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Probing electron-photon entanglement using a quantum eraser
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We propose a tangible experimental scheme for demonstrating quantum entanglement between swift electrons
and light, relying on coherent cathodoluminescence for photon generation in a transmission electron microscope,
and a quantum eraser setup for formation and verification of entanglement. The entanglement of free electrons
with light is key to developing free-electron quantum optics and its potential applications such as quantum
sensing, novel photonic and electron state generation, and entanglement between free electrons.
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I. INTRODUCTION

Entanglement between different subsystems or degrees of
freedom is a defining hallmark of quantum science and under-
pins unique applications in emerging quantum technologies
such as quantum computation [1,2], communication [3–5],
and sensing [6,7]. While entanglement can occur naturally by
simply letting two quantum systems interact, it is also noto-
riously fragile and difficult to observe because the quantum
correlations are easily overwhelmed by decoherence.

The quantum eraser provides a particularly striking and
conceptually instructive demonstration of quantum entangle-
ment [8]. In this scheme, the introduction of a marker particle
carrying which-path information eliminates single-particle
interference in interferometric setups. The removal of this
which-path information on the entangled marker, however,
allows for the recovery of the multipath interference. With the
addition of suitable inseparability criteria [9–13], one could
verify if the two parties of the system exist in a state of en-
tanglement. Initially proposed as a gedanken experiment, the
quantum eraser has been demonstrated with photons [14–18],
atoms [19], electrical circuits [20], and phonons [21].

Perhaps surprisingly, the possibility of entangling fast elec-
trons, used in electron microscopy for research on nanoscale
structures and dynamics [22–24], has only recently begun
to attract attention [25–28], despite their exceptional con-
trollability and favorable coherence properties. Spontaneous
inelastic scattering of electrons is routinely employed in the
study of optical excitations [29], and quantum optics has
entered this field in the form of photon correlation spec-
troscopy [30–33]. The stimulated inelastic interaction with
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optical near fields is quantum coherent [34,35] and has en-
abled optical field characterization [36–38], reconstruction
of the free-electron quantum state [39], and free-electron
homodyne detection [40]. Numerous applications harnessing
the quantum nature of this inelastic electron-light scattering
and the resulting correlations have been suggested, including
probing of quantum optical excitations [41,42], correlation-
enhanced imaging [43,44], improved measurement sensitivity
in interaction-free measurements [45–48], and the generation
of quantum states of light [49–52]. However, while the un-
derlying interactions are expected to induce electron-photon
entanglement [28,43], facilitate electron-electron entangle-
ment [26], or even mediate photon-photon entanglement [53],
studies thus far have fallen short of direct proof.

The objective of this paper is to describe experimental
scenarios for demonstrating the entanglement of free elec-
trons and light. For illustrative purposes, we first consider
the suppression and subsequent recovery of single-electron
interference resulting from quantum correlations in a quan-
tum eraser scenario. Specifically, we introduce a double-slit
geometry producing entanglement between photon degrees
of freedom and the electron position. Addressing experi-
mental implementations, we propose dual-point probes as
used in scanning transmission electron microscopy (STEM)
holography and coincidence measurements to generate optical
excitations at designed photonic structures to form an entan-
gled bipartite state and perform characterizing measurements.
Finally, we relate the measurements in this quantum eraser
scenario to entanglement tests such as quantum state tomog-
raphy of the electron-photon system and discuss a transfer also
to free-electron–electron entanglement.

II. CONCEPT OF QUANTUM ERASURE

The basic idea of a quantum eraser relies on single-particle
interference observable behind a double-slit structure. When
introducing a marker, entangled with the interfering particle
and providing which-path information, the interference dis-
appears but can be recovered using a basis change on the
marker and coincidence detection [8]. These concepts can
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FIG. 1. Quantum eraser experiment with free electrons. (a) An electron beam illuminates a double-slit structure. Electrons (green) passing
through the left (quantum state |L〉) and right (|R〉) slit generate identical photons (red) of orthogonal polarizations |V 〉 and |H〉 as highlighted in
the inset. These marker photons are collected with a fiber (blue), passed through a half waveplate (λ/2) of variable orientation θ and a polarizing
beam splitter (PBS) before detection on single-photon detectors (SPDs), thus realizing projective measurements on superposition of |H〉 and
|V 〉 (dashed red box). The electrons are energy filtered for one-photon loss (gray dashed line) and detected on a camera, enabling coincidence
detection of electrons and photons. (b) Direct intensity distribution behind the energy filter exhibiting interference fringes when no marker
photon is generated (green) and no interference (gray) when orthogonal marker photons are generated. (c) Interference pattern recovered from
coincidences of energy-filtered electrons and photons after local operations with the wave plate. (d) Visibility Vf of the interference fringes
depending on the input coherence γ and the overlap of the marker photons |h|2 in the direct (colormap and solid lines) and conditioned intensity
distribution (dashed lines). (e) Interference fringe visibility Vf in the recovered distribution versus the concurrence C of the electron-photon
state for different polarization overlap |h|2 (color coded) and input coherence (direction of decreasing input coherence γ indicated by a
black arrow).

be applied to experiments with free electrons, as illustrated
in Fig. 1(a).

