag-
nosed at three years of age. Another five infants were excluded due to the
lack of full recordingswithin the required ageperiods. Thus, thefinal sample
for this study consisted of 45 infants (23 females).

Multi-modal movement recordings. We recorded infant movements
from 4 to 16 weeks of post-term age in biweekly intervals at 7 succeeding
sessions in a standardized laboratory setting. Data recording procedure
followed the standard GMA guidelines49. Time-points for the seven
sessions were T1: 28 ± 2 days, T2: 42 ± 2 days, T3: 56 ± 2 days, T4: 70 ±
2 days, T5: 84 ± 2 days, T6: 98 ± 2 days, and T7: 112 ± 2 days
corrected age.

According to the GMA manual49, 5 to 8 weeks of post-term age
mark a period (periods T2 and T3) of transitional movements which is
considered a “grey”-zone between the writhing and the fidgety move-
ment (FM) periods, which is not ideal for assessing infant general
movements. FMs are most pronounced in typically developing infants
from 12 weeks of post-term age on-wards (corresponding to the T5-T7
periods)49. Therefore, to analyze infant general movements, recordings
from T1 as the “pre-fidgety period” and T5-T7 as the “fidgety period”
were used. Each session, infants were dressed with specifically designed
body-suits and placed in a supine position in a standard crib by the
parent. We recorded infant movements using an RGB camera, a pressure
sensing mat, and six inertial measurement units (IMU). All sensor
recordings were synchronized46.

For video recordings (see Fig. 2a), we used a standard HD cam-
corder mounted on an aluminum-frame affixed to the cot (please also see
ref. 46). The HD camcorder had a resolution of 1920 × 1080 pixels, and a
frame rate of 50 frames per second. Note that nowadays camcorder could

be replaced by a smartphone with a camera of similar resolution and
frame rate (e.g., see22,50). The pressure data was acquired using a Con-
format pressure sensing mat (Tekscan, Inc., South Boston, Massachu-
setts, USA51). This pressure sensing mat contains 1024 pressure sensors
arranged in a 32 × 32 grid array on an area of 471.4 × 471.4 mm2. The
mat was laid on the crib mattress and covered by a cotton sheet. The
pressure mat produced pressure image frames (see Fig. 2b) with a
resolution of 32 × 32 pixels, and 100 Hz sampling rate21. To capture
infant motion using wearable sensors, six wireless Xsense MTw Awinda
IMUs52 were applied. Each IMU sensor contains a 3-axis accelerometer
and a 3-axis gyrometer, which measure acceleration and angular velocity
in X, Y, and Z directions with a sampling rate of 60 Hz. Four IMU
sensors were each fed into a designated pocket of a customized body-suit
and attached to the infant’s shoulders and the outsides of the hips
to assess proximal movement features. For each session, a body-suit in
appropriate size for the infant was worn. The other two IMUs were each
put into a sock and attached to the soles of the infant’s feet for distal
features in the lower extremities (for sensor locations see Fig. 2c). Data
was synchronized using time stamps for each sensor modality. Data were
then aligned (synchronized) based on these time stamps.

Movement annotations. For this study, to train and test classifiers,
we used human-annotation data (see Fig. 1). The coders were two
senior GMA experts with continuous and more than 20 years practice.
Annotations were performed on video recordings, which were syn-
chronized with IMU sensors and the pressure sensor such that the same
labels were used for all sensor modalities. To annotate video data, videos
were first cut such that infants were overall awake and active, and not
fussy. We determined the length of video snippet to be 5 seconds, as a
minimum length of the video for human assessors feeling confident to
judge whether the fidgety movement is present (FM+) or absent
(FM-)21,29.

In a proof-of-concept study29, a fraction of the total available snippets
(N = 19451) was randomly sampled (N = 2800) and annotated by two
experiencedGMAassessors: 1400 fromT1, the pre-fidgety period, and 1400
fromT5-T7, thefidgetyperiod (seeFig. 1). Bothassessors, blinded in regards
to infant ages, evaluated each of the 2800 randomly ordered snippets (5 s
long) independently, labeling each snippet as “FM+”, “FM-”, or “not
assessable” (i.e., in case the infant was fussy, crying, drowsy, hiccuping,
yawning, refluxing, exhibiting a pleasure burst, self-soothing, or distracted
for the respective 5 s, all of which can distort an infant’s movement pattern
rendering the recording inadequate for GMA8,49).

