NEUROIMAGING

Connectivity as a universal predictor of tau spreading in typical and atypical Alzheimer's disease

Hannah de Bruin^{1,2,3} | Colin Groot^{1,2,4} | $ADNI^5$ | Henryk Barthel⁶ | Gérard N Bischof^{7,8} | Ronald Boellaard^{9,10} | Matthias Brendel¹¹ | David M Cash¹² | William Coath¹³ | Gregory S Dav¹⁴ | Brad C Dickerson¹⁵ | Elena Doering^{8,16} | Alexander Drzezga^{7,8,16} | Christopher H. van Dyck¹⁷ | Thilo van Eimeren^{8,18} | Wiesje M. van der Flier^{1,2} | Carolyn Fredericks^{19,20} | Tim D Frver^{21,22} | Elsmarieke van de Giessen^{9,10} | Brian A. Gordon^{23,24} | Jonathan Graff-Radford²⁵ | Diana A Hobbs^{23,24} | Günter Höglinger²⁶ | Merle C Hönig^{7,8} | David J Irwin^{27,28} | P Simon Jones²¹ | Keith A. Josephs²⁵ | Yuta Katsumi¹⁵ | Eddie B Lee^{29,30,31} | Johannes Levin^{32,33,34} | Maura Malpetti²¹ | Scott M McGinnis³⁵ | Adam P Mecca³⁶ | Ilva M. Nasrallah³⁷ John T O'Brien³⁸ Rvan S O'Dell³⁶ Carla Palleis²⁶ Robert Perneczky³⁹ | Jeffrey S Phillips^{28,40} | Yolande A.L. Pijnenburg^{2,41} | Deepti Putcha¹⁵ | Nesrine Rahmouni⁴² | Pedro Rosa-Neto⁴³ | James B Rowe^{21,44} | Michael Rullmann⁶ | Osama Sabri⁶ | Dorothee Saur⁴⁵ | Andreas Schildan⁶ | Jonathan M Schott¹² | Matthias L Schroeter^{46,47} | Stijn Servaes⁴⁸ | Irene Sintini⁴⁹ | Jenna Stevenson⁴⁸ | Joseph Therriault⁴⁸ | Alexandra Touroutoglou¹⁵ | Anne E Trainer⁵⁰ | Denise Visser^{2,9,10} | Philip SJ Weston^{12,51} | Jennifer L. Whitwell⁴⁹ | David A Wolk^{27,29,52} | Nicolai Franzmeier^{3,53,54} | Rik Ossenkoppele^{1,2,4}

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Alzheimer's Association. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

¹Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands

²Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands

³Institute for Stroke and Dementia Research, Klinikum der Ludwig-Maximilians Universität München, Munich, Germany

⁴Lund University, Clinical Memory Research Unit, Lund, Sweden

⁵Alzheimer's Disease Neuroimaging Initiative, http://adni.loni.usc.edu/, CA, USA

⁶Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany

⁷Research Center Jülich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Jülich, Germany

⁸University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany

⁹Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands

¹⁰Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands

¹¹Department of Nuclear Medicine, University Hospital, LMU Klinikum, Munich, Bavaria, Germany

¹²Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK

OF THE ALZHEIMER'S ASSOCIATION ¹³Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK ¹⁴Mayo Clinic, Jacksonville, FL, USA ¹⁵Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA ¹⁶German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany ¹⁷Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, CT, USA ¹⁸University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany ¹⁹Yale University School of Medicine, New Haven, CT, USA ²⁰Department of Neurology, Yale-New Haven Hospital, New Haven, CT, USA ²¹Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK ²²Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK ²³Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA ²⁴Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA ²⁵Department of Neurology, Mayo Clinic, Rochester, MN, USA ²⁶Department of Neurology, Klinikum der Ludwig-Maximilians Universität München, Munich, Germany ²⁷Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA ²⁸Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA ²⁹Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA ³⁰Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA ³¹Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA ³²Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany ³³Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ³⁴German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ³⁵Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA ³⁶Alzheimer's Disease Research Unit, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA ³⁷Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA ³⁸Department of Psychiatry, University of Cambridge, Cambridge, UK ³⁹Department of Psychiatry and Psychotherapy, Klinikum der Ludwig-Maximilians Universität München, Munich, Germany ⁴⁰Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ⁴¹Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands ⁴²McGill University Research Centre for Studies in Aging, Montreal, QC, Canada ⁴³Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada ⁴⁴Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK ⁴⁵Department of Neurology, University of Leipzig, Leipzig, Germany ⁴⁶Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany ⁴⁷Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ⁴⁸McGill Centre for Studies in Aging, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada ⁴⁹Department of Radiology, Mayo Clinic, Rochester, MN, USA ⁵⁰Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA ⁵¹UK Dementia Research Institute, London, UK ⁵²Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA 53 University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Psychiatry and Neurochemistry, Gothenburg, Sweden ⁵⁴Munich Cluster for Systems Neurology (SyNergy), Munich, Bavaria, Germany

