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Abstract

Out of equilibrium biological processes are the key for life. From large
animals to the smallest proteins, life is sustained by a continuous throughput
of free energy. This happens through the exchange of some form of energy
to another. Interestingly, the properties of a broad class of these different
systems can be described by simple models in the language of non-equilibrium
statistical physics.

In this thesis, we focus on the smallest existing machines; these are en-
zymes, molecular motors and microswimmers, which can either be biological
or synthetic. At the simplest level these machines convert chemical energy into
mechanical work. Our goal is to provide a minimal description of molecular
processes and to study the impact of the mechanical degrees of freedom on
the chemical dynamics. We consider both single particle as well as multiple
interacting processes. Our study leads to some new results including mecha-
nisms for the coordination of stochastic dynamics, simple models for designing
bio-inspired systems, inference protocols of non-equilibrium driving forces and
the importance of external forces in the internal dynamics of nano-machines.

We begin with a short introduction to provide some background informa-
tion from statistical and biological physics including some examples and models
from the literature.

We then set out on our journey and first examine the collective dynamics
described by thermally activated identical coupled phase oscillators and es-
tablish a new model of synchronization. This becomes possible via a mobility
matrix that couples the chemical forces of the different processes, referred as
the dissipative coupling.

Following this, we study the effect of the dissipative coupling in the case of
non-identical processes. Strikingly, this leads to topological phase locking and
boosted stochastic dynamics.

Using the same principles, we consider an out-of-equilibrium process of an
enzyme mechanically coupled to a passive molecule, and study the steady-state
dynamics of the whole system and how the non-equilibrium conformational
changes affect the molecule state. We demonstrate that the coupling in this
case is controlled by the geometry of the enzyme which promotes the ther-
modynamically unfavorable state of the passive molecule to become favorable.
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These lead to three golden rules for designing an enzyme.
To model relevant biological processes we need to respect thermodynamics.

To this end, we utilize tools from the literature of stochastic thermodynamics
and suggest a simple way of inferring correlations in non-equilibrium coupled
systems. This is achieved by applying thermodynamic uncertainty relations to
problems of many coupled processes.

We then provide a framework to describe the total entropy production rate
of stochastic microswimmers and we propose an experimental protocol which
allows for the exact inference of the chemical driving force that generates the
active-swimming of the swimmer.

Finally, focusing on the individual processes, we construct a nonlinear re-
sponse theory for molecular machines. We find that their activity changes in
a non-monotonic way when subjected to external forces.

We conclude with a summary, discussion and future perspectives.
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Chapter 1

Introduction

Fundamental questions regarding the origin of life puzzle many scientists around
the globe. In particular, it is spectacular how biological systems operate in
a well defined and self-organized way [1]. Even though this still remains an
open question, there is clear evidence regarding mechanisms that operate life
as it is. From a physics perspective, life consumes energy and is intrinsically
out-of equilibrium [2]. This results in the emergence of new physical phenom-
ena which are of primary interest for various scientific groups from the field of
active matter [3, 4].

For a better insight into the biological phenomena, let us consider some
examples from our everyday lives. For instance, one can easily say that human
beings are good at dancing and in many cases this appears as a form of co-
ordinated motion. Of course, such behavior is possible because humans have
brains. On the microscopic scale, simple microswimmers like bacteria which
do not have brains, are able to self-propel by simply receiving and processing
chemical signals, or in other words to chemotax towards their food [5]. On a
collective level this leads to pattern formation. Another very fascinating ob-
servation is that some micro-organisms exhibit self-organizing or coordinating
features. An evident examples of a mechanism for self-organization in living
cells is liquid-liquid phase-separation [6, 7]. A different example of an out-of
equilibrium phenomenon for self-organization at the sub-cellular level is the
formation of mitotic spindles [8]. Therefore, it is reasonable to ask if at even
smaller scales -at the scale of proteins where diffusion and thermal fluctua-
tions dominate- is it possible to also achieve new emergent dynamics. At those
scales the out-of equilibrium systems are enzymes, which stochastically per-
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form reactions, releasing Gibbs free energy. Can enzymes achieve coordination
or increase their performance?

Biological systems as previously mentioned convert energy into motion.
From a statistical physics perspective it is also interesting to study this mechanochem-
ical interplay and how the work done by a mechanical force might affect the
chemical cycle of an out-of equilibrium process.

In this introduction, we summarize some background information regarding
enzymes, molecular machines and microswimmers, all of which are microscale
non-equilibrium systems. We then discuss stochastic dynamics, the framework
used to describe these systems. We also cover briefly some important tools
from the framework of stochastic thermodynamics. All these are important
and basic ingredients used for the presented work in this thesis.

1.1 Enzymes and molecular motors

Enzymes are the biological catalysts which appear in many biochemical reac-
tions in our body, and also in everyday processes like fermentation. From 20th
century and onward, a theoretical and experimental framework was developed
to understand how enzymes operate. An example of this development is the
work by Michaelis and Menten which relates the enzymatic activity with the
surrounding concentration of substrate, through a simple formula [9]. A fur-
ther contribution is Kramers’ pioneering work which was crucial in developing
a framework for kinetic rate theory [10] which gives a well described picture
on how enzymes work [11, 12, 13, 14].

Fig. 1.1(a) describes a typical schematic of the enzymatic cycle where the
enzyme binds the substrate molecules and after catalysis it releases the prod-
ucts. This cycle occurs more rapidly compared to a cycle without the presence
of the enzyme [15]. The schematic plot in Fig. 1.1(b), shows an energetic free
landscape that drives the reaction. Sometimes, the substrate might sponta-
neously get converted into products (if the reaction is energetically favored).
This happens at some characteristic rate proportional to e−Eba/kBT , with kB

being the Boltzmann constant and T the temperature. This exponential factor
is known as the Arrhenius law, with Eba being the energy barrier or activa-
tion energy (see black dashed line) of the process [16]. In the one-dimensional
picture presented in Fig. 1.1(b), the presence of the enzyme lowers the energy
barrier (solid purple line) and hence, it accelerates the rate of the process.
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Figure 1.1: (a) An illustration of an enzymatic cycle. The free enzyme binds
a substrate molecule and after the catalytic reaction it releases the resulting
products. (b) An example of a potential that drives the reaction coordinate.
The yellow dot represents the initial state of the reaction and green dot the
final state. The energy barrier in between the two states defines a characteristic
time scale for the reaction. The difference in height between the two minima
is related to the difference in the Gibbs free energy released after the reaction.
The presence of an enzyme lowers the energy barrier of the process.

Employing this single coordinate picture, in which thermal-noise activa-
tions cause barrier crossing reactions [13], leads to the Kramers’ rate expres-
sion,

kKr =

√
|λ|λ0kBT

2πγ
exp

(
− Eba

kBT

)
, (1.1)

where γ is the friction coefficient of the reaction, λ and λ0 are constants re-
lated to the second derivative of the free energy landscape. This expression
agrees with the Arrhenius equation exponential factor and also determines its
prefactor.

In biological cells another example of molecular machines are known as
molecular motors. These motors perform reactions through the conversion of
fuel into useful work or a different form of mechanical energy [17, 18]. The most
used molecule in these processes is ATP. Hydrolyzing ATP to ADP releases
energy which is used by the motor for useful work or motion [15]. This process
is known as ATP-hydrolysis [19]. Some classical examples that utilize this
mechanism are myosins and kinesins [17, 20].
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Another example is the ATP Synthase enzyme which consists of different
protein units having the overall characteristic of mini rotor [21]. It catalyzes
ATP from ADP [22, 23] and is found in chloroplasts or mitochondria [24]. In
the biophysics literature numerous models exist to describe the dynamics of
these motors and enzymes, from minimal models [25, 26, 27, 28] to large scale
molecular dynamics simulations [29, 30, 31, 32] to deal with their complex
structure.

1.1.1 Enzyme enhanced diffusion

The idea of describing enzymatic reactions via a cycle that converts substrates
into products is not the end of the story. Enzymes have complicated structures
and might deliver mechanical work and energy. Hence, mechanical properties
of the enzyme have to be considered. One of the important aspects which
is observed experimentally is that enzymes change their conformation during
their catalytic activity [33]. A well established technique for this type of ex-
periments is fluorescent microscopy, which became a powerful tool in studying
the properties of proteins [34]. In recent experimental studies, enhancement in
the spatial diffusion of enzymes was reported during their catalysis [35, 36, 37].

In recent theories, the mechanical properties of the enzyme are included
through a dumbbell like description of the enzyme [38, 39] . In this way the
complicated macromolecular structure is projected into two unequal sub-units.
This picture enables the enzyme to freely change its conformation and it in-
cludes any relevant hydrodynamic fluctuations that might affect its conforma-
tional state. By performing systematic moment expansions and by including an
equilibrium mechanochemical cycle, it can be deduced that the hydrodynamic
fluctuations are reduced during the chemical cycle, leading to enhancement in
diffusion [38, 40].

In what follows, we discuss microswimmers, another form of active matter.

1.2 Microswimmers

In this section, we focus on microswimmers, a topic of interest for physicists,
mathematicians and biologists [41]. Inside our body, we meet some examples
of these systems, e.g sperms and bacteria equipped with different mechanisms
for self-propulsion [42]. For instance, bacteria have rotating flagella, whilst

11



sperms swim by beating their tails [41].

Swimming at low Reynolds number is considered to be difficult since there
is no inertia or the notion of time. Therefore, there needs to be a particular
pattern of motion that the swimmer performs to achieve locomotion. This is
related to the famous Scallop theorem by Purcell which states that a swimmer
with one degree of freedom is not able to swim [43]. Therefore, swimmers need
at least two degrees of freedom, such that a periodic and specific sequence of
moves would enclose an area in the phase-space and cause swimming [44].

Microswimmers or artificially designed nanomotors are of major interest
these days, in particular for drug delivery research [45, 46, 47]. A synthetic ex-
ample of microswimmers are phoretic swimmers which are driven by gradients
of some chemical scalar field that generate interactions with the body surface
[48, 49] causing motion along the chemical gradients [50, 51]. A direct appli-
cation of this are the Janus particles [52] or colloids with surface asymmetries
[53, 54], where the integrated induced slip velocity over the swimmer’s surface
generates the propulsion [55, 56].

A classical model of a microswimmer is the Najafi-Golestanian swimmer,
also known as the three-sphere swimmer [57]. This swimmer is a minimal ex-
ample of locomotion where propulsion arises through the expansion-contraction
of its arms through a simple cyclic sequence of deformations [58].

To illustrate this, we summarize how to construct the equations of motion
of this swimmer. We start from the Oseen tensor which is the Green function
of the incompressible Stokes equation,

η∇2v −∇p = F δ(x) (1.2)

∇ · v = 0 , (1.3)

where v, p are velocity and the pressure of the fluid respectively, F is a point
force and η is the fluid viscosity. The Green function is,

Gij =
1

8πηr

(
δij +

xixj

r2

)
, (1.4)

with xi being the position vector and r2 = xixi assuming Einstein summation
convention [59]. We consider three spheres linked in a straight line whose mo-
tion is controlled by two arms that expand and contract. The axial symmetry
of the problem implies that there are forces only along the body axis which
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causes one-dimensional motion. Fixing the swimming direction to be in the
x-axis, and the spheres to have radius a, the equations of motion take the
form,

ẋα = Kαβfβ , (1.5)

with α, β = 1, 2, 3 the index of each sphere and Kαβ,

Kαβ ≡ δαβ
6πηa

+
1− δαβ

4πη|xα − xβ|
. (1.6)

Here, the first term is the Stokes law on a sphere and the second one is due
to the hydrodynamic interactions. Eq. (1.5) is a velocity-force relation which
connects the forces and Kαβ is a hydrodynamic mobility tensor. We define
x2 − x1 ≡ Lleft and x3 − x2 ≡ Lright, and if we further assume that the left
and right arms expand with some time amplitude variations such that Li =

L(0)+ui(t) with, L(0) being constant, uleft(t) and uleft(t) are some time periodic
functions, then the average velocity of the swimmer is,

⟨ẋi⟩ = Cg⟨u̇rightuleft − u̇lefturight⟩ , (1.7)

with Cg being a geometric factor [60]. This expression highlights what we
mentioned earlier, that the swimming velocity is proportional to the enclosed
area in the phase-space [41, 61]. This simple swimming mechanism has given
the opportunity for further analytical and numerical studies of this swimmer
in different situations and scenarios [62, 63, 64, 65, 64, 66].

So far, we have introduced different systems that can be either biological
or synthetic. Now we move on to explore descriptions of synchronization for
oscillators.

1.3 Models of synchronization

Synchronization is observed and studied long ago with one brilliant example,
the Huygens experiment with the clocks. These days, it has become a very well
understood subject which attracts the attention of people working in the field
of non-linear dynamical systems [67, 68]. A popular model of synchronization
in the literature is the Kuramoto model. [69, 70]. This model describes the
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dynamics of coupled oscillators denoted by θi through a potential and driven
by some constant force. The two-dimensional problem is expressed as,

θ̇1 = ω1 +
K

2
sin(θ2 − θ1) (1.8)

θ̇2 = ω2 +
K

2
sin(θ1 − θ2) , (1.9)

where ωi is a constant driving and K is the coupling strength. The above
equations can be trivially extended to the case of an arbitrary number of N
oscillators. Intuitively, the synchronization arises because there is an alignment
interaction force, and therefore, the oscillators synchronize above a critical Kc.
To demonstrate this, we consider the rotating frame of reference of the system
where ω1 = −ω2 = ω and we define ∆θ ≡ θ1 − θ2. This leads to,

∆θ̇ = 2ω −K sin(∆θ) . (1.10)

For K > Kc = 2ω there is a stable fixed point where the two phases are
locked. For larger number of oscillators, it is more convenient to introduce
an order parameter and work with mean-field descriptions [71]. In addition,
the Kuramoto model has been of major interest in the past because number
of problems are effectively mapped into these dynamics or might effectively
described by similar underlying equations. Some of these are problems of clas-
sical metronomes [72], chemical oscillators [73], time delayed interactions, [74]
density waves [75, 76], semiconductor laser arrays [77, 78], Josephson junctions
[79], noise-activated rotors [80], dynamics of swarms [81] and many others.

In biological systems, synchronization emerges in various systems via differ-
ent mechanisms. These phenomena were experimentally observed in cardiac
cells [82] (by mechanical stimulation), in green algae [83, 84], beating cilia
[85, 86], microorganism flagella [87, 88], sperms [89] (by hydrodynamic cou-
pling) and other relevant theoretical works propose hydrodynamic interactions
as a mediator for synchronization [90, 91, 92, 93, 94]. Thus, it becomes evident
that there is not universal model for synchronization and various mechanisms
might give rise to these coordinated dynamics.

As already discussed in the first section, here we are interested in molecular
size machines, therefore a stochastic description is suitable for these systems
which are affected by thermal fluctuations. The Secs. 1.4-1.5 give a very brief
introduction to methods, equations and theoretical tools that are used from
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non-equilibrium statistical physics literature in the present work.

1.4 Stochastic dynamics

1.4.1 Brownian dynamics

Figure 1.2: A particle undergoing Brownian motion by receiving random kicks
from the surrounding medium at different instances of time.

A classical example of a stochastic process is the dynamics of a Brownian
particle [95, 96, 97]. Consider a particle of mass m inside a fluid at a certain
temperature T . Due to the friction from the surrounding fluid we expect a
damping force to act on the particle which is assumed to be proportional to
its velocity, −γvi, where the subscript index represents a spatial component.
In addition, we assume that the particle receives random forces ξi(t) from the
surrounding medium during its motion. Over time, from symmetry arguments,
the average force would be zero, ⟨ξi(t)⟩ = 0, since it receives this force from any
direction with any magnitude. Here, ⟨...⟩ indicates the average over the noise.
We further assume that the forces at two different instants and along different
directions are uncorrelated, ⟨ξi(t)ξj(t′)⟩ = Cδijδ(t − t′). The factor C is the
force strength and will be determined in what follows. This additional stochas-
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tic force converts the equation to a stochastic differential equation known as
the Langevin equation. We start by writing the underdamped equations of
motion of the particle using the momentum description for the velocity such
that,

ṗi = −γpi/m+ ξi (1.11)

ẋi = pi/m , (1.12)

where vi = pi/m and xi is the position of the particle. We can predict the
average behavior of the particle, by integrating over time and calculating the
equal time correlator of ⟨p2/m⟩ (p2 = pipi assuming summation convention).
We find that,

〈
p2

m

〉
= e−2γt/m

〈
p2(0)

m

〉
+

Cd

2γ
(1− e−2γt/m) , (1.13)

where d is the number of dimensions of the system. In the long time limit,
and using equipartition theorem, we find that C = kBTγ with kB being the
Boltzmann constant, T the temperature.

If the particle starts from the origin, due to its random motion it is expected
that the average displacement of the particle will be zero. A non-zero quantity
of interest is the mean-square displacement of the particle. By integrating and
taking the long time limit one finds that,

lim
t→∞

⟨(xi − ⟨xi⟩)2⟩ ≡ 2Dt , (1.14)

where we define the diffusion coefficient of the random walk to be D. This
leads to the famous Einstein relation,

D =
kBT

γ
= µkBT . (1.15)

In the second equality in Eq. (1.15), we define the particle mobility µ ≡ γ−1.
The Einstein relation is a special case of the fluctuation-dissipation theorem
[98] and it demonstrates the connections between the particle mobility (or its
size) and the thermal fluctuations are linked with its diffusion. As an example a
Janus colloid (see Sec. 1.2) is much larger than the surrounding solute particles,
hence, by employing the Einstein relation (in combination with Stokes’ law)
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one can assume that the diffusion of the solute particles is much faster than
the dynamics of the colloid [52].

In the limit of m/γ → 0 where the viscous forces dominate over the inertial
forces, we can neglect the inertial contributions and obtain the overdamped
version of the equations. A typical example of overdamped Langevin equations
in active matter is active Brownian particles (ABPs), where the particles are
assumed to have a constant self-propulsion speed and random orientational
dynamics [99, 100].

The equivalent description of an overdamped Langevin equation is a Fokker-
Planck equation which is a partial differential equation of the probability distri-
bution that describes the stochastic dynamics of the system. In what follows,
we focus on the dynamics in the overdamped limit since such description is
more suitable for describing stochastic dynamics at small scales, due to the
large viscous forces.

1.4.2 Overdamped Langevin and Fokker-Planck equations

We have seen the passive stochastic dynamics of a particle inside a fluid
medium that is subjected to stochastic forces. Now, we would like to add more
ingredients to the mathematical description inspired by biological systems, and
consider the dynamics of a bacterium near a solid surface. Experiments were
performed using E. Coli bacteria which show that these micro organisms per-
form circular motion near a wall [101]. This behaviour has also been explained
theoretically [102].

As a first step, we consider the friction forces of this problem in the un-
derdamped picture. Because E. Coli bacteria have elongated shape the fric-
tion forces will be unequal along different axes of the swimmer, which leads
to anisotropic friction. To describe this effect we are going to use the fric-
tion tensor Γij. In the case of a Brownian particle in Sec. 1.4.1, Γij = γδij.
Furthermore, the hydrodynamic interactions of the swimmer with the wall in-
duces some off-diagonal forces and torques which imply that Γij will also have
off-diagonal components. Another aspect which might be present are inhomo-
geneities in the fluid or viscosity gradients that surround the microswimmer
[103, 104]. Conceptually, this implies that at different regions the swimmer
might experience different frictional forces, which results in a spatially depen-
dent friction tensor Γij(xk). Notice that here we focus for simplicity on the
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translational dynamics of the swimmer but it is also possible to include the
rotational dynamics of the swimmer. In that case, the generic friction tensor is
known as the resistance tensor in hydrodynamics and it includes all the possi-
ble couplings of force/torques with translational/angular velocities [41, 44, 59].
Therefore, a suggested description of the underdamped translational dynamics
is,

ṗi = Fi − Γijpj/m (1.16)

ẋi = pi/m , (1.17)

where Fi models the self-propelled force that generates the swimming and
possible other forces from potentials. However, in this regime it is safe to use
the overdamped description since at low Reynolds number the inertial forces
are negligible. Therefore, in this limit an overdamped description is more
suitable and convenient given by,

ẋi = Mij(xk)Fj + ξi , (1.18)

where Mij(xk) ≡ Γ−1
ij (xk) is the mobility tensor of the dynamics, and ξi is the

noise [97]. The mobility tensor is a generalization of the scalar µ in Eq. (1.15).
Here in the deterministic part of the equation, we see another type of a force
velocity relation similar to what is discussed in Sec. 1.2. We now describe the

Figure 1.3: (a) A bacterium near a solid surface inside a fluid with inhomo-
geneous fluid density which self-propels due to the rotation of its head and
helical shape flagellum. (b) The emerging hydrodynamic interaction causes
the bacterium to move in circles.

noise. For example, if the bacterium’s flagellum stop rotating the bacterium
will exhibit a diffusive motion due to the random forces from the medium.
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As already demonstrated the Einstein relation relates the diffusion with the
particle’s mobility. This must be taken into account in the noise strength. In
particular, the spatial dependence of the mobility needs to be treated care-
fully to include the spatial dependencies in the noise-strength. The complete
overdamped Langevin equation for the Eq. (1.18) in the Ito interpretation is,

ẋi = MijFj + kBT∂jMij +
√

2kBTΣijξj , (1.19)

where ⟨ξi⟩ = 0 and ⟨ξiξj⟩ = δijδ(t−t′) [105]. This equation falls in the category
of Langevin equations with multiplicative noise and this is due to the space
dependence of Mij(xk). The first term in Eq. (1.19) is the deterministic part
and a velocity-force relation via the mobility tensor. The last term in the
equation above is the term related to the thermal noise where the tensor Σij

satisfies ΣikΣjk = Mij. The second term is known as the spurious drift term
and is required (in Ito’s convention) for the Langevin equation in combination
with the third term to respect the fluctuation-dissipation theorem and give
consistent thermodynamics [106]. In the case that the mobility is constant the
spurious drift term vanishes.

Another example of multiplicative noise is the stochastic version of the
three-sphere swimmer model (see Kαβ Eq. (1.5)), where due to the expan-
sion/contraction of the arms the mobility of the swimmer continuously changes
and in the presence of fluctuation this will give rise to multiplicative noise
[66, 107].

Solving the stochastic equations of motion for different trajectories (noise
realizations) and initial conditions allows us to obtain statistics of relevant ob-
servables of the system and construct probability distributions. Such a prob-
ability distribution, denoted as P (xi, t), is expected to evolve in time and
space and to describe the same stochastic dynamics as the Langevin one. This
leads to the classical equation known as the Fokker-Planck equation which for
Eq. (1.19) corresponds to [97, 105],

∂tP = ∂i [Mij (kBT∂jP − FjP )] . (1.20)

The term inside the square brackets is equal to the negative value of the prob-
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ability current Ji defined as,

Ji = Mij (FjP − kBT∂jP ) . (1.21)

It is worth noting that in Eq. (1.20) the mobility tensor in the probability
current is factored out, thus, in the absence of any non-equilibrium driving
(when then dynamics are governed by an equilibrium potential i.e. Fi = −∂iU),
at the stationary state, one recovers Boltzmann equilibrium. This happens
independently of the form of the friction and by solving the case Ji = 0 we
find

Peq ∝ exp

(
− U

kBT

)
, (1.22)

which is the standard Boltzmann weight.

1.4.3 Discrete Markov processes

A different framework for studying the evolution of stochastic dynamics is
through discrete Markov processes [97, 108]. Markov processes are processes
where the probability of an event depends only on the previous state, i.e.
there is no memory in the evolution of the dynamics of the system. This is
also the case for the Langevin dynamics. In this formalism, we assume that
the system can be found in a discrete state i from a set of possible states with
some probability Pi. As the time evolves, the system will explore other states,
through kinetic transitions from the state i → j. This implies that the rate
of change of the probabilities can be described by a linear system of equations
known as the master equation which is given by,

dPi

dt
=
∑

j

kijPj , (1.23)

where kji is the rate jumping from i to j with the conservation of prob-
ability constraint being

∑
i Pi = 1 (demanding conservation of probability

kjj = −∑i kij) [108]. To demonstrate the relation of these transition rates
with a physical picture, one can consider the Kramer potential in Fig. 1.1(b)
and map that problem into a discrete one. The left and right minima might be
assumed to be two discrete states where the system can jump between them
through the kinetic rates. Using the Kramer rate expression in Eq. (1.1) one
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might link the rates with that energy landscape. Notice that for the backward
rate the energy barrier is effectively higher because the right minimum is at
lower energy level. Therefore, without going to further mathematical details,
it is expected at the long time limits to find the process on the right side of
the potential since the escape times are higher.

Figure 1.4: An infinite lattice of discrete states. The orange circle represents
a particle hopping towards the right with probability rate k+ and to the left
with some probability rate k−.

Another way to demonstrate a connection with overdamped Langevin dy-
namics is by considering a particle hopping in an one-dimensional lattice model.
This might be a very simple model for a molecular motor stepping with di-
rected motion [27, 109]. The particle at every position has a transition rate
k+ (k−) to jump towards the right (left) direction. Therefore, if the particle
is located at the ith position there is an inward and outward probability flux
from the left and the right which by using master equation is expressed as,

dPi

dt
=
∑

i

k+(Pi−1 − Pi) + k−(Pi+1 − Pi) . (1.24)

By assuming that the lattice has infinitely many states, a continuum limit
assumption holds such that the probability Pi(t) → P (x, t). This allows us to
Taylor expand for Pi+1 as,

Pi+1(t) = P (x+∆x, t) = P (x, t) + ∆x∂xP (x, t) +
∆x2

2
∂2
xP (x, t) +O(∆x3) ,

(1.25)

and similarly for Pi−1. ∆x is defined as the space between the sites. Substitut-
ing back into Eq. (1.24) we get the one dimensional Fokker-Planck equation,

∂tP = −∂x(vP −D∂xP ) , (1.26)

21



with,

v ≡ (k+ − k−)∆x (1.27)

D ≡ (k+ + k−)
∆x2

2
. (1.28)

The parameter v is the non-equilibrium drift velocity and D is the diffusion
coefficient of the process. This shows an effective connection between the
discrete and continuous picture. To complete the stochastic descriptions we
need to include thermodynamics in the picture.

1.5 Stochastic thermodynamics

1.5.1 Entropy production rate

In the 18th century, the first steam engines inspired physicists of those times
to create what today we call classical thermodynamics. In a similar way, for
microscopic non-equilibrium systems we need a framework to quantify the mea-
sure of dissipation and irreversibility. First, we revisit the stochastic version
of the first law of thermodynamics related to the trajectory of a particle which
states that,

d̄w = d̄q + dU , (1.29)

where U(xi, λ) is the internal energy which depends on space and on a time-
dependent control parameter λ such that dU = −∂iUdxi + ∂λUdλ [106]. xi

represents the stochastic trajectory of a process. When the particle is subject
to an external driving force Fi then the heat dissipated into the medium is
d̄q = Fidxi = F neq

i dxi − ∂iUdxi. Therefore, by integrating, the work increment
splits into two contributions,

w(t) = q(t) + U(λ(t))− U(λ(0)) , (1.30)

where we identify the dissipated heat in the medium as,

q[xi(t)] =

∫ t

0

dτẋi ◦ Fi . (1.31)
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This is a trajectory dependent quantity and the ◦ is to emphasize that for the
inner product Stratonovitch product is assumed [110].

Perhaps a more mathematical way to construct the definition of heat dissi-
pation is through path integral probabilities. Non-equilibrium systems break
time-reversal symmetry, therefore, the path probability of a trajectory going
forward in time has a different weight from the one that goes backward. This
probability is defined as P [(xi(t)] ∝ e−S where by using a Martin-Siggia-Rose
treatment for the path integrals and without going into derivation details, the
Onsager-Machlup action S is [111],

S[xi(τ)] =

∫ t

0

dτ

[
(ẋi −MijFj) (4D)−1

ik (ẋk −MkℓFℓ) +
1

2
∂iMijFj

]
, (1.32)

with Dij = MijkBT satisfying the Einstein relation. In the time reverse tra-
jectories x̃i(τ) = xi(t− τ) the velocities flip sign and thus,

q[xi(t)] = kBT ln

(Pforw

Pback

)
=

∫ t

0

dτ ẋiFi , (1.33)

as in Eq. (1.31) the product is odd in time reverse transformation [106].