Cohen’s kappa for the interrater agreement of the two assessors for
classes FM+ and FM-was κ = 0.97, whereas the intrarater agreement by re-
rating 10% randomly selected snippets was κ = 0.85 for assessor 1, and κ =
0.95 for assessor 2. Snippets with non-matching FM+/FM- labels between
two assessors (N = 26) and the ones labeled as “not assessable” by either
assessor (N= 990)were excluded for further analysis. Thus, remaining 1784
video snippetswere labeled identically by both assessors as either FM+ (N=
956) or FM- (N = 828). Out of the 1784 video snippets, 101 had no corre-
sponding synchronized IMU and/or pressure mat data (due to synchroni-
zation issues), therefore, in this study, for the classification experiments 1683
(943 FM+ and 740 FM-) snippets were used.

Data pre-processing and feature extraction
Video data. For video-based movement classification, we used body key
points as features (Fig. 2a; see also refs. 29,45). In this study, we extracted
body key points using the state-of-the-art pose estimation framework
ViTPose53, which is more accurate thanOpenPose54,55 that we used in our
previous studies29,45. ViTPose extracts 17 body key points as shown in
Fig. 2a including key points on both ears (not shown). We excluded the
two ear key points since three head key points (nose and eyes) are suf-
ficient to determine the position and orientation of the head. Thus, 15 key
points were then used throughout for analyses. Given a video snippet
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length of 5 s, and frame rate of 50 Hz, we obtained 250 frames per video
snippet with 15 key points per frame.

Several pre-processing steps were performed such as detection and
removing of outliers, smoothing, centering, rotation and scaling of the
skeleton key points, and normalization of position and velocity values.

We denote position values for X and Y coordinates of the key
points as xp and yp. First, to remove outliers (i.e., key points that were
detected incorrectly) and to smooth the movement trajectories, we
applied median and moving average filters with a sliding window size of 5
frames.
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Then we centered body key points with respect to the average center
point between the hip key points (hc) across all frames by:

hc ¼ 1
2 n
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f
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1
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1
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where k = 1…15 is the key point index, and f = 1…n (n = 250) is the frame
index. x

p10;11
f and y

p10;11
f correspond to theX and Y coordinates of the hip key

points (see Fig. 2a).
Afterwards, for each snippet we rotated the skeletons such that the

middle line between the average hip and shoulder key points is alignedwith
the Y axis (see Fig. 2a):
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2 n

X

f

xp4f þ
X

f

xp5f

0

@

1

A;
1
2 n

X

f

yp4f þ
X

f

yp5f

0

@

1

A

2

4

3

5;

α ¼ acos sc � ½0 1�T= jjscjj� �
;R ¼ cosðαÞ �sinðαÞ

sinðαÞ cosðαÞ

� �
;

xpkf

ypkf

" #
 R �

xpkf

ypkf

" #
; ð2Þ

where sc is the average center point between shoulder key points, α is the
rotation angle, and R is the rotationmatrix. x

p4;5
f and y

p4;5
f correspond to the

X and Y coordinates of the shoulder key points (see Fig. 2a).
Next, for each snippetwe scaled size of the skeletons such that the body

length between the hip and shoulder center points (hc and sc) is equal to 1/3:

xpkf  
xpkf

3 jhc2 � sc2j
; ypkf  

ypkf
3 jhc2 � sc2j

: ð3Þ

Finally, for each snippet we centered the time series of each key point by
subtracting the mean value of the corresponding time series.

In addition to the positions of the key points (xpkf , x
pk
f ), we also used

their velocities (xvkf , x
vk
f ). Since the scale of velocity values is much smaller

than the scale of position values, we normalized position and velocity values
separately using z-score normalization. For this, we calculated mean and
standard deviation values across all position (or velocity) time series in the
training sets and thenused these values to normalize the data in the training
and test sets.

After pre-processing, and concatenation of position and velocity fea-
tures, this led to the feature matrix of size 250 × 60:

xp11 yp11 . . . xp151 yp151 xv11 yv11 . . . xv151 yv151

xp12 yp12 . . . xp152 yp152 xv12 yv12 . . . xv152 yv152

..

. ..
. . .

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

xp1n yp1n . . . xp15n yp15n xv1n yv1n . . . xv15n yv15n

2
666664

3
777775
; ð4Þ

with n = 250 frames.
Note that we also tried to use accelerations of the key points, however,

preliminary analysis showed that including accelerations did not improve
classification accuracy (see Supplementary Fig. 1). Therefore, we did not
include accelerations for further analysis.