When a fully coherent electron beam homogeneously
illuminates a double-slit structure, interference causes an os-
cillation in the intensity distribution in the far field [54–56].
The intensity pattern, given by I (x) ≈ I0(x){1 + cos[φ(x)]}
with the diffraction pattern of a single slit I0(x) and the
phase difference between the propagation pathways φ(x) (see
Appendix A for details), can be detected using a camera as
shown in Fig. 1(b).

Suppose that electrons passing through the slits generate
distinguishable photons, e.g., in different spatial modes or of
orthogonal polarization. For simplicity, assume that transmis-
sion through the left (right) slit gives horizontally (vertically)
polarized photons, denoted by |H〉 and |V 〉, respectively. This
results in an entangled electron-photon state

|ψ〉 = 1√
2

(|L, H〉 + |R,V 〉) (1)

behind the slit with the generated photons carrying which-path
information about the electron, eliminating the electron inter-
ference pattern [gray line in Fig. 1(b)]. An electron energy
filter [dashed gray line in Fig. 1(a)] selects the fraction of

electrons that produced a marker photon and lost the corre-
sponding energy.

The interference pattern can however be restored with a
photon state basis change and a projective measurement. To
this end, the marker photons are collected via an optical
single-mode fiber and passed through a half waveplate as well
as a polarizing beam splitter [red box in Fig. 1(a)]. The wave-
plate effectively erases the which-path information by mixing
the polarization states rendering the single-photon detectors
(SPDs) placed behind a polarizing beam splitter (PBS) unable
to distinguish the electron paths. The detection of electrons
in coincidence with a photon on one of the SPDs will result
in a recovered interference pattern as shown in Fig. 1(c).
Similarly, coincidences between electrons and the other SPD
will yield an interference pattern that is phase shifted by π ,
making coincidence detection with a single SPD necessary to
retrieve the interference. In contrast to photonic realizations
of the quantum eraser, based on pairs of photons entangled
in polarization [15,16] or momentum [14,57], the electron
position in the plane of the double slit is entangled with the
polarization of a photon generated by the electron. Measure-
ments of the electron-diffraction pattern then correspond to
the (conditioned) polarization or momentum state analysis in
photonic quantum erasers.
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III. EXPERIMENTAL CONSIDERATIONS

Under realistic experimental conditions imperfections in
the marker-photon-generation process, the electron-beam
preparation or the optical setup will hamper the elimination
and coincidence-based recovery of the interference pattern.
A deviation from perfectly orthogonal marker-photon states,
for example, the case of electrons passing through the right
slit generating a photon in a superposition of polarizations
h|H〉 + v|V 〉 will impact the observed intensity patterns. The
unconditioned intensity distribution Iu of electrons that gener-
ated a photon then reads (see Appendix A)

Iu(x) = I0(x) + Re(h)I0(x) cos[φ(x)],

while the recovered conditioned interference pattern Ic,
formed by electrons coincident with a which-path erased pho-
ton on one of the SPDs, becomes

Ic(x) = [1 + Re(h∗v)]I0(x) + Re(h + v)I0(x) cos[φ(x)].

Notably, Iu exhibits oscillations depending on the overlap
|h|2 of the marker-photon states. A larger overlap reduces
the which-path information about the electron and is directly
linked to a reduced degree of electron-photon entanglement.
This can be quantified via the concurrence C [10,58], an
entanglement measure for a two-qubit system related to the
entanglement of formation [9]. It takes on values 0 � C � 1,
with the extremes given by separable and maximally entan-
gled states, respectively, and can be expressed as C = |h| for
our scenario with a pure state.

Any principal distinguishability of the marker photons in
other degrees of freedom, such as the wavelength, will re-
duce the visibility of the interference fringes Vf = (Imax −
Imin)/(Imax + Imin) due to the reduced overlap in the partial
trace. Careful design of both the sample and the optical setup
is therefore paramount to avoid this in the generation and
propagation of the photons.

Similar care needs to be taken in the preparation of
the electron beam, as limited spatial coherence γ < 1 will
suppress the off-diagonal elements of the bipartite state’s
density matrix and thus impose an upper bound on the
concurrence. This is accompanied by a reduction of visi-
bility in both the unconditioned and recovered interference
patterns.

These findings are summarized in Figs. 1(d) and 1(e), with
Fig. 1(d) showing the dependence of the fringe visibility Vf

in the direct pattern (contours and solid) and reconstructed
conditioned pattern (dashed lines) on the polarization state
overlap |h|2 and input beam coherence γ . The former in-
creases with the overlap |h|2 and is bounded by the degree
of coherence, while the latter exhibits only small variations.
When comparing the recovered interference fringe visibility
Vf with the concurrence C of the electron-photon state within
our simple model [see Fig. 1(e)], we find an almost per-
fect linear relation for small polarization overlap |h|2 < 0.1.
In these cases, quantum erasure, signaled by the recovery
of interference fringe visibility after conditioning, can be
considered an indicator of electron-photon entanglement. To
achieve a concurrence of C � 0.3 and verify electron-photon
entanglement by this comparison of unconditioned and con-
ditioned intensity patterns, we estimate requirements for the

parameters of |h|2 < 0.25 and γ � 0.35. These are well
within reach of current experimental setups both concerning
the generation of polarized photons [59,60] and electron co-
herence [61–64] (for additional information, see Appendix B).