The rate of of heat dissipation inside the medium will increase the entropy
where the corresponding contribution is defined as T ṡmed ≡ q̇ = ẋiFi. The
other contribution to the entropy comes from the Gibbs entropy S,

S = −kB

∫
ddxP (xi, t) lnP (xi, t) . (1.34)

In stochastic thermodynamics, a quantity of interest is the total average en-
tropy production rate (EPR). Combining the two contributions leads to Ṡtot(t) =

Ṡmed+Ṡ, with Ṡmed = ⟨ṡmed⟩. After algebraic manipulations this leads to [110],

T Ṡtot(t) = kBT

∫
ddx

Ji(xk, t)(D(xi)
−1)ijJj(xk, t)

P (xk, t)
, (1.35)

with Ji being the probability current defined by Eq. (1.21). It is worth em-
phasizing that the bilinear structure of the entropy production in combina-
tion with the positive definite Dij imply that the entropy production is non-
negative which manifests the second law of thermodynamics [112]. At the
non-equilibrium steady state, where ∂tPss(xk) = 0, the contribution from Ṡ

vanishes and hence, only the heat dissipation contributes towards the entropy
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production rate. As a result, the combination of Eqs. (1.21) and (1.35) leads
to the EPR at the steady state T σ̇,

T σ̇ =

∫
ddxJ ss

i F
neq
i , (1.36)

where J ss
i stands for the steady-state current. Notice that the force from the

potential U becomes a boundary term after integration and vanishes. This
expression highlights that any contribution in the EPR is a product between
currents and corresponding non-equilibrium forces which disappear when the
drivings become zero.

1.5.2 Local detailed balance

Figure 1.5: Two examples of discrete lattice networks. (a) A unicyclic network
with three states, where J is the steady state current and ε the non-equilibrium
affinity. (b) A network of four states and two cycles with different currents
and affinities.

The consistent thermodynamic description in the discrete case arises via
a relation between the kinetic rates kij. In particular, the ratio between the
forward and backward rates during the transition i → j needs to satisfy,

kji
kij

= exp (∆σji/kB) , (1.37)

with ∆σji being the total dissipation of the system during that transition. This
this is known as the local-detailed balance condition [106] and typically has
two contributions, the chemical energy εji which is the energy dissipated for
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the process to happen and the mechanical one which is related to some work
done Wji by an external force [113]. Then by starting from Eq. (1.23), one can
deduce that the entropy production rate at the steady-state for the discrete
dynamics is,

T σ̇ =
kBT

2

∑

i,j

(kijP
ss
j − kjiP

ss
i ) ln

kji
kij

, (1.38)

where P ss
i is the probability of finding the system in the ith state at the sta-

tionary state [114]. We define the affinity of a cycle a as,

T∆σa = kBT
∑

{ij}
ln

ka
ji

ka
ij

, (1.39)

where ka
ji (ka

ij) are the forward (backward) rates of cycle a [115]. In Fig. 1.5, we
include two simple examples of cyclic networks, which might minimally model
biomolecular processes [26, 27, 116]. For example in the triangular unicyclic
network in Fig. 1.5(a), the affinity is, ε = ln kCBkBAkAC

kBCkCAkAB
. Solving the master

equation gives the steady-state velocity current J = P ss
B kBA − P ss

A kAB [117].
In a similar way, for the network with four states in Fig. 1.5(b), the affinities
are ε1 = ln kDBkBAkAD

kBDkDAkAB
and ε2 = ln kBDkCBkDC

kBCkCDkDB
, with J1 = P ss

B kBA − P ss
A kAB and

J2 = P ss
C kCB − P ss

B kBC . The EPR of the network with two cycles is the sum
of the energy dissipated by the two and thus, T σ̇ = J1ε1 + J2ε2, agreeing as
expected with Eq. (1.38). More generically, the expression at steady-state for
the EPR reduces to [115],

T σ̇ =
∑

i

Jiεi , (1.40)

which is equivalent to the continuous description.

1.5.3 Thermodynamic uncertainty relation

In Sec. 1.4.3, we introduced a simple model of a particle hopping on an infinite
lattice. However, that model is not complete in the thermodynamic sense
since the transition rates are arbitrary at the moment. If we imagine that the
particle is related to some realistic process then every time that it performs
a step, it must consume some energy ε. The local-detailed balance condition
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implies that,

ε = kBT ln

(
k+
k−

)
, (1.41)

which is the affinity of the process. The velocity of the process, or the average
current which we denote as v = J = k+ − k− (where we assume ∆x = 1),
and the diffusion coefficient is 2D = k+ + k−. Intuitively, the rate of energy
dissipation is the product between the velocity current J and the affinity ε and
thus, T σ̇ = Jε as in the case of the unicyclic network. Notice also that if the
rates are equal then the affinity ε = 0. At the same time the non-equilibrium
current J vanishes, and the system recovers equilibrium.

We would like to define a dimensionless precision quality factor that mea-
sures the trade-off between the precision of the stochastic current J and the
dissipation of the system. One possible choice is the following [118],

Q ≡ kBJ
2

Dσ̇
, (1.42)

where applying this to the hopping problem we get,

Q =
2kBT

ε
tanh

ε

2kBT
≤ 1 . (1.43)

This inequality holds for any values of ε/kBT and it is saturated at ε → 0.
The quality factor Q was conjectured to be bounded from above by one for
any discrete stochastic system independent of its topology, and some time later
this was mathematically proven to be correct and also extended to overdamped
Langevin equations. This is known as the thermodynamic uncertainty relation
(TUR) [118] a very powerful inequality of stochastic thermodynamics, analo-
gous to the Heisenberg uncertainty principle in quantum mechanics. Following
this work, different approaches were employed to prove [119, 120, 121] this in-
equality. Moreover, TUR has inspired studies for numerous other uncertainty
relations in stochastic thermodynamics [122, 123, 124, 125, 126, 127, 128].
A direct generalization of the single TUR, is a multidimensional version of
it which includes multiple currents of the non-equilibrium system and their
correlation, the multidimensional TUR (MTUR) [129] which is given by,

Ji(D)−1
ij Jj ≤

σ̇

kB
, (1.44)
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with Dij being the correlation matrix at the steady state with its diagonal
components to correspond to the diffusion coefficients of each current and the
off-diagonal ones are the steady state correlations between the ith and jth
currents of the dynamics. This inequality is useful in systems in which there
are couplings between the non-equilibrium currents.

1.6 Cooperation between coupled enzymes

In Sec. 1.1.1 we have discussed a minimal description of enzymes using a dumb-
bell like shape. Here, an important ingredient is added to that picture related
to the fact that enzymes are out of equilibrium. To include this feature, a
phase coordinate ϕ is introduced which describes the internal state of the en-
zyme during a chemical reaction. The potential that describes the dynamics

(a)
(d)

(b)

(c)

Figure 1.6: Examples of mechanical interactions: (a) Two enzymes bound
to each other forming a complex. Each enzyme has elongation Lα and ex-
periences an internal force fα. (b) Two enzymes interact with each other
hydrodynamically through the surrounding viscous fluid medium. (c) Two en-
zymes embedded in a lipid membrane interact elastically. (d) The catalytic
cycle of each enzyme is represented by a phase ϕα evolving in a biased free
energy landscape V (ϕα) (solid blue). The enzyme elongation Lα tries to adapt
to a phase-dependent rest length L(ϕα) (dotted red). Reprinted with permis-
sion from “Synchronization and enhanced catalysis of mechanically coupled en-
zymes.”, Jaime Agudo-Canalejo, Tunrayo Adeleke-Larodo, Pierre Illien, Ramin
Golestanian, Physical Review Letters, 127, 208103. Copyright 2021 American
Physical Society [130].
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of an enzyme of length L with internal coordinate ϕ is given by,

U(L, ϕ) =
k

2
(L− L(ϕ))2 + V (ϕ) , (1.45)

where k is the spring constant, L(ϕ) is the preferential length of the enzyme
and V (ϕ) is the non-equilibrium potential of the chemical dynamics [130].
A possible choice for V (ϕ) is the washboard potential, denoted as V (ϕ) =

−Fϕ − v cos(ϕ + δ), with F being the chemical driving force and δ is an
arbitrary phase factor (see Fig 1.6(d)). A cycle corresponds to the phase
advancing by 2π and corresponds to a chemical reaction. F is related to
the difference in Gibbs free energy consumed after a complete cycle which is
denoted by E∗. The preferential length has ϕ dependence which is responsible
for the conformational changes induced by the chemical reaction. In addition,
the function form of L(ϕ) must be periodic.

The question is the following; what would happen if one enzyme gets at-
tached to another forming a complex (Fig. 1.6(a))? How will the conforma-
tional changes of one affect the chemical dynamics of the other and vice-versa?
To answer this question first we write the equations of motion for the lengths
and the chemical cyclic coordinates. Considering the overdamped scenario the
equations are,

L̇α = µ(fα + hfβ) (1.46)

ϕ̇α = −µϕ[−k(Lα − L(ϕα))L
′(ϕα) + V ′(ϕα)] , (1.47)

where α = 1, 2, µ is hydrodynamic mobility, µϕ is the chemical mobility and
fα = −∂LαU . Then, assuming the enzymes are stiff (k ≫ 1) allows us to
project to slow dynamics which are the internal coordinates. In particular, the
dynamics of the two phases become coupled through the following relation (in
Ito convention),

ϕ̇α = Mαβ (−∂βV ) + kBT∂βMαβ +
√

2kBTΣαβξβ , (1.48)

with, Mαβ being the mobility matrix that couples the forces ∂βV . In the third
term ξβ is the white noise with ⟨ξβ⟩ = 0 and ⟨ξα(t)ξβ(t′) = δαβδ(t− t′). Σαβ is
the principal square root of the mobility matrix Mαβ such that ΣαγΣβγ = Mαβ.
These terms are similar to what have been introduced in Eq. (1.19). However,
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here the subscripts indicate the enzymes whereas in the previous example they
were vector indices.

Importantly, Mαβ has non-zero off-diagonal components which depend on
the geometry of the enzyme. In the special case in which the enzymes have
negligible conformational oscillation, they do not affect each other mechani-
cally and hence, the off-diagonal terms vanish. This implies that the chemical
dynamics of the enzymes become uncoupled. In the case where the off-diagonal
mobility terms are non-zero, surprisingly, not only synchronization in the phase
dynamics, but also enhancement in the activity of the enzymes is observed
[130].

This behaviour is understood by focusing on the deterministic dynamics us-
ing phase-portraits. By varying the off-diagonal coupling strength the dynam-
ics exhibit a novel global bifurcation. This bifurcation leads to the formation
of periodic band which is a region with trajectories that do not reach the fixed
point. When the noise is present, it eventually kicks the system into this band
which leads to running trajectories and therefore, to a synchronization and
increase in the speed of the reactions [130]. An enhancement in the activity of
enzymes is observed experimentally when enzymes form oligomeric structures.
Importantly, this is a new model of synchronization since the coupling in this
case comes from the mobility matrix. The physical reason is the formation of
the complex and the conformational changes of the enzymes. This leads to the
distinct difference with the Kuramoto model where the coupling arises from
the forces (i.e. sin(θ1 − θ2)). In principle, Eq. (1.48) has a generic structure
and it can be applicable to other problems of coupled processes.

1.7 Outline

In this introductory chapter, we have explored various topics and simple exam-
ples related to biological and statistical physics. After defining and presenting
different notions and ideas, we reached a minimal model of coupled enzymes
exhibiting synchronization and enhancement in the catalytic activity. These
concepts can be viewed as the starting point and the main ingredients that we
use for what follows in this thesis.

Chapter 2 of this work deals with a generalization from two coupled pro-
cesses to an arbitrary number. This is a natural extension of Eq. (1.48).
As a first step, we consider that the phase oscillators ϕα are coupled via an
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all-to-all constant coupling, which gives a mean-field realization of the prob-
lem. Through this work we have shown that indeed the mean-field description
leads to collective synchronization. By performing numerical integration of
the stochastic differential equations, this becomes evident especially at low
number of oscillators and high off-diagonal coupling. At the limit of a large
number of processes, the situation changes and the collective dynamics reach
a deterministic behavior. We explain these simulation results through a mean-
field theory which exhibits a great agreement with the numerics. Using the
TUR we calculate the performance factor of the system which increases in the
deterministic phase.

In Chapter 3, we focus on the scenario of two processes but with different
energetic landscapes. The simplest way to establish this asymmetry is by
varying the Gibbs free energy consumed by each enzyme after each reaction.
In this work we use the same type of dissipative coupling. It can be shown
that, this serves as a minimal model of two mechanically or hydrodynamically
coupled interacting rotors. The dynamics in this work exhibit a rich structure
and a hierarchy of bifurcations takes place. The phase-oscillators now undergo
phase-locked multi-steps, and at certain regions in the parameter space there is
the appearance of topological phase-locked states. States are called topological
phase-locked states, where there is an emergence of periodic asymmetric bands
that do not reach the fixed points of the dynamics. As confirmed by stochastic
simulations, it leads to enhancement in speed and diffusion of the coupled
processes.

Another class of coupled processes that we consider is when one is driven
but the other is passive. In Chapter 4 we introduce a model to describe a
catalyzed chemical reaction. In this work, we show that a non-equilibrium
process can cause an energetically unfavorable process to become favorable
through the dissipative coupling. This is demonstrated directly through the
example of an enzyme that binds to a molecule.

Then, we consider applications of the thermodynamic uncertainty relations
in problems of coupled non-equilibrium processes. In Chapter 5, we focus on
examples of coupled oscillators, models of gears, and coupled discrete net-
works where we propose a protocol on how one can experimentally infer the
correlations between processes through a measurement of a single process.

In Chapter 6, we introduce a thermodynamically consistent framework for
stochastic microswimmers. By distinguishing the active swimming mechanism
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and the mechanical external forces exerted on the swimmer, the swimming
velocity and the structure of its total dissipation is determined. We employ
this framework on a stochastic version of the three-sphere swimmer (introduced
in Sec. 1.2) which allows us to tract the problem analytically. This exact
description reveals the importance of the mechanochemical coupling far from
equilibrium. Furthermore, by utilizing the MTUR on the spatial and chemical
currents of the swimmer we propose an experimental strategy for inference of
the chemical driving force of the stochastic swimmers.

The mechanistic descriptions of the nano-machines introduced in the previ-
ous chapters in combination with the effect of external applied forces on them
is studied in Chapter 7 where a nonlinear response framework for these molec-
ular machines is developed. It is shown that the speed and the diffusion of
the processes exhibit a non monotonic behavior with the external mechanical
force.
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Chapter 2

Collective synchronization of
dissipatively-coupled
noise-activated processes

This chapter is reproduced from M Chatzittofi et al 2023 New J.
Phys. 25 093014 [131]. In this article, I contributed in designing
the research and the numerical code in Julia for integrating the
Langevin equations of motion. I have performed numerical, and
analytical calculations, contributed in the analysis of the results
and in writing/editing the paper.
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Abstract

We study the stochastic dynamics of an arbitrary number of noise-activated cyclic processes, or

oscillators, that are all coupled to each other via a dissipative coupling. The N coupled oscillators

are described by N phase coordinates driven in a tilted washboard potential. At low N and strong

coupling, we find synchronization as well as an enhancement in the average speed of the oscillators.

In the large N regime, we show that the collective dynamics can be described through a mean-field

theory, which predicts a great enhancement in the average speed. In fact, beyond a critical value of

the coupling strength, noise activation becomes irrelevant and the dynamics switch to an effectively

deterministic ‘running’ mode. Finally, we study the stochastic thermodynamics of the coupled

oscillators, in particular their performance with regards to the thermodynamic uncertainty

relation.

1. Introduction

A system of driven, nonlinear coupled oscillators is nontrivial and can quickly lead to complex and

unexpected situations when these oscillators synchronize, like in the famous case of the Millennium bridge

[1]. Generic features of synchronization have been widely studied using minimal models such as the

Kuramoto model [2–5]. Networks of such oscillators give rise to fascinating phenomena such as states

displaying coexistence of synchronization and incoherence, known as chimera states [6].

In biological systems, at the microscopic scale, the interactions are usually mediated by a viscous

medium. For instance, hydrodynamic interactions can cause beating cilia or flagella to become synchronised

[7, 8] displaying emergent phenomena such as metachronal waves [9]. At an even smaller scale, on the scale

of enzymes and molecular motors, many relevant processes are stochastic and thermally-activated: thermal

noise is required to push the system over free energy barriers, e.g. during chemical reactions inside enzymes

or during the mechanical steps of molecular motors. These cyclic processes convert chemical energy into

mechanical energy and heat [10–12].

Enzymes and other catalytically active particles can self-organize in space thanks to the gradients

generated by their nonequilibrium chemical activity [13, 14]. Additionally, the catalytic activity of the

enzymes may be associated to conformational changes or oscillations in the enzyme shape [15, 16]. The

effect of such conformational changes on the spatial dynamics and the rheology of enzyme-rich solutions has

been a topic of great recent interest [17–20]. In this context, a new mechanism for synchronization between

two enzymes was recently reported, for enzymes that undergo conformational changes during their

noise-activated catalytic steps, and which are coupled to each other through a viscous medium [21]. The

model for coupled phase dynamics that emerges after coarse graining the microscopic degrees of freedom in

this system has some very peculiar features and emergent properties that are entirely different from those in

conventional models for synchronization such as the Kuramoto model. In particular, interactions between

phases are dissipative, in the sense that they are mediated not by interaction potentials but rather by the
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Figure 1. (a) Enzymes densely clustered in a biomolecular condensate can mechanically interact with each other. (b) Network
illustrating the ‘all-to-all’ interactions between the coupled oscillators considered here. (c) Each stochastic step corresponds to the
phase ϕ advancing by 2π in a tilted washboard potential, which involves a noise-activated barrier crossing event.

mobility tensor (inverse to a friction tensor) that couples forces to velocities in the system. The same mobility

tensor determines the stochastic noise in the system through the fluctuation-dissipation relation, making the

model thermodynamically-consistent. Additionally, the transition to synchronization with increasing

coupling was found to be due to a global bifurcation in the underlying dynamical system, defined on the

torus.

Inspired by these observations on the behavior of two coupled enzymes, here we generalize the model to

a system composed of an arbitrary number of stochastic oscillators, which interact with each other through a

constant coupling of the dissipative kind. This could for example represent the interactions between enzymes

in an enzyme-rich biomolecular condensate or metabolon [22, 23], see figure 1(a); but also any generic

collection of noise-activated processes that are dissipatively coupled to each other. For simplicity, and in the

spirit of minimal models of synchronization such as the original Kuramoto model [2], we neglect the spatial

structure and consider that each phase coupled with all other phases with equal strength, see figure 1(b). The

individual dynamics of each process is governed by a tilted washboard potential, see figure 1(c). The resulting

equations are rather generic and thus may find application as minimal models of not only catalytic processes

but also other excitable systems [24], such as Josephson junctions [25–28] or firing neurons [29–31].

Because the model studied here is thermodynamically-consistent, it allows us to examine detailed

features of its thermodynamic performance. A theoretical framework to understand the thermodynamics of

fluctuating systems has been developed in recent years [32]. Of particular interest is a bound on the precision

achievable by driven processes, determined by their entropy production, or equivalently their heat

dissipation, known as the thermodynamic uncertainty relation (TUR) [33, 34]. There is a growing interest in

understanding how synchronization affects such thermodynamic measures of precision or efficiency, with

applications to e.g. beating cilia [35], generic Kuramoto oscillators [36], or molecular clocks [37].

The paper is organized as follows. We begin by presenting the model of dissipatively coupled oscillators

in its most general form, followed by its particularization to the minimal model studied here of N identical

oscillators with global (all-to-all) coupling. We then present the results of stochastic simulations for small

and large numbers of oscillators. Next, we focus on the large N limit, for which we show that the dynamics

can be well understood using a mean-field theory. Finally, we study the stochastic thermodynamics of

precision in the presence of coupling in our system.

2. Model

2.1. Dissipative coupling

We consider stochastic cyclic processes (oscillators) that are coupled to each other not through interaction

forces, but through a mobility tensor that has nonzero off-diagonal components. That is, we will consider

phases ϕα with α= 1, . . . ,N which evolve according to the coupled overdamped Langevin equations

ϕ̇α =−Mαβ∂βU+ kBTΣαν∂βΣβν +
√

2kBTΣαβξβ (1)

where ∂β ≡ ∂
∂ϕβ

, the Einstein summation convention for repeated indices is used, and the stochastic

equation is to be interpreted in the Stratonovich sense. Here, the first term represents the deterministic

velocity of the phases. The mobility tensor Mαβ(ϕ1, . . . ,ϕN) can in principle be phase-dependent. For the

dynamics to be thermodynamically consistent, this mobility tensor must be symmetric and positive definite

[38, 39]. Because there are no interaction forces between the phases, the potential U is separable and may be
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written as U(ϕ1, . . . ,ϕN) = V1(ϕ1)+ . . .+VN(ϕN). The third term represents the noise where, in order to

satisfy the fluctuation-dissipation relation, Σ is the square root of the mobility tensor defined via

Mαβ = ΣανΣβν , and ξβ is unit white noise such that ⟨ξβ(t)⟩= 0 and ⟨ξα(t)ξβ(t ′)⟩= δαβδ(t− t ′). This

structure necessarily introduces correlations between the noise experienced by different oscillators. The

second term represents a spurious drift term that is only present when the noise is multiplicative, i.e. when

the mobility tensor is phase-dependent.

The stochastic dynamics given by (1) may equivalently be written in the Fokker-Planck representation for

the evolution of the probability distribution P(ϕ1, . . . ,ϕN; t) as

∂tP = ∂α {Mαβ [kBT∂βP+(∂βU)P]} , (2)

which highlights that, when the choice of potential allows it, the system will relax to a steady state

corresponding to thermodynamic equilibrium such that we recover the Boltzmann distribution

P(ϕ1, . . . ,ϕN)∝ exp[−U(ϕ1, . . . ,ϕN)/kBT], independently of the choice of mobility tensor Mαβ . In fact,

because the potential U is separable, we may write P(ϕ1, . . . ,ϕN) =
∏N

α=1 Pα(ϕα), with each phase

independently satisfying the Boltzmann distribution Pα(ϕα)∝ exp[−Vα(ϕα)/kBT].

Importantly, when the choice of potential does not allow thermodynamic equilibrium, as in driven but

periodic systems such as the ones that we will consider in the following, the system relaxes to a

nonequilibrium steady state which (i) does depend on the choice of the mobility tensor Mαβ and therefore

on the strength of the coupling between oscillators determined by its off-diagonal components; and (ii) is no

longer separable, so that there are correlations between the different phases.

A coupling of the form given by (1) or equivalently (2) arises naturally in processes that are coupled to

each other through mechanical interactions at the nano- and microscale, as these are mediated by viscous,

overdamped fields described by low Reynolds number hydrodynamics [39]. It represents a form of dissipative

coupling, as it can be understood as arising from taking the overdamped limit of full Langevin dynamics in

the presence of a friction force on phase ϕα going as fα =−Bαβϕ̇β , where B ≡ M−1 is a friction tensor.

2.2. Noise-activated processes with global coupling

As anticipated, we will consider here N identical driven, noise-activated oscillators. This implies that the

potentials for each phase are chosen to be identical, i.e. U(ϕ1, . . . ,ϕN) = V(ϕ1)+ . . .+V(ϕN), and V(ϕ) is

chosen to be a tilted washboard potential of the form V(ϕ) =−Fϕ − vcos(ϕ+ δ), with F < v and

δ = arcsin(F/v) so that the minima are located at multiple integers of 2π. The maxima of the potential are in

turn located at ϕmax ≡ π − arcsin(F/v) (mod 2π). The values of v and the driving force F can be related to

the energy barrier Eba of the noise-activated step and to the energy E∗ released in each step, see figure 1(c),

through Eba = [2
√

1− (F/v)2 − (F/v)(π − 2δ)]v and E∗ = 2πF [21]. For an uncoupled oscillator, the height

of the energy barrier relative to the thermal energy kBT controls the typical waiting time between stochastic

steps, which scales as eEba/kBT for Eba ≫ kBT [40]. Note that, when F > v, the potential no longer displays

energy barriers and becomes monotonically decreasing, so that the dynamics are no longer noise-activated.

We will consider the simplest possible dissipative coupling between the oscillators, where each of them

interacts equally with all others via a mobility matrix Mαβ = µϕ M̃αβ with constant diagonal coefficients

M̃αα = 1, and constant off-diagonal coefficients M̃αβ = h/(N− 1) for α ̸= β. Here, µϕ sets the mobility

scale, and h is a dimensionless parameter that determines the strength of the coupling. This can be seen as an

N-dimensional generalization of the two-dimensional problem studied in [21], with the additional

simplification that the off-diagonal coefficients are constant, as it was shown in that work that this

simplification does not affect the observed phenomenology. For the mobility matrix to be positive definite,

the coupling strength must satisfy −1 < h < N− 1. We will focus on positive values of h, for which the

synchronization phenomenology is observed. Note that, since we choose the mobility matrix to be constant,

the spurious drift term in the Langevin dynamics (1) vanishes.

With these choices, the equations of motion (1) become

ϕ̇α =

N
∑

β=1

{

µϕ M̃αβ [F− v sin(ϕβ + δ)] +
√

2µϕ kBTΣ̃αβξβ

}

(3)

with Σ̃ defined by M̃αβ = Σ̃ανΣ̃βν . We remind that the parameter δ does not affect the dynamics, and is

only used to ensure that the minima of the potential are located at integer multiples of 2π. Choosing

(µϕ v)−1 as a unit of time, the dynamics then depend only on the number of oscillators N, as well as three

dimensionless parameters: the shape of the potential is determined by F/v, the strength of the noise by

kBT/v, and the strength of the coupling by h. Note that, to facilitate comparison with the experimentally
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measurable characteristics of the driving potential Eba and E∗ (figure 1(c)), F/v and kBT/v can be mapped

onto the dimensionless ratios Eba/E∗ and kBT/Eba, which we will report in all figures.

The deterministic (T = 0) version of the Langevin equation (3) can, with the redefinitions ω ≡
(1+ h)Fµϕ, a ≡ µϕ v(1− h

N−1
), K ≡ hµϕ v N

N−1
, and θα ≡ ϕα − δ+ π, be rewritten as θ̇α = ω+ a sinθα

+ K
N

N
β=1 sinθβ . It is worth noting that this dynamical system has been previously studied in the context of

superconducting Josephson junction arrays [25–28]. These studies however focused mostly in the barrier-free

regime where no fixed points exist (F > v or equivalently ω > a+K), and mostly in its deterministic

behavior, with a few exceptions in which an ad-hoc white noise was added [25, 27]. Here, on the other hand,

we will focus on the stochastic dynamics of the system in the noise-activated regime (F < v or equivalently

ω < a+K) where fixed points exist, and in the presence of a thermodynamically-consistent noise (satisfying

the fluctuation-dissipation theorem, which introduces correlations in the noise experienced by different

oscillators). Furthermore we will focus on quantifying its collective, nonequilibrium stochastic dynamics

(average speed, phase diffusion coefficient, phase correlations, and thermodynamic costs of precision), rather

than on the properties of the underlying dynamical system. Our model is also distinct from the ‘active

rotator’ model for the synchronization of excitable units previously studied [41–43], as the latter is based on

a Kuramoto-type coupling and uncorrelated noise, with the two models showing distinct phenomenologies.

A particularly interesting feature of our dissipative coupling is that the location and the nature of the

fixed points of the underlying deterministic dynamics are by construction unaffected by the strength of the

coupling h, and always located at the points at which the forces vanish, i.e. at the minima or maxima of the

potential. In particular, within the unit cell −π < ϕα < π there is always a stable fixed point located at the

origin (ϕα = 0 for all α= 1, . . . ,N) corresponding to all phases being at the minimum of the potential; an

unstable fixed point (located at ϕα = ϕmax for all α= 1, . . . ,N) corresponding to all phases being at the

maximum of the potential; and 2N − 2 saddle points located at all other vertices of the N-dimensional

hypercube spanned by 0 and ϕmax, corresponding to some phases being at the minimum and others at the

maximum of the potential. As a consequence, any bifurcation in the deterministic dynamics occurring as a

function of the coupling strength h must be a global bifurcation.

2.3. Quantitative measures of the stochastic dynamics

In order to quantitatively assess synchronization, we must construct an order parameter. The usual order

parameter in traditional synchronization problems, such as the Kuramoto model [2], is r ≡ | 1
N

N
α=1 eiϕα |.

However, in the context of noise-activated oscillators such as those studied here, the oscillators tend to spend

a major fraction of the time in the stable fixed point corresponding to the minima of the driving potential

(here at integer multiples of 2π), independently of the strength of the coupling. The order parameter r is thus

not suitable in this context, as it would give r ≈ 1 even for uncoupled oscillators.