Pressure mat data. The pre-processing and feature extraction proce-
dure of the pressuremat data is shown in Fig. 2b.We used synchronized 5

s snippets corresponding to the video snippets which hence bear the same
labels (FM+/FM-). Given a sampling rate of 100 Hz and the sensor grid
resolution of 32 × 32 sensors, resulting in 500 frames per snippet, and
1024 pressure values per frame. As features, we used center of pressure
(CoP) coordinates xt/b, yt/b, and average pressure value pt/b of the top and
bottom areas21 as shown in Fig. 2b.

We first cropped the area of size 29 × 26 ([1:29, 4:29]) of the original
grid size (see red rectangle in Fig. 2b), since the sensor values outside this
area were 0 in most of the cases. The cropped area contained 754 pressure
sensor values. Generally, only two areas were strongly activated on the
pressure mat (see Fig. 2b). The activation at the top corresponds to the
infants’ shoulders and/or head, whereas activation at the bottom corre-
sponds to the infant’s hips. Thus, we split the cropped grid area of size
29 × 26 into two parts, 12 × 26 (top part) and 17 × 26 (bottom part), and
tracked the center of pressure (CoP) in these two areas.

Next, we computed position coordinates xt/b and yt/b of theCoP and the
average pressure values pt/b of the top (t) and the bottom (b) areas for each
frame (we skip frame index for brevity):

xt=b ¼
P

i;j j× p
t=bði; jÞ

P
i;j p

t=bði; jÞ ; yt=b ¼
P

i;j i× p
t=bði; jÞ

P
i;j p

t=bði; jÞ ; pt=b ¼
P

i;j p
t=bði; jÞ

mt=b × nt=b
;

ð5Þ

where pt(i, j) and pb(i, j) correspond to the pressure sensor values at the
position i, j (i=1…mt/b, j=1…nt/b) of the top and bottomareas, respectively.

To reduce signal noise, for each time series xt/b, yt/b, and pt/b, we applied
the moving average filter with a sliding window size of 5 frames. To avoid
biases that could be caused by infant’s body size and weight, we normalized
position and pressure values across top and bottom areas for each snippet
between 0 and 1 as follows:

γ ¼ max maxðxtÞ �minðxtÞ; maxðytÞ �minðytÞ;��

maxðxbÞ �minðxbÞ; maxðybÞ �minðybÞ��;

xt=b xt=b �minðxt=bÞ
γ

; yt=b  yt=b �minðyt=bÞ
γ

; ð6Þ

β ¼ maxð½maxðptÞ �minðptÞ;maxðpbÞ �minðpbÞ�Þ;

pt=b  pt=b �minðpt=bÞ
β

: ð7Þ

Finally, this led to the feature matrix of size 500 × 6:

xt1 yt1 pt1 xb1 yb1 pb1
xt2 yt2 pt2 xb2 yb2 pb2

..

. ..
. ..

. ..
. ..

. ..
.

xtn ytn ptn xbn ybn pbn

2
666664

3
777775
; ð8Þ

with n = 500 frames.
Note that in addition to xt/b, yt/b, and pt/b features we also tried to use

their first derivatives, however, preliminary analysis showed that including
derivatives as additional features did not improve classification accuracy
(see Supplementary Fig. 2). Therefore, we did not include derivatives for
further analysis.

Inertial measurement unit data. Similar to the pressure mat data, we
used synchronized 5 s snippets corresponding to the video snippets.
Given an IMU sampling rate of 60Hz, this led to 300 frames per snippet.
For each IMU sensor, we obtained three accelerometer values and three
gyrometer values (for each coordinateX,Y, andZ), thus, in total 36 values
per frame (see Fig. 2c).
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Wedenote accelerometer andgyrometer valuesasxa, ya, za, andxg, yg, zg,
respectively (seeFig. 2c).Weappliedmoving averagefilter for each sequence
with a slidingwindow size of 5 frames, and then centered each time series by
subtracting mean value of the corresponding time series.

The acceleration values and angular velocity values are of different
scale, thus, we normalized acceleration values and angular velocity values
separately using z-score normalization. For this, we calculated mean and
standard deviation values across all acceleration (or angular velocity) time
series in training sets and then used these values to normalize data in the
training and test sets.

After pre-processing, and concatenation of acceleration and angular
velocity values, this led to the feature matrix of size 300 × 36:

xa11 ya11 za11 xg11 yg11 zg11 . . . xa61 ya61 za61 xg61 yg61 zg61
xa12 ya12 za12 xg12 yg12 zg12 . . . xa62 ya62 za62 xg62 yg62 zg62

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

.

xa1n ya1n za1n xg1n yg1n zg1n . . . xa6n ya6n za6n xg6n yg6n zg6n

2
66664

3
77775
;

ð9Þ

with n = 300 frames.

Classification models
In this study, we were dealing with a binary classification task where we
classified fidgety movements (FM+) vs. non-fidgety movements (FM-).