IV. POSSIBLE EXPERIMENTAL REALISATIONS

An experimental realization of free-electron–photon quan-
tum erasure, accordingly, requires, first, a highly coherent
and controllable electron beam to illuminate a double-slit-
type structure; second, efficient generation of distinct marker
photons carrying the electron which-path information in a
single degree of freedom; and third, the capability to collect
marker photons, manipulate their quantum state, and perform
projective measurements in coincidence with energy-filtered
electron detection in the diffraction pattern.

Transmission electron microscopes (TEMs), particularly
those with field-emission electron sources, provide a well-
controlled and coherent electron beam, enabling, e.g., electron
holography [62,63]. Splitting the electron beam, as illus-
trated in Fig. 2(a), rather than using a transmissive double-slit
structure slightly relaxes the coherence requirements and sig-
nificantly increases the effective electron current. The splitting
can, for example, be achieved by deflection using an electro-
static biprism [56,62] or diffraction from a holographic phase
or amplitude plate in the TEM’s condenser system [65,66].
Amplitude plates, schematically depicted in Fig. 2(b), require
careful design and fabrication to ensure low losses and a
deflection of electrons mainly into the first diffraction order,
whereas a biprism [cf. Fig. 2(c)] allows tunable separation
of beams but demands higher beam coherence as different
sections of the beam need to interfere. In both cases, the beams
must be overlapped below the sample to observe interference
[cf. Fig. 2(a)], through either the imaging lenses or additional
beam-splitting elements in a Mach-Zehnder interferometer
scheme [67].

Distinguishable marker photons for the two electron path-
ways can be generated via different coherent parametric
processes [29,68], including inelastic electron-light scattering,
Smith-Purcell radiation, or transition radiation. Two possible
geometries allowing for the entanglement of the electron posi-
tion with different photonic degrees of freedom are presented
in Figs. 2(d) and 2(e).

Our first suggestion [Fig. 2(d)] involves polarized photon
generation at a specifically shaped metallic structure placed
in front of a single optical fiber. Fast electrons impinging
on a metallic surface generate transition radiation due to the
annihilation of the image charge in the material, leading to
the emission of polarized electromagnetic radiation [29]. Tai-
loring the boundary properties, electrons hitting the metallic
plateau at different positions relative to the fiber core will
generate different photon polarizations. At typical TEM en-
ergies, the photon-generation efficiencies are on the order
of 10−3 and the emission is broadband [29], rendering the
nonorthogonality of marker photons the main concern for the
recovered electron fringe visibility. The required manipulation
of the photon state and erasure of which-path information
can be implemented using waveplates, a PBS, and SPDs as
indicated in Figs. 1(a) and 2(d).
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FIG. 2. Possible implementations of a quantum eraser experiment. (a) Key elements of a free-electron quantum eraser are electron-beam
splitting, efficient marker-photon generation and collection, and coincidence detection. Splitting the electron beam in the condenser system
[blue box, details in (b) and (c)], two focused electron probes are formed at the sample. There, distinguishable marker photons are generated
and collected for further processing [red box, details in (d) and (e)]. Below the sample, an imaging filter selects electrons that generated a
marker photon before recombining the beams to give an interference pattern on a hybrid-pixel detector that enables coincidence detection
of electrons and photons. (b) The splitting of the electron beam can be achieved, for example, by a grating plate causing diffraction of the
electron beam. (c) Alternatively, an electron biprism consisting of a thin biased wire deflecting parts of the input beams in different directions
can be used. (d) The generation of polarized photons (|H〉 or |V 〉), e.g., in transition radiation, at a specifically designed structure placed in
front of an optical fiber allows for marker-photon generation and collection. Manipulation of the which-path information is then achieved by a
waveplate (λ/2) and a polarizing beam splitter in front of the single-photon detectors. (e) Alternatively, marker photons can be generated via
Smith-Purcell radiation coupled to different fiber cores, yielding photons in the states |L〉 or |R〉. An erasure of the which-path information can
then be implemented using a balanced beam splitter (50:50) before the SPDs.

Alternatively, one could achieve entanglement of the elec-
tron path and the generated photon position at the end face
of a multicore fiber [cf. Fig. 2(e)] or the photon propagation
direction at an optical waveguide. In the former case, grating
structures imprinted on metal-coated fiber end faces facilitate
photon generation in the different fiber cores |L〉 or |R〉 via the
Smith-Purcell effect [69,70]. The electrons’ evanescent field is
diffracted into the fiber with the emission wavelength and di-
rection determined by the grating parameters and the electron
velocity [29,68]. The latter scenario uses inelastic scattering
of free electrons at the vacuum field of a well-defined res-
onator mode [26,71], with phase-matched interactions shown
to enable the generation of correlated electron-cavity photon
pairs in integrated photonic circuits [43]. In both cases, era-
sure of the electron which-path information can be achieved
by a balanced beam splitter mixing the two photon pathways.
Despite higher potential photon-generation efficiencies, these
scenarios require larger electron-beam separations and precise
sample design to ensure required marker-photon properties,
thereby posing additional experimental challenges. Other ex-
perimental geometries, e.g., based on parabolic mirrors for
free-space photon collection [30,44], and harnessing different
coherent cathodoluminescence processes are also possible.