Following Agudo-Canalejo et al [21], we will use the correlations between the stochastic dynamics of the

oscillators as an order parameter. In particular, defining δϕα(τ ; t)≡ ϕα(t+ τ)−ϕα(t), we may define the

diffusion coefficient Dϕ of an individual oscillator as

⟨[δϕα(τ ; t)−⟨δϕα(τ ; t)⟩α,t]2⟩α,t ∼
τ→∞

2Dϕ τ (4)

where the operator ⟨. . .⟩α,t denotes a combined average over the N oscillators and over time. The ∼ symbol

indicates that the equality is achieved asymptotically as τ →∞. We may also define the diffusion coefficient

Dδ of the phase difference between a pair of oscillators, as

⟨[δϕα(τ ; t)− δϕβ(τ ; t)]
2⟩αβ,t ∼

τ→∞

2Dδτ (5)

where the operator ⟨. . .⟩αβ,t denotes a combined average over the N(N− 1)/2 pairs of oscillators and over

time. Finally, we can define the correlation C as the long τ limit of the correlation function (dimensionless

covariance) between pairs of oscillators, i.e.

⟨[δϕα(τ ; t)−⟨δϕα(τ ; t)⟩α,t][δϕβ(τ ; t)−⟨δϕβ(τ ; t)⟩β,t]⟩αβ,t
⟨[δϕα(τ ; t)−⟨δϕα(τ ; t)⟩α,t]2⟩α,t

∼
τ→∞

C (6)

which we will use as our order parameter for synchronization. It is straightforward to show that C is related

to the two diffusion coefficients defined above through

C = 1− Dδ

2Dϕ

. (7)

In particular, for uncorrelated oscillators we have Dδ = 2Dϕ and thus C = 0, whereas for perfectly correlated

oscillators we have Dδ = 0 and thus C = 1. Anticorrelations would correspond to C < 0, with a lower bound
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C =−1/(N− 1) for maximally anticorrelated oscillators. Note that this measure of correlations can be easily

generalized to the case of non-identical processes. Lastly, we will define the average speed Ω of the

oscillators as

⟨δϕα(τ ; t)⟩ ∼
τ→∞

Ωτ. (8)

We note that, in these definitions, combined ensemble and time averages were performed to make

optimal use of our simulation data. This combined averaging is justified by the ergodicity of our stochastic

dynamics together with the symmetry inherent to the global coupling, and we verified the equivalence

between time averages and ensemble averages in our simulations. Ergodicity necessarily arises in the finite N

stochastic dynamics because the Langevin dynamics (1) are equivalent to the Fokker–Planck equation (2),

which has a unique steady state to which all solutions relax at sufficiently long times [44, 45]. This is true

even if the corresponding deterministic dynamics may show chaotic behavior, as has been shown for small

number of oscillators in the context of Josephson junctions [28]. An example of how the quantitative

measures above are extracted from simulations is shown in the supplementary material.

3. Results

3.1. Stochastic simulations

3.1.1. Small number of oscillators

For the case N = 2 [21], we previously found that the system exhibits synchronization and an enhanced

average speed above a critical h. Examples of stochastic trajectories resulting from numerical solution of the

Langevin dynamics (1) for N = 2 are shown in figures 2(a) and (b), where the steps (jumps) correspond to a

complete oscillatory cycle, in which the phase advances by 2π by crossing over the energy barrier (see

figure 1(c)). Note that, here and throughout the text, time is given in units of (µϕ v)−1. One clearly observes

how, at zero or low coupling (figure 2(a)), the trajectories appear independent, whereas at high coupling

(figure 2(b)) the two oscillators are strongly correlated. Moreover, the average speed increases: within the

same timescale, a much larger number of steps is observed in the presence of coupling, and long ‘runs’ of

several consecutive steps are observed, as indicated by the black arrows.

A similar behavior is observed for a larger, but still small, number of oscillators (2 < N ≲ 25). As seen in

figures 2(c) and (d), with increasing coupling the oscillators become correlated, the average speed increases,

and long runs become apparent (black arrows).

The dynamics are quantified in figure 3 as a function of number of oscillators N and strength of the

coupling h. The average speed increases with increasing coupling for all N, see figure 3(a), although this

increase is significantly more pronounced at higher N. On the other hand, synchronization as measured by C

increases monotonically with h at small N, while it appears to peak at intermediate h for larger N, see

figure 3(b). The minimal value of h required to observe synchronization (large C) is also smaller for small N.

Interestingly, for sufficiently large values of N the phase diffusion coefficient Dϕ appears to peak at a specific,

N-dependent value of the coupling, see figure 3(c). The phase-difference diffusion coefficient Dδ also

appears to peak at intermediate h (figure 3(d)) for sufficiently large values of N, but to a much smaller extent

than Dϕ, so that all in all the order parameter C still peaks at an intermediate h for larger values of N.

It is worth noting that enhanced phase diffusion in a tilted washboard potential has been previously

reported for the motion of a single phase in such a potential [46, 47], in which case it was related to the

transition from noise-activated dynamics to deterministic dynamics mediated by the saddle-node

bifurcation of the system at F = v. However, in our case we have F < v in all cases, i.e. the dynamics remain

noise-activated and integer values of 2π always correspond to stable fixed point of the ϕα’s, independently of

the strength of the coupling h. A relation between these two distinct systems can still be established (and will

be further clarified when we study the large N limit in section 3.2). In [21], exploring the case N = 2, it was

found that at a critical value of h a global bifurcation of the underlying deterministic dynamical system

(kBT = 0) occurs, giving rise to a splitting of the (ϕ1,ϕ2) phase space, which corresponds modulo 2π to a

torus, into two disconnected regions, see figures 4(a)–(c). In all three panels, the whole blue region

corresponds to the basin of attraction of the (ϕ1,ϕ2) = (0,0) stable fixed point. This region is further

subdivided into four subregions with different shades of blue marked (0,0), (1,0), (0,1), and (1,1), which

indicate the winding of trajectories around the torus as they reach the fixed point, i.e. whether when

unwrapping the torus the trajectories would reach the fixed point at (0,0), (2π,0), (0,2π), or (2π,2π),

respectively. These subregions are initially (figure 4(a)) separated by heteroclinic orbits joining the unstable

fixed point [in red, located at (ϕmax,ϕmax) as described in section 2.2] and the saddle points [in blue, located

at (ϕmax,0) and (0,ϕmax)]. At the global bifurcation, these orbits collide and form a heteroclinic cycle.

Beyond the bifurcation (figures 4(b) and (c)), we find two homoclinic cycles connecting the saddle points to
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Figure 2. Stochastic trajectories for small number of oscillators, with N = 2 in (a), (b) and N = 10 in (c), (d). Without coupling
[h= 0 in (a) and (c)], the dynamics are clearly noise activated, with single steps occurring independently for each oscillator. With
coupling [h= 0.5 in (b) and h= 0.75 in (d)], we observe strong correlations among all oscillators, and the dynamics moreover
show multi-step ‘runs’, marked by black arrows. In all panels, Eba/E∗ = 10−2 and kBT/Eba = 0.35.

themselves, in between which a new region (in yellow) corresponding to a band of periodic orbits emerges,

along which ϕ1 and ϕ2 increase deterministically. We refer the reader to [21] for further details on the N = 2

bifurcation. This bifurcation had also been previously reported in a study of two coupled Josephson junctions

[26]. Our work further shows that this bifurcation is responsible for the emergence of synchronization,

enhanced average speed, and the ‘running trajectories’ in the stochastic system [kBT > 0, figures 2(b) and

(d)]. The enhancement in the phase and phase-difference diffusion coefficients observed at intermediate h is

therefore likely related to the transition from purely noise-activated dynamics before the bifurcation, to a

mixture of noise-activated and deterministic dynamics once the periodic orbits have emerged.

Indeed, an analysis of the deterministic dynamics for N > 2 shows that a similar splitting of the phase

space (now an N-torus) into disconnected regions occurs beyond an N-dependent critical value of h, one

region corresponding to the basin of attraction of the fixed point, the others to periodic orbits along which

all ϕα increase deterministically. The regions containing periodic orbits in the case N = 3 can be seen in

figure 4(d). In this case, there are two distinct ‘tubes’ corresponding to periodic orbits in which ϕ1, ϕ2, and

ϕ3 advance in the order (. . .1 2 3 1 2 3 . . .) and (. . .1 3 2 1 3 2 . . .), respectively. For arbitrary N, the number of

higher-dimensional ‘tubes’ containing periodic orbits therefore is (N− 1)!, the number of circular

permutations of N distinct objects, as previously reported in the context of Josephson junction arrays [25].

A global measure of the dominance of a given basin of attraction in the dynamics of a system is the

volume fraction of the phase space occupied by said basin, also known as ‘basin stability’ [48, 49]. We have

measured the volume fraction of the phase space that is occupied by periodic bands as a function of h, for

several values of N, see figure 4(e). For this purpose, we scanned a N-dimensional grid of 30N equally spaced

points in the unit cell −π < ϕα < π for all α, and determined whether the trajectory starting from each

point was periodic, or reached the stable fixed point. To improve the performance of this calculation we used

the symmetries of the equations (ϕα ↔ ϕβ), where the exact number of points used was
(

L+N−1
N

)

, with

L= 30. Periodic trajectories were operationally defined as trajectories that reach ϕα = 6π for any α at some

t > 0, which implies that they do not end at the stable fixed point of the starting unit cell or any of its nearest

neighbors. Beyond the critical h, the volume fraction grows from zero and saturates towards a limiting value

as h increases. Interestingly, with increasing N, the growth of this volume fraction beyond the critical h

becomes sharper, and the limiting value at large h becomes closer to one. Extrapolating this trend we may
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Figure 3. Quantification of the dynamics for small number of oscillators. (a), (b) Heatmaps of the average speed (a) and the
synchronization order parameter (b), as a function of coupling strength and number of oscillators. (c), (d) Phase diffusion
coefficient (c) and phase-difference diffusion coefficient (d) as a function of coupling strength, for several values of the enzyme
number. Both are normalized by their value in the absence of coupling. The inset in (c) is a zoomed-out version showing the full
N = 2 curve. In all panels, Eba/E∗ = 10−2 and kBT/Eba = 0.5.

speculate that, for large N, a sharp transition occurs at a critical h at which the phase space becomes almost

entirely occupied, or ‘crowded’ [25], by periodic orbits. In figure 4(f), some stochastic trajectories are shown,

for h beyond the critical value and several values of N. For N = 2 we see longer periods in which the system is

‘resting’ at the fixed point and the phases do not advance, interspersed with short deterministic runs. As N is

increased, the resting periods become shorter while the runs become longer, as one may expect from the

considerations just described regarding the phase space volume occupied by periodic orbits.

3.1.2. Large number of oscillators

As the number of oscillators increases, the behavior observed in stochastic simulations becomes largely

independent of this number. We observe that, beyond an N-independent critical value of h, trajectories

mostly run deterministically, without barely any resting periods at which the oscillators visit the fixed point

of the dynamics, see figure 5. The stochastic dynamics are quantified for various values of N in figure 6. All

relevant quantities Ω, Dϕ, and Dδ depend only very weakly on N and approach an asymptotic limit as

N →∞, with Dϕ showing the slowest approach towards this limit.

Interestingly, however, the synchronization order parameter becomes strongly nonmonotonic as a

function of the coupling h, see figure 6(b): while synchronization is absent at low h, it rises sharply as we

approach the critical h, but then quickly decreases back to zero (uncorrelated trajectories) as h is further

increased. Intuitively, in light of the results described in the previous section, this implies that the oscillators

are most correlated the phase space volume fraction occupied by periodic orbits is intermediate, neither too

small (in which case trajectories are predominantly noise-activated, with independent steps by each

oscillator) not too large (in which case trajectories are effectively deterministic and uncoupled).
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Figure 4. (a)–(c) Phase portraits of the deterministic dynamics for N = 2, with Eba/E∗ = 10−2 and h = 0,0.2,0.5 respectively.
The differently-shaded blue regions correspond to basins of attraction of the stable fixed point at (0,0) which wind differently
around the torus. The yellow region in (b), (c) is the ‘running band’ containing periodic orbits, which grows with increasing h
beyond the critical value [21]. (d) The two ‘running tubes’ containing periodic orbits that appear beyond the critical coupling for
N = 3, one corresponding to trajectories in which the phases advance in the (123) order (in green), the other in the (132) order
(in yellow). Here, Eba/E∗ = 10−2 and h= 0.45. In (a)–(d), the green, red, and blue circles represent the stable, unstable, and
saddle fixed points of the dynamics. (e) The fraction of the phase space volume occupied by running bands as a function of the
coupling strength, for several values of N. (f) Stochastic trajectories for the same values of N when h= 0.6 and kBT/Eba = 0.3. In
(e), (g), Eba/E∗ = 2.5× 10−3.

Figure 5. Stochastic trajectories for large number of oscillators N = 50. (a) For h= 0.5, below the critical coupling, trajectories are
largely uncorrelated, with single noise-activated steps. (b) For h= 0.8, just above the critical coupling, trajectories are strongly
correlated and mostly run deterministically. Here, Eba/E∗ = 10−2 and kBT/Eba = 0.5.

3.2. Mean-field theory in the large N limit

3.2.1. General case

The fact that the oscillators become uncorrelated in the large N limit suggests that we may describe the

behavior of the system through a mean-field theory. Then we begin from the Fokker-Planck equation of this

model which, following (2), is given by

∂tP(ϕ1, . . . ,ϕN; t) = ∂α


µϕ M̃αβ [kBT∂βP+(∂βV(ϕβ))P]


. (9)
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Figure 6. Quantification of the dynamics for large number of oscillators. (a) Average speed as a function of coupling strength for
several values of N. (b) Heatmap of the synchronization order parameter as a function of coupling strength and the number of
oscillators. (c) Phase diffusion coefficient and (d) phase difference diffusion coefficient as a function of coupling strength for
several values of N. Values in (a), (c), (d) are normalized by the value in the absence of coupling. In all panels, Eba/E∗ = 10−2 and
kBT/Eba = 0.5, and the dashed black line corresponds to the critical coupling h∗ ≈ 0.64 predicted by the mean-field theory.

To study the large N limit we first coarse grain over (N− 1) degrees of freedom to get an equation for the

one-particle distribution ρ(ϕ; t),

ρ(ϕ; t) =

ˆ

dϕ2 . . .dϕNP(ϕ, . . . ,ϕN; t). (10)

By assuming that the processes are uncorrelated, so that the two-particle distribution reads

P2(ϕ,ϕ1; t) = ρ(ϕ; t)ρ(ϕ1; t), we close the hierarchy of equations and obtain an equation for the one-particle

distribution,

∂tρ(ϕ; t) = µϕ ∂ϕ {kBT∂ϕ ρ− [F+ hfave − v sin(ϕ+ δ)]ρ} , (11)

where

fave =−
ˆ 2π

0

dϕρ(ϕ; t)
∂V(ϕ)

∂ϕ
(12)

is the average force experienced by an oscillator. Therefore, in the mean-field approximation each oscillator

feels an effective driving force Feff = F+ hfave, independent of the number of enzymes, with the strength of

the deviation from the true driving force F governed by h. Notice that the equation of motion becomes

nonlinear and nonlocal in ϕ, due to the presence of ρ in the definition of fave.

Nonlinear partial differential equations such as equation (11) can have many solutions, including

solutions that oscillate at long times and chaotic solutions [28, 41, 43]. Because we want to understand the

results of the stochastic simulations at large but finite N described above, however, we will focus only on
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stationary (steady state) solutions satisfying ∂tρ(ϕ; t) = 0, which are of particular relevance. The steady

state(s) ρss(ϕ) of equation (11) can be found by imposing the condition of constant flux

− J/µϕ = kBT∂ϕ ρss − [F+ hfave − v sin(ϕ+ δ)]ρss, (13)

where J corresponds to the flux. This problem is identical to that of finding the steady state distribution of a

single particle in a washboard potential with driving force Feff = F+ hfave, which is well studied and easily

solved using standard methods [50], except that here one must additionally solve for fave in the implicit

equation fave =
´ 2π

0
dϕρss(ϕ)[F− v sin(ϕ+ δ)] (note that ρss depends on fave), required for self-consistency,

see (12). Armed with this self-consistent value of fave and thus of Feff, which is a function of all parameters of

the system and in particular of the coupling h, we can then obtain the average speed Ω and the phase

diffusion coefficient Dϕ (which corresponds to Dδ/2 given the absence of correlations) using the known

results for a single particle in a tilted washboard potential [46, 47, 50]. Additionally, we may calculate a

critical value of the coupling h = h∗ at which Feff = v, i.e. the value of the coupling for which the energy

barriers of the effective washboard potential vanish and the dynamics become deterministic (downhill). This

further showcases the analogy between the giant diffusion observed at F = v for a single particle in a

washboard potential, and that seen at h = h∗ for both the phase and phase-difference diffusion coefficients in

the present work.

The values for Ω, Dϕ, and Dδ obtained from this mean-field theory are compared to those obtained from

stochastic simulations with N = 200 in figure 7, for three different values of the noise kBT. We observe an

excellent match, except for Dϕ at the critical coupling, which is underestimated particularly for low

temperatures (as described above, the limit N →∞ is approached slowly for Dϕ). Interestingly, we find that

whether the transition to a running state with increasing h is continuous or discontinuous in the mean field

theory depends on whether the temperature is above or below a critical temperature, which for

Eba/E∗ = 10−2 as used in figure 7 we find to be kBT/Eba ≃ 0.48. Above the critical temperature, a single

branch of solutions exists, with monotonically increasing average speed, see figures 7(a)–(d). Below the

critical temperature, on the other hand, three different branches of stationary solutions exist: a slow or

arrested stable branch, a fast or running stable branch, and an unstable branch marking the transition state

between the two, see figures 7(e) and (f). The transition from the arrested to the running state is

discontinuous, with both states coexisting at an intermediate range of h-values. In this coexistence region,

the stochastic simulations at finite but large N show that the average speed interpolates between that of the

arrested and the running states of the mean field theory, see figure 7(f), whereas the phase diffusion

coefficient is greatly enhanced, see figure 7(e). This is consistent with the system stochastically switching

between the arrested and running states.

In figure 8, the critical coupling h∗ at which Feff = v and the dynamics become effectively deterministic is

shown as a function of the shape of the washboard potential [Eba/E∗, see figure 1(c), which is in one-to-one

correspondence with F/v], for various values of the noise strength. This line divides the parameter plane into

two regions corresponding to noise-activated and deterministic dynamics. Additionally, the critical coupling

h∗ obtained from the mean-field theory is plotted as the vertical line in figure 6, again with excellent

agreement. As expected, it marks the transition between noise-activated and deterministic dynamics.

3.2.2. Limit of vanishing noise

Further analytical progress is possible in the limit of vanishing noise T → 0. Like in the case of small but finite

temperatures, there are several steady state solutions satisfying (13). One trivial solution, independent of all

parameters, is the arrested solution (J = 0) in which all oscillators are located at the stable fixed point ϕ= 0 of

the dynamics, with a Dirac delta distribution ρss(ϕ) = δ(ϕ). The non-trivial solutions (J > 0) corresponding

to the running state and the unstable branch are obtained by directly solving for ρss in (13), giving

ρss(ϕ) =
1

2π

√

(F+ hfave)2 − v2

F+ hfave − v sin(ϕ+ δ)
(14)

where J has been used to enforce normalization
´ 2π

0
ρssdϕ = 1. Note that these steady states are only

well-defined when Feff > v, so that the effective potential admits deterministic dynamics. Using (14) in the

self-consistency condition gives fave =
√

(F+ hfave)2 − v2 − hfave and, solving for fave, we obtain two solutions

given by

f ±ave =
Fh±

√

F 2(1+ h)2 − (1+ 2h)v2

1+ 2h
. (15)

The solution with the plus sign corresponds to the stable running steady state, whereas the solution with the

minus sign corresponds to the unstable branch. Like in the case of small but finite temperatures, this
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Figure 7. Comparison between stochastic simulations for large number of oscillators (N = 200) and the predictions of our
mean-field theory. The noise strength is kBT/Eba = 1 in (a), (b), 0.5 in (c), (d), and 0.44 in (e), (f). As a function of coupling
strength, we show (a), (c), (e) the phase and phase-difference diffusion coefficients, normalized to their value in the absence of
coupling; and (b), (d), (f) the average speed (in units of µϕ v). In all panels, markers correspond to stochastic simulations and
black lines to the mean field theory at finite temperature. In (b), (d), (f), the mean field theory in the zero temperature limit is
shown in blue. At high temperatures [(a)–(d)] the transition to a running state is continuous. At low temperatures [(e), (f) and
T = 0 limit] it is discontinuous, and there are three distinct coexisting branches, including a stable running branch (solid), a
stable arrested branch (dashed), and an unstable branch (dotted) which represents the transition state between arrested and
running states. The inset in (e) is a zoomed-out version showing the high peak in Dϕ from simulations. In the T = 0 limit, the
running and unstable branches exist only for h ⩾ h∗T=0, with the critical coupling h∗T=0 given by equation (16), and their speed

given by equation (18). In all panels, Eba/E∗ = 10−2.

unstable branch corresponds to the transition state between the arrested state and the running state. These

two solutions are real only when the term inside the square root is positive, which is possible when

h >
v2 − F 2 +

√
v2 − F 2

F 2
≡ h∗

T=0 (16)

and serves to define the critical value of the coupling h∗

T=0 above which deterministic, ‘running’ trajectories

exist in the vanishing noise limit. Naturally, such a critical coupling is only well-defined when energy barriers

are present in the true washboard potential (F < v), and h∗

T=0 → 0 from above as F → v from below. The
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Figure 8. Parameter plane for the collective dynamics of a large number of dissipatively-coupled noise-activated processes, as a
function of the coupling strength h and the shape of the washboard potential Eba/E∗. The lines correspond to the critical coupling
h∗ above which trajectories become effectively deterministic, as calculated from the mean-field theory, for different values of the
noise strength. The T = 0 line (blue) corresponds to equation (16).

critical coupling given by equation (16) is shown as a function of Eba/E∗ (which is in one-to-one

correspondence with F/v) as the T = 0 line in figure 8; and as the vertical lines in figures 7(b), (d) and (f)).

Interestingly, at the critical coupling we do not find Feff(h
∗

T=0) = v as one might have naively expected,

but rather

Feff(h
∗

T=0) = F+ h∗

T=0fave(h
∗

T=0) =
v2

F
(17)

which implies that Feff(h
∗

T=0)> v when F < v, i.e. the effective washboard potential is already beyond the

critical tilt, and the dynamics are therefore fully deterministic, when the critical coupling is reached. This is a

reflection of the fact that the transition to the running state is discontinuous and noise-activated, as for

h > h∗

T=0 the running state still coexists with the arrested state. This also implies that, at the critical coupling,

there is already a finite, non-vanishing average speed Ω of the oscillators in the running state. Indeed, the

average speed for the running and unstable branches may be calculated as

Ω
± = 2π J± = µϕ(1+ h)f ±ave. (18)

At the critical coupling, both branches coincide and we find

Ω(h∗

T=0) = µϕ(1+ h∗

T=0)fave(h
∗

T=0) = µϕ v

√
v2 − F 2

F
(19)

which is real and positive for any F < v. The zero temperature average speed of the running (resp. unstable)

branch as given by Ω+ (resp. Ω−) in equation (18) is plotted as the blue solid (resp. dotted) lines in

figures 7(b), (d) and (f)). As discussed above, these two branches exist only for h ⩾ h∗

T=0. Additionally, the

arrested branch is plotted as the dashed blue line (Ω= 0), and exists for all h. The running branch in this

T = 0 limit is in very good agreement with both the stochastic simulations and the mean-field theory at finite

temperature, serving as further confirmation that the dynamics beyond the critical coupling are largely

deterministic.

3.3. Stochastic thermodynamics of precision

The coupling-induced transition marks a very strong change in the dynamics of the system, from

noise-activated to deterministic. It is thus interesting to explore how does the transition affect the precision

of the oscillators, which is bounded from below by the entropy production rate in the system [32].

Specifically, the TUR states the bound [33]

σ̇tϵ2 ⩾ 2kB, (20)
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Figure 9. Dimensionless thermodynamic uncertainty ratio Q as measured in our stochastic simulations, as a function of coupling
strength, for (a) weak coupling 0 ⩽ h ⩽ 1 and several values of the number of oscillators N; and (b) the full range of coupling
0 ⩽ h < N− 1 and N = 200. In both panels, the black dashed line corresponds to the lower bound Q= 1 given by the TUR,
which is satisfied for all h as expected. For sufficiently large, but not too large values of the coupling, an enhancement in precision
relative to that in the absence of coupling (h= 0) is possible. This corresponds to the shaded region in (b). The inset in (a) is a
zoomed-out version showing the full curve for N = 2. In both panels, Eba/E∗ = 10−2 and kBT/Eba = 0.5.

where σ̇ is the entropy production rate, and ϵ2 is the relative uncertainty defined as

ϵ2 =
⟨X2⟩− ⟨X⟩2

⟨X⟩2
, (21)

where X is the observable of interest. This inequality is crucial, since it implies that a higher precision in the

catalytic rate (smaller ε) requires higher entropy production or equivalently heat dissipation (higher σ̇). In

our model the observable of interest is the total amount of phase advanced by the oscillators

X =

N
∑

i

ϕi. (22)

The entropy production rate σ̇ is easily calculated as

σ̇T = F⟨Ẋ⟩, (23)

and is directly related to the free energy E∗ = 2πF released in each noise-activated step, see figure 1(c).

In figure 9, we plot the dimensionless thermodynamic uncertainty ratio Q ≡ σ̇tϵ2/(2kB) as a function of

the coupling h, as measured in our stochastic simulations for several values of N. According to the TUR (20),

satisfies Q ⩾ 1. A process satisfying Q= 1 is performing optimally from a thermodynamic perspective (as

precisely as possible given its energy dissipation). We see that, as expected, the TUR is always respected. The

behavior of Q with increasing h is strongly non-monotonic (with the exception of the case N = 2). Starting

from the uncoupled case h= 0, Q first increases with increasing h, in the regime of noise-activated dynamics.

After peaking around the critical h = h∗, however, Q sharply decreases as h is further increased and we

venture further into the deterministic regime. Values of Q smaller than the value Q(h = 0) are observed in

this regime, implying that the coupling can enhance the thermodynamic performance of the oscillators.

Finally, as we approach the upper bound of h < N− 1 required by the positive definiteness of the mobility, Q

is observed to rise again. We note, however, that the regime 1 ≪ h < N− 1 is somewhat artificial, as it

corresponds to cases where the effects of cross-interactions between oscillators are much stronger than those

of self-interactions. Moreover, this regime only exists for finite N and becomes inaccessible in the

thermodynamic limit N →∞.

4. Conclusions

We have studied a minimal model describing the collective dynamics of noise-activated cylic processes, or

stochastic oscillators, that are coupled to each other through a dissipative coupling. That is, the processes are

not coupled to each other through an interaction potential (or interaction force), but through the mobility

tensor that connects forces to velocities in the overdamped dynamics. This mobility tensor also defines the
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properties of the stochastic noise through the fluctuation-dissipation relation, ensuring that the dynamics are

thermodynamically-consistent and relax to thermodynamic equilibrium when such an equilibrium is

available. Previously, we have shown how this kind of coupling arises naturally for processes that are

mechanically coupled (e.g. physically or through hydrodynamic interactions) in an overdamped, viscous

medium [21].

For low N, where N is the number of coupled oscillators, we found results analogous to those previously

obtained for N = 2 in [21]. Beyond a critical coupling h∗, strong synchronization (as measured by the

correlation function) and an enhancement in the average speed of the processes is observed. This transition

can be understood as arising from a global bifurcation of the underlying dynamical system, defined on the

N-torus, which leads to the emergence of periodic orbits that represent ‘running’ trajectories, along which

the phases of all the oscillators increase deterministically.

For large N, synchronization becomes confined to a narrow region near the critical coupling h∗. Below

h∗, the dynamics are uncorrelated and stochastic (noise-activated). Above h∗, they are uncorrelated and

effectively deterministic, and the average phase speed becomes greatly enhanced. We can understand this

effect in two complementary ways: (i) analysis of the underlying dynamical system shows that, at large N, the

volume fraction of the phase space occupied by periodic orbits increases very sharply at the bifurcation; and

(ii) a mean-field theory shows that the energy barriers in the effective potential landscape experienced by

each oscillator vanish at the critical coupling, and the dynamics become deterministic (downhill). The

mean-field theory provides a great match to the results of stochastic simulations at large N and allows for

analytical prediction of the critical coupling and the average speed of the oscillators, particularly in the limit

of low noise.

Finally, we have shown that the oscillator dynamics can become more optimal in the presence of

coupling, in the context of the trade-off between precision and entropy production described by the TUR.

This occurs within the deterministic regime of the dynamics, beyond the critical coupling h∗. Over the full

range of coupling strengths, the behavior relative to the thermodynamic bound on precision is rather

complex, and signatures of the stochastic-to-deterministic transition at the critical coupling are clearly

apparent in the precision.