Neural network architectures. For the comparison of classification
performance using different sensor modalities, we used convolutional
neural network (CNN) architectures with three convolutional layers
(Conv) and one fully connected (FC) layer (see Fig. 3a). Each convolu-
tional (Conv) and fully connected (FC) layer was followed by a batch
normalization layer and a drop-out layer (20%). ReLU activation func-
tions were used in the Conv and FC layers, whereas in the output layer a
linear activation function was used.

To train neural classifiers, we used binary cross-entropy with logit
transfer function as a loss function (therefore linear activation function in
the output layer) and the Adam optimizer with the following parameters:
batch size 4, learning rate = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e-07. To
avoidmodel overfitting, we used a validation stopwith the validation split 1/
8 and patience of 10 epochs. The network architectures were implemented
using TensorFlow56 and Keras API57.

Hyperparameter tuning. To tune hyperparameters of the network
architectures we used a separate dataset where snippets from 9 infants
were used (data from these infants was not used in the 9-fold cross-
validation procedure). The data was subdivided into training and vali-
dation sets. The number of snippets used for hyperparamter tuning is
given in Table 1.

We tuned hyperparameters of the network architectures for each
sensor modality and the combination of all sensor modalities using a two-
stage procedure. First, we tuned the number of convolutional (Conv) and

Fig. 3 | Classification models. a Schematic diagram
of the convolutional neural network (CNN) archi-
tecture. Hyperparameters for different sensor
modalities are specified in Supplementary
Tables 2 and 3. Schematic diagrams for two sensor
fusion approaches: combination of three networks
trained using single sensor modalities – late sensor
fusion (b), and one network trained using all sensor
modalities – early sensor fusion (c).
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fully connected (FC) layers, the number and size of kernels in the Conv
layers, and the number of units in the FC layers using the Bayesian opti-
mization. In the first stage, we explored architectures with 1, 2 or 3 Conv,
and 1 or 2 FC layers. Other hyperparameters for the Bayesian optimization
procedure are given in Supplementary Table 1. We ran Bayesian optimi-
zation for 1000 steps, and repeated this optimization procedure five times.
We trained our networks using validation stop with a validation split of 1/5
and patience of 10 epochs. The other training parameters were the same as
given in section “Neural network architectures”. After the optimization
procedure,we selected the10different bestmodelswith lowest loss scores on
the validation set, and analyzed hyperparameters of these best models. In
most of the cases, architectureswith threeConv layers andoneFC layerwere
obtained.

In the second stage, we performed fine-tuning using grid search, where
we fixed the number of Conv and FC layers (three and one, respectively)
based on the results of the Bayesian optimization procedure, and only tuned
the number and size of the kernels in the Conv layers and the number of
units in the FC layer within the reduced hyperparameter space (see Sup-
plementary Table 1).We repeated the grid search three times, where in each
repetition we explored 4800 different hyperparameter sets. Finally, we
selected 10 different best models (see Supplementary Tables 2 and 3) with
the lowest loss scores on the validation set. Thesemodels thenwere used for
the 9-fold cross-validation procedure.

The hyperparameter tuning was implemented and performed using
KerasTuner58.

Sensor fusion
We tested and compared two sensor fusion approaches. In the first
approach (late fusion, see Fig. 3b), we combined outputs of the convolu-
tional neural networks as shown in Fig. 3a, which were trained on single
sensor modalities: MAT network trained using pressure features extracted
from the pressure mat data, IMU network trained using IMU signals, and
VID network trained using skeleton key points extracted from the video
data. Each network outputs a value between 0 and 1, which corresponds to
theprobabilityp for the class FM+ and1−p for the class FM-.Toobtain the
final decision, we computed the average probability of two (combination of
two sensor modalities) or three (combination of three sensor modalities)
networks, and then applied a threshold of 0.5 to obtain class label 0 or 1 for
the FM- or FM+ class, respectively.

In the second approach (early fusion, see Fig. 3c), we trained one
convolutional neural network (see box Sensor fusion network) where we
used concatenated features from all sensormodalities as one featurematrix.
To ensure temporal compatibility (i.e., number of frames per snippet) of
different sensor modalities, we down-sampled time series of the pressure
mat and IMU features to 250 frames tomake it consistentwith the sampling
rate of the video data. After re-sampling and concatenating three feature
matrices, we obtained the final feature matrix of size 250 × (6+36+60) =
250 × 102. The output of the Sensor fusion network is the probability p for
the class FM+ and 1 − p for the class FM-. As in case of the late fusion
approach (see Fig. 3b), to obtain class label 0 or 1 for the FM- or FM+ class,
respectively, we applied a threshold of 0.5. To tune and train the Sensor
fusion network, we used the same procedures for hyperparameter tuning
and training as explained in sections “Neural network architectures” and
“Hyperparameter tuning”.