An energy-filtering electron imaging spectrometer, illus-
trated at the bottom of Fig. 2(a), can select electrons that lost
energy corresponding to that of a generated photon [72,73].
This filtering suppresses the majority of unscattered electrons
that would otherwise yield an elastic interference pattern [cf.

Fig. 1(b)]. In combination with a hybrid-pixel electron detec-
tor, a time-, energy-, and position-resolved detection of the
electrons is possible, enabling the required coincidence-based
measurements in conjunction with the single-photon detec-
tion [43,44]. This coincidence detection of electrons in the
energy-loss window and photons, crucial for the recovery of
the interference pattern, additionally allows for improving the
signal-to-noise ratio by removing accidental counts of elec-
trons that did not generate a photon, i.e., were scattered in
different inelastic channels or are in the tail of the incident
electron energy distribution.

V. TESTS FOR INSEPARABILITY

Measurements performed with the quantum eraser setup
can also more generally be used to determine whether the
electron-light system is entangled. Let us denote the Pauli ma-
trices by σx, σy, and σz as usual and associate the photon and
electron states {|H〉, |V 〉} and {|L〉, |R〉} with the eigenvectors
of σz. Then the fidelity of any given state with respect to the
Bell state in Eq. (1) can be expressed as F = (1 + 〈σx ⊗ σx〉 −
〈σy ⊗ σy〉 + 〈σz ⊗ σz〉)/4, and a value greater than 1

2 provides
a sufficient condition for entanglement [10]. In our quantum
eraser setup, these correlation functions can be obtained by
first measuring the photon in the respective basis, i.e., σx,
σy, or σz, and then summing up the visibilities of the elec-
tron interference fringes observed when conditioning on each
of the photon states in that basis. Not all situations where
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interference fringes are recovered correspond to entangle-
ment, however, just those where the visibilities are large
enough that the inequality above is satisfied.

Interestingly, tomographic reconstruction of the two-qubit
electron-photon density matrix is also possible, since all in-
dependent combinations of Pauli measurements can be imple-
mented (see Appendix C). Consequently, it is straightforward
to determine whether the state is entangled by using entangle-
ment measures [9]. On the other hand, very little information
is needed to settle the question of separability, and complete
quantum tomography is certainly not necessary. For instance,
the criterion F > 1

2 can be relaxed to include only measure-
ments of σx and σz, becoming |〈σx ⊗ σx〉 + 〈σz ⊗ σz〉| > 1 at
the expense of requiring slightly higher correlations; this sim-
plified measurement scheme corresponds to the most common
description of the quantum eraser experiment.

VI. CONCLUSION AND OUTLOOK

We have described conceptually simple quantum eraser
experiments based on free electrons and light that appear
within reach of current technology, to both generate and ver-
ify electron-light entanglement. The above scheme allows a
simple extension to generate entanglement between free elec-
trons. Suppose two pairs of electron-photon entangled states
(|L,V 〉 + |R, H〉) ⊗ (|L,V 〉 + |R, H〉) are generated. Then a
Bell-state projection 〈V , H | + 〈H ,V | on the photon pair will
result in path entangled electrons |L, R〉 + |R, L〉, effectively
performing entanglement swapping on the electron-photon
pairs. The technique is very flexible and can be adapted to
a wide range of scenarios involving different kinds of electron
beams [26,74,75]. In general, quantum entanglement between
any number of electrons |L〉⊗N + |R〉⊗N can be established
from N electron-photon pairs by projecting the photons onto
the Greenberger-Horne-Zeilinger state |V 〉⊗N + |H〉⊗N [76].
Such states may be applied in TEMs to enhance the sensitivity
to phase shifts due to the electrons experiencing the atomic
potentials while passing through a sample. These phase shifts,
investigated in the study of sample compositions and struc-
tures, are exceedingly small and the number of measurements
at a single sample position is limited by radiation-induced ir-
reversible damage. The sensitivity of the measurements could
be improved by a factor of N−1/2 when using N-electron
entangled states M times [6] because the root-mean-square
error in phase shift measurements will scale as (

√
MN )−1,

while for M × N uses of uncorrelated single electrons the
error would scale as (

√
MN )−1 instead (see Appendix D for

further details). Such entanglement-based improvements to
sensitivities below the standard quantum limit N−1/2 are also
pursued in so-called quantum electron microscopes [45,47]
and our work can provide an alternative specific route to-
wards the realization of such an instrument. We note a recent
publication also addressing electron-photon entanglement in
electron microscopy [77].
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APPENDIX A: QUANTUM ERASER

This Appendix aims to provide a more detailed derivation
of the electron intensity distributions described in Secs. II
and III.

