Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Learning the Electrostatic Response of the Electron Density through a Symmetry-Adapted Vector Field Model

MPG-Autoren
/persons/resource/persons21421

Rossi,  M.       
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2501.11019v2.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)

jz5c00165_si_001.pdf
(Ergänzendes Material), 709KB

Zitation

Rossi, M., Rossi, K., Lewis, A. M., Salanne, M., & Grisafi, A. (2025). Learning the Electrostatic Response of the Electron Density through a Symmetry-Adapted Vector Field Model. The Journal of Physical Chemistry Letters, 16(9), 2326-2332. doi:10.1021/acs.jpclett.5c00165.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-7CB0-C
Zusammenfassung
A current challenge in atomistic machine learning is that of efficiently predicting the response of the electron density under electric fields. We address this challenge with symmetry-adapted kernel functions that are specifically derived to account for the rotational symmetry of a three-dimensional vector field. We demonstrate the equivariance of the method on a set of rotated water molecules and show its high efficiency with respect to number of training configurations and features for liquid water and naphthalene crystals. We conclude showcasing applications for relaxed configurations of gold nanoparticles, reproducing the scaling law of the electronic polarizability with size, up to systems with more than 2000 atoms. By deriving a natural extension to equivariant learning models of the electron density, our method provides an accurate and inexpensive strategy to predict the electrostatic response of molecules and materials.