Statistics and reproducibility
For the evaluation and comparison of the classification models, we used a
9-fold cross-validation procedure where in total data from 36 infants were
used. For this, we divided the dataset into 9 subsets where each subset
contained snippets from 4 different infants. For each fold, one subset was
used as the test set, and the remaining eight subsets (snippets from 32
infants) were used to train the network architectures. The number of
snippets in the training and test sets for each fold is given in Table 1.

In total we trained and tested 10 best models for each single sensor
modality (see Supplementary Table 2) and the combination of all sensor
modalities (see Supplementary Table 3). For training, we split the training
set into training (7/8 = 87.5%] of the training data) and validation (1/8 =
12.5%] of the training data) subsets. For each fold we trained eachmodel 20
times (with random initial conditions) and then selected themodelwith the
lowest loss score on the validation set, which was then evaluated on the
test set.

For the comparison of the classification performances, we used three
common classification performance measures: sensitivity (true positive rate
– TPR), specificity (true negative rate – TNR) and balanced accuracy – BA:

TPR ¼ TP
TP þ FN

; TNR ¼ TN
TN þ FP

; BA ¼ TPRþ TNR
2

; ð10Þ

Table 1 | Data split for the hyperparameter tuning and 9-fold cross-validation

Hyperparameter tuning (9 infants)

FM- FM+ Total # snippets per infant:

Mean (SD), [Min Max]

148 189 337 37 (31), [7 106]

9-fold cross-validation (36 infants)

Training set (32 infants) Test set (4 infants)

Fold # FM- FM+ Total # snippets per infant: FM- FM+ Total # snippets per infant:

Mean (SD), [Min Max] FM- FM+ Total Mean (SD), [Min Max]

1 519 671 1190 37 (24), [4 87] 73 83 156 39 (21), [10 61]

2 537 666 1203 38 (22), [4 85] 55 88 143 36 (36), [7 87]

3 523 673 1196 37 (23), [4 87] 69 81 150 38 (24), [16 68]

4 524 665 1189 37 (24), [4 87] 68 89 157 39 (17), [18 59]

5 533 674 1207 38 (23), [7 87] 59 80 139 35 (26), [4 65]

6 521 668 1189 37 (23), [4 87] 71 86 157 39 (31), [20 85]

7 526 671 1197 37 (22), [4 87] 66 83 149 37 (36), [7 79]

8 530 672 1202 38 (24), [4 87] 62 82 144 36 (23), [17 68]

9 523 672 1195 37 (24), [4 87] 69 82 151 38 (11), [24 50]

Whole dataset consists of 1683 snippets (740 FM-and943FM+) obtained from45 infants. 337 snippets (obtained from9 infants)were used for the hyperparameter tuning and1346 snippets (obtained from
36 infants) were used for the cross-validation.
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where TP is the number of true positives, TN the number of true negatives,
FP the number of false positives, and FN the number of false negatives.

To compare classification accuracies of the classification models, we
calculated average classification performance measures (sensitivity [TPR],
specificity [TNR], and balanced accuracy [BA]) across nine test sets, con-
fidence intervals of mean (CI 95%), and p values for the comparison of
medians using the Wilcoxon two-sided signed-rank test. Statistical sig-
nificance was set at p < 0.05.

Data and code are publicly available at Zenodo59.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Classification performance using single sensor modalities
Comparison of the classification performance when using only one sensor
modality is shown in Fig. 4 and Tables 2 and 3. Note that here we compare
results of the bestmodels (out of 10). The results for all models are shown in
Supplementary Table 4. The classification performance using pressure mat
features (MAT, 82.1%) was lower than IMU (90.2%; approached sig-
nificance, p = 0.055), and significantly lower than skeleton (video-based)
features (VID, 90.7%; p< 0.01; Table 3). The performances of IMUandVID
were not significantly different from each other.

The span of the classification accuracies using pressure mat sensor
across nine test sets was large (CI 95% = [77.1% 87.0%]), whichmay imply
that the current mat only worked well for fidgety movement classification
for some infants, but not for the others. Classification accuracies using IMU
and video sensors were stable across all test sets, with smaller confidence
intervals, [87.6% 92.8%] and [88.9% 92.4%], respectively.