The intensity distribution for electrons on the screen behind
the double slit can be calculated via

I (x) = 〈x|ρ|x〉 = |a|2|〈x|U |L〉|2 + |b|2|〈x|U |R〉|2

+ ab∗〈x|U |L〉〈R|U †|x〉 + a∗b〈x|U |R〉〈L|U †|x〉,
where 〈x|ρ|x〉 is the density matrix in the position represen-
tation and U is the propagator for the electrons from the
slit plane with the left and right slits (denoted by |L〉 and
|R〉, respectively) to any given point x in the detector plane.
At short distances, U can be approximated by the Fresnel
propagator [78], while in the far field, it reduces to the Fourier
transform F . Associating wave functions in the slit plane
with the coordinate x′, we can evaluate the expression above
explicitly,

I (x) = |a|2|F (〈x′|L〉)|2 + |b|2|F (〈x′|R〉)|2

+ ab∗e−iφ(x)F (〈x′|L〉)F∗(〈x′|R〉)

+ a∗beiφ(x)F (〈x′|R〉)F∗(〈x′|L〉)

= I0(x) + I0(x) cos[φ(x)],

where φ(x) is the phase difference accumulated between elec-
trons from the two slits to a point x on the detector and I0(x)
describes the single-slit diffraction pattern, assuming evenly
illuminated (a = b) identical slits. To simplify notation, we
use a shorthand for the Fourier transform acting on wave func-
tions, using expressions such as F (〈x′〉L) in place of the more
cumbersome F (〈x′〉L)(x) when it is clear what arguments the
transformed function must take. Similarly, we write F∗ for the
complex conjugate of the inverse Fourier transform.

Now suppose that an electron passing through the left slit
generates a single photon with horizontal polarization |H〉,
while an electron passing through the right slit generates a
photon with vertical polarization |V 〉. Then the joint quantum
state of the electron-photon pair could be written as

ρ = |a|2|L, H〉〈L, H | + |b|2|R,V 〉〈R,V |
+ ab∗|L, H〉〈R,V | + a∗b|R,V 〉〈L, H |,

resulting in an electron intensity distribution on the camera
given by

I (x) = 〈x|Trph(UρU †)|x〉
= |a|2|F (〈x′|L〉)|2 + |b|2|F (〈x′|R〉)|2
= I0(x).

Here Trph(ρ) is the partial trace over the photonic degrees of
freedom and the last line again assumes even illumination of
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identical double slits. Clearly, the entanglement induced by
the generation of marker photons removes the interference
pattern, as the photons now carry information about which
path the electron has taken.

Collecting the generated marker photons and passing them
through a half waveplate [cf. Fig. 1(a)] transforms the po-
larization states in the following manner: |H〉 → (|H〉 +
|V 〉)/

√
2 and |V 〉 → (|H〉 − |V 〉)/

√
2. By inserting a polar-

izing beam splitter that separates the orthogonal polarizations
|H〉 and |V 〉 in the beam path, the quantum state of the electron
conditioned on the detection of a photon with polarization |H〉
becomes

ρ̃ = (1 ⊗ |H〉〈H |)ρ(1 ⊗ |H〉〈H |)
Trρ(1 ⊗ |H〉〈H |)

= |a|2U |L, H〉〈L, H |U † + |b|2U |R, H〉〈R, H |U †

+ ab∗U |L, H〉〈R, H |U † + a∗bU |R, H〉〈L, H |U †,

where 1 denotes the identity operator. This results in the
intensity distribution

Ie(x) = |a|2|F (〈x′|L〉)|2 + |b|2|F (〈x′|R〉)|2

+ ab∗e−iφ(x)F (〈x′|L〉)F∗(〈x′|R〉)

+ a∗beiφ(x)F (〈x′|R〉)F∗(〈x′|L〉)

= I0(x) + I0(x) cos[φ(x)],

where the interference fringes are recovered. Analogously,
postselecting photons of polarization |V 〉 behind the half
waveplate results in an interference pattern with inverted min-
ima and maxima due to a sign change in the last two terms.

More generally, if the marker photons are not perfectly or-
thogonal, i.e., the postinteraction state reads |ψ〉 = a|L, H〉 +
b|R〉 ⊗ (h|H〉 + v|V 〉), both the unconditioned and the path-
information-erased conditioned intensity distributions Iu and
Ic, respectively, are modified:

Iu(x) = |a|2|F (〈x′|L〉)|2 + |b|2|F (〈x′|R〉)|2

+ ab∗h∗e−iφ(x)F (〈x′|L〉)F∗(〈x′|R〉)

+ a∗bheiφ(x)F (〈x′|R〉)F∗(〈x′|L〉)

= I0(x) + Re(h)I0(x) cos[φ(x)]

and

Ic(x) = |a|2|F (〈x′|L〉)|2 + |b|2(1 + h∗v + hv∗)|F (〈x′|R〉)|2

+ ab∗(h∗ + v∗)e−iφ(x)F (〈x′|L〉)F∗(〈x′|R〉)

+ a∗b(h + v)eiφ(x)F (〈x′|R〉)F∗(〈x′|L〉)

= [1 + Re(h∗v)]I0(x) + Re(h + v)I0(x) cos[φ(x)].