Due to its simplicity, its general applicability to the description of coupled microscopic processes [21],

and its intriguing features in the context of nonequilibrium statistical physics and dynamical systems theory,

we believe that the model presented here merits significant further investigation. Future work may consider

local interactions between the nearest neighbours rather than all-to-all interactions as studied here,

endowing the model with a spatial structure, as well as the role of quenched disorder [51]. Of great interest

would also be the interactions between non-identical oscillators, as only the synchronization between

identical oscillators has been studied so far. Lastly, one may explore connections to Bose–Einstein-like

condensation in driven scalar active matter [52] when interactions among particles are non-negligible.
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1. Example: Analysis of simulations

We restate here the definitions of the phase mean square displacement [MSϕ(τ)], phase

difference mean square displacement [MSδ(τ)], and pair correlation function [corr(τ)],

see equations (4)–(6) from the main text:

MSϕ(τ) = ⟨[δϕα(τ ; t)− ⟨δϕα(τ ; t)⟩α,t]2⟩α,t (1)

MSδ(τ) = ⟨[δϕα(τ ; t)− δϕβ(τ ; t)]
2⟩αβ,t (2)

corr(τ) =
⟨[δϕα(τ ; t)− ⟨δϕα(τ ; t)⟩α,t][δϕβ(τ ; t)− ⟨δϕβ(τ ; t)⟩β,t]⟩αβ,t

⟨[δϕα(τ ; t)− ⟨δϕα(τ ; t)⟩α,t]2⟩α,t
(3)

The τ -dependence of these three functions is shown in figure 1 for the example

parameters Eba/E∗ = 10−2, kBT/Eba = 0.5, N = 4, h = 0.4. The time step used is

dt = 10−2, where time is given in units of (µϕv)
−1. The total number of simulation steps

is 109 (so that the total time of the simulation is ttot = 107), and the number of equally

spaced samples recorded and used for the analysis is 5× 106.

As expected, MSϕ(τ) and MSδ(τ) show linear behavior at long times, where the

respective slopes correspond to 2Dϕ and 2Dδ. Lastly, as also expected, corr(τ) tends to

a constant which corresponds to the correlation C.

The slopes can be estimated by choosing two sufficiently large values of τ , for

example τ1 = 5×104 and τ2 = 105. We can then calculate Dϕ as Dϕ = (1/2)(MSϕ(τ2)−
MSϕ(τ1))/(τ2 − τ1) ≃ 0.0092 and similarly Dδ as Dδ = (1/2)(MSδ(τ2)−MSδ(τ1))/(τ2 −
τ1) ≃ 0.0062. As described in the main text, these two diffusion coefficients are related

to the correlation coefficient by C = 1− Dδ

2Dϕ
, which gives C ≃ 0.66.

Alternatively, we may directly calculate C from its definition, i.e. from the τ → ∞
asymptote of corr(τ). To this end, we calculate the average value of corr(τ) between τ1
and τ2. This gives C ≃ 0.66, which as expected agrees with the above value. In practice,

we always obtain C from C = 1− Dδ

2Dϕ
.
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Figure 1: Examples of (a) MSϕ(τ), (b) MSδ(τ), and (c) corr(τ), for a simulation with

Eba/E∗ = 10−2, kBT/Eba = 0.5, N = 4, h = 0.4. In (c), the black dashed line

corresponds to the asymptotic value of corr(τ) which defines the correlation C, here

calculated from averaging corr(τ) between τ1 = 5× 104 and τ2 = 105.
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Chapter 3

Topological phase locking in
molecular oscillators

This chapter is reproduced from a revised version of the preprint
Chatzittofi M. et al arXiv:2310.11788 [132] which is under review
in Nature Communications. In this work, I contributed in design-
ing the research and in deriving the equations of motion. I also
developed the numerical code in Matlab for generating the phase-
portraits. I have performed numerical calculations, contributed in
the analysis of the results and writing/editing the paper.
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The dynamics of molecular-scale enzymes and molecular motors are activated by thermal noise,
and driven out-of-equilibrium by local energy dissipation. Because the energies dissipated in these
systems are comparable to the thermal energy, one would generally expect their dynamics to be
highly stochastic. Here, by studying a thermodynamically-consistent model of two coupled noise-
activated oscillators, we show that this is not always the case. Thanks to a novel phenomenon that we
term topological phase locking (TPL), the coupled dynamics become quasi-deterministic, resulting
in a greatly enhanced average speed of the oscillators. TPL is characterized by the emergence of
a band of periodic orbits that form a torus knot in phase space, along which the two oscillators
advance in rational multiples of each other. The effectively conservative dynamics along this band
coexists with the basin of attraction of the dissipative fixed point. We further show that TPL arises
as a result of a complex, infinite hierarchy of global bifurcations. Our results have implications
for understanding the dynamics of a wide range of systems, from biological enzymes and molecular
motors to engineered nanoscale electronic, optical, or mechanical oscillators.

Enzymes and molecular motors are pivotal in catalyz-
ing biochemical reactions and converting chemical en-
ergy into mechanical work [1, 2]. By dissipating energy
at the molecular scale, they play a crucial role in the
maintenance of life’s out-of-equilibrium dynamics. How-
ever, because the dynamics in these systems tend to in-
volve noise-activated barrier-crossing processes with en-
ergy scales comparable to the thermal energy, kBT , their
dynamics tend to be highly stochastic. To be more reli-
able, biological systems have developed various strategies
that trade off energy dissipation for increased precision
[3–5], as exemplified by e.g. proofreading [6, 7] or noise
buffering strategies [8, 9].

One possible strategy for reducing stochasticity and in
turn increasing reliability lies in many-body interactions,
i.e. synchronization [10, 11]. For example, in the case
of the KaiABC circadian clock, the collective oscillations
of many interacting KaiABC protein complexes are sig-
nificantly more coherent than those of a single complex
[12, 13]. In the KaiABC system, interactions are “chem-
ical”, in the sense that they are mediated by monomer
exchange among the complexes. However, because en-
zymes and molecular motors transduce chemical energy
into motion, they also experience “physical”, or mechan-
ical, interactions with each other through the viscous
medium in which they are embedded, see Fig. 1(a–d).
The viscous nature of the medium leads to interactions
mediated by hydrodynamic friction, or dissipative inter-
actions.

Due to the key role that the interplay between ther-
mal fluctuations and nonequilibrium driving energies
plays in these systems, one must be particularly care-
ful when modelling their dynamics. Thermodynamic
consistency, in particular the requirement that local de-
tailed balance and a fluctuation-dissipation relation be

satisfied, strongly constrain the form of the dynamics
[14]. Recently, using a minimal thermodynamically-
consistent model for two identical enzymes that are
mechanically-coupled to each other and undergo confor-
mational changes during their reaction cycle, we showed
that the mechanochemical coupling in these systems can
cause synchronization and enhanced reaction speeds [15].
A generalization of this model to arbitrary numbers of
coupled identical noise-activated oscillators shows syn-
chronization at low number of oscillators, and enhanced
speeds independent of the number of oscillators [16]. In-
terestingly, the transition to the synchronized state in
this model was shown to occur as a result of a global
bifurcation in the underlying dynamical system, which
transitions from purely dissipative, noise-activated dy-
namics (where all trajectories lead to the fixed point)
to a mixture of dissipative and conservative dynamics
(where some trajectories are periodic and avoid the fixed
point) beyond a critical coupling strength [15, 16]. This
very intriguing bifurcation has also been reported in the
context of coupled superconducting Josephson junctions
[17].

While fascinating, the latter results have limited ap-
plicability, as they only concern coupled identical oscilla-
tors. Here, we study the dynamics of two non-identical
noise-activated oscillators that are dissipatively coupled.
Crucially, our model is generic enough that it may serve
as a minimal model for a wide variety of cyclic nano-
scale systems. Examples include dissimilar enzymes [see
Fig. 1(a) and (b)] [18] or gating nano-pores [19], nano-
scale rotary motors [see Fig. 1(c) and (d)] (either bio-
logical, such as ATP synthase [20], or synthetic, such
as those recently made from DNA-origami [21–23]), cir-
cadian clocks [24, 25], superconducting Josephson junc-
tion arrays [Fig. 1(e)] [17, 26], firing neurons [Fig. 1(f)]
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[27, 28], artificial systems like magnetic rotors [29], laser
cavities [30, 31], opto-mechanical devices [32, 33], me-
chanical oscillators [34, 35], or any other suitably-reduced
description of an excitable system [36, 37].

We find that, instead of a single bifurcation occurring
with increasing coupling strength as for identical oscilla-
tors, non-identical oscillators undergo an infinite number
of bifurcations as the coupling is increased. The oscil-
lators are generically phase-locked, such that noise ac-
tivation leads to a finite number of oscillations for each
oscillator, with a fixed ratio between them. Moreover, for
sufficiently strong asymmetry in the nonequilibrium driv-
ing forces, a finite number of “resonant” modes emerges
at specific values of the coupling strength. For these res-
onant modes, we find periodic trajectories that avoid the
fixed point and maintain a fixed ratio between the num-
ber of steps advanced by each oscillator. To reach (or
move away from) these resonant modes, an infinite lad-
der of bifurcations must be climbed (or descended). We
find that the resonant modes correspond to very special
topologies of the deterministic phase portraits of the sys-
tem, defined on the torus, in which the phase space splits
into a band of periodic orbits which form torus knots [38]
with a specific winding number. We thus refer to this
novel phenomenon as topological phase locking (TPL).
In the stochastic dynamics, TPL results in a greatly en-
hanced average speed as well as giant diffusion [39], which
together create strong signatures in the stochastic ther-
modynamics of the precision of the coupled oscillators
[4, 40].

Dissipative coupling of noise-activated processes

We consider two processes, each defined by a phase
ϕα with α = 1, 2, which evolve along two washboard po-
tentials Vα(ϕα), see Fig. 1(g). The key parameters of the
potential are the height of the energy barrier Ebaα, which
determines the noise-activated dynamics, and the energy
released per transition E∗α, which acts as the nonequi-
librium driving force. The two phases are coupled not
through an interaction force or potential, but through
the off-diagonal components of the mobility tensor that
connects forces to velocities in the overdamped dynam-
ics. That is, the phases evolve according to the following
coupled Langevin equations

ϕ̇α =

2∑

β=1

[
Mαβ

(
− ∂Vβ(ϕβ)

∂ϕβ

)
+
√

2kBTΣαβξβ

]
, (1)

where Mαβ is the mobility tensor, described below, Σαβ

is the principal square root of Mαβ such that Mαβ =
ΣαγΣβγ , and ξα(t) is a Gaussian white noise satisfying
⟨ξα(t)⟩ = 0, ⟨ξα(t)ξβ(t′)⟩ = δαβδ(t− t′). Moreover, kB is
the Boltzmann constant and T is the temperature of the
medium, so that kBT is the thermal energy controlling

the strength of thermal fluctuations. For non-thermal
systems, kBT may be taken as the strength of the ef-
fective noise. For the dynamics to be thermodynami-
cally consistent, the mobility tensor must be symmet-
ric and positive definite [41, 42]. We take the compo-
nents of the mobility tensor to be M11 = µ1, M22 = µ2,
and M12 = M21 =

√
µ1µ2h. Thus, the dimension-

less parameter h controls the strength of the coupling,
and the condition of positive definiteness implies that
it is constrained to the range −1 < h < 1. Through
Σαβ , the mobility tensor also controls the form of the
additive noise, so that the fluctuation-dissipation the-
orem is satisfied. This further implies that, indepen-
dently of the strength of the coupling, the system is
guaranteed to equilibrate to the Boltzmann distribution
Peq(ϕ1, ϕ2) ∝ exp(−[V1(ϕ1) + V2(ϕ2)]/kBT ) when such
an equilibrium is possible (e.g. in the absence of nonequi-
librium driving forces, E∗1 = E∗2 = 0).

A coupling of the form in (1) arises naturally in pro-
cesses that are coupled to each other through mechanical
interactions at the nano- and microscale, as these are
mediated by viscous, overdamped fields described by low
Reynolds number hydrodynamics [42]. It represents a
form of dissipative coupling, as it can be understood as
arising from taking the overdamped limit of full Langevin
dynamics in the presence of a friction force on phase ϕα

going as fα = −∑2
β=1 Zαβϕ̇β , where Z ≡ M−1 is a

friction tensor. As an example, we show in the Sup-
plemental Material how (1) can be derived from a mi-
croscopic model of two rotors that are hydrodynamically
coupled (see Fig. 1(c-d)) [43]. In this case, the coupling h
is exactly constant, and its magnitude and sign are gov-
erned by the rotation rate and chirality of the rotors.
In a similar way, one can derive coupled phase equa-
tions for enzymes that undergo conformational changes
(Fig. 1(a-b)), where they reduce to exactly the same form
but with a phase-dependent coupling constant h(ϕ1, ϕ2)
which moreover leads to multiplicative noise [15].

The potentials are chosen to be tilted washboard po-
tentials of the form Vβ(ϕβ) = −Fβϕβ − vβ cos(ϕβ + δβ),
where the shift δβ = arcsin(Fβ/vβ) ensures that the
minima of the potential are located at multiples of 2π
and does not otherwise affect the phase dynamics. The
maxima of the potential are located at ϕmax

β ≡ π −
arcsin(Fβ/vβ) (mod 2π). The parameters Fβ and vβ
can be mapped to the energy barrier and the energy re-
leased per step [Fig. 1(d)] as Ebaβ = [2

√
1− (Fβ/vβ)2 −

(Fβ/vβ)(π − 2δβ)]vβ and E∗β = 2πFβ . In the fol-
lowing, except where noted, we focus on the case of
equal self-mobilities µ1 = µ2 = µ, equal energy barri-
ers Eba1 = Eba2 = Eba, and strongly driven dynamics
E∗1 ≫ Eba (we fix Eba/E∗1 = 3 · 10−4). Choosing a
mobility scale µ0 and an energy scale E0, which together
define a timescale (µ0E0)

−1, only three dimensionless pa-
rameters remain: E∗2/E∗1, which governs the asymme-
try in the nonequilibrium driving of the two processes
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(a)

(b)

(g)

(c)

(d) (f)

(e)
Eba1=Eba2

E*1

E*2=3E*1

V
(

V

V

FIG. 1. (a–f) Examples of coupled noise-activated oscillators: (a) Two enzymes attached to each other forming an oligomeric
complex, (b) Two membrane channels interacting with each other via the intervening viscous medium, (c) Two rotating
inclusions in a membrane, (d) Two molecular rotors interacting hydrodynamically, (e) A circuit with two Josephson junctions,
(f) Two excitable neurons interacting through a synapse. (g) The internal phase ϕ of each oscillator experiences a driving force
represented by a tilted washboard potential, with a noise-activated oscillation corresponding to the phase advancing by the
amount of 2π by crossing the energy barrier. In the case of enzymes, the potential represents the free energy of a (repeated)
catalytic reaction.

Phase-locked 
multi-steps

Phase-locked 
multi-steps

(a) (b)

FIG. 2. Examples of stochastic trajectories for asymmetry
E∗2/E∗1 = 5 and noise strength kBT/Eba = 1. (a) In the
absence of coupling, h = 0, only a few, independent single
steps are observed. (b) With coupling, h = 0.33, a much
larger overall number of steps is observed in the same time
period, and moreover both phases move in tandem, in phase-
locked, multi-step bursts. Time is given in units of (µv1)

−1.

and we take to be ≥ 1 (i.e. oscillator 2 is more strongly
driven than oscillator 1); h, which defines the strength
of the dissipative coupling; and kBT/Eba, which defines
the strength of the noise.

Stochastic trajectories

We briefly present the phenomenology observed in
stochastic simulations of the equations of motion, (1),
when the dissipative coupling is switched on (Fig. 2).
In the absence of coupling, as expected, the trajectories
are independent, and consist of single steps represent-
ing noise-activated crossings of the energy barriers in the
potential, separated by long periods of time in which
the phases are resting at the minima of the potential
[see Fig. 1(d)]. With sufficiently large positive coupling,
on the other hand, we observe that when the system is
pushed out of the resting state, both oscillators advance
at the same time, and moreover multiple steps occur as

a result of a single fluctuation. This results in an overall
enhanced average speed of the oscillators. In contrast to
what was observed for identical oscillators [15, 16], the
oscillators here do not appear to be synchronized, but
there are signatures of phase locking, where ϕ1 advances
n1 steps while ϕ2 advances n2 steps with a reproducible
ratio n1 : n2, in this example 2:3.
Importantly, this behavior is apparent even at very

low values of the noise. This suggests that, as in the case
of identical oscillators [15, 16], the phase locking phe-
nomenology may be a consequence of bifurcations occur-
ring in the underlying deterministic dynamical system.

Finite phase locking

We start by analyzing the phase portraits in (ϕ1, ϕ2)
space corresponding to the the deterministic part of (1).
Because the dynamics are 2π-periodic, this dynamical
system is defined on the torus. Notice that the sys-
tem always has four fixed points: a stable fixed point at
(0,0), corresponding to both oscillators being at a mini-
mum of their potential energy; an unstable fixed point,
at (ϕmax

1 , ϕmax
2 ) when both at are a maximum; and two

saddle points at (ϕmax
1 , 0) and (0, ϕmax

2 ), when one os-
cillator is at a minimum and the other at a maximum.
Because of the structure of (1), the location and charac-
ter of these fixed points is independent of the strength
of the coupling. In particular, this means that local bi-
furcations (where fixed points split or merge and change
character) are impossible. Any bifurcation in this system
must be global, arising from a change in topology of the
network of heteroclinic and homoclinic orbits connecting
these four fixed points [44].

Phase portraits for weak driving force asymmetry
E∗2/E∗1 = 5 and several values of the coupling h are
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(0,0)

(2,3)
(1,2)

(1,1)

(0,1)

(0,0)
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(1,0)

(d)

(0,1)

(1,2)

(1,1)

(1,0)

(0,0)

(b)

FIG. 3. Phase portraits of the deterministic dynamics for
weak asymmetry E∗2/E∗1 = 5 and various values of the cou-
pling h. (a) (1, 1) topology for h = 0. (b) (1, 2) topology for
h = 0.05. (c) (2, 3) topology for h = 0.19. (d) (3, 4) topology
for h = 0.33. In all panels the green, red, and blue circles
respectively correspond to the stable, unstable, and saddle
fixed points of the dynamics. An example trajectory, starting
at the black square and finishing at the stable fixed point,
is shown in (b)–(d). The phase portraits in (c,d) are repre-
sented on the torus in (e,f). The example trajectories in (c,d)
are represented as three-dimensional trajectories around the
torus in (g,h). The colormap in (a)–(f) and the labels (m,n)
in (a)–(d) are explained in the text.

shown in Fig. 3. The labels (m,n) are winding number
pairs, describing how many times a trajectory starting
in that region will wind around the torus along each di-
mension before reaching the stable fixed point. Equiva-
lently, if the torus were to be unwrapped and tiled onto

(a) (b)

(c)

(2,3)

(2
,3
)

(2,2)

(1,2)

(1,1)

(0,1)

(0,0)

∞

FIG. 4. (a) Phase portrait for strong asymmetry E∗2/E∗1 =
19.15 and h = 0.51, demonstrating a (2, 3)∞ TPL state, and
(b) its projection on a torus. The running band is shown
in gray. The black line crossing through the black square
(shown as a reference point) is an example of a periodic orbit
within the running band, and is depicted in (c) as a three-
dimensional loop around the torus, which forms a trefoil knot.

the plane, the stable fixed point reached when starting
from that region in the phase portrait would be located
at (ϕ1, ϕ2) = (2πm, 2πn). In the same vein, every point
of the phase portrait (except those at heteroclinic or-
bits, which connect the unstable fixed point to the saddle
points) has been colored according to the Euclidean dis-
tance between the point in question and the fixed point
(for an unwrapped torus) that a trajectory starting at
that point would reach. Thus, yellow corresponds to
longer trajectories towards the fixed point, whereas blue
corresponds to shorter trajectories.

In the planar phase portraits [Fig. 3(a)–(d)], regions
with different winding number appear separated from
each other by the heteroclinic orbits. However, on the
surface of the torus [Fig. 3(e)–(f)], one can appreciate
that the region enclosed by the heteroclinic orbits is
still simply connected, covers the whole torus, and corre-
sponds to the basin of attraction of the stable fixed point.
With increasing coupling, we observe a series of global
bifurcations in the heteroclinic network, which change
the maximal winding numbers that are possible from
e.g. (1,1) in the absence of coupling [Fig. 3(a)] to (3,4)
for coupling h = 0.33 [Fig. 3(d)]. This higher winding
implies that the basin of attraction becomes a narrower
and narrower strip, which winds around the torus an in-
creasing number of times given by the highest winding
number pair.

These bifurcations are responsible for the phenomenol-
ogy observed in the stochastic simulations of Fig. 2, which
we term finite phase locking. Indeed, let us take the phase
portraits in Fig. 3(a,d) as an example. In the presence of
fluctuations, a system initially located at the stable fixed
point will typically be kicked by noise over either of the
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saddle points. In the absence of coupling, Fig. 3(a), this
implies that the system enters either the (1,0) or the (0,1)
basin, so that just one of the oscillators undergoes a single
step. With coupling, Fig. 3(d), the system instead enters
the (2,3) or the (1,1) basin, resulting in a finite number
of steps taken in tandem by the two enzymes. Note that,
typically, one of the two saddle points will be more easily
reachable and thus traversed much more frequently than
the other [45, 46]. It is also important to note that, al-
though the maximal winding number pair in Fig. 3(d) is
(3,4), observing a (3,4) transition in the stochastic sys-
tem should be rare, as the system will typically escape
the stable fixed point through one of the saddle points,
and not through the unstable point. In this particular
case, the stochastic simulations in Fig. 2(b) confirm that
the (0, ϕmax

2 ) saddle point is preferred, as all the stochas-
tic transitions observed lead to a (2,3) transition. The
time-course of a (2,3) stochastic transition is shown on
top of the corresponding deterministic phase portrait in
Movie S1.

Topological phase locking

For sufficiently strong driving force asymmetry, at spe-
cific values of the parameters belonging to a subset of
codimension 1 in parameter space, we find phase por-
traits that are qualitatively different, see Fig. 4. The
topology of the heteroclinic network changes, resulting
in the formation of two homoclinic orbits that connect
each of the two saddle points to itself. As a consequence,
the phase space becomes disconnected into two regions:
the basin of attraction of the stable fixed point, and a
band of periodic orbits (in grey in Fig. 4). We refer to
this phenomenon as topological phase locking (TPL).

Importantly, a nontrivial winding number pair can also
be assigned to the running band region. In the partic-
ular example of Fig. 4, we observe that a periodic orbit
(and, by extension, the running band region as a whole)
winds two times along the ϕ1 direction and three times
along the ϕ2 direction before closing in on itself, imply-
ing a winding number pair which we denote as (2, 3)∞ in
analogy with the notation for winding number pairs in-
troduced above, where the∞ subscript indicates that the
trajectories are periodic and never reach a fixed point.

An example of a periodic trajectory within the running
band is shown in Fig. 4(a), with the three-dimensional
view of its projection on a torus shown in Fig. 4(c). It is
interesting to note that the loop formed by the trajectory
corresponds to a trefoil knot which, naturally, belongs to
the class of torus knots (knots that lie on the surface of
a torus) [38].

TPL has very strong consequences in the stochastic
dynamics. In the presence of fluctuations, a system ini-
tially located at the stable fixed point will now be kicked
by noise over either of the saddle points and fall into the

running band. The phases ϕ1 and ϕ2 will then advance
deterministically, in the ratio given by the corresponding
winding number pair, until a sufficiently strong fluctua-
tion kicks the system out of the running band and back
into the stable fixed point. The average speed of the oscil-
lations can therefore be greatly enhanced by the presence
of a running band. The time-course of a stochastic multi-
step run in a (2, 3)∞ TPL state is shown on top of the
corresponding deterministic phase portrait in Movie S2.

Phase-locking diagram

To understand how and where these different phase
portrait topologies emerge in parameter space, as well as
the global bifurcations that connect them, we scanned
the parameter space as a function of driving force asym-
metry E∗2/E∗1 and coupling strength h. The topologies
of phase portraits with finite phase locking were identi-
fied by means of the highest winding number pair (m,n),
whereas those corresponding to TPL were identified us-
ing the winding number pair (m,n)∞ of their running
band.
The resulting phase-locking diagram, shown in Fig. 5,

demonstrates an incredibly rich structure of bifurcations
in the system. Note that the colors in the diagram cor-
respond to the logarithmic value of the second number
n in the winding number pair (m,n), with blue corre-
sponding to low numbers and red to high numbers. We
find a variety of regions corresponding to phase portraits
with finite phase locking with different winding numbers.
Most interestingly, however, we observe a number of dark
red branches or resonances at which the winding numbers
very sharply peak as we vary E∗2/E∗1 and/or h and cross
through the resonance. At the very center of these reso-
nances, in a lower-dimensional manifold of codimension
1, we find the phase portraits with TPL (TPL states).
To better understand the bifurcation structure, let us

focus on the (1, 2)∞ TPL state, which is the first one to
appear as the coupling h is increased. Suppose we begin
at the dot marked (2, 5) to the left of the TPL state in
Fig. 5, which corresponds to finite phase locking. As we
increase h, we first observe a bifurcation to (3, 7), i.e. the
maximal winding numbers increase by (1, 2). With a fur-
ther increase of h, we observe a bifurcation to (4, 9), again
by an increment of (1, 2). As we increase h further, we
keep undergoing more and more of these bifurcations,
effectively climbing up an infinite ladder of the form
(2, 5)+n×(1, 2) with n = 0, 1, 2, ...,∞. After only a finite
increase in h up to a critical value h∞, the system has
undergone an infinite number of these bifurcations and
reaches a TPL state limn→∞[(2, 5)+n×(1, 2)] = (1, 2)∞,
i.e. a phase portrait with running band emerges. When
h is further increased beyond h∞, we now descend down
a different infinite ladder, out of step with the first one,
of the form (4, 7) + n× (1, 2) with n = ∞, ..., 2, 1, 0. The
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FIG. 5. Phase-locking diagram as a function of the coupling strength h and the driving force asymmetry E∗2/E∗1. The
logarithmic colormap indicates the maximum winding of the second oscillator, and is used to differentiate the different phase
portrait topologies that emerge. The labels indicate the topology in the region marked by the black dots. Selected examples of
phase portraits are shown on a two-dimensional projection and on the torus.
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system thus ultimately reaches the finite phase locking
topology (4, 7). A further increase of h now takes us into
the range of influence of the (3, 5)∞ TPL state, so that
the system begins to climb up a new ladder and bifur-
cates to a (4, 7)+(3, 5) = (7, 12) topology, and so on and
so forth. An example of how the phase portraits change
as one moves across the (2, 3)∞ TPL state is shown in SI
Fig. S1.

A number of phase portraits for different points on the
phase-locking diagram is shown in the insets of Fig. 5,
and more examples are shown in SI Fig. S2 and SI Fig. S3.
In particular, a number of phase portraits displaying TPL
are included. Just like the (2, 3)∞ trajectory in Fig. 4, pe-
riodic trajectories inside these running bands form torus
knots. Such knots are defined by a tuple (q, p) where
q, p are coprime to each other and characterize the wind-
ing along the two axis of the torus [38]. For all (m,n)∞
topologies that we have observed, m and n were indeed
coprime, suggesting that the TPL states correspond to
various torus knots. Torus-knot trajectories have been
found in the past in soliton equations, for instance in the
non-linear Schrödinger equation [47]. Our system pro-
vides a new example of a non-linear dynamical system
which can give rise to such mathematical structures.

The phase-locking diagram in Fig. 5 bears some re-
semblance to the well-known Arnold tongues describing
phase locking in a number of other systems [34, 48–50].
However, the resemblance is only superficial: in fact,
while in the case of Arnold tongues the key parameter
controlling phase-locking ratios is the frequency asymme-
try and the coupling merely acts to broaden the phase-
locking regions, here the opposite is true. The main pa-
rameter controlling the phase-locking ratios is the cou-
pling h, and the very limited amount of broadening of the
phase-locking regions originates from the driving asym-
metry E∗2/E∗1. Besides this clear operational difference,
the context here is entirely different, as we are still deal-
ing with noise-activated dynamics – although the coex-
istence of a running band and a stable fixed point leads
to a coexistence of dissipative and effectively conserva-
tive/deterministic dynamics [17].

Lastly, it is worth commenting on the role of symmetry.
Interestingly, the TPL state (1, 1)∞ occurs in two very
particular lower dimensional manifolds, namely on the
manifold defined by E∗2/E∗1 = 1 and h > h∗, and on the
manifold defined by h = 1 (maximum coupling allowed
by positive-definiteness of the mobility matrix). This ex-
plains the results of Ref. 15 and Ref. 16, which dealt with
symmetric oscillators and observed (1, 1)∞ topologies for
all values of the coupling above a critical value h∗. This
appears to be a special feature of the symmetric case, as
in the general case studied here we find that TPL states
only occur at discrete values of the coupling strength.