Classification performance using sensor fusion
Regarding two-sensor fusions (MAT+IMU, MAT+VID, IMU+VID), the
classification accuracies were generally higher than those of the single
modality (Table 2), although the differences were rarely statistically sig-
nificant (Table 3). In particular, when fusing VID with IMU, the perfor-
mance was significantly superior to that of MAT or IMU alone, but not
compared to VID alone. When combining MAT with either IMU or VID,

the performances were indeed significantly better than that of MAT alone,
but not than IMU or VID alone. That is, adding the available sensor-mat to
one of the other two sensors did not bring significant improvement than
using the IMUs or the camera alone for the present task.

The performance of the three-fold fusion (the combination of three
networks [ALL 3-Nets] considered) was superior to any of the single sensor
alone (seeFig. 4 andTables2 and3).While the three-sensor fusionapproach
was also significantly better than the two-sensor fusionsmodelswhereMAT
was involved (i.e., MAT+IMU or MAT+VID), it was not superior to the
combination of VID+IMU.Note, althoughVID+IMUorVID+MATwas
not significantly better than VID alone, combining all three modalities was
superior to VID alone.

We also tested whether using features of all sensor modalities as input
for one network (early fusion, ALL 1-Net, see Supplementary Table 5)
would lead to a better/worse classification accuracy as compared to the
combination of three networks trained on the single sensor modalities (late
fusion, ALL 3-Nets).While the average classification accuracy of the 3-Nets
model (94.5%) was higher than that of the 1-Net model (93.2%), the dif-
ference was not statistically significant (p = 0.164).

Discussion
Followingour experience in the use ofmono-sensor approaches in the study
of infant motor functions, we now propose a multimodal approach for
movement recognition and classification. Using a fully synchronizedmulti-
sensor dataset, in the present study we empirically tested and compared the
utilities of three sensor modalities (pressure sensor, MAT; inertial sensors,
IMU; and visual sensor, VID) and their various combinations (two- and
three-sensor fusion approaches) for the same task. The taskwas to track and
classify age-specific general movement patterns and differentiate between
the absence orpresence of a specificmotorpatternduring thefirstmonthsof
life, non-fidgety (FM-) vs. fidgety (FM+) movements8,9,44–46,60.

To our first question, the performance of the single sensor modalities
was different, with MAT (82.1%) being inferior to IMU (90.2%, p = 0.055)
and VID (90.7%, p < 0.01). The performances of IMU and VID were,
however, comparable, and also comparable to the average accuracy of
divergent automated approaches for GMA studied to date7,26,28,29,61. Never-
theless, these results were generated and validatedon silo-data setswhichdo
not allow for direct comparison of the findings.

The second methodological research question was whether sensor
fusion improves classification accuracy. With the sensors available at the
time of study conduct and used specifically for this task, the performance of
the three-sensor fusion (94.5%) was significantly more accurate than any of
the single modalities. It was also significantly superior than the two-sensor
fusions of MAT+IMU (90.7%) or MAT+VID (91.4%). The average
accuracy of the three-sensor fusion approachwas again higher than the two-
fold fusion of VID+IMU (93.4%), although the difference was not sig-
nificant (p = 0.22). The two-sensor fusion approaches with MAT (MAT
+VID and MAT+IMU) were both significantly better than the perfor-
mance of MAT alone; and the fusion with VID+IMU outperformed both
MAT or IMU alone. With both two- and three-sensor fusions, the perfor-
manceswere superior than those of their single components, although some
values were not statistically significant (Tables 2 and 3).

In our previous work, we extensively discussed possible reasons why
MATdeliveredmoderate classificationaccuracy inour experiments, and the
pros and cons of using divergent sensor modalities for infant motion
tracking and classification21. With rapid technology advancement, the
performance of each singlemodality (e.g., MAT) is likely to improve, which
may further increase the accuracy of combined modalities (sensor fusion).
This, however, needs to be tested in the future. For any specific task andwith
any singlemodality, the classification accuracy will eventually reach its limit
(either ceiling or bottle neck). It is critical to examine, whether an approach
with sensor fusionmight be unnecessary (by perfect or ceiling accuracy of a
single modality) or whether it is beneficial (by bottle neck of a single
modality). If different dimensions of input (from diversemodalities) for the
same phenomenon (e.g., motion) are augmented, the representation of the
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Fig. 4 | Comparison of classification performances of the best models of different
sensor modalities on the test sets. Average balanced classification accuracy
obtained from 9-fold cross-validation is shown for each case (n = 9). Error bars
denote confidence intervals of mean (CI 95%). Gray circles denote classification
accuracies for each test set.
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ground truth (e.g., distinguishable patterns) may be improved, hence
increasing the overall classification accuracy, as shown in our current study.
If, however, different modalities only provide redundant and highly cor-
related information in similar dimensions, then the combined approach
may not outperform its single components.