The unconditioned intensity distribution Iu(x) exhibits os-
cillations for h 
= 0 as the marker photons are no longer
perfectly distinguishable. At the same time, the impact
on the conditioned intensity distribution Ic(x) reconstructed
from the electron-photon coincidences after manipulation is
less pronounced. Both the unconditioned and the recovered
conditioned intensity patterns can be characterized by a cor-
responding visibility Vf of the interference fringes, shown
in Fig. 1(d).

The description of the quantum eraser process can be
further modified to account for limited spatial coherence by
replacing the electron state below the slit with the mixed state,

ρ = γ |ψ〉〈ψ | + (1 − γ )[|a|2|L, H〉〈L, H |
+ |b|2|R〉 ⊗ (h|H〉 + v|V 〉)(h∗〈H | + v∗〈V |) ⊗ 〈R|],

where γ is linked to the degree of transverse coherence.
In this mixed-state case the concurrence C is defined as
C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), where the λi denote the
eigenvalues, in decreasing order, of R = √√

ρρ̃
√

ρ, with ρ̃ =
(σ e

y ⊗ σ
ph
y )ρ∗(σ e

y ⊗ σ
ph
y ) and the Pauli matrix σy. Figure 1(e)

presents the relation between the concurrence and the visi-
bility of the recovered conditioned intensity pattern for this
simple model.

APPENDIX B: EXPERIMENTAL FEASIBILITY

This Appendix aims to illustrate the feasibility of our pro-
posed quantum eraser experiment by estimating the required
values for the parameters of polarization overlap |h|2 and
coherence γ and comparing them to the existing literature.

The coherence γ of the electrons in the double-slit setup
is determined by the slit separation relative to the transverse
coherence length lcoh,tr of the beam [79],

lcoh,tr = h̄

mec

σx

εn,rms
,

which is dominated by the emittance εn,rms of the electron
source and the electron-beam spread σx. Thus, the coherence
γ can be increased by appropriate widening and adjusting of
the beam at the cost of reducing the electron current density
on the two slits [80,81]. Because of their higher brightness
[82], cold-field emission electron sources are beneficial for
applications like electron holography that rely on high coher-
ence [61–63,83]. However, Schottky-field emission sources
in conjunction with grating plates have also demonstrated
electron interference with the fringe visibility and thus the
coherence reaching values as high as γ ≈ 0.70 [64].

The electron-driven generation of linearly polarized light,
on the other hand, has been observed for transition radi-
ation in polarization-resolved cathodoluminescence [59,60].
We therefore conservatively estimate a possible polarization
overlap |h|2 < 0.25 for transition radiation generated from
two distinctly shaped separated emission regions. Similarly,
such a small state overlap should be achievable for two spa-
tially separated emission regions coupled to distinct photon
pathways.

Based on these considerations, we assume γ = 0.65 and
|h|2 = 0.25 and estimate the fringe visibilities and entangle-
ment measures using our simple model. We find the fringe
visibility in the unconditioned and conditioned recovered in-
tensity patterns to be approximately 0.33 and approximately
0.63, respectively. Both the concurrence (C ≈ 0.56) and the
entanglement criterion derived from the entanglement witness
[cf. Eq. (C1)] indicate entanglement for these parameters.
Comparing the unconditioned and conditioned interference
fringe visibilities, the ratio of the conditioned to the uncon-
ditioned is approximately 2, in line with the intuition that
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interference should be visible only in the path-erased condi-
tioned case for electron-photon entanglement.

The almost one-to-one correspondence between the con-
ditioned fringe visibility Vf and the concurrence C at small
polarization overlaps is illustrated in Fig. 1(e) and a similar
behavior is found for the entanglement criterion derived from
the entanglement witness [cf. Fig. 3(b)]. We identify a range
of parameters given by |h|2 � 0.25 and γ > 0.35 for which
the difference in fringe visibility is significant and both the
entanglement criterion according to Eq. (C1) and the con-
currence are sufficiently high (C > 0.3). These criteria are
illustrated in Figs. 3(a) and 3(b), respectively, as a function
of the model parameters |h|2 and γ . The blacked dashed lines
indicate the range of parameters with low polarization overlap
for which both entanglement criteria are fulfilled. At larger
electron coherences γ , the range of overlap |h|2 for which en-
tanglement can be detected increases, albeit leading to smaller
differences between unconditioned and conditioned visibility.

It is worth noting that both the polarization overlap |h|2 and
the coherence γ can, in principle, be quantified in measure-
ments independent of those directly required for the quantum
eraser. The former can be determined by analyzing the polar-
ization states generated at the two slits by a focused electron
probe in STEM mode, while the latter can be estimated from
the visibility of interference fringes in the diffraction of elastic
electrons, i.e., filtering for electrons that did not lose energy.
Consequently, with a precharacterization ensuring sufficiently
small polarization overlap and large coherence, the compari-
son of unconditioned and conditioned fringe visibilities could
provide sufficient evidence for entanglement.

APPENDIX C: QUANTUM STATE TOMOGRAPHY

This Appendix aims to provide background information
for Sec. V.