For the sake of completeness, we have calculated anal-
ogous phase-locking diagrams for other choices of system
parameters, see SI Fig. S4 and SI Fig. S5. The overall

qualitative features are unchanged.

Signatures of TPL in the stochastic dynamics

In order to ascertain whether the TPL states in Fig. 5
have an effect on the stochastic dynamics in the presence
of noise, we now quantify the long-time behavior of our
stochastic simulations. In particular, we will measure
the average speed Ωα and diffusion coefficient Dα of each
oscillator (α = 1, 2), and the correlation C between the
two oscillators. Defining δϕα(τ ; t) ≡ ϕα(t + τ) − ϕα(t),
we calculate the average speed of oscillator α as

⟨δϕα(τ ; t)⟩t ∼
τ→∞

Ωατ, (2)

where the operator ⟨...⟩t denotes a time average over a
long simulation. The diffusion coefficient is similarly cal-
culated as

⟨[δϕα(τ ; t)− ⟨δϕα(τ ; t)⟩t]2⟩t ∼
τ→∞

2Dατ. (3)

Finally, the correlation between oscillators is calculated
as

⟨∏α=1,2[δϕα(τ ; t)− ⟨δϕα(τ ; t)⟩t]⟩t√∏
α=1,2⟨[δϕα(τ ; t)− ⟨δϕα(τ ; t)⟩t]2⟩t

∼
τ→∞

C, (4)

and is bounded between −1 and 1 for perfectly anticor-
related and perfectly correlated processes, respectively.
We first considered the average speed Ωα as a function

of coupling strength for fixed values of the driving asym-
metry [Fig. 6(a)], corresponding to horizontal cuts in the
phase-locking diagram of Fig. 5. For small asymmetry,
where there are no TPL states, the average speed of both
oscillators increases monotonically with increasing cou-
pling. The phenomenology is very different for strong
asymmetry, where increasing the coupling strength takes
the system through a series of TPL states. At each of
these, we find that the average speed of the coupled slow-
fast oscillators sharply peaks. Thus, the presence of a
running band strongly enhances the average speed of the
oscillators.
An analogous behavior is observed for the diffusion co-

efficients Dα, with a monotonic increase in the absence
of TPL states at weak driving force asymmetry, and very
sharp peaks when TPL states are crossed at strong driv-
ing force asymmetry [Fig. 6(b)]. In analogy with the
standard giant diffusion observed for single oscillators
at the threshold of noise-activated and deterministic dy-
namics [39], the giant diffusion for TPL states can be un-
derstood as a consequence of the bistability that arises in
systems with a running band, which stochastically switch
between dissipative dynamics that keep the system at
the stable fixed point, and quasi-deterministic dynamics
when the system is within the running band [16].
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(d)(c)(b)(a)

FIG. 6. Signatures of TPL states in the stochastic simulations, appearing as a function of the coupling strength h. (a) Average
speed and (b) diffusion coefficient of the oscillators for weak and strong driving force asymmetry. Peaks are observed as the
resonances are crossed for strong asymmetry. (c) The correlation between oscillators rapidly grows independently of the driving
force asymmetry. (d) Quality factor quantifying the stochastic thermodynamics of precision (Eq. (5)). The quality factor drops
as the resonances are crossed.

We also note that, independently of the amount of
driving force asymmetry, the correlation C quickly grows
with increasing coupling, and for h ≳ 0.1 saturates to
C ≈ 1 indicating perfect correlation between the oscil-
lators, see Fig. 6(c). Indeed, from the topology of the
deterministic phase portraits, we expect the dynamics
of the oscillators to become correlated for any topology
other than the trivial topology (1,1), which is present
only at very low h independently of the driving force
asymmetry.

Lastly, we consider the stochastic thermodynamics of
the two coupled processes [51]. In particular, the ther-
modynamic uncertainty relation (TUR) [4] shows that
energy dissipation (or entropy production) puts a fun-
damental lower bound to the precision of a nonequi-
librium process. More precisely, the multidimensional
TUR (MTUR) provides the bound J TD−1J ≤ σ̇/kB
at steady state, where σ̇ is the entropy production rate,
J is any vectorial current, and D is the diffusion matrix
describing the fluctuations of the current [40].

In our two-oscillator system, we have Jα = Ωα and
Dαα = Dα for α = 1, 2, as well as D12 = D21 =
C
√
D1D2. The MTUR can then be rewritten explicitly

as

Q ≡ 1

1− C2

(
Ω2

1

D1
− 2CΩ1Ω2√

D1D2

+
Ω2

2

D2

)
kB
σ̇

≤ 1 (5)

where Q is a quality factor, equal to 1 when the bound is
saturated (the precision is as high as thermodynamically
allowed) and 0 for a purely diffusive process. The entropy
production σ̇ can be calculated from the steady state
dissipation σ̇T = F1Ω1 + F2Ω2.

The behavior of the quality factor Q as a function of
the coupling strength h for both weak and strong driving
force asymmetries is shown in Fig. 6(d). The fact that
for strong asymmetry the system crosses through vari-
ous TPL states with increasing h is clearly signalled in
the stochastic thermodynamics of precision. In particu-
lar, we see that Q strongly decreases at each TPL state,
which may be counter-intuitive considering that the av-
erage speed peaks at these states [Fig. 6(a)]. However,

note that the diffusion coefficient also strongly peaks at
the TPL states [Fig. 6(b)], more sharply than the average
speed, so that the quality factor ultimately decreases at
the TPL states.

Outlook

Besides the obvious interest from the point of view of
dynamical systems theory, we anticipate that our results
may find practical applications in a variety of systems.
In particular, we previously showed how a dissipative
coupling arises when two enzymes that undergo confor-
mational changes during their chemical reactions are in
proximity of, or mechanically linked to, each other [15].
We hypothesize that the rate enhancements afforded by
TPL states could be exploited by enzymes that form het-
erodimers (that is, complexes of two distinct enzymes) in
order to boost the catalytic activity of the slower enzyme.
Indeed, some heterodimeric enzymes show higher activ-
ity than what could be achieved by the two individual
enzymes alone [52, 53]. The same kind of rate enhance-
ment could be present in clusters of transmembrane pro-
tein channels [19] and rotors [20–23], as well as in groups
of kinesins and dyneins walking on the same microtubule
[54], or different myosins exerting contractile forces on
nearby actin filaments [55]. Alternatively, TPL states
may be targeted in engineered systems whose dissipa-
tive coupling and driving force asymmetry can be exper-
imentally controlled, such as superconducting Josephson
junction arrays [17, 26], laser cavities [30, 31] or optome-
chanical devices [32, 33].

METHODS

Stochastic simulations

To integrate the stochastic differential equations,
Eq. (1), we employed the Euler-Maruyama method us-
ing a custom code written in the Julia language [56].
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Time was nondimensionalized as t̃ = µ1v1t. For the re-
sults in Fig. 6, a time step dt̃ = 10−2 was used, with the
total number of steps equal to 109 and the number of
samples equal to 106. We also averaged over 10 different
runs. More detailed information on how the observables
in Eqs. (2)–(4) were calculated can be found in the sup-
plementary information of Ref. 16.

Phase portraits

To generate phase portraits, we integrated the deter-
ministic equations of motion (corresponding to Eq. (1)
without the noise term) using the built-in ode45 integra-
tor in MATLAB [57], which employs a 4th order Runge-
Kutta method. A 301 × 301 grid of initial points in
the interval −π < ϕ1,2 < π was used, and we inte-
grated the trajectories up to a maximum integration time
t̃max = 100. The final points were then used to identify
the winding number (m,n) if the trajectory reached a
stable fixed point, or (m,n)∞ if the trajectory was found
to be periodic and thus to lie on a running band.
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Supplementary Information

DERIVATION OF THE PHASE EQUATIONS

We consider two non-identical rotors that are close to each other or even attached. To describe their rotating
dynamics, we use the angle θ1 and θ2 which correspond to the angle of rotor 1 and 2. These rotors can self-rotate
thanks to a driven internal cyclic process, representing a chemical reaction. The dynamics of this internal process is
described using the phases ϕ1 and ϕ2 which are the phases that appear in the main text.

Firstly, to describe the dynamics of a single rotor (i = 1, 2) we consider the potential

Ui(θi, ϕi) = −ki cos(niθi − ϕi) + Vi(ϕi) (6)

with Vi(ϕi) being the washboard potential described in the main text, Vi(ϕi) = −Fiϕi − vi cos(ϕi + δi). The first
term represents a “toothed gear” potential which provides the mechanochemical coupling, with strength ki, between
the rotation angle θi and the chemical process described by ϕi. We remind that a chemical reaction corresponds to
ϕ advancing by 2π. The integer ni thus describes how many reactions it takes to complete a full turn of the rotor,
with its sign defining the direction or chirality of the rotation (clockwise or anticlockwise). For example, for a typical
ATP synthase which rotates 120◦ per reaction [20], we have ni = ±3.

The surrounding medium or substrate causes hydrodynamic interactions between the two rotors and this induces a
coupling between the two. Therefore the dynamical equations in terms of the torques τ1 and τ2 are,

θ̇1 = µθ1τ1 + gτ2 (7)

θ̇2 = gτ1 + µθ2τ2 (8)

where µθi are rotational hydrodynamic self-mobilities, and g is the coupling from hydrodynamic interactions (cross-
mobility) or from friction due to direct contact. For example, for a rotating disk, µθ = 1/(4πηa2), with a the radius
of the disk and η the hydrodynamic viscosity. Typically, the value g is negative, and in the case of two interacting
rotating disks is g = −1/(8πηr) with r the distance between the two rotors [43]. The torques τi are derived directly
from the potential Ui(θi, ϕi), as τi = −∂θiUi(θi, ϕi) = −kini sin(niθi − ϕi).

The equations for the internal phases are also derived directly from the potential, as

ϕ̇i = −µϕi∂ϕi
Ui(θi, ϕi) = µϕiki sin(niθi − ϕi)− µϕiV

′
i (ϕi) (9)

where µϕi is the mobility governing the overdamped dynamics of the reaction coordinate ϕi. Let us denote δθi ≡
niθi − ϕi. By assuming strong mechanochemical coupling, i.e. that the timescale of angle relaxation (kiµθi)

−1 is
much shorter than the timescale for the changes in internal phase velocity, we simplify the dynamics since the angles
will relax quickly and the dynamics will be dictated by the dynamics of the phases ϕi, which are the slow variables.
Mathematically, this is equivalent to δθ̇i ≃ 0, which implies that θ̇i ≃ ϕ̇i/ni. Substituting this into (7)-(8), we can
solve for k1 sin δθ1 and k2 sin δθ2 and introduce them into (9). Further solving for ϕ̇1 and ϕ̇2, we finally obtain the
deterministic part of Eq. (1) in the main text, i.e.

ϕ̇1 = µ1[−V ′(ϕ1)] +
√
µ1µ2h[−V ′(ϕ2)] (10a)

ϕ̇2 =
√
µ1µ2h[−V ′(ϕ1)] + µ2[−V ′(ϕ2)] (10b)

with the coefficients

µ1 ≡ µϕ1

(
1 +

µθ1µϕ2

n1n2(µθ1µθ2 − g2)

)(
1 +

µθ1µϕ2 + µϕ1µθ2 +
µϕ1µϕ2

n1n2

n1n2(µθ1µθ2 − g2)

)−1
, (11)

µ2 ≡ µϕ2

(
1 +

µϕ1µθ2

n1n2(µθ1µθ2 − g2)

)(
1 +

µθ1µϕ2 + µϕ1µθ2 +
µϕ1µϕ2

n1n2

n1n2(µθ1µθ2 − g2)

)−1
, (12)

h ≡ g

n1n2

√
µϕ1µϕ2

µθ1µθ2 − g2

(
1 +

µθ1µϕ2

n1n2(µθ1µθ2 − g2)

)− 1
2
(
1 +

µϕ1µθ2

n1n2(µθ1µθ2 − g2)

)− 1
2

. (13)
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The corresponding noise term in Eq. (1) of the main text follows directly from requiring a fluctuation-dissipation
relation.

Additionally making the reasonable assumptions that the mobility of the internal phase is smaller than the hydro-
dynamic mobility of the angle (µϕi/µθi ≪ 1), and that the hydrodynamic coupling is small (g/

√
µθ1µθ2 ≪ 1) we find

that the coefficients to leading order in these ratios are

µ1 ≃ µϕ1, µ2 ≃ µϕ2, h ≃ g

n1n2

√
µϕ1µϕ2

µθ1µθ2
. (14)

The sign of h depends on the signs of g, n1, and n2. Since in the case of hydrodynamic interactions g is negative, in
order to obtain h > 0 we find that n1 and n2 must have opposite signs, that is, the rotors must rotate in opposite
directions (with opposite chirality).

DESCRIPTION OF THE SUPPLEMENTARY MOVIES

We provide the following movies:

• Movie 1: An example of a stochastic (2, 3) transition in a (3, 4) finite phase locking topology. On the left panel,
the evolution of the trajectory is shown on top of the phase portrait. On the right panel, the completed cycles
are shown as a function of simulation time.

• Movie 2: An example of the stochastic dynamics on a (2, 3)∞ TPL topology. On the left panel, the evolution
of the trajectory is shown on top of the phase portrait. On the right panel, the completed cycles are shown as
a function of simulation time.

SUPPLEMENTARY FIGURES

(7,11) (11,17) (2,3) (13,19) (9,13)
h=0.47 h=0.49 h=0.51

∞

h=0.53 h=0.54

FIG. S1. Phase portraits as the system crosses through the (2, 3)∞ TPL state with increasing h. The driving force asymmetry
is E∗2/E∗1 = 19.15. In all cases, Eba1/E∗1 = 3 · 10−4.

76



13

(1,1) (1,2) (2,5)

(3,7) (4,9) (4,7)

(5,9) (5,7) (8,11)

(6,7)

(11,12)

(5,6)(4,5)

(18,19) (49,50)

h=0.02, E*2/E*1=25 h=0.05, E*2/E*1=22 h=0.15, E*2/E*1=13.5

h=0.18, E*2/E*1=36.5

h=0.37, E*2/E*1=30.8 h=0.46, E*2/E*1=8 h=0.624, E*2/E*1=27.9

h=0.24, E*2/E*1=22.4 h=0.39, E*2/E*1=26.8

h=0.44, E*2/E*1=4.2 h=0.518, E*2/E*1=3.7 h=0.6, E*2/E*1=3.63

h=0.78, E*2/E*1=3.7 h=0.92, E*2/E*1=15.1 h=0.97, E*2/E*1=25.4

FIG. S2. Various phase portraits with finite phase locking. In all cases, Eba1/E∗1 = 3 · 10−4.
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(3,5)∞
h=0.47, E*2/E*1=37.54 h=0.706, E*2/E*1=16.95 h=0.628, E*2/E*1=37.26 h=0.51, E*2/E*1=35

(4,5)∞ (5,7)∞ (5,8)∞

FIG. S3. Various TPL phase portraits. For the topologies (3, 5)∞, (4, 5)∞ and (5, 7)∞, we used Eba1/E∗1 = 3 · 10−4. For the
portrait (5, 8)∞, we used Eba1/E∗1 = 1 · 10−4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
h

10-4

10-3
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E
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a
1
/E

*1
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(3,4)
(4,5)

(1,2)
(1,2)∞
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(3,7)
(4,9)

(3,5)

(5,8)

(4,7)∞

(3,5)∞

(5,8)∞

(2,3)∞

(5,7)∞

(3,4)∞

FIG. S4. Phase-locking diagram as a function of coupling strength h and Eba1/E∗1, for fixed Eba2/Eba1 = 1 and E∗2/E∗1 = 35.
The horizontal line corresponds to Eba1/E∗1 = 3 · 10−4 which was used throughout the main text.
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FIG. S5. Phase-locking diagram as a function of the coupling strength h and the driving force asymmetry E∗2/E∗1. In
comparison with Fig. 5 in the main text, which used Eba1/E∗1 = 3 · 10−4 and Eba2/Eba1 = 1, here we use Eba1/E∗1 = 10−3

and Eba2/Eba1 = 0.5.
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Chapter 4

Universal mechanistic rules for de
novo design of enzymes

This chapter is reproduced from a version of the preprint Chatzit-
tofi M. et al arXiv:2408.16639 [133] which is under review in Chem
Catalysis. In this work, I contributed in designing the research
and in developing a numerical code to solve the Fokker-Planck and
Langevin equations. I have performed numerical calculations, con-
tributed in the analysis of the results and writing the paper.
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Enzymes are nano-scale machines that have evolved to drive chemical reactions out of equilibrium
in the right place at the right time. Thermodynamically favourable reactions such as ATP hydrolysis
are used by the cell to convert chemical energy into useful structure, function, and mechanical work.
This includes the ‘fuelled’ catalysis of chemical reactions that would otherwise be thermodynamically
unfavourable. Given the complexity and specificity of enzymatic function, bottom-up design of
enzymes presents a daunting task that is far more challenging than making passive molecules with
specific binding affinities or building nano-scale mechanically active devices. Here, we present a
thermodynamically-consistent model for the operation of such a fuelled enzyme, which uses the
energy from a favourable reaction to undergo non-equilibrium conformational changes that in turn
catalyze a chemical reaction on an attached substrate molecule. We show that enzymatic function
can emerge through a bifurcation upon appropriate implementation of momentum conservation on
the effective reaction coordinates of the low dimensional description of the enzyme, and thanks to a
generically present dissipative coupling. By considering the different aspects of the dynamics, such
as the interplay of the non-equilibrium drive and the geometry of the enzyme-substrate complex,
we propose three golden rules that should be universally applicable for de novo design of enzymes,
as they are based on generic ingredients and physical constraints. These rules lead to optimal
combinations of parameters, which can vastly accelerate reactions, while at the same time decreasing
the energy dissipation of the combined reaction process, or, in other words, to an efficient enzyme.
Our results can complement the recently developed strategies for de novo enzyme design based on
machine learning approaches.

I. INTRODUCTION

A fundamental question at the core of many areas of
research is how to develop novel strategies for achieving
non-equilibrium control at the nano-scale over the direc-
tion of chemical reactions [1]. While this is a challeng-
ing task from the point of view of bottom-up synthetic
approaches, there are lessons to be learned from biolog-
ical enzymes that have evolved to carry out such tasks
with a high degree of precision and robustness despite
the overwhelming buffeting by the environment in which
they function. Since the pioneering work by Michaelis
and Menten who elucidated some of the key phenomeno-
logical aspects of enzyme-assisted reaction kinetics [2, 3],
our understanding of the underlying mechanisms behind
these processes has been progressively refined [4–7]. The
underlying physical picture provided by the Kramers the-
ory of noise-activated barrier crossing has provided a
key conceptual framework for a reduced low-dimensional
characterization of catalytic processes along appropri-
ately selected reaction coordinates [8, 9], while molecular
dynamics (MD) simulations of enzymes have been devel-
oping rapidly with the help of increased computing power
[10].

All-atom MD approaches give important insight at the
microscopic level, for particular systems of interest. How-
ever, they deal with many degrees of freedom and simu-
lation parameters (e.g. atomic force fields), which might
not readily lend themselves to the goal of extracting in-
tuitive, minimal guidelines for the de novo design and

optimization of enzymes. There is moreover still a large
gap in time scales that can be computationally afforded
to simulate sizeable numbers of catalytic cycles for most
enzymes [11]. With the advent of machine learning ap-
proaches that are increasingly used in the design and op-
timization of enzymes [12–14], it is evident that such min-
imal design rules, which reflect the physical constraints
on the conformational dynamics of proteins while driven
away from equilibrium through catalytic activity, will be
of great potential promise.
In recent years, fundamental insight from statistical

physics has been successfully used towards experimen-
tal demonstrations of many interesting non-equilibrium
phenomena [15–18]. To aim towards the development
of systems that can accomplish relatively complex tasks,
one can benefit from innovative ideas that build on emer-
gent physical properties of many-body non-equilibrium
systems. Recent examples of such developments include
proposals to employ non-reciprocal interactions to de-
sign collective barrier-crossing strategies that could emu-
late enzymatic function at larger scales [19], autonomous
multifarious self-organization of complex protein struc-
tures [20], as well as proposed scenarios for fast and ef-
ficient self-organization of primitive metabolic cycles at
the early stages of life formation [21].
The non-equilibrium dynamics of an enzyme dur-

ing catalysis simultaneously involves energy transduction
and conformational changes [22, 23], i.e. displacements.
This suggests that mechanical considerations should play
a key role in the stochastic dynamics of an enzyme, and
consequently, in its optimal design with the aim of achiev-
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ing the desired catalytic cycle. In other words, the me-
chanical activity of enzymes that lies at the core of their
function as efficient catalysts bears a strong resemblance
to the dynamics of molecular motors [24–26], with the
important difference that the output energy is not in the
form of mechanical work. Just like in the development of
synthetic nano-motors, e.g. DNA-origami-based proto-
types [18, 27, 28], it would be desirable to have bottom-
up strategies to build synthetic enzymes.

Here, we set out to construct a minimal model for a
‘fuelled’ enzyme, so that we can extract a set of golden
rules regarding its optimal design (see below). Our theo-
retical framework is built upon two main pillars, namely,
momentum conservation as a fundamental physical con-
straint on the effective reaction coordinates that span the
relevant low dimensional configuration space of the sys-
tem, and a generically present dissipative coupling be-
tween the different reaction coordinates, which we sys-
tematically derive from a microscopic model. The im-
plementation of momentum conservation leads to the
emergence of an effective mechanochemical coupling in
the same spirit as models used in studies of stochas-
tic nano-swimmers [29–32] and enhanced diffusion of en-
zymes [33, 34], while the dissipative coupling has been
recently used to show how enzyme pairs can cooperate
by exhibiting synchronization and enhanced catalytic ac-
tivity [35]. The two ingredients described above give rise
to a bifurcation in the dynamical phase-portrait of the
low dimensional configuration space, which enables en-
zymatic activity as an emergent feature of the dynam-
ics, via a fundamentally novel mechanism not accessi-
ble to Kramers-like energy barrier-crossing descriptions
in terms of reaction coordinates. Our work complements
other studies that involve minimal models for studying
enzymatic behaviour, often based on colloids interact-
ing through short-ranged interaction potentials or bead-
spring networks [36–41], which have been shown to be
able to describe the action of a ‘passive’ enzyme, namely,
catalysts that can accelerate a process of interest in the
thermodynamically favourable direction.

We consider an enzyme that undergoes conformational
changes during the catalytic conversion of a fuel molecule
to a waste molecule (Fig. 1(a,b) and Supplemental Videos
1 and 2). During each reaction, the enzyme undergoes
an expansion and contraction cycle. We consider two
types of substrate molecules: a dimer that can dissociate
into two monomers (Fig. 1(c)), and a dimer that has two
states, a short and a long one (Fig. 1(d) and Supplemen-
tal Video 3). In both cases, the dimer is attached at the
outside of the enzyme. Through a detailed, thermody-
namically consistent calculation, we show that during the
fuel-induced contraction the enzyme can cause the disso-
ciation of the dimer into monomers, or its transition from
the short to the long conformation, respectively, even if
these processes are not favoured thermodynamically or
face a substantial energy barrier (see Supplemental Video
4). These catalyzed reactions are favourable in a large
portion of the parameter space, related to the sizes and

FIG. 1. (a) The free energy landscape that drives the inter-
nal (fuel-to-waste) thermodynamically favourable reaction of
the enzyme, where Eba is the energy barrier height and E∗
the difference in the Gibbs free energy after a complete reac-
tion. (b) The dynamics of the preferred length of the enzyme
during the internal reaction, which induces conformational
changes of amplitude ℓe during a reaction. (c, d) Free energy
landscapes for the molecule, representing the thermodynami-
cally unfavourable substrate-to-product reaction, for two ex-
amples of reaction: (c) dissociation of a dimer molecule into
two monomers, (d) transition of a molecule between a short
and a long conformational state. Here, ∆ is the barrier height,
ε is the Gibbs free energy difference, and ℓm is the difference
in the length of molecule between the initial and the transi-
tion state.

lengths of the enzyme and the bound molecule.
Our proposed dynamical paradigm, built on appropri-

ate implementation of the relevant physical constraints
on the minimal reaction coordinates, allows us to identify
the following three golden rules for the optimal function
of a fuelled enzyme driven by mechanochemical coupling:
(i) the enzyme and the molecule should be attached at
the smaller end of each; (ii) the conformational change
of the enzyme must be comparable to or larger than the
conformational change required of the molecule; (iii) the
conformational change of the enzyme must be fast enough
so that the molecule actually stretches, rather than just
following the enzyme without stretching. The rules can
provide useful input to the complementary perspectives
of de novo enzyme design based on machine learning and
all-atom simulations.
The article is organized as follows. We first present

the enzyme-molecule model. After coarse-graining, we
derive the general form of the dynamical equations of
the enzyme and molecule. After introducing the relevant
geometric parameters and energy landscapes, we study
the corresponding deterministic dynamical system. We
show that the catalytic action of the enzyme can be un-
derstood as emerging, in the mathematical language of
dynamical systems theory, from a novel global bifurca-
tion in the deterministic phase-space dynamics. This bi-
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furcation is a consequence of the non-equilibrium drive
of the fuel-to-waste reaction and the mechanochemical
coupling with the passive molecule arising from enzyme
conformational changes. We confirm the latter through
the analysis of the stochastic dynamics in the presence
of thermodynamically consistent noise. By studying the
non-equilibrium steady-state of the system, we show the
existence of an optimal set of parameters. Finally, an
analysis of first-passage times shows that fuelled cataly-
sis enables a great reduction of the characteristic reaction
time and thus a substantial enhancement in the reaction
rate.

II. MODEL

In biological cells, many reactions are driven by en-
zymes that use a thermodynamically favourable reac-
tion (fuel-to-waste) to power a thermodynamically un-
favourable reaction (substrate-to-product) that would
normally (spontaneously) take place in the opposite di-
rection, in the absence of the enzyme. The most common
fuel for these reactions is ATP, which is converted into
useful work or motion [26, 42–45]. Here we develop a
minimal model to describe the dynamics of a fuelled en-
zyme.

A. Geometry and deterministic dynamics

We start with the simple model for an enzyme that un-
dergoes conformational changes during catalysis, as pre-
viously introduced in Ref. 35. In particular, the fuel-to-
waste reaction is not modelled explicitly, and is instead
described by an internal phase ϕe which moves stochas-
tically along a downhill washboard potential Ve(ϕe); see
Fig. 1(a). A noise-activated jump over one of the en-
ergy barriers (of height Eba) leads to an increase of the
internal phase ϕe by 2π, and corresponds to the conver-
sion of fuel into waste with a free energy release given
by E∗. We assume that the catalytic process is reaction-
limited, which is equivalent to fuel molecules being suf-
ficiently abundant, such that a new fuel molecule would
effectively bind instantly to the enzyme after a reaction
allowing the process to be repeated again.

The enzyme is represented by two sub-units, with the
separation Le between them representing the mechan-
ical degree of freedom that is coupled to the internal
chemistry. This coupling is described by the potential
U(Le, ϕe) =

k
2 (Le−L(ϕe))

2+Ve(ϕe), where the first term
is a harmonic potential that couples the actual length Le

to a preferred length L(ϕe) that depends on the internal
phase describing the fuel-to-waste reaction; see Fig. 1(b).
As a consequence of this coupling, every time that a fuel-
to-waste reaction occurs the enzyme undergoes a cyclic
conformational change.

The dynamics of the dimer molecule is described by
a single degree of freedom, which is the separation Lm

between its two monomers; see Fig. 1(c,d). To model the
two different chemical reactions already described (dimer
dissociation and short-to-long conformation switch), two
different potentials Vm(Lm) that govern the length of the
molecule are used. For convenience and to unify the
notation in both cases, we express the dimer length as

Lm = L
(0)
m + ℓmϕm where L

(0)
m is the length in the dimer

state or in the transition state between short and long,
respectively, and ℓm is the length increase necessary to
reach the transition state; see Fig. 1(c,d).