All available automated GMA approaches solve only a fraction of the
tasks that are involved in a human GMA21. This is legitimate and funda-
mental for the beginning of tool development, especially for proof-of-
concept and method development endeavors. However, an AI tool, if
intended to be used for real-time clinical practice not only for detecting
cerebral palsy, needs to go beyond providing dichotomous labels for a
simplified task (e.g., FM+ or FM-), and with data from a limited sample.
When more complicated tasks are demanded (e.g., divergent age-specific
normal and inconspicuous movements vs. divergent age-inadequate or
aberrant movements, each pointing to different clinical outcomes), it is
important to evaluate again if a single modality method is sufficient, or,
whether approaches with sensor fusion would be needed and generate
rewarding results.

The third importantquestion iswhether sensor fusionapproacheswith
non-intrusive modalities yield sufficient classification performance. Recall
thatGMAisnot only valued for its efficiencyand accuracy, but evenmore so
for its convenience and non-intrusiveness to infants and their families. This
is the reason why it has been widely accepted by families of divergent
cultural backgrounds62, and embedded in clinical routines. Note that a high
number of infants in need of a GMAdiagnosis are in poor or delicate health
conditions. Attaching sensors to the infants’ body is challenging, and, as
known, could interfere with their behavioral states and hence their motor
output (handbook49). In a standard GMA, the assessor does not need to
touch, manipulate or neurologically assess, but only observe the infant for a

few minutes. If an automated solution aims to scale-up GMA in medical
practice, it should maintain the non-intrusiveness and user-friendliness of
the original method8. In this study, the non-intrusive sensor fusion (MAT
+VID) resulted in satisfying and significantly better accuracy (91.42%) than
MAT alone (82.1%), and higher (yet not significant) accuracy than VID
(90.7%). In other words, the fusion with non-intrusive sensors delivered
promising results. We cannot tell at this point if the performance of MAT
could be further improved (e.g., with refined technology customized for
infant motion tracking), and whether the combined performance of MAT
+VID would then change and surpass that of VID alone.

Notably, the pressure sensing mat is fully non-intrusive and effortless
to install. It is also anonymous by nature, hence particularly suitable for
acquiring and sharing multi-centered large-scaled clinical data in a short
time, which may be the key for developing and advancing any data-driven
AI approach21. That said, improving pressure sensing technology for infant
motion trackingmight be easier and faster than improving the technologyof
other sensingmodalities. A single camera, as used in this study, is also non-
intrusive and without complicated setups, and is a widely used and
researched modality for automated GMA solutions1–3. However, compared
to pressure sensors, cameras use implies confidentiality issues, which may
hinder large scale data sharing. This must be circumvented (see for an
example45) and is associated with additional costs and efforts. At present,
applying intrusivewearable devices such as IMUs on the infant’s body is still
cumbersome and time-consuming. Still, future IMUs might be developed
for effortless and user-friendly applications, which will make this sensing
method more attractive. In our study, IMUs yielded a performance com-
parable to RGB cameras.

For developing the sensor-fusion method, we used a dataset of
1683 snippets from 45 infants, fully labeled by two human GMA assessors.

Table 2 | Comparison of classification performances of the best models of different sensor modalities on the test sets

Model Sens. (%) [CI] Spec. (%) [CI] BA (%) [CI]

Single sensor modalities (best models)

MAT 86.17 [82.78 89.55] 77.95 [69.68 86.22] 82.06 [77.11 87.00]

IMU 92.91 [90.28 95.55] 87.52 [83.47 91.57] 90.22 [87.61 92.82]

VID 91.67 [89.80 93.55] 89.65 [85.89 93.41] 90.66 [88.91 92.41]

Sensor fusion (best models)

MAT+IMU 94.12 [92.56 95.68] 87.36 [82.67 92.05] 90.74 [87.95 93.53]

MAT+VID 92.58 [89.53 95.62] 90.27 [86.50 94.04] 91.42 [88.93 93.91]

IMU+VID 94.43 [92.53 96.34] 92.29 [89.59 94.99] 93.36 [91.75 94.97]

ALL 3-Nets 96.16 [95.03 97.29] 92.85 [90.23 95.46] 94.50 [93.05 95.95]

ALL 1-Net 92.87 [88.45 97.29] 93.60 [91.01 96.19] 93.24 [91.15 95.32]

Sens. – Sensitivity, Spec. – Specificity, BA – Balanced accuracy.