The electron-photon quantum state in the proposed exper-
imental scenario is equivalent to a two-qubit state and can be
represented in the form

ρ = a1 ⊗ 1 +
∑

i=x,y,z

(
biσ

e
i ⊗ 1 + ci1 ⊗ σ

ph
i

)

+
∑

i, j=x,y,z

di jσ
e
i ⊗ σ

ph
j ,

with σk for k = x, y, z as the three Pauli matrices as usual and
superscripts e and ph to emphasize whether we are referring
to the electron or photon. We take as eigenstates of σz the
basis {|L〉, |R〉} for the electron and {|H〉, |V 〉} for the photon.
The coefficients are determined by local measurements of the
corresponding observables

bi = Tr[(σi ⊗ 1)ρ],

ci = Tr[(1 ⊗ σi )ρ],

di j = Tr[(σi ⊗ σ j )ρ],

and with a fixed by normalization. The density matrix of the
two-qubit system could be completely determined as long as
one could implement measurements in all three bases inde-
pendently for the electron and for the photon.

FIG. 3. Estimation of parameters from entanglement criteria.
(a) Concurrence C evaluated over a range of polarization overlaps
|h|2 and input coherences γ . The color scale is chosen to highlight the
region with C � 0.3. (b) Expectation values for the entanglement cri-
terion derived from the entanglement witness as defined in Eq. (C1)
over polarization overlap and coherence. The color scale is chosen
such that values above 1, indicating entanglement, are shown in red.
(c) Interference fringe visibility Vf in the recovered conditioned dis-
tribution versus the expectation value in the entanglement criterion
of Eq. (C1) for different polarization overlap |h|2 (color coded) and
input coherences.

On the photon side, measurements of the three Pauli
observables correspond to projections onto the different
polarization states, i.e., horizontal or vertical (σz), diagonal
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(σx), and left and right-handed circular polarizations (σy),
and these can be implemented in the usual way by using half
waveplates, quarter waveplates, polarizing beam splitters, and
avalanche photon detection. On the electron side, the situation
is more complicated but, nevertheless, measurements in all
three bases can be implemented. A real-space image of the
two slits obtained in the conventional imaging mode of the
microscope tells us which slit the electron goes through, thus
realizing a measurement of σz. Diffractograms obtained in the
diffraction mode correspond to interference between the two
beams with some relative phase shift φ(x), with x denoting the
position on the screen, so that the detection of an electron at a
position x on the screen corresponds to the projection operator
〈L| + eiφ(x)〈R|. Therefore, measurements in the diffraction
plane allow us to measure σx and σy. Complete knowledge of
the density matrix can then be used to evaluate entanglement
measures such as the concurrence C or the negativity [9].

Alternatively, the separability of the state could also be
ascertained through fewer measurements by employing entan-
glement witnesses [9,10]. The joint electron-photon quantum
state is ideally represented by the maximally entangled state
|ψ〉 = (|L, H〉 + |R,V 〉)/

√
2; thus we should consider the

fidelity between this state and an experimentally generated
state ρ,

F = 〈ψ |ρ|ψ〉
= 1

4 Tr
[
ρ
(
1 + σ e

x ⊗ σ ph
x − σ e

y ⊗ σ ph
y + σ e

z ⊗ σ ph
z

)]
,

where the expression in the second line follows from the ex-
pansion of the state |ψ〉〈ψ | in the Pauli operators. Expectation
values of outer products of Pauli operators can be measured
as described above and a value of F > 1

2 is sufficient for en-
tanglement given the entanglement witness W = 1

2 − |ψ〉〈ψ |
[10]. The expectation value of W can be expressed as 〈W〉 =
1
2 − F (ρ, |ψ〉〈ψ |), so 〈W〉 < 0 is equivalent to F > 1

2 . By
applying the triangle inequality, the inseparability criterion
above could be further reduced to

∣∣〈σ e
x ⊗ σ ph

x

〉 + 〈
σ e

z ⊗ σ ph
z

〉∣∣ > 1, (C1)

which describes the standard quantum eraser scenario with
measurements in two linearly polarized bases.

APPENDIX D: QUANTUM METROLOGY
WITH ENTANGLED ELECTRONS

This Appendix aims to describe how the problem of phase
estimation, most often considered in the context of optical and
atomic systems, transfers to free electrons and how the use of
quantum entanglement enables more precise measurements.

In the case of uncorrelated electrons (Fig. 4), each electron
is initialized in the state (|L〉 + |R〉)/

√
2 by dividing an elec-

tron beam into two equal parts using an electron beam splitter,
and the entire beam could be written as a tensor product of
electrons ((|L〉 + |R〉)/

√
2)⊗N . Only the |R〉 state is made to

pass through the sample, so after the interaction the electrons
are transformed into the state (|L〉 + eiφ|R〉)/

√
2, where φ

denotes the phase shift imparted on the electron by the sample.
To obtain information about the phase shift, a second beam
splitter should be used to undo the superposition, after which
the probabilities of the electron emerging from either port are

FIG. 4. Quantum metrology with entangled electrons. Electrons
are labeled by two states |L〉 and |R〉 that propagate along two dif-
ferent paths (green lines). Following interaction with the sample, the
two beams are brought into interference and measured on an electron
camera; the population of electrons at each output port of the beam
splitter is directly related to the phase shift due to the sample.

measured. These probabilities are

PL = 〈L| + 〈R|√
2

|L〉 + eiφ |R〉√
2

= 1

4
|1 + eiφ|2,

PR = 〈L| − 〈R|√
2

|L〉 + eiφ |R〉√
2

= 1

4
|1 − eiφ|2.