We now briefly describe the dynamics governing these
degrees of freedom (for the detailed derivation see Ap-
pendix A). When the substrate molecule strongly binds
to the enzyme, a complex effectively made up of three
sub-units is formed (Fig. 2). Each sub-unit has a hydro-
dynamic mobility (inverse friction): µe for the part of the
enzyme not bound to the molecule, µb for the unit that
is shared by the molecule and the enzyme when bound
to each other, and µm for the part of the molecule that is
not bound to the enzyme. Since the typical time scales
of the catalytic activity and the associated enzyme con-
formational transitions are much longer than the rele-
vant inertial time scale [32], we consider the overdamped
dynamics of these three sub-units, which leads to cou-
pled evolution equations for the two lengths. Similarly,
we consider overdamped dynamics for the evolution of
the internal phase of the enzyme along the chemical free
energy landscape, with an associated mobility µϕ. By
assuming that the enzyme is stiff, one can enslave the
dynamics of the enzyme length (fast variable) onto the
dynamics of the internal phase (slow variable). This re-
duces the degrees of freedom to two, and results in cou-
pled equations for the internal phase of the enzyme and
the length of the molecule. The deterministic compo-
nents of the equations take on the form

ϕ̇α =
∑

β=e,m

Mαβ(ϕe)[−∂βVβ(ϕβ)] (1)

where Mαβ is a symmetric effective mobility tensor (with

α, β ∈ {e,m}), and ∂β ≡ ∂
∂ϕβ

(note that we do not imple-

ment a summation convention). The explicit expressions
for the components of the mobility tensor are given as
follows

Mee =
µϕ

1 +
µϕ

µ1
L′(ϕe)2

, (2)

Mem = Mme = −
(

µϕ

1 +
µϕ

µ1
L′(ϕe)2

)
µb

µ1

L′(ϕe)

ℓm
, (3)

Mmm =
1

ℓm
2

(
µ2 −

µ2
b

µ1

1

1 +
µϕ

µ1
L′(ϕe)2

)
, (4)

where µ1 ≡ µe + µb, µ2 ≡ µm + µb, and L′(ϕe) =
dL(ϕe)
dϕe

.
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FIG. 2. (a) A visualization of a dissociation process catalyzed by a fuelled enzyme, divided into four stages. The blue and red
curves correspond to the energy landscape of the internal reaction of the enzyme Ve(ϕe), and of the molecular reaction Vm(ϕm),
respectively. (b) The same process visualized within the two dimensional energy landscape given by Ve(ϕe) + Vm(ϕm), where
the black line shows the evolution of the combined enzyme-molecule system. Thermal noise tends to kick the system over the
enzymatic energy barrier, since it is smaller than the barrier in the energy landscape of the molecule. The coupling between
the enzyme and molecule dynamics, mediated by the conformational changes of the enzyme, then causes the system to cross
over the energy barrier of the molecular reaction.
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B. The effect of noise in the stochastic dynamics

Since enzymes operate at the nano-scale, they are
strongly affected by the thermal fluctuations of the sur-
rounding medium. In particular, because the dynamics is
dissipative, thermal noise is essential to kick the system
out of local energy minima and over barriers associated
with the reactions; see Fig. 1(a,c,d).

Therefore, it is essential to introduce thermal fluctu-
ations in our description of the problem. The system is
out of equilibrium due to the driving force given by the
energy E∗ of the fuel. In the limit of E∗ = 0, the steady
state of the system must be a state of thermodynamic
equilibrium, corresponding to a Boltzmann distribution.
This implies that the stochastic dynamics corresponding
to the deterministic dynamics in Eq. (1) must be de-
scribed by a Fokker-Planck equation describing the time
evolution of the probability distribution P (ϕe, ϕm, t) as
follows

∂tP +
∑

α=e,m

∂αJα = 0, (5)

with the conserved probability currents given as

Jα(ϕe, ϕm, t) =
∑

β=e,m

Mαβ

[
P (−∂βVβ)− kBT∂βP

]
, (6)

where kB is the Boltzmann constant and T is the tem-
perature. In the absence of a non-equilibrium driving
force (E∗ = 0), both probability currents Je and Jm
must vanish at the equilibrium steady state. As a re-
sult, one recovers the Boltzmann distribution Peq ∝
exp(−Ve(ϕe)/kBT ) exp(−Vm(ϕm)/kBT ) independently of
the form of the mobility matrix Mαβ , and thus of the
geometric parameters describing the enzyme and the
molecule.

That the equilibrium probability distribution factor-
izes reflects the fact that the two-dimensional energy
landscape Ve(ϕe) + Vm(ϕm) in which the phases evolve
is separable, i.e. there is no coupling between ϕe and ϕm

through the potential. The dynamics of ϕe and ϕm are
coupled only through the off-diagonal components of the
mobility tensor Mαβ , which arise due to the mechani-
cal contact (binding) between enzyme and molecule in
combination with the conformational changes of the en-
zyme, and represent a form of dissipative coupling which
only plays a role in a non-equilibrium setting (E∗ > 0),
i.e. when the fuel-to-waste reaction is thermodynamically
favoured. This type of coupling has been seen to emerge
in models of coupled molecular machines (via mechan-
ical binding or hydrodynamic interactions mediated by
a viscous fluid) and enables cooperative phenomena like
synchronization [35, 46] and phase-locking [47] among en-
zymes, of which there is suggestive experimental evidence
[48, 49].

The Langevin equation associated to the Fokker-
Planck equation in Eq. (5) takes the following form in

the Stratonovich convention,

ϕ̇α =
∑

β=e,m

[
Mαβ(−∂βVβ) +

√
2kBTσαβξβ

+
∑

ν=e,m

kBTσαν∂βσβν

]
, (7)

where
∑

ν=e,m σανσβν = Mαβ . The term on the second
line of the right hand side is the spurious drift term aris-
ing from the multiplicative nature of the noise, due to
the dependence of the mobility matrix on ϕe, while the
last term on the first line of Eq. (7) is the thermal noise
with ξβ being a unit white noise such that ⟨ξβ(t)⟩ = 0
and ⟨ξα(t)ξβ(t′)⟩ = δαβδ(t − t′). It is also worth noting
that the mobility matrix must be symmetric and positive
definite (which is the case here) in order for the dynamics
to be thermodynamically consistent [50, 51].

C. Model parametrization

The enzyme and the molecule are embedded in a sol-
vent under low Reynolds number conditions [51]. There-
fore, we can infer that the mobilities µe (enzyme-only
sub-unit), µb (bound enzyme-molecule sub-unit), and µm

(molecule-only sub-unit) are related to their correspond-
ing effective hydrodynamic radii ae, ab, and am, via the
Stokes relation µ = 1/(6πηa), ignoring hydrodynamic
interactions in this lowest order approximation. The mo-
bilities thus directly encode information about the sizes
of the enzyme and the molecule sub-units. The length
scale related to the amplitude of the deformation of the
molecule is ℓm; see Fig. 1(c,d). For the conformational
changes of the enzyme, we assume that the preferred
length L(ϕe) oscillates during the enzymatic cycle as

L(ϕe) = L(0)
e + ℓe sin(ϕe − δ), (8)

where L
(0)
e is an average length which does not enter

the dynamics, ℓe is the amplitude of the conformational
change, and δ is a phase shift described below (we choose
ℓe ≥ 0).

The washboard potential governing the dynamics of
the internal phase ϕe is taken to be of the form Ve(ϕe) =
−Fϕe+v sin(ϕe−δ) where δ = arccos(F/v) is the value of
the phase shift which guarantees that the minima of the
potential are located at integer multiples of 2π. The pa-
rameters F and v can be mapped to the height of the
energy barrier of the enzymatic reaction Eba and the
free energy released after a complete reaction E∗ (see

Fig. 1(a)) through Eba = [2
√

1− (F/v)2 + 2δ(F/v)]v
and E∗ = 2πF [35, 47, 52]. By eliminating v and F ,
we find that the parameter δ is given by the solution of
the transcendental equation

δ + tan δ = πEba/E∗, (9)
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Parameters Description

µϕ mobility of the internal phase ϕe (reaction coordinate of fuel-to-waste reaction)
µe hydrodynamic mobility of the enzyme-only sub-unit
µm hydrodynamic mobility of the molecule-only sub-unit
µb hydrodynamic mobility of the shared (bound) sub-unit

µ1 = µe + µb sum of the mobilities of the enzyme-only and shared sub-units
µ2 = µm + µb sum of the mobilities of the molecule-only and shared sub-units

h = µb/(µe + µb) effective coupling strength (0 ≤ h ≤ 1)
ℓe amplitude of the conformational change of the enzyme
ℓm length difference between the initial and transition states of the molecule
Eba energy barrier of the fuel-to-waste reaction
E∗ Gibbs free energy released by the fuel-to-waste reaction
∆ energy barrier of the molecule reaction
ε unfavourable energetic bias of the short-to-long reaction

kBT thermal energy (strength of thermal fluctuations)

TABLE I. Summary of the parameters of the model.

which yields the approximate solution

δ ≃ π

2

Eba

E∗
, (10)

for small values of Eba/E∗.
The parameter µϕ is the mobility of the internal phase

ϕe and may have different microscopic origins depending
on the particulars of the fuel-to-waste reaction. In prin-
ciple, it can be related to the rate kcat of the catalytic
reaction and the height of the energy barrier Eba through
the Kramers escape rate [8, 9]

kcat =
µϕ

2π

√
|λ|λ(0) exp

(
− Eba

kBT

)
, (11)

where λ(0) = V ′′e |min and λ = V ′′e |max, i.e. they corre-
spond to the values of the second derivative (curvature)
of the potential around the minimum and the maximum
(energy barrier), respectively. Thus, by knowing the cat-
alytic rate and barrier height of a reaction one can infer
the value of µϕ.

For the molecule, we consider two different types of re-
action starting from a dimer-like substrate. For the disso-
ciation reaction, we consider a potential with a minimum
representing the stable initial state of the molecule, a
maximum corresponding to an energy barrier with height
∆, and an asymptotic decrease to a constant value, which
represents the fact that beyond the barrier the monomers
become disconnected. We describe this with the poten-
tial Vm(ϕm) = ∆ϕ2

m exp[2(1 − ϕm)], shown in Fig. 1(c).
For the conformational switch reaction where the dimer
switches from a short to a long state, we choose a bistable
potential, with an energy barrier ∆ and an energy differ-
ence ε between the long (higher energy) and the short
(lower energy) states. We model this using the poten-
tial Vm(ϕm) = ∆ϕ2

m(ϕ
2
m − 2) + εϕm/2, with ε < ∆; see

Fig. 1(d). All the relevant model parameters are summa-
rized in Table I.

III. RESULTS

A. Preliminary considerations

It is crucial to note that the components of the mobil-
ity tensor Mαβ are determined by the geometric features
of the enzyme and molecule, which can be tuned as to op-
timize the function of the enzyme. The basic principle is
illustrated in Fig. 2(a), for the example of dissociation of
a dimer molecule. When a catalytic reaction takes place
(the internal phase ϕe is kicked over the chemical energy
barrier by thermal noise), the coupling to the molecule
length arising from the conformational changes of the
enzyme drives a corresponding evolution of the molecule
length, as represented by ϕm, and in particular can cause
ϕm to overcome its energy barrier. The evolution along
the two-dimensional energy landscape Ve(ϕe) + Vm(ϕm)
is shown in Fig. 2(b), where the black path corresponds
to a catalyzed reaction.
We expect to have a strong coupling between the fuel-

to-waste (ϕe) and substrate-to-product (ϕm) reactions
when the off-diagonal components in the mobility ten-
sor are non-negligible. In the limiting cases where either
the middle sub-unit is large compared to the enzyme-only
sub-unit, µb/µ1 → 0, or the conformational changes of
the enzyme are small compared to the dissociation length
of the molecule, ℓe/ℓm → 0, the off-diagonal terms van-
ish, leading to a decoupling of the dynamics between the
enzyme and the molecule. To achieve a strong coupling,
we would aim to maximize µb/µ1 and ℓe/ℓm, from which
one can infer the first two golden rules [(i) and (ii)] for
designing an enzyme discussed above. In the following,
we define the ratio h ≡ µb/µ1 = µb/(µe + µb) to be the
“coupling strength”, and we note that it is bounded as
0 ≤ h ≤ 1. For h < 0.5, the mobility of the shared sub-
unit is larger than that of the enzyme-only sub-unit, and
the reverse is true for h > 0.5.
Throughout the rest of the text we will use the follow-

ing parameters unless mentioned otherwise: µϕℓ
2
m/µ2 =
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FIG. 3. Phase-portraits of the deterministic dynamics for (a,b) the dissociation reaction and (c,d) the switch reaction. A global
bifurcation occurs with increasing coupling strength h, which is below the critical value in (a,c) and above it in (b,d). In all
cases, stable fixed points are depicted as circles, saddle points as diamonds, and unstable fixed points as asterisks. Dashed lines
depict possible scenarios in which thermal fluctuations can kick the system out of the basin of attraction of a stable fixed point.
The solid flow lines show typical trajectories, and their final resting points, when starting from different basins of attraction.
The different colouring of the diamonds is described in the text. The values of the coupling are (a) h = 0.33, (b) h = 0.48, (c)
h = 0.12, and (d) h = 0.48.

1, ℓe/ℓm = 2.5, µ1/µ2 = 0.88, E∗/∆ = 14π, Eba/∆ =
0.4, and (for the switch reaction) ε/∆ = 0.1. The dimen-
sionless time is defined as t̃ = (µϕ∆)t. The remaining
dimensionless parameters that we explore in the text are
the coupling strength h and the dimensionless thermal
noise strength kBT/∆.

B. Deterministic dynamics and global bifurcation

Before considering the full stochastic (noise-activated)
dynamics of the system, we first study the deterministic
dynamics given by Eq. (1), as we can apply tools from
dynamical systems theory to obtain an intuitive under-
standing of the expected behaviour, particularly in the
experimentally-relevant case of low noise, where kBT is
smaller than all other energy scales.

In Fig. 3, phase portraits of the deterministic dynam-

ics are shown for low and high coupling strengths and
both types of reaction (see Appendix C for details of
the numerical calculation of phase portraits). Depend-
ing on the type of reaction, different sets of fixed points
appear in the dynamics (stable fixed points are depicted
as circles, saddle points as diamonds, and unstable fixed
points as asterisks). For the dissociation reaction, there
are four fixed points (one stable, two saddle points, one
unstable) since there is no local minimum of the molecule
potential after the energy barrier. The stable fixed point
at ϕm = 0 corresponds to the substrate (dimer) state,
whereas ϕm → ∞ corresponds to the product (dissoci-
ated) state. For the switch reaction, there are six fixed
points (two stable, three saddle points, one unstable).
The stable fixed point at ϕm = −1 corresponds to the
substrate (short) state, whereas that at ϕm = +1 cor-
responds to the product (long) state. It is worth noting
that the positions of the fixed points do not depend on the
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FIG. 4. Critical coupling strength at which the bifurcation
occurs, as a function of (a) the geometric ratio ℓe/ℓm and the
ratio E∗/Eba describing the internal enzyme reaction, and (b)
the mobility ratio µ1/µ2 and E∗/Eba. In the white region out-
side the black solid line, a bifurcation does not occur within
the physical range 0 ≤ h ≤ 1.

coupling, but only on the potentials Ve(ϕe) and Vm(ϕm).
Thus, changes in the geometry of the enzyme-molecule
complex (and thus in the coupling strength) leave the
location and nature of the fixed points unchanged. As
a consequence, there cannot be any local bifurcations in
the dynamical system and only global bifurcations are
allowed [35]. By considering the topology of the different
basins of attraction in the dynamical system, we note
that global bifurcations occur between Figs. 3(a) and
3(b) for the dissociation reaction, and between Figs. 3(c)
and 3(d) for the switch reaction, respectively.

The phase portraits allow us to uncover the different
possibilities emerging in the full stochastic dynamics by
classifying the different types of possible deterministic
trajectories, depicted as solid flow lines in Fig. 3, and
considering the likelihood of their stochastic activation
by random thermal kicks, depicted as dashed flow lines
in Fig. 3, which will take the system from an initial state
around a stable fixed point to the domain of interest.
Trajectories starting in the cyan region in Fig. 3 are at-
tracted to the fixed point at (ϕe, ϕm) = (0, 0) (for the
dissociation reaction) or (0,−1) (for the switch reaction).
On the other hand, those starting in the green region are
attracted to the fixed point at (ϕe, ϕm) = (2π, 0) (disso-
ciation) or (2π,−1) (switch). This class of trajectories,
which are depicted as solid white flow lines in Fig. 3,
represent the process in which the molecule remains in
the substrate state and the enzyme performs a futile cy-
cle. Analogously, trajectories starting in the magenta
region end at (0,∞) (dissociation) or (0, 1) (switch), cor-
responding to spontaneous transition of the molecule to
the product state, without an accompanying transition in
the enzyme, while those in the orange region converge to
(2π,∞) (dissociation) or (2π, 1) (switch), representing a
process in which the molecular transition coincides with
the enzymatic cycle. The relative frequency of the acti-
vation of the different processes corresponding to these
distinct classes will depend on the likelihood of the avail-
ability of the thermal kick of the right strength that is
needed to initiate each of them.

More specifically, let us consider the case of weak cou-
pling in Figs. 3(a,c). Thermal fluctuations can most
likely kick the system over one of the two saddle points
or transition states, either the one to the right of the sta-
ble fixed point shown as red diamond (white trajectory)
or the one above it shown as grey diamond (yellow tra-
jectory). When traversing the red diamond, the enzyme
will complete an internal reaction ending at ϕe = 2π,
while the molecule remains in the substrate state. When
traversing the grey diamond, the molecule undergoes a
reaction and turns into product, while the enzyme com-
pletes no internal reaction and remains at ϕe = 0. Thus,
the internal (fuel-to-waste) reaction of the enzyme and
the molecule (substrate-to-product) reaction are com-
pletely uncoupled in these cases. Less likely thermal fluc-
tuations can kick the system across the unstable fixed
point shown as asterisk (blue trajectory), leading to a
simultaneous occurrence of both the enzyme and the
molecule cycles.

We next consider the case of strong coupling, after the
global bifurcation has occurred and the basins of attrac-
tion have rearranged; see Fig. 3(b,d) and Supplemental
Videos 5 and 6. Thermal fluctuations kicking the system
over the grey diamond (yellow trajectory) will still result
in molecular reactions without associated internal reac-
tions in the enzyme. However, if the system is activated
over the red diamond, the more likely scenario will be for
the enzyme to complete an internal reaction simultane-
ously with the molecular reaction (blue trajectory) unlike
in the weak coupling case. The two reactions thus become
coupled, and in particular, a fuel-to-waste reaction inside
the enzyme now triggers a substrate-to-product reaction
for the molecule. The futile enzyme cycle (white trajec-
tory) is the more unlikely scenario in this case. We note
that a similar bifurcation occurs for the reverse switch-
ing process, where the energetically favourable and initial
state for the molecule is the long conformation; see Ap-
pendix B.

The bifurcation occurs above a critical value of the
coupling h, which can be tuned by the geometric prop-
erties of the enzyme-substrate complex. Moreover, in
order to have an enzyme-triggered reaction, transitions
through the red diamond should be favoured over tran-
sitions through the grey diamond. This is expected to
happen when the energy barrier for the internal reaction
is smaller than that of the molecular reaction (Eba < ∆).
It is also worth mentioning that, even though the dissoci-
ation and switch reactions involve rather different energy
landscapes, the bifurcation takes place at the same set of
parameters since in both cases the barrier for the molec-
ular reaction is fixed to ∆.

The occurrence of the bifurcation is crucial for the cou-
pling between the two processes to emerge, and thus for
the enzyme to become active. We thus explore how the
critical coupling depends on the geometric and energetic
parameters of the enzyme-substrate complex. In Fig 4,
we show the critical value of the coupling h as a function
of the ratio E∗/Eba of energies in the fuel-to-waste reac-
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FIG. 5. Marginal steady-state distributions for the switching reaction, (a,c) at low noise kBT/∆ = 0.15, and (b,d) at high noise
kBT/∆ = 0.4. The distribution for the enzyme coordinate ϕe is shown in (a,b), and that for the molecule coordinate ϕm in
(c,d). In (a,b) the black line labelled “NESS” is the analytical result for an uncoupled enzyme given in Eq. (D4). In (c,d) the
black line labelled “Boltzmann” is the equilibrium distribution Pm(ϕm) ∝ exp(−Vm/kBT ).

tion, and ℓe/ℓm or µ1/µ2 which are directly related to the
geometrical properties of the complex. In Fig 4(a), it is
observed that the bifurcation takes place at low coupling
strengths when the driving E∗ is large, which is linked
to higher reaction rates [related to golden rule (iii)]. In
addition, there is a non-trivial behaviour as a function of
the length ratio ℓe/ℓm at a fixed value of E∗/Eba, showing
non-monotonic behaviour with a minimum at intermedi-
ate values. In Fig 4(b), we see that the bifurcation is
favoured at higher values of the ratio µ1/µ2. The results
in Fig. 4 serve to highlight the different parameters that
must be tuned in order to favour a bifurcation in the de-
terministic dynamics. Below, we show how these results
translate to the full noise-activated stochastic dynamics.

C. Stochastic dynamics

1. Steady state: driving a reaction uphill

Passive enzymes can lower reaction barriers, but do
not shift reaction equilibria, which are still purely gov-
erned by the free energy differences between substrate
and product. Fuelled enzymes, on the other hand, can
use the free energy provided by the fuel to drive the
substrate-to-product reaction uphill, i.e. favouring the
formation of a high free energy product from a low free
energy substrate. To study whether our model enzyme is
capable of driving reactions uphill, we focus on the switch
reaction (Fig. 1(d)), and numerically solve the Fokker-
Planck equation (Eq. (5), see Appendix C for details of
the numerical solution), where we are interested in how
the probability distribution evolves over time and in the
form of the steady state distribution in the long time
limit, where ∂tPss → 0.

In Fig. 5, the steady state marginal distribu-
tions Pe(ϕe) ≡

∫∞
−∞ dϕmPss(ϕe, ϕm) and Pm(ϕm) ≡∫ 2π

0
dϕePss(ϕe, ϕm) for the enzyme and molecule reaction

coordinates are presented for low and high thermal noise.
Both at low and at high noise, the effect of the cou-

pling h is negligible with respect to the non-equilibrium
steady state (NESS) attained by the enzyme, Pe(ϕe); see
Fig. 5(a,b). The form of Pe(ϕe) can be obtained analyt-
ically in the h = 0 case (solid black line), by extending a
classical calculation [53–55] to the case with multiplica-
tive noise, i.e. a phase-dependent mobility, as described
in Appendix D. At high temperatures, the multiplica-
tive noise causes a small maximum at intermediate val-
ues of ϕe that would not be present for additive noise;
see Fig. 5(b).
In stark contrast, at low noise the coupling h has a

substantial effect on the NESS attained by the molecule,
Pm(ϕm); see Fig. 5(c). At h = 0, the distribu-
tion Pm(ϕm) corresponds to a Boltzmann distribution
∝ e−Vm(ϕm)/kBT , and thus shows two peaks (correspond-
ing to the short and long states), with the peak cor-
responding to the lower energy short state being much
higher. As the coupling h increases, we see this trend
progressively reverse, as the fuelled action of the enzyme
drives more and more probability towards the long state.
This demonstrates that the fuelled action of the enzyme
can indeed drive a reaction uphill, in the thermodynam-
ically unfavourable direction. However, the action of the
enzyme becomes much less effective at high noise, where
deviations from the Boltzmann equilibrium are minimal;
see Fig. 5(d).
To further understand this effect, we consider the time

evolution of the probability of finding the molecule in the
long state Plong(t), defined as

Plong(t) =

∫ 2π

0

dϕe

∫ ∞

ϕm,max

dϕmP (ϕe, ϕm, t), (12)

where ϕm,max is the location of the energy barrier of the
molecular reaction along the ϕm coordinate. We consider
an enzyme and a molecule that are initially separated
from each other, and bind at time t = 0. We thus initial-
ize the enzyme probability distribution as being in the
steady state of an uncoupled enzyme (h = 0). For the
molecule, we consider two cases: (i) the molecule starts
in its Boltzmann equilibrium, or (ii) the molecule starts
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(a) (c)(b)

FIG. 6. Probability of finding the shape-switching molecule in the long state as a function of time, for various values of the
coupling h. In (a,b) the initial state is chosen as a Boltzmann distribution, while in (c) it is chosen as a narrow Gaussian
centered around the short state. The strength of the noise is (a) kBT/∆ = 0.15, (b) kBT/∆ = 0.4, and (c) kBT/∆ = 0.2. The
horizontal line labelled “Boltzmann” is the long-time limit expected from an equilibrium distribution.

only in the short state (with probability distributed in a
narrow Gaussian around it). Results from numerical so-
lution of the Fokker-Planck equation (Eq. (5)) are shown
in Fig. 6. For h = 0, Plong tends to the probability corre-
sponding to the equilibrium Boltzmann distribution, as
expected. However, for h > 0, Plong is consistently higher
than what the Boltzmann distribution dictates. Clearly,
coupling to the fuelled enzyme can drive the molecular
reaction uphill. The effect is most pronounced at larger
coupling strengths and lower noise.

From Plong(t), we may calculate the probability that
the molecule is in the long state once it unbinds from the
enzyme, which is a quality measure for the function of
the enzyme. Assuming that the molecule unbinds from
the enzyme at a rate koff , the probability of the molecule
remaining bound at time t is pbo(t) = exp(−kofft). The
probability of unbinding precisely between t and t + dt
is then pbo(t)koffdt, and thus the average probability of
being in the long state when it unbinds is

⟨Plong⟩ = koff

∫ ∞

0

dt′Plong(t
′)pbo(t

′). (13)

The behaviour of Plong(t) in Fig. 6 can be well ap-
proximated by an exponential relaxation Plong(t) ≃
Plong(∞)−[Plong(∞)−Plong(0)] exp(−kcatt), where kcat is
the inverse timescale associated with the transient regime
in Fig. 6. With this choice, Eq. (13) evaluates to

⟨Plong⟩ ≃
koffPlong(0) + kcatPlong(∞)

koff + kcat
. (14)

In the limiting case in which koff ≪ kcat, so that the typ-
ical timescale for unbinding is longer than the timescale
of the transient regime in Fig. 6, we find ⟨Plong⟩ ≃
Plong(∞).

We can also consider the energetic efficiency of the en-
zymatic action. In the NESS, the reaction rate of the
enzyme and thus the energy dissipation (or equivalently
the entropy production) rate can be used as a measure of
the enzymatic activity. The enzymatic reaction rate Ωe

is given by

Ωe ≡
1

2π

∫ ∞

−∞
Jedϕm (15)

and is constant in the NESS. The rate of energy dissi-
pation is then given by ΩeE∗. In Fig. 7, we show the
steady state values of Plong and the energy dissipation

rate Ω̃eE∗/kBT (where Ω̃e is the rate in dimensionless
time units t̃ as introduced above), as a function of the
coupling h and the geometric parameter ℓe/ℓm. Interest-
ingly, there are large regions of parameter space where
the enzyme is highly functional (larger Plong) while the
energy dissipation is much lower than the corresponding
value for an uncoupled enzyme, which can be explained
by a slow-down of the fuelled enzymatic reaction (smaller
Ωe) due to the coupling to the molecular reaction. It is
also worth noting that Plong is non-monotonic as a func-
tion of ℓe/ℓm, and peaks at intermediate values of order
one, i.e. when the deformation of the enzyme is compa-
rable to the deformation required of the molecule during
the course of the reaction.

2. First passage time: speeding up a slow reaction

We now focus on the early-time dynamics of the pro-
cess and quantify the characteristic time that is needed
for the substrate-to-product conversion to take place,
i.e. the mean first passage time. We focus on the switch
reaction, although analogous results are obtained for the
dissociation reaction. We initialize the system in the
short state (ϕm = −1) at t = 0, and numerically solve the
Langevin dynamics (Eq. (7), see Appendix C for details
of the numerical solution) until the long state (ϕm = 1)
is reached at a time t = τ (which we then record). The
ensemble average of τ (i.e. average over many simula-
tions), which we denote as ⟨τ⟩, corresponds to the mean
first passage time.

In Fig. 8(a), we show the distribution of first pas-
sage times P (τ) for zero and large coupling strength h.
Clearly, in the presence of dissipative coupling, the first
passage times are much smaller in relative terms, while
the distribution appears to be markedly narrower. Fig-
ures 8(b,c) show how the mean first passage time ⟨τ⟩,
relative to the value ⟨τ0⟩ corresponding to the absence of
enzyme conformational changes (ℓe/ℓm = 0), depends on
the tuning parameters, namely the fuelled reaction drive
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E∗/Eba, the (geometric) deformation ratio ℓe/ℓm, and
the coupling strength h. By comparing Fig. 8(b) with
Fig. 4(a), it becomes clear that the speed-up in the re-
action is directly related to the global bifurcation in the
deterministic dynamics.