Correspondence

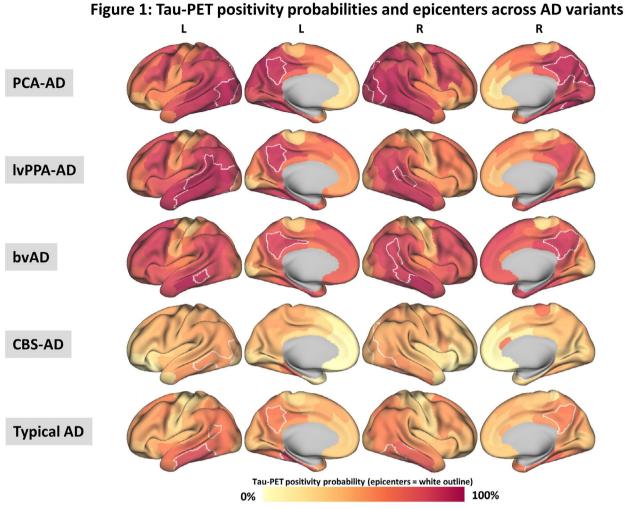
Hannah de Bruin, Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands. Email: h.debruin1@amsterdamumc.nl

Abstract

Background: There is a strong link between tau and progression of Alzheimer's disease (AD), necessitating an understanding of tau spreading mechanisms. Prior research,

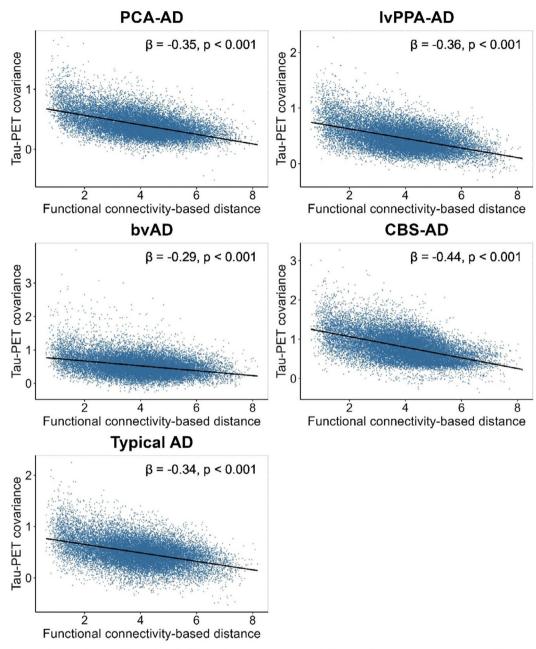
Alzheimer's & Dementia[®] | 3 of 6

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION


predominantly in typical AD, suggested that tau propagates from epicenters (regions with earliest tau) to functionally connected regions. However, given the constrained spatial heterogeneity of tau in typical AD, validating this connectivity-based tau spreading model in AD variants with distinct tau deposition patterns is crucial.

Method: We included 269 amyloid- β -positive (PET/CSF) individuals with clinically diagnosed atypical AD (113 posterior cortical atrophy, PCA-AD; 83 logopenic variant primary progressive aphasia, lvPPA-AD; 33 behavioural variant AD, bvAD; 40 corticobasal syndrome, CBS-AD) and 68 with typical AD from 12 international cohorts, who underwent tau-PET (54% [¹⁸F]AV1451/[¹⁸F]flortaucipir/Tauvid, 27% ^{[18}F]MK6240, 19% ^{[18}F]PI2620). Using Gaussian mixture modeling including amyloid- β -negative controls, cross-sectional tau-PET standardized uptake value ratios within Schaefer-200 atlas regions were transformed to tau positivity probabilities. Tau epicenters were defined as the 5% regions with highest tau positivity probabilities. For each variant, the association between functional connectivity-based distance (using the 30% strongest positive region-to-region connections of a group-average connectivity matrix from ADNI elderly controls) and tau-PET covariance (groupaverage correlation per region pair) was assessed through linear regression, adjusting for age, sex, site, and Euclidean distance. Regions were categorized based on functional proximity to the epicenter (quartiles 1-4) and tau positivity probabilities were assessed accordingly.