For simplicity, let us assume that the phase shift is small
φ � 1, which is the case in electron microscopy. Then this
phase shift can be related to the transition probability into
the orthogonal state PR = 1

4 |1 − eiφ |2 ≈ φ2/4, and its error is
derived through the usual methods of error propagation:

dφ = 2

φ
dPR.

Invoking the central-limit theorem, the error in determining
the probability PR through repeated sampling of the proba-
bility distribution {PL, PR} scales as 1/

√
N , and therefore the

error in determining the phase shift φ also scales as 1/
√

N .
The situation for entangled states of electrons is very sim-

ilar to what we have described above, but with the initial
state replaced by entangled states of N electrons (|L〉⊗N +
|R〉⊗N )/

√
2, the electron beam splitter Û generalized to oper-

ate on the logical basis {|L〉⊗N , |R〉⊗N }, and the measurements
now projecting onto N electron states |L〉⊗N and |R〉⊗N . Anal-
ogous to the case of uncorrelated electrons, the purpose of the
measurement is to determine the overlap between the phase-
shifted electrons and the states (|L〉⊗N ± |R〉⊗)/

√
2, and the

associated probabilities are

PL = |1 + eiNφ|/4,

PR = |1 − eiNφ|/4.
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For small phase shifts PR ≈ N2φ2/4, so the error in the phase
shift scales as

dφ = 2

N2φ
dPR.

Because the probability distribution {PL, PR} has variance
(N2φ2/4)(1 − N2φ2/4) ≈ N2φ2/4, the central-limit theorem
implies that dPR scales as N/

√
M, where M is the number

of uses of such entangled states of N electrons. The error
in determining the phase shift therefore scales as 1/N

√
M,

which is a factor of 1/
√

N lower compared to using M × N
uncorrelated electrons.

Finally, we remark that everything we have said applies
equally to any value of the phase shift φ provided the
formulas above are adjusted accordingly and mostly in a
trivial manner.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 2nd ed. (Cambridge University Press,
New York, 2010).

[2] T. D. Ladd, F. Jelezko, R. Laflamme, and Y. Nakamura, Nature
(London) 464, 45 (2010).

[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[4] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L.
Jiang, H.-K. Lo, and I. Tzitrin, Rev. Mod. Phys. 95, 045006
(2023).

[5] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288
(2018).

[6] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222
(2011).

[7] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys.
89, 035002 (2017).

[8] X.-s. Ma, J. Kofler, and A. Zeilinger, Rev. Mod. Phys. 88,
015005 (2016).

[9] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[10] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
[11] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).
[12] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91

(1982).
[13] S. Storz, J. Schär, A. Kulikov, P. Magnard, P. Kurpiers, J. Lütolf,

T. Walter, A. Copetudo, K. Reuer, A. Akin, J.-C. Besse, M.
Gabureac, G. J. Norris, A. Rosario, F. Martin, J. Martinez, W.
Amaya, M. W. Mitchell, C. Abellan, J.-D. Bancal et al., Nature
(London) 617, 265 (2023).

[14] J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. 64, 2495 (1990).
[15] T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, Phys.

Rev. Lett. 75, 3034 (1995).
[16] S. P. Walborn, M. O. T. Cunha, S. Pádua, and C. H. Monken,

Phys. Rev. A 65, 033818 (2002).
[17] Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, Phys.

Rev. Lett. 84, 1 (2000).
[18] F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S.

Tanzilli, Science 338, 637 (2012).
[19] S. Dürr, T. Nonn, and G. Rempe, Nature (London) 395, 33

(1998).
[20] E. Weisz, H. K. Choi, I. Sivan, M. Heiblum, Y. Gefen, D.

Mahalu, and V. Umansky, Science 344, 1363 (2014).
[21] A. Bienfait, Y. P. Zhong, H.-S. Chang, M.-H. Chou, C. R.

Conner, É. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, K. J.
Satzinger, and A. N. Cleland, Phys. Rev. X 10, 021055 (2020).

[22] K. M. Yip, N. Fischer, E. Paknia, A. Chari, and H. Stark, Nature
(London) 587, 157 (2020).

[23] P. Baum, D.-S. Yang, and A. H. Zewail, Science 318, 788
(2007).

[24] T. Danz, T. Domröse, and C. Ropers, Science 371, 371 (2021).
[25] P. Schattschneider and S. Löffler, Ultramicroscopy 190, 39

(2018).
[26] O. Kfir, Phys. Rev. Lett. 123, 103602 (2019).
[27] Z. Zhao, X.-Q. Sun, and S. Fan, Phys. Rev. Lett. 126, 233402

(2021).
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