Some analytical progress towards a calculation of the
mean first passage time is possible in the limit of small
noise (kBT much smaller than the energy barriers Eba

and ∆). In this limit, a generalization of the Kramers es-
cape rate to higher dimensions due to Langer [9, 56, 57]
gives the rate at which the probability current crosses
through a saddle point, which represents the transition
state. To deal with the multiplicative nature of the noise,
we evaluate the mobility tensor Mαβ around the saddle
point of interest. Moreover, we are interested in the cat-
alyzed reaction, and thus focus on the transition state
shown as the red diamond in Fig. 3. The rate then takes
a similar form to the one-dimensional case (see Eq. (11)),
given by

kLanger =
|Λ−|
2π

√
λ
(0)
e

|λe|
exp

(
− Eba

kBT

)
. (16)

For more details see Appendix E. As shown in Fig. 8(d),
Eq. (16) agrees well with numerical solution of Eq. (5)
for the crossing rate over the saddle point marked as the
red diamond in Fig. 3, after a brief initial transient. In
the numerics, the initial probability distribution for both
enzyme and molecule was chosen as a narrow Gaussian
centered at the potential minimum.

IV. DISCUSSION

We have developed a minimal model for a fuelled en-
zyme that is able to extract energy from a thermodynam-
ically favourable reaction to drive and speed-up a ther-
modynamically unfavourable reaction. The transduction
is mechanical, arising from the conformational changes
of the enzyme that couple to the conformational changes
of the attached substrate molecule. This goes beyond
previously developed minimal models for enzymes that
only described passive enzymes [36–41], which can speed
up energetically favourable reactions but are unable to
alter the reaction equilibrium as determined by thermo-
dynamics.

The function of our model enzyme is most prominently
dictated by the geometry of the enzyme-substrate com-
plex, and can be optimized by following three simple
golden rules: (i) the enzyme and the molecule should
be attached at the smaller end of each; (ii) the confor-
mational change of the enzyme must be comparable to
or larger than the conformational change required of the
molecule; (iii) the conformational change of the enzyme
must be fast enough. These parameters can be experi-
mentally tuned when designing an artificial enzyme, and
should be experimentally accessible when investigating
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FIG. 7. (a) Probability of finding the shape-switching
molecule in the long state and (b) energy dissipation rate,
versus the length ratio ℓe/ℓm and the coupling strength h.
The black line corresponds to Plong = 0.5. The noise strength
is kBT/∆ = 0.2.

the function of biological enzymes. Interestingly, the ef-
fectiveness of the enzyme (as measured by successful cat-
alytic action) and its energy dissipation do not follow a
one-to-one relation (Fig. 7), leaving additional room for
the optimization of not just the enzyme effectiveness but
its energetic efficiency.
We were able to understand the emergence of a strong

coupling between the thermodynamically favourable and
unfavourable reactions to be a result of a global bifur-
cation in the deterministic dynamics of the system, of a
similar nature to that causing synchronization and phase-
locking among mechanically-coupled enzymes [35, 47].
Importantly, however, by adding thermodynamically-
consistent fluctuations to the theory, we showed that the
effect survives in the presence of noise, and we could
calculate important quantities such as non-equilibrium
steady states reflecting the departure from equilibrium
thermodynamics in the reaction equilibrium, and first
passage time distributions for the catalyzed reaction.
Our approach readily allows us to probe the energetic

aspects of the non-equilibrium reaction [58], and in par-
ticular, the entropy production due to the coupling be-
tween the mechanical and the chemical degrees of free-
dom [59]. It can also be used to study evolutionary ad-
vantages of having mechanical control during the cat-
alytic process via conformational changes, as opposed to
simple utilization of the uncontrolled metal-based catal-
ysis.
In conclusion, our model introduces new and impor-

tant features to serve as a minimal model of a fuelled
catalyst. This opens an avenue towards further progress
in understanding and designing bio-inspired systems for
artificial catalysis.
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(d)

FIG. 8. (a) Distribution of first passage times τ for ℓe/ℓm = 1.6 in the absence (red) and presence (green) of dissipative
coupling. (b,c) Mean first passage time ⟨τ⟩, normalized by the mean first passage time in the uncoupled case where ℓe/ℓm = 0,
as a function of the length ratio ℓe/ℓm and the energy ratio E∗/Eba for fixed value of coupling strength h = 0.48 (a), and as
a function of the coupling strength h and E∗/Eba for fixed ℓe/ℓm = 1 in (b). In (a–c), the noise strength is kBT/∆ = 0.15.
(d) The rate at which the saddle point marked as the red diamond in Fig. 3 is crossed extracted numerically (coloured lines)
compared to the Langer rate given by Eq. (16) (black horizontal lines), for Eba/∆ = 0.8 and kBT/∆ = 0.08.
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Appendix A: Derivation of the phase-equations

We consider an enzyme and a molecule, both assumed
to be dumbbell-shaped for simplicity. Upon binding, they
are considered to be tightly linked together, thus forming
a complex with three sub-units. The position vectors of
the three sub-units are re, rb and rm for the enzyme-only
sub-unit, the bound enzyme-substrate sub-unit, and the
molecule-only sub-unit, respectively. The lengths of the
enzyme and molecule are therefore Le = rb − re = Len̂
and Lm = rm − rb = Lmn̂ where n̂ is the unit vector
along the axis of the complex. The equations of motion
for the sub-units are ṙe = −µefe, ṙb = µb(fe − fm) and
ṙm = µmfm, where fe and fm are the internal mechanical
forces (stresses) of the enzyme and molecule, respectively,
which can be expressed as fe = −∂LeU(Le, ϕe) and fm =
−∂Lm

Vm(Lm). This implies that the equations of motion

for the lengths are L̇e = µ1fe−µbfm and L̇m = −µbfe+
µ2fm, with the mobilities given as µ1 ≡ µe + µb and
µ2 ≡ µm + µb.

The governing dynamical equations for the two effec-
tive geometric degrees of freedom are therefore given by

L̇e = −µ1k[Le − L(ϕe)] + µb∂LmVm(Lm), (A1)

L̇m = µbk[Le − L(ϕe)]− µ2∂LmVm(Lm). (A2)

The dynamics of the internal enzyme phase is in turn
given by

ϕ̇e = µϕ[−∂ϕe
U(Le, ϕe)], (A3)

= −µϕ [−k(Le − L(ϕe))L
′(ϕe) + V ′e (ϕe)] ,

with the prime representing a derivative with respect
to ϕe. We define δLe ≡ Le − L(ϕe) such that L̇e =
˙δLe + L′(ϕe)ϕ̇e. If the enzyme is relatively stiff with the

timescale (µ1k)
−1 being much shorter than the timescale

of changes in the internal phase, the enzyme length will

quickly adapt to changes of the preferred length, and thus
˙δLe ≈ 0. From Eq. (A1), this implies

L′(ϕe)ϕ̇e ≈ −µ1k[Le − L(ϕe)] + µb∂LmV (Lm), (A4)

which allows us to eliminate k[Le − L(ϕe)] between Eqs.
(A2) and (A4), hence projecting the dynamics onto
the slow manifold (ϕe, Lm). Finally, we reexpress Lm

in terms of the dimensionless reaction coordinate ϕm

through Lm = L
(0)
m + ℓmϕm. The resulting governing

equations for (ϕe, ϕm) then reduce to Eq. (1).

Appendix B: Reverse switch reaction

One can observe that for the switch reaction our en-
zyme is equally capable of catalyzing a reverse reaction,
i.e. from long to short conformational state, by choos-
ing ε < 0. Exploiting the symmetries of our dynamical
equations, we find that a π phase shift will be needed for
ϕe in the conformation cycle (Eq. (8)), as in this case
the enzyme will first contract and then expand during
its conformational change. A phase portrait of the deter-
ministic dynamics at strong coupling (beyond the global
bifurcation) is shown in Fig. 9(a). This can be com-
pared to the dynamics of the forward switch reaction in
Fig. 3(d). Note that the bifurcation now happens near
the upper saddle point, where the blue solid line repre-
sents the flow from the long state to the short state. An
example of the NESS distributions for this reverse case is
shown in Fig. 9(b), which may be compared to the case
of the forward reaction in Fig. 5(b). It highlights how
the action of the enzyme can favour the short state even
if the long state is thermodynamically preferred.

Appendix C: Simulations

To generate the phase portraits in Fig. 3 and the
parameter scan in Fig. 4 from the deterministic equa-
tions (Eq. (1)), we used the built-in ode45 integrator
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FIG. 9. Reverse switch reaction. (a) Phase-portrait for
h = 0.48, ℓe/ℓm = 2.5, and ε/∆ = −0.1. The black solid
line represents a deterministic trajectory. (b) Marginal dis-
tributions of the molecule reaction coordinate in steady-state,
for various values of the coupling strength. (a) and (b) can
be respectively compared to Fig. 3(d) and Fig. 5(b) for the
forward reaction.

of MATLAB, which uses a fourth order Runge-Kutta
method [60]. A grid of 201 × 201 for −π < ϕe < π
and −2 < ϕm < 2 was used to generate the initial condi-
tions, and the equations were integrated for a total time
of t̃tot = 120.

For the numerical integration of the Fokker-Planck
equation given by Eq. (5) we used a custom code writ-
ten in Python [61]. The code uses a finite differ-
ence method with fourth-order accuracy for the spa-
tial derivatives and fourth order Runge-Kutta method
for the time integration. For the enzyme coordinate
ϕe we considered the domain 0 ≤ ϕe < 2π with pe-
riodic boundary conditions. For the molecule coor-
dinate ϕm, we used Dirichlet boundary conditions in
the domains [−1.8, 1.8], [−2.0, 2.0], [−2.2, 2.2] and noise
strengths kBT/∆ = 0.15, 0.2, 0.4. To discretize the do-
mains we used a rectangular shape domain such that
the finite-difference increments satisfied ∆ϕe ≃ ∆ϕm and
thus the integrator would be more stable. For kBT/∆ =
0.15, 0.2, 0.4 the corresponding number of points (N1, N2)
per side were (512, 128), (400, 128), (300, 100), and the
time step was ∆t̃ = 10−3, 10−3, 5 · 10−4.

For the numerical integration of the Langevin equa-
tions in Eq. (7), we used a custom code written in Julia
[62]. The Euler-Maruyama method was used for the nu-
merical integration. The time step used was ∆t̃ = 10−3.

To check for consistency between the Langevin and
Fokker-Planck approaches, long trajectories from the so-
lution of the Langevin equations were binned and com-
pared with the steady state distribution predicted by
the Fokker-Planck equation. The two approaches exhibit
good agreement, as depicted in Fig. 10 for the case of
h = 0.67 and kBT/∆ = 0.2.

Appendix D: Steady state distribution for an
uncoupled enzyme

In the uncoupled case with h = 0 or ℓe/ℓm = 0, an
exact expression for the steady state probability distri-
bution for ϕe can be found. In the absence of coupling,
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FIG. 10. Comparison of the marginal distributions obtained
from the Fokker-Planck equation (red solid line) at steady
state and long simulations of the Langevin equations (his-
togram). (a) and (b) show the distribution of the enzyme
and molecule reaction coordinates, respectively. The param-
eters for this example are h = 0.67 and kBT/∆ = 0.2.

the dynamics of ϕe at the steady state is determined by
solving the following equation for a constant flux

Je = −Mee(ϕe)[V
′
e (ϕe)Pe + kBT∂ϕe

Pe]. (D1)

Integrating this equation, we obtain

Pe = e−Ve(ϕe)/kBT

[
C − Je

∫ ϕe

0

M−1ee (x)eVe(x)/kBT dx

]
,

(D2)

where C and Je are constants of integration and are de-
termined by the boundary conditions. Note that Mee(ϕe)
and V ′e (ϕe) are both 2π-periodic. This implies that the
probability distribution is also periodic, by following a
similar derivation as in Ref. [53]. One finds that C = N I
and (1 − e−2πF/kBT )N = Je, with N a normalization
constant and

I =

∫ 2π

0

dxM−1ee (x) eVe(x)/kBT . (D3)

Hence, the full expression for the steady state marginal
probability distribution for the enzyme reaction coordi-
nate in the uncoupled case is

Pe(ϕe) = N
[ ∫ 2π

ϕe

dxM−1ee (x) exp

(
Ve(x)− Ve(ϕe)

kBT

)

+

∫ ϕe

0

dxM−1ee (x) exp

(
Ve(x)− Ve(ϕe)− 2πF

kBT

)]
.

(D4)

The form of Ve does not readily lend itself to further an-
alytical progress, and we integrate Eq. (D4) numerically
to obtain the black lines in Fig. 5(a,c). In the particular
case E∗ = 0, we find that Je = 0 and thus the enzyme
coordinate is in thermodynamic equilibrium described by
the Boltzmann weight Pe(ϕe) ∝ e−Ve(ϕe)/kBT .

Appendix E: Langer rate

Starting from the Fokker-Planck equation, one derives
the Langer rate through the enzyme saddle point to be

93



14

[9, 56, 57]

kLanger =
|Λ−|
2π

√
λ
(0)
e λ

(0)
m√

|λe|λm

exp

(
− Eba

kBT

)
, (E1)

where λ
(0)
α = V ′′α (ϕα)|min, and λα = V ′′α (ϕα)|saddle,

namely, the corresponding values evaluated around the

saddle point. The definitions imply that λm = λ
(0)
m , and

thus, they cancel each other in Eq. (E1). Finally, Λ− is

the negative eigenvalue of the matrix λαMαβ evaluated
around the saddle point which is given by

Λ− =
1

2

(
Meeλe +Mmmλm

−
√
(Meeλe −Mmmλm)2 + 4M2

emλeλm

)
. (E2)
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J. M. Rubi, and A. Pérez-Madrid, Giant acceleration of
free diffusion by use of tilted periodic potentials, Phys.
Rev. Lett. 87, 010602 (2001).

[55] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi,
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The theory of stochastic thermodynamics has revealed many useful fluctuation relations, with the thermody-
namic uncertainty relation (TUR) being a theorem of major interest. When many nonequilibrium currents interact
with each other, a naive application of the TUR to an individual current can result in an apparent violation of the
TUR bound. Here, we explore how such an apparent violation can be used to put a lower bound on the strength
of correlations C as well as the number N of interacting currents in collective dynamics. This lower bound is a
combined bound on C(N − 1) if only one current is measured, or a bound on N if two currents are measured.
Our proposed protocol allows for the inference of hidden correlations in experiment, for example when a team
of molecular motors pulls on the same cargo but only one or a subset of them is fluorescently tagged. By solving
analytically and numerically several models of many-body nonequilibrium dynamics, we ascertain under which
conditions this strategy can be applied and the inferred bound on correlations becomes tight.

DOI: 10.1103/PhysRevResearch.6.L042012

Introduction. Entropy production rate (EPR) is the mea-
sure of nonequilibrium activity in a stochastic system and
is tied to the existence of nonequilibrium currents in the
system [1,2]. The thermodynamic uncertainty relation (TUR)
[3] quantifies the tradeoff between EPR and the precision
of the nonequilibrium currents, where precision is related to
the ratio between the average and the standard deviation of
the fluctuating currents. The TUR, which has been proven
rigorously [4,5] and has been confirmed in experiments [6,7],
has found its most practical application in the inference of
(lower bounds for) nonequilibrium driving forces given exper-
imental measurements of fluctuating currents [8,9]. Relevant
experimental systems include active matter [10], molecu-
lar machines [11] such as motors [12] and enzymes [13],
stochastic oscillators [14–17], microscopic heat engines [18],
artificial nanorotors [19,20], and even in open quantum sys-
tems [21,22]. Additionally, the TUR has also inspired other
important thermodynamic relations [23–25], placing bounds
on, e.g., the extent of anomalous diffusion [26], the asymme-
try of crosscorrelations [27], and correlation times [28].

In its original form, the TUR for a nonequilibrium system
in steady state was proposed for a scalar (one dimensional)
fluctuating current and can be expressed as [3]

J 2/DJ � σ̇ /kB, (1)

*Contact author: ramin.golestanian@ds.mpg.de
†Contact author: j.agudo-canalejo@ucl.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

where J represents the steady state average of the scalar
observable current of interest, DJ the diffusion coefficient
associated to the corresponding fluctuating observable, σ̇ the
steady state average EPR, and kB the Boltzmann constant. An
important generalization to vectorial fluctuating currents, or
equivalently to several scalar currents that are simultaneously
observed, is the multidimensional thermodynamic uncertainty
relation (MTUR) given by [29]

J T · D−1 · J � σ̇ /kB, (2)

where J is now the steady state average of the vectorial
observable current and D is the covariance tensor associ-
ated with the fluctuating multidimensional observable. The
MTUR allows for the inference of tighter lower bounds on
the entropy production in systems with multiple degrees of
freedom, when more than one observable can be tracked si-
multaneously, for example, in interacting many-body systems
[30]. Alternatively, one may use the MTUR together with
known mechanistic information about the coupling between
degrees of freedom to obtain tighter bounds on dissipation
even when only one observable is tracked, as recently pro-
posed for stochastic swimmers with coupled chemical and
mechanical degrees of freedom [31].

In this Letter, we propose to turn the MTUR on its head
and exploit it to infer the existence of hidden correlations
in a system, even when only a single observable is ex-
perimentally accessible. We show that this is possible in
systems satisfying two simple conditions: (i) many statisti-
cally identical processes interact with each other, and (ii) the
observable quantities are tightly coupled to entropy produc-
tion, with a known rate of entropy production per step. This
may, for example, represent ensembles of identical molecular
motors walking on the same biofilament [32,33], clustered en-
zymes catalyzing chemical reactions in a metabolon [34,35],

2643-1564/2024/6(4)/L042012(7) L042012-1 Published by the American Physical Society
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clustered rotors or channels in a membrane [36,37], or driven
colloids in an optical ring [38–40]. We will first introduce the
general strategy, valid for any system that satisfies the two
conditions just described. We will then study two toy models
that are analytically solvable, and two models that we solve
numerically, in order to ascertain under which conditions the
proposed strategy can be applied, and when does the inferred
bound on correlations become tight.

Inference of correlations. We consider N stochastic pro-
cesses that are identical, in the sense that they are governed
by the identical underlying stochastic dynamics, and are all to
all coupled in a statistical sense, i.e., will show identical pair
correlations with each other after a sufficiently long observa-
tion time (as expected in an ergodic system). Let us denote the
associated scalar observables as (φ1, ..., φN ). Quantitatively,
the conditions just described imply that all scalar observ-
ables have the same average current � ≡ limt→∞〈φi〉/t , the
same diffusion coefficient D ≡ limt→∞(〈φ2

i 〉 − 〈φi〉2)/(2t ),
and the same pair correlation strength C ≡ limt→∞(〈φiφ j〉 −
〈φi〉〈φ j〉)/

√
(〈φ2

i 〉 − 〈φi〉2)(〈φ2
j 〉 − 〈φ j〉2) (for i �= j). Note

that C is bounded between −1/(N − 1) for maximally
anticorrelated processes and +1 for perfectly correlated pro-
cesses. Lastly, we assume that the observable currents are
driven by energy dissipation (entropy production) through a
tightly coupled mechanism [3,16,17,30,41–43] so that, for
every individual current, we can write an average energy
dissipation rate that is proportional to the average current
σ̇ (1)T ≡ ��μ, with �μ the energy dissipated per step and
T the temperature of the bath. The total EPR in the system is
then σ̇ = N σ̇ (1).

With these choices, application of the MTUR [Eq. (2)] and
a rearrangement of the terms result in the inequality

�

D

kBT

�μ
− 1 � C(N − 1), (3)

which puts a lower bound on the correlation strength C (and
the number of interacting processes N) given a measurement
of the average current � and the diffusion coefficient D, and
provided that the dissipation per step �μ is known. We note
that Eq. (3) can also be obtained by applying the standard
TUR [Eq. (1)] to the observable corresponding to the total
sum

∑
i φi.

To get an intuition for the meaning of Eq. (3), it is useful to
note that its left hand side represents a measure of the violation
of a naively applied single-current TUR. Indeed, for a single
isolated or noninteracting current, the standard TUR [Eq. (1)]
gives �

D
kBT
�μ

� 1 [consistent with Eq. (3) with N = 1 or C =
0]. Thus, if measurement of a single observable appears to
violate (outperform) this naive TUR, it implies that the left
hand side of Eq. (3) is positive, and therefore that there must
be positive correlations in the system (C > 0 and N � 2). If,
on the other hand, the naive TUR is satisfied, it means that the
measurement is compatible with the absence of correlations
in the system, and Eq. (3) only serves to rule out negative
correlations stronger than those allowed by the bound.

When a single observable is tracked, e.g., when only one
molecular motor within a team is fluorescently labeled, Eq. (3)
puts a combined lower bound on the correlation strength C
and number of interacting processes N , see Fig. 1(a). If one

FIG. 1. (a) Measurement of a single observable (here, the posi-
tion of a fluorescently-tagged molecular motor) allows for inference
of a combined bound on the strength of correlations C and the
number of interacting processes N . (b) Simultaneous measurement of
two observables fixes the strength of correlations and places a bound
on the number of interacting processes N . (c) Examples of coupled
identical processes: two discrete biomolecular processes driven by a
cyclic affinity �μ; two colloids in an optical ring driven by a constant
force F ; two molecular gears driven by a constant force F .

can additionally measure the correlation strength, e.g., if two
or more motors within the team are labeled, one can infer a
lower bound on the number of processes N , see Fig. 1(b). In
the following, we present several minimal models [Fig. 1(c)]
that allow us to ascertain the conditions under which the naive
TUR is broken and the proposed strategy can be applied, and
those for which the inferred bound of Eq. (3) becomes tight.

Discrete coupled processes. We first consider a rather
generic example of coupled discrete Markov processes, which
might represent various interacting or coupled biomolecular
processes such as molecular motors walking on a track, or
chemical reactions catalyzed by nearby enzymes or differ-
ent monomers in a multimeric enzyme. As an example, in
Fig. 2(a) we show two identical one-dimensional processes
where the red (orange) arrow indicates the forward (back-
ward) rate k+ (k−). For local detailed balance to be satisfied,
one must impose that k+/k− = e�μ/kBT , where �μ represents
the energy dissipated per transition. The simultaneous dy-
namics of the two processes can alternatively be viewed as
taking place on a two-dimensional lattice of Markov states
as shown in Fig. 2(b), where transitions of one process or
the other correspond to hopping horizontally or vertically
on the two-dimensional lattice. To include interactions be-
tween the two processes, coupling rates h± are introduced
which are represented by the green and blue squiggles in
Fig. 2(a) and arrows in Fig. 2(b). These correspond to diagonal
jumps in the lattice, which imply a forward or backward
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FIG. 2. (a) Two identical discrete processes modeled as biased one-dimensional random walks, with red (orange) arrows indicating forward
(backward) transitions with rates k±. Interactions between the two processes are represented by the green and blue squiggles. (b) The “outer
product” of the two one-dimensional processes corresponds to a two-dimensional lattice, where the tuples indicate the internal state of the
whole system. Interactions are governed by the green and blue arrows, representing simultaneous forward and backward transitions for both
processes with rates h±. (c) Parameter space spanned by the nonequilibrium driving force μ̃ ≡ �μ/kBT and the coupling strength h̃ ≡ h+/k+,
showing the regime in which the naive TUR is broken, and thus the existence of nonzero correlations could be inferred in experiment, for a
large number of interacting processes (N 	 1). The corresponding boundary for N = 2 is shown as the dashed line.

transition taking place simultaneously for both processes.
Since two steps are performed during a coupled transition,
detailed balance demands h+/h− = e2�μ/kBT .

The dynamics just illustrated for two coupled processes are
straightforwardly extended to N coupled processes, where we
assume an all-to-all coupling, such that with rate h+ (h−) all
N processes undergo a simultaneous forward (backward) step.
In this case, detailed balance demands h+/h− = eN�μ/kBT .
Following an analytical derivation (Appendix A), we find that
the correlation strength is

C = h̃(1 + e−Nμ̃)

1 + e−μ̃ + h̃(1 + e−Nμ̃)
, (4)

where h̃ ≡ h+/k+ is the dimensionless coupling strength and
μ̃ ≡ �μ/kBT . As may be expected, we find that C → 1 as
h̃ → ∞ and C = 0 when h̃ = 0. In turn, the ratio of average
current to diffusion coefficient can be written as

�

D
= 2

1 − e−μ̃ + h̃(1 − e−Nμ̃)

1 + e−μ̃ + h̃(1 + e−Nμ̃)
. (5)

Combining both expressions, we obtain an exact relation be-
tween �/D, C, and the energy dissipation per step μ̃, with the
form

�

D
= 2

1 − e−μ̃ + 2C e−μ̃−e−Nμ̃

1+e−Nμ̃

1 + e−μ̃
. (6)

This expression can be shown to always satisfy the bound
in Eq. (3), which it saturates in the near-equilibrium limit
�μ → 0. In the case where C = 0 (or N = 1), the right hand
side becomes 2 tanh(μ̃/2), and we recover the relation for the
single biased random walk which was used to conjecture the
original TUR [3]. Our model thus represents the minimal ex-
tension of this basic toy model to the case of many interacting
processes.

Using Eq. (5), we can investigate under which conditions
the naive TUR is violated and D

�

�μ

kBT < 1. For such parameter
values, the inference strategies proposed in Figs. 1(a) and 1(b)
can be used to infer the existence of nonzero correlations

in the system and put a lower bound on them. We find that
this is possible when the coupling h̃ is larger than a critical
coupling strength h̃(μ̃), see Fig. 2(c). Interestingly, this is only
possible if the driving forces are weak, with |μ̃| < μ̃∗ where
μ̃∗ � 1.915 for N = 2 and μ̃∗ → 2 as N → ∞. Indeed, the
critical coupling strength diverges as μ̃ approaches ±μ̃∗.

Even further, using Eqs. (4) and (5) we can characterize
how close to saturation the bound in Eq. (3) can get, as shown
in Fig. 3(a) where we plot D

�

�μ

kBT against C(N − 1) for a range

of parameter values in 0 � h̃ � 1, −1 � μ̃ � 2, and 2 � N �
21. The black solid line represents the equality in Eq. (3). For
all values of N , there are parameter values for which the bound
in Eq. (3) is close to saturated. Parameter values that violate
the naive TUR, for which the correlation inference strategy
can be applied, correspond to points that fall to the left of the
vertical line in Fig. 3(a).

Continuous coupled processes. We next consider several
examples that involve N continuous phases φα with α =
1, ..., N , described by systems of coupled Langevin dynamics
in the overdamped regime, with the general form

φ̇α =
N∑

β=1

{Mαβ (−∂βU ) +
√

2kBT 	αβξβ}, (7)

with U a generic potential, Mαβ a mobility matrix with con-
stant coefficients (i.e., independent of φα), 	αβ the square
root of the mobility matrix satisfying 	αν	βν = Mαβ , and ξβ

a white noise of unit strength. For the mobility matrix, we
set all diagonal coefficients to Mαα = M and all off-diagonal
coefficients to Mαβ = h/(N − 1) (α �= β), so that h̃ ≡ h/M is
a dimensionless measure of the strength of coupling mediated
by the mobility matrix.

We first consider a minimal model of N = 2 coupled
phases that can be treated analytically. This model could de-
scribe two driven stochastic gears or rotors, as represented by
the entrained gears in Fig. 1(c), in which case the phases φ1

and φ2 represent the internal state (angular position) of these
rotors. The potential U , is chosen as U (φ1, φ2) = −F (φ1 +
φ2) − K cos(φ1 − φ2) − v cos(φ1 + φ2) where F , K , and v

L042012-3
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FIG. 3. Scatter plots of D
�

�μ

kBT against C(N − 1) for the four different models described in the main text, showing how the bound in
Eq. (3) is satisfied and can be close to saturated. Points to the left of the vertical black dashed line correspond to parameter choices for
which D

�

�μ

kBT < 1 and thus the naive TUR is saturated, allowing for the thermodynamic inference of correlations. (a) Discrete model of Fig. 2;
(b) analytically solvable continuous model; (c) thermally activated oscillators with dissipative coupling; (d) thermally activated oscillators with
Kuramoto coupling. Parameter choices for each of the four models are described in the text. Simulations in (c) and (d) were performed using
Euler-Maruyama integration.

are arbitrary constants. The first term is the nonequilibrium
drive, with a driving force F which is related to the energy
dissipation per cycle (when a phase has advanced by 2π ),
given by �μ = 2πF . The second term is a Kuramoto-type
coupling that favors synchronization of the two phases [14].
Finally, the third term is an antisynchronizing coupling that
favors opposite rotation of the phases and creates energy bar-
riers for the synchronized advances of the two phases. The
problem can be solved analytically by a change of variables
to the average phase  = (φ1 + φ2)/2 and phase difference
� = φ1 − φ2 (see Appendix B). Analytically calculated re-
sults for 0 < F/kBT < 1, 0 < v/kBT < 2, 0 < K/kBT < 4,
and h̃ = 0.3 are shown in Fig. 3(b).

We next consider N thermally activated oscillators that
are coupled purely dissipatively, i.e., only through the
off-diagonal components of the mobility matrix, with di-
mensionless strength h̃. The potential U is set to U ({φα}) =∑N

α=1 V (φα ) with V (φ) = −Fφ − v cos(φ) a washboard po-
tential. This model has been shown to provide a description
of the dynamics of mechanically coupled enzymes, which
become effectively deterministic and synchronized at suffi-
ciently high h̃ [13,15,44]. The results of numerical simulations
of this model for N = 10, 0 < h̃ < 8, 0.4 < F/v < 0.9, and
kBT/v = 0.08, 0.15, 0.2 are shown in Fig. 3(c).