Result: Tau positivity probabilities matched clinical variants, with a posterior pattern in PCA-AD, left-hemispheric dominant pattern in IvPPA-AD, widespread pattern in bvAD, sensorimotor cortex involvement in CBS-AD, and temporo-parietal predominance in typical AD (Figure 1). In line with this, tau epicenters were highly heterogeneous across variants (Figure 1). In all variants, greater tau-PET covariance was associated with shorter functional connectivity-based distance (Figure 2). We observed that regions in closer functional proximity to the epicenter exhibited higher tau positivity probabilities than regions functionally further away (p<0.05, Figure 3).


Conclusion: This multi-center study shows that the brain's functional architecture serves as a universal predictor of tau spreading in AD. Since tau is a key driver of neurodegeneration and cognitive decline in AD, this finding holds potential for personalized medicine and defining participant-specific endpoints in clinical trials.

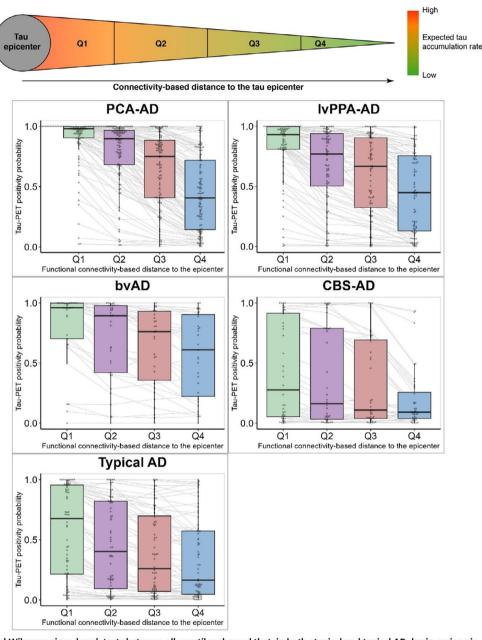

Group-average tau-PET positivity probability mapping showed a posterior tau-PET pattern in PCA-AD, left-hemispheric dominant pattern in lvPPA-AD, widespread pattern in bvAD, lack of sparing of the sensorimotor cortex in CBS-AD, and temporo-parietal predominance in typical AD. Tau epicenters (white outline; only epicenter probabilities ≥20% are shown) generally matched those regions with the highest tau positivity probabilities. Tau epicenters were defined as the 5% regions with highest tau positivity probabilities. Abbreviations: AD = Alzheimer's disease; bvAD = behavioural variant Alzheimer's disease; CBS = corticobasal syndrome; IVPA = logopenic variant primary progressive aphasia; PCA = posterior cortical atrophy; PET = positron emission tomography.

Figure 2: The relationship between functional connectivity and tau-PET covariance in AD

Linear regression analyses showed that, in all AD variants, greater tau-PET covariance was associated with shorter functional connectivity-based distance. Functional connectivity was defined as Fisher z-transformed Pearson correlations between fluctuations in the blood oxygen level-dependent (BOLD) signal of all possible region of interest (ROI) pairs. The 200 x 200 ROI functional connectivity matrix was density thresholded at 30% (i.e., 30% of the strongest positive connections were retained) and transformed to distance (strongly connected regions are 'close', while weakly or indirectly connected regions are 'distant'). Tau-PET covariance was defined as group-average Fisher z-transformed partial correlations between tau positivity probabilities of all possible ROI pairs, while adjusting for age, sex, site, and Euclidean distance. Abbreviations: AD = Alzheimer's disease; bvAD = behavioural variant Alzheimer's disease; CBS = corticobasal syndrome; lvPPA = logopenic variant primary progressive aphasia; PCA = posterior cortical atrophy; PET = positron emission tomography.

Figure 3: Tau-PET positivity probabilities across regions of interest in AD

Paired Wilcoxon signed-rank tests between all quartiles showed that, in both atypical and typical AD, brain regions in closer functional proximity to the epicenter exhibited higher tau-PET positivity probabilities compared to brain regions functionally further away (all comparisons p<0.05). Functional connectivity was defined as Fisher z-transformed Pearson correlations between fluctuations in the blood oxygen level-dependent (BOLD) signal of all possible region of interest (ROI) pairs. The 200 x 200 ROI functional connectivity matrix was density thresholded at 30% (i.e., 30% of the strongest positive connections were retained) and transformed to distance (strongly connected regions are 'close', while weakly or indirectly connected regions are 'distant'). Regions were categorized into quartiles based on functional connectivity-based distance to the epicenter (Q1 = closets, Q4 = furthest). Abbreviations: AD = Alzheimer's disease; bvAD = behavioural variant Alzheimer's disease; CBS = corticobasal syndrome; lvPPA = logopenic variant primary progressive aphasia; PCA = posterior cortical atrophy; PET = positron emission tomography; Q = quartile.