Average classification measures together with confidence intervals of mean (CI 95%) obtained from 9-fold cross-validation (n = 9).

Table 3 | p-values for the pairwise comparisons of the classification accuracies (balanced accuracy) of different models

IMU VID MAT+IMU MAT+VID IMU+VID ALL 3-Nets ALL 1-Net

MAT 0.0547 0.0039** 0.0078** 0.0039** 0.0078** 0.0039** 0.0078**

IMU - 0.9102 0.9102 1.0000 0.0078** 0.0039** 0.0078**

VID - - 1.0000 0.3594 0.0547 0.0117* 0.3008

MAT+IMU - - - 0.4258 0.0742 0.0117* 0.0391*

MAT+VID - - - - 0.1289 0.0195* 0.3008

IMU+VID - - - - - 0.2188 1.0000

ALL 3-Nets - - - - - - 0.1641

Asterisk symbols denote significant difference at the confidence level α = 0.05: *p < 0.05, **p < 0.01.

Wilcoxon two-sided signed-rank test (n = 9).
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The performances of the single sensor modalities and their combinations
may be improved if larger datasets are used in future undertakings.
Extended datasets would also allow the use of more advanced network
architectures such as graph convolutional neural networks26, spatio-
temporal attention models28, or spatial-temporal transformer models7. In
addition, the utility of 3D skeletons instead of 2D skeletons7,30, or RGB-D
sensors27,30, and the utility of ensemble classifiers26,61 may improve the
classification performance of the fusion approach with non-intrusive sen-
sors even further.

In our study, we compared two sensor fusion approaches: a combi-
nation of threenetworks trained on single sensormodalities vs. one network
trained on all sensors (early vs. late sensor fusion, e.g., see63). While on
average classification accuracy of the late sensor fusion was slightly higher
than that of the early fusion (94.5% and 93.2%, respectively), this difference
in the classification performance was not statistically significant. However,
we would argue that using the late sensor fusion approach (i.e., the com-
bination of multiple networks) would be more advantageous. The first
reason is that a modular approach (three separate networks)makes it easier
to retrain or replace and retrain classifiers for the specific sensor modality.
The feature space of single sensormodalities ismuch smaller as compared to
the feature space of a combination of all the sensors. Larger feature spaces
usually require larger networks,which leads to longer training time andmay
cause convergence issues. The other reason is that the single network would
breakdown if during amulti-sensory recordingoneof the sensors failed (i.e.,
missing data fromone sensor), since inputs from all sensors are required for
making predictions.

Last but not least, the sensor fusion approach currently needs complex
setups and data analysis procedures as compared to single components,
therefore it is associated with higher costs, greater efforts, and more tech-
nical requirements. If, however, the sensor fusion approach, especially the
non-intrusive ones, could decisively improve the performanceof automated
solutions of GMA compared to that of the single modalities, the efforts
would ultimately pay off. The sensor fusion approach is yet another attempt
among many others developed over the past decades, aimed at generating
automated GMA modalities with high accuracy and superior user
experiences.

In conclusion, the multiple sensor fusion approach is a promising
attempt for automating the classification of infantmotor patterns. Complex
evolving neurofunctions require equally complex (and very likely multi-
sensor) assessments enabling a deeper understanding of infant develop-
ment. We consider the multiple sensor fusion approach an essential
methodological challenge towards realizingAI-baseddeepphenotypingand
classification of infant movements. GMA studies and infant research over
past decades suggest that age-specific endogenous movements are asso-
ciatedwith different neurodevelopmental outcomes across distinct domains
such as motor, social-communicative and cognitive functions9,44,64,65. The
multiple sensor fusion approach will add a broader perspective to the pre-
vailing single modality endeavors focusing on the recognition of a selected
number of movement patterns2,7,21,26,38,39,66. This work catalyzes further
innovation, driving empirical studies to enable AI based solutions to
effectively predict developmental trajectories associated with diverse
outcomes.

Data availability
The data used for the classification experiments is publicly available at
Zenodo: https://doi.org/10.5281/zenodo.1404652759. The source data
underlying results presented in Fig. 4 is available in the Supplementary
Data 1. The source data underlying results presented in Supplementary
Fig. 1 and Supplementary Fig. 2 are available in the Supplementary Data 2.
All other data are available from the corresponding author on reasonable
request.

Code availability
The code is publicly available at Zenodo: https://doi.org/10.5281/zenodo.
1404652759. Python scriptswere testedonLinuxOSwithTensorFlow2.10.1,

Keras 2.10.0, Python 3.7.6, andNumpy 1.21.6.Matlab scripts were tested on
Windows OS with MATLAB R2019b.
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