Finally, we consider the case of N thermally activated
oscillators with Kuramoto-type coupling [14], previously
studied in Ref. [45]. In this case, we set h̃ = 0 so that
the mobility matrix is diagonal, and we set U ({φα}) =∑N

α=1 V (φα ) − K
N

∑N
α=1

∑N
β=α+1 cos(φα − φβ ) where V (φ)

is the same washboard potential as above. The results of
numerical simulations of this model for N = 4, 0.1 < F/v <

0.9, 0.01 < kBT/v < 2, and K/v = 1, 6, 10 are shown in
Fig. 3(d).

For all three continuous models [Figs. 3(b)–3(d)], we find
that there are regions of parameter space where the naive
TUR is violated, i.e., D

�

�μ

kBT < 1, and the correlation inference
strategy can be applied. In all cases, saturation of the bound
in Eq. (3) is facilitated when the noise strength kBT is large
relatively to the energy barriers whose height is controlled by
v, as in this case the dynamics become analogous to those of
a particle under a constant force, which are known to saturate
the TUR. However, to ensure that nonzero correlations sur-
vive, the couplings must remain sufficiently strong relative to

thermal fluctuations. A notable exception is the case of dis-
sipatively coupled oscillators, Fig. 3(c), which can violate the
naive TUR and come close to saturating the bound even at low
noise strength. This can be understood as a consequence of the
fact that the dissipative coupling induces quasideterministic
dynamics even in the absence of noise [13,15].

Discussion. By applying the MTUR to an ensemble of
statistically identical coupled processes with tight-coupling
to entropy production, we have derived a bound [Eq. (3)]
that allows for thermodynamic inference of the strength of
correlations and the number of interacting processes in the
system, even when only one or a small subset of them is exper-
imentally accessible. In particular, when only a single current
is observed, our strategy provides a lower bound on C(N − 1),
where C is the strength of correlations and N the number of
interacting processes. When two currents are observed, and
thus C can be measured experimentally, our strategy provides
a lower bound on N . The inference strategy is applicable
when a “naive” application of the TUR to a single observable
(i.e., assuming that this observable is isolated or uncorrelated
to others) shows an apparent violation. By studying a number
of minimal toy models that we solved analytically and numer-
ically, we showed that the naive TUR is broken (and thus our
proposed inference strategy is applicable) in large portions of
parameter space.

One possible way of easily and directly testing the
proposed inference strategy experimentally would be in con-
trolled experiments using several driven colloids in an optical
ring [Fig. 1(c)]. This experimental setup can produce constant
driving forces [39,40] as well as washboardlike potentials
[38]. When two or more colloids are present in the ring, hydro-
dynamic interactions between them can lead to correlations
[39]. Otherwise, our proposed strategy could be applied to
experiments with teams of molecular motors pulling on the
same cargo [46] or clustered enzymes catalyzing chemical
reactions [47].

Finally, we note that, although we have focused here on the
inference of correlations provided that the energy dissipation
per step (�μ) is known, our results also have implications
for the experimental inference of �μ when it is unknown.
Indeed, Eq. (3) shows that, in an interacting system, indi-
vidual currents behave as if they were driven by an effective
energy dissipation per step �μeff = [1 + C(N − 1)]�μ, with
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�μeff > �μ when C > 0. In the limit of strong correlations
(C = 1), the system behaves as if every individual current
was driven by the total energy dissipation in the system,
i.e., �μeff = N�μ, as has been reported in previous studies
[16,33]. An inference strategy unaware of existing correla-
tions could therefore lead to a severe overestimation of (the
lower bound on) the true �μ. Our results thus suggest that one
must be very careful to experimentally rule out possible inter-
actions with other processes before applying thermodynamic
inference to entropy production, even when one can assume
tight coupling (i.e., a fixed amount of energy dissipation per
step) between the observed current and entropy production.
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tion and Research (BMBF) of Germany and the Max Planck
Society.

Appendix A: Analytical solution of discrete model. To
construct the TUR for this coupled model, we consider the
number of steps φi of the ith process. This number can be
split into the simultaneous steps φd that have occurred for
all processes due to the diagonal transitions, and the individ-
ual steps φs,i taken by each process independently, so that
φi = φd + φs,i. Importantly, φd and all the different φs,i are
governed by one-dimensional biased random walks that are
statistically independent of each other. Using standard results
for the biased random walk, we can write 〈φs,i〉 = (k+ −
k−)t , 〈φd〉 = (h+ − h−)t , 〈φ2

s,i〉 − 〈φs,i〉2 = (k+ + k−)t , and
〈φ2

d〉 − 〈φd〉2 = (h+ + h−)t . Using the definitions of �, D,
and C given in the main text, and exploiting the statistical
independence of φd and all the different φs,i, we can straight-
forwardly obtain � = k+ + h+ − k− − h−, D = (k+ + h+ +
k− + h−)/2, and C = (h+ + h−)/(k+ + k− + h+ + h−). To-
gether with the detailed balance conditions, these expressions
are used to obtain Eqs. (4) and (5) in the main text.

Appendix B: Analytical solution of continuous model. The
Langevin equations in Eq. (7) are equivalent to the Fokker-
Planck equation

∂t P = ∂α[Mαβ ((∂βU )P + kBT ∂βP)], (B1)

for the probability P({φα}; t ), where Einstein summation
has been used. For the analytically solvable model, we

have N = 2 phases, U (φ1, φ2) = −F (φ1 + φ2) − K cos(φ1 −
φ2) − v cos(φ1 + φ2), M11 = M22 = M, and M12 = M21 = h
as described in the main text.

By performing a linear transformation we change variables
to go the average phase  = (φ1 + φ2)/2 and phase differ-
ence � = φ1 − φ2. The Fokker-Planck equation becomes

∂t P = ∂θ

[
M + h

2
((∂θU )P + kBT ∂θP)

]

+ ∂�[2(M − h)((∂�U )P + kBT ∂�P)], (B2)

where we have U (,�) = −2F − v cos 2 − K cos �.
Because the potential becomes separable in these coordi-
nates, we can obtain separate Fokker-Planck equations for the
marginal distributions

P =
∫

d�P(,�), P� =
∫

dP(,�), (B3)

given by

∂t P = ∂

[
M + h

2
([∂V()]P + kBT ∂P)

]
, (B4)

∂t P� = ∂�[2(M − h)([∂�V�(�)]P� + kBT ∂�P�)], (B5)

where V() = −2F − v cos 2 and V�(�) = −K cos �.
Equations (B4) and (B5) each represent the stochastic

dynamics of a (driven) particle in a one-dimensional peri-
odic potential. The average velocity and long-time effective
diffusion coefficient of a particle in such systems can be
calculated analytically, with closed form expressions given in
Refs. [48–50] which we do not reproduce here. In the case
of Eq. (B4), the particle is driven by a force 2F and one
obtains an average velocity 〈̇〉 �= 0 and an effective diffusion
coefficient D. In the case of Eq. (B5), the particle is not
driven and thus the average velocity vanishes, 〈�̇〉 = 0, while
the effective diffusion coefficient is denoted by D�.

As a final step, we note that φ1 and φ2 are related to
 and � by the inverse transformations φ1 =  + �/2 and
φ2 =  − �/2. Exploiting the fact that the dynamics of 

and � are statistically independent, we can use the definitions
of �, D, and C given in the main text to obtain � = 〈̇〉,
D = D + D�/4, and C = (D − D�/4)/(D + D�/4).
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The question of characterization of the degree of nonequilibrium activity in active matter systems is studied in
the context of a stochastic microswimmer model driven by a chemical cycle. The resulting dynamical properties
and entropy production rate unravel a complex interplay between the chemical and the hydrodynamic degrees
of freedom beyond linear response, which is not captured by conventional phenomenological approaches.
By studying the precision-dissipation trade off, a new protocol is proposed in which microscopic chemical
driving forces can be inferred experimentally. Our findings highlight subtleties associated with the stochastic
thermodynamics of autonomous microswimmers.

DOI: 10.1103/PhysRevResearch.6.L022044

Understanding entropy production and thermodynamic in-
ference [1] in autonomous systems [2], such as stochastic
motors [3,4] and microswimmers [5], is of fundamental im-
portance to the study of biological and synthetic active matter
[6–9]. These systems typically produce net motion or mechan-
ical work as a consequence of the dissipation of some form
of locally available energy (e.g., ATP hydrolysis) [10–12]. A
common assumption in the literature is that the dissipation can
be quantified by representing the autonomous self-propulsion
via an effective external “active force” [8,13–16].

The thermodynamic uncertainty relation (TUR) and its
various generalizations quantify the trade off between the
precision of a nonequilibrium current and its associated
dissipation, and thus provide a powerful tool to infer the
underlying driving forces of a system from experimental mea-
surements of its trajectories [1,17–19]. However, many of
the models studied until now to test the behavior of TURs
have been based on the assumption of tight coupling between
chemical and spatial degrees of freedom (where, e.g., a chem-
ical reaction always corresponds to a mechanical step and vice
versa) so that the dynamics is effectively one-dimensional,
and, hence, rendering the spatial, chemical, and entropy pro-
duction currents one and the same [17,20–25].

While convenient, these two (related) assumptions are not
generally valid. Realistic autonomous swimmers and molec-
ular motors involve at least two distinct currents (e.g., spatial
and chemical) and consequently at least two distinct kinds of
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driving forces. In fact, the relevant coupling in these systems
is off diagonal (in the language of linear irreversible ther-
modynamics [26–28]), as chemical forces drive motion. This
is particularly evident in the case of microswimmers, where
the force-free constraint on their self-propulsion mechanisms
introduces additional complexities [29–36], and has important
consequences on the bounds on entropy production [37,38]. A
multidimensional version of the TUR (MTUR) can, in princi-
ple, be used in multicurrent systems to obtain much-improved
bounds on the entropy production, and thus better inference
of the underlying driving forces [39]. However, how to exploit
this bound in practice is unclear, as typically only the spatial
current is measurable, while the chemical current is not. To
shed light on the inner workings of autonomous swimmers
and motors, we must therefore understand how spatial and
chemical forces and currents couple to each other arbitrarily
far from equilibrium, beyond linear response.

In this Letter, we study a stochastic three-sphere swim-
mer [32] as a minimal model that includes both chemical
and spatial (hydrodynamic) degrees of freedom; see Fig. 1.
The chemical cycle is represented by a four-state process
where each state corresponds to a different conformation of
the swimmer [Fig. 1(a)]. The key hydrodynamic degree of
freedom corresponds to the spatial position of the swimmer,
to which an external force may also be applied. The total
chemical energy ε associated with a cycle and the external
force F are the two affinities that drive the system out of
equilibrium and cause the overall swimming [Fig. 1(b)]. From
a hydrodynamic derivation (see Appendix A and [40]), we
show that the entropy production rate (EPR) can be written
as

T σ̇ = J (ε, F )ε + V (ε, F )F, (1)

where J (ε, F ) is the chemical current (rate) of the internal
cycle (see Fig. 1(b) and [40]) and V (ε, F ) is the velocity of the
swimmer. Superficially, Eq. (1) appears to have the standard
form of an EPR, with the chemical current J driven by the
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FIG. 1. (a) Full four-state cycle of the stochastic three-sphere
swimmer, after which it advances a distance d . L (long) and S (short)
indicate the state of the arms. (b) The current J through the cycle is
driven by the total affinity ε + Fd , where ε is the chemical affinity
and F the external force applied on the swimmer. (c) The total
velocity of the swimmer V includes an active swimming contribution
Jd and a passive drag MF , with M the hydrodynamic mobility.

chemical affinity ε and the spatial current V driven by the
spatial affinity F . However, the hydrodynamics of the swim-
ming mechanism leads to a coupling between the chemical
and spatial degrees of freedom, such that the currents J and V
do not respectively vanish when ε and F vanish. In fact, we
find that the velocity of the swimmer [40] is given by

V (ε, F ) = J (ε, F )d + MF, (2)

where the first term represents the active swimming (with d
being the distance advanced in the laboratory frame after a full
conformational cycle), while the second term is the passive
drag of the swimmer by the external force [Fig. 1(c)]. Here,
M is the hydrodynamic mobility of the swimmer, which is
related to its positional thermal diffusion coefficient through
the fluctuation-dissipation relation Dth = MkBT , where kB is
the Boltzmann constant and T is the temperature. Introducing
(2) into (1), we can rewrite the EPR as

T σ̇ = J (ε, F )(ε + Fd ) + MF 2. (3)

While perhaps less intuitive, (3) can be viewed as the canoni-
cal form of the EPR. Indeed, we show below that the external
force influences the dynamics of the chemical cycle through
the swimmer mechanics, such that the overall affinity driving
the chemical current J is ε + Fd . The passive drag velocity
MF in turn represents a hidden current that is exclusively
driven by the external force. Therefore, although Eq. (1) is
more practical as it involves currents that are observable (at
least in principle), it is only when written in the form of
Eq. (3) that the nonnegativity of the entropy production rate
as required by thermodynamics becomes manifest. Below, we
derive these results, and show how they strongly influence the
precision-dissipation trade off for the swimmer, and how they
can be used to infer the chemical driving force of the swimmer
from measurements of its position only.

Model. The model is summarized in Fig. 1(a). We assume
quick expansions or contractions of the arms such that their
possible states are contracted (uρ = 0) or expanded (uρ = δ),
where u� and ur represent the deformation of the left and
right arms, respectively, and δ is the extension amplitude.

TABLE I. Displacement of each sphere in each transition. For
the reverse transitions, �xi,αβ = −�xi,βα . The constants αL,S depend
on the geometry of the swimmer and satisfy 1

3 < αL < αS < 1
2 . The

total displacement d of the swimmer after a full cycle, obtained by
summing over any of the columns, is d = 2(αS − αL )δ.

Process �x1,βα/δ �x2,βα/δ �x3,βα/δ

A = LL −→ B = SL 1 − αL −αL −αL

B = SL −→ C = SS αS αS −(1 − αS )
C = SS −→ D = LS −(1 − αS ) αS αS

D = LS −→ A = LL −αL −αL 1 − αL

Each conformation corresponds to a state α = A, B,C, D of
the chemical cycle. The rate for the transition α → β is de-
noted as kβα . The states can also be named based on the
arms being long (L) or short (S), e.g., state B corresponds
to SL. To introduce forward propulsion (toward the right)
without an external force, one must break detailed-balance
such that the the trajectory of the system follows closed cycles
in the conformational space [30–32]. If the energy released
in going from α to β is �εβα , local detailed balance re-
quires kβα/kαβ = e�εβα/kBT . Note that local detailed balance
is required for a thermodynamically consistent definition of
stochastic entropy [41]. The total affinity of a cycle is then
given by ε = ∑

�εβα = kBT ln kBAkCBkDC kAD
kABkBC kCDkDA

. The steady-state
probability current J is given by J = kBAPA − kABPB, where
Pα’s are the steady-state probabilities [40]. This current can
be viewed as the rate or the inverse period for completion of
a chemical cycle. For ε = 0, equilibrium is restored and the
current vanishes.

Effect of an external force. We now consider that the
swimmer is pulled or pushed by a constant external force F ,
with the convention that negative force points toward the
left (against the direction of swimming). In principle, the
force could be distributed among the three spheres such that
F1 + F2 + F3 = F where force Fi is applied on the ith sphere.
Importantly, the force not only directly drags the swimmer,
but also affects its conformational dynamics by modifying
the transition rates kβα . From a hydrodynamic derivation of
entropy production (Appendix A), we calculate the total dis-
sipation per transition which includes the work done by the
external forces due to the displacements of each sphere.

The displacements �xi,βα of the ith sphere during transi-
tion α → β are listed in Table I (see Appendix A). Denoting
the rates in the absence of the external forces (or the bare
rates) as k0βα , local detailed balance demands that the rates
be modified as

kβα = k0βα exp

(
θβαWβα

kBT

)
, (4)

where Wβα = ∑
i Fi�xi,βα is the work done by the external

forces. Since the signs of the displacements are reversed in
the reverse transitions, this implies that Wαβ = −Wβα . The
factors θβα are related to the location of the energy bar-
rier between states α and β, and must satisfy θαβ = 1 − θβα

[40,42]. Importantly, independently of the choice of θβα and
of where the force is applied, the total affinity of the cycle be-
comes kBT ln kBAkCBkDC kAD

kABkBC kCDkDA
= ε + Fd. Using these ingredients
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FIG. 2. Dependence on external force F , for several values of the chemical affinity ε, of (a) the chemical current J , (b) the spatial current
or velocity V , (c) the chemical diffusion coefficient DJ , and (d) the correlation C between J and V . In (b), the dotted black line represents the
passive drag velocity V = MF .

and existing results from the literature [43,44] we calculate the
chemical current J and its associated diffusion coefficient DJ

[40]. Because each conformational cycle results in a displace-
ment d = 2(αS − αL )δ (see Table I), the active swimming
contributes Jd to the velocity V of the swimmer, while the
force F additionally contributes a passive drift; see Eq. (2).
The hydrodynamic mobility M is to the leading order constant
during the whole cycle, and more generally, it is an aver-
age over all conformations of the swimmer [40]. The spatial
diffusion coefficient (associated to V ) also includes active
swimming and passive hydrodynamic contributions, and reads
DV = DJd2 + Dth [40]. Using Eq. (2), we can also calculate
the correlation between J and V as C = 1/

√
1 + Dth/(DJd2)

[40].
Swimmer dynamics. In all of the following results, we fix

the geometric parameters to αL = 2.1
6 and αS = 2.9

6 ; the force
is applied on the leftmost (trailing) sphere so that F1 = F and
F2 = F3 = 0, and we set θβα = 1/2 for all the transitions. The
bare transition rates k0βα are all set to the same value k, with
the exception of k0BA which is set to k0BA = keε/kBT . Further-
more, we focus on strong swimmers and set Dth/kδ2 = 10−3.
In all plots, quantities are nondimensionalized using k−1 as
the timescale, δ as the length scale, and kBT and kB as units of
energy and entropy, respectively.

Figure 2 displays the behavior of several quantities of in-
terest as a function of the applied force F , for various values
of the chemical affinity ε. The chemical current, shown in
Fig. 2(a), clearly manifests the mechanochemical coupling in
this system, as an applied force can create a chemical current
even in the absence of any chemical driving (ε = 0). When
ε > 0, the current vanishes at the critical force F∗ = −ε/d
that makes the total affinity of the cycle zero, while it is
reversed for F < F∗. At large positive or negative force, J
vanishes [45]. The behavior of the velocity V is similar to
that of J [see Fig. 2(b)] except that V shows a linear depen-
dence as V = MF at large force, when it is dominated by
the passive drag by the external force since J vanishes. The
velocity vanishes at the stall force Fs, which can be calculated
from the implicit equation J (ε, Fs )d + MFs = 0 [see Eq. (2)]
and satisfies F∗ < Fs < 0 (for ε > 0). For sufficiently large
ε, small positive forces cause the swimmer to decelerate,
whereas small negative forces cause the swimmer to accel-
erate [32]. This phenomenon, known as negative differential
mobility, has also been observed in other nonequilibrium
systems [46,47]. Lastly, the force dependence of the chemical
diffusion coefficient DJ (which coincides with that of the
spatial diffusion DV , except for a prefactor and a constant
baseline) and the correlation C are displayed in Figs. 2(c) and

2(d). We find that both generally peak at small negative values
of the applied force, independently of the magnitude of ε.

Entropy production. We can calculate the EPR from the hy-
drodynamic definition of dissipation, T σ̇ = ∑

i〈ẋi fi〉, where
ẋi is the velocity of each sphere and fi is the corresponding
instantaneous force, satisfying the force balance f1 + f2 +
f3 = F . The crucial step in the derivation is to separately
consider the internal and external contributions to the forces
(see Appendix A). In this framework, the EPR splits into an
active swimming contribution related to the conformational
transitions, and a purely passive one. After averaging, these
two contributions make up the result presented in Eq. (3).
The coupling between chemical and hydrodynamic driving
forces gives rise to a rather complicated dependence of the
EPR on the forces, with local maxima and minima as shown
in Fig. 3(a). For ε = F = 0, the system is at equilibrium. For
ε > 0, at low force the entropy production is largely domi-
nated by the chemical part, while at large force we recover
the usual hydrodynamic energy dissipation (∼F 2) of a passive
object dragged by a constant force.

Thermodynamic precision. The precision of a nonequilib-
rium process is bounded by the EPR through the TUR [17].
More specifically, the MTUR provides the bound J T · D−1 ·
J � σ̇ /kB at steady state, where J is any vectorial current
and D is the diffusion matrix describing the fluctuations of
the current [39]. Applying this bound to the individual current
V , we obtain the standard TUR, V 2/DV � σ̇ /kB. We esti-
mate the quality of this bound using the (nonnegative) factor
QV ≡ (V 2/DV )/(σ̇ /kB), which equals one when the bound is
saturated and is smaller otherwise. The values of QV for our
swimmer are shown in Fig. 3(b) as a function of the force F
for several values of the chemical driving ε, and in Fig. 3(c)
as a function of ε for several values of F . The behavior of QV

is rather complex, reflecting the fact that the current has two
driving forces which can compete with each other.

An intriguing observation can be made by considering the
behavior of QV near equilibrium (ε = F = 0). While in the
limit F → 0 for ε = 0 in Fig. 3(b) we find QV → 1 (the bound
is saturated), in the limit ε → 0 for F = 0 in Fig. 3(c) we find
QV → 0.8163 (the bound is not saturated). The two limits
do not coincide as one might have naively expected, imply-
ing that the near equilibrium limit is not uniquely defined.
This generic behavior can be understood in linear response
(see Appendix B), and reflects the fact that F is the direct
(diagonal) driving force of the current V , whereas ε is its indi-
rect (off-diagonal) driving force [48]. This difference between
direct and indirect forces with regards to TUR saturation near
equilibrium is of practical relevance, as typically (e.g., for
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FIG. 3. (a) Entropy production rate σ̇ as a function of the external force F , for several values of the chemical affinity ε. (b), (c) The quality
factor QV of the precision-dissipation trade off for the spatial current V , (b) as a function of F for fixed values of ε, and (c) as a function of
ε for fixed values of F . (d) Ratio of the MTUR-inferred [Eq. (6)] and true chemical force ε/d . F∗ is the critical force at which the chemical
current vanishes. For F > F∗ the inferred value is a lower bound, for F < F∗ an upper bound, and for F = F∗ it is exact.

molecular motors and swimmers) the affinity of interest (e.g.,
ATP hydrolysis) only indirectly drives the measurable current
(e.g., spatial velocity).

A tighter bound on entropy production can be obtained by
applying the MTUR to the two-dimensional current (J,V ),
which yields

1

1 − C2

[
J2

DJ
− 2CJV√

DJDV
+ V 2

DV

]
� σ̇

kB
. (5)

This bound is well behaved and saturated in the near equi-
librium limit, as can be proven in the linear response regime
(see Appendix B). While it may appear to be less useful in
practice, as it involves J , DJ , and C, all of which are not
directly observable in an experiment that only has access to
the swimmer position, our knowledge of the swimmer me-
chanics can be exploited to obtain a much improved bound
(even an equality) on the chemical energy consumption per
unit distance (chemical force) of the swimmer, ε/d .

Thermodynamic inference. Indeed, using Eq. (2) and the
expressions for DV and C, we can write J , DJ , and C as
functions of V , DV , the passive hydrodynamic mobility M (or
thermal diffusion coefficient Dth = MkBT ), and the external
force F ; substitute them into (5) together with expression
(3) for the EPR; and finally rearrange the terms to obtain an
inequality on ε/d . Defining( ε

d

)
MTUR

≡ kBTV/DV − F

1 − Dth/DV
, (6)

we find that, for F > F∗ (where F∗ < 0 is the critical force at
which the chemical current vanishes), the MTUR provides a
lower bound ε/d � (ε/d )MTUR, while for F < F∗ the MTUR
provides an upper bound ε/d � (ε/d )MTUR. By continuity,
for F = F∗ [which implies J = 0 and thus V = MF∗ through
Eq. (2)], we find the equality ε/d = (ε/d )MTUR = −F∗. This
result is consistent with the total affinity ε + Fd of the chem-
ical current vanishing at F = F∗. The quality of this bound as
measured by the ratio (ε/d )MTUR/(ε/d ) is shown in Fig. 3(d)
as a function of F , for several values of ε.

These results reveal several strategies for the inference
of the chemical force. In passive measurements with F = 0,
we can estimate ε/d � kBT (V/DV )(1 − Dth/DV )−1. This im-
proves the bound obtained from the standard TUR by a
factor (1 − Dth/DV )−1. In active measurements with F 	= 0,
one may measure the stall force of the swimmer Fs < 0
at which V = 0, as well as the position fluctuations giving
DV , and infer ε/d � −Fs(1 − Dth/DV )−1. Lastly, and opti-
mally, one may measure the critical force F∗ at which the

swimmer moves precisely at the velocity that one would ex-
pect from passive hydrodynamic drag, i.e., V = MF∗. The
chemical force is then exactly ε/d = −F∗. In all these cases,
the passive mobility M (and associated Dth = MkBT ) may
be estimated from purely hydrodynamic calculations. Alter-
natively, if |J (F )| grows more slowly than linear, tends to a
constant, or vanishes at large force (as is the case for the three-
sphere swimmer), M can be measured from the asymptotic
behavior of the swimmer velocity as F → ±∞; see the force-
velocity (F -V ) curve in Fig. 2(b). In this case, F∗ and thus ε/d
can be inferred by measuring the F -V curve, estimating its
high-force asymptote, and obtaining the intersection point of
the asymptote and the F -V curve, which occurs at F∗.

Discussion. Using a stochastic three-sphere swimmer as
an analytically tractable and thermodynamically-consistent
model for a chemically powered autonomous microswimmer,
we have explicitly calculated its swimming dynamics and its
entropy production in the presence of an external force. This
allowed us to study the coupling between spatial and chemical
forces and currents beyond the linear response regime. We
have found a number of interesting properties in the force
dependence of the swimmer dynamics as well as its thermo-
dynamic properties, such as the radically different dependence
of the thermodynamic precision-dissipation trade off of the
swimmer velocity on the external force (direct driving) and
internal chemical affinity (indirect driving). Moreover, we
have shown how the chemical affinity of the swimmer can be
precisely inferred by measurements of the spatial dynamics
only.

All of these properties are a consequence of the coupling
between spatial and chemical forces and currents in this sys-
tem, as exemplified by Eqs. (1), (2), (3), and the expressions
for DV and C. Importantly, we expect the form of these equa-
tions to remain unchanged for other autonomous swimmers
(see, e.g., Ref. [49] for a derivation of equivalent expressions
for self-phoretic swimmers). Only the precise functional form
of the chemical current J (ε, F ) (and associated diffusion DJ )
and the distance d advanced per cycle will depend on the mi-
croscopic details. Therefore, the general lessons learned here
and the thermodynamic inference strategy proposed [Eq. (6)]
should be applicable to a wide range of autonomous motors
and swimmers.
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Appendix A: Hydrodynamic calculation of velocity and en-
tropy production. The force balance equation for the swimmer
reads

∑
i fi = F . The force on sphere i denoted as fi can

be expressed as fi = f̃i + Fi, in terms of the internal force f̃i

and the external force Fi. We have
∑

i f̃i = 0 and
∑

i Fi = F .
The internal forces can be written as f̃1 = − f̃�, f̃2 = f̃� − f̃r ,
and f̃3 = f̃r , where f̃� and f̃r are respectively the internal
stresses on the left and right arms, defined to be positive
when they act to expand the arm. We denote the instantaneous
speeds of the arms as u̇� = ẋ2 − ẋ1, u̇r = ẋ3 − ẋ2. Forces and
velocities are linearly related through the hydrodynamic fric-
tion tensor Zi j such that fi = ∑

j Zi j ẋ j . By summing over
the forces we deduce that

∑
i Aiẋi = BF , with Ai(u�, ur ) ≡

(
∑

j Zi j )/(
∑

i, j Zi j ) and B(u�, ur ) ≡ 1/(
∑

i, j Zi j ). From this
expression, we derive equations describing the motion of each
of the spheres in response to the external force as well as
the changes in the lengths of the arms (active swimming) as
follows:

ẋ1 = BF − (1 − A1)u̇� − A3u̇r, (A1)

ẋ2 = BF + A1u̇� − A3u̇r, (A2)

ẋ3 = BF + A1u̇� + (1 − A3)u̇r . (A3)

The average velocity V of the swimmer is given by 〈ẋi〉,
where the average is taken at steady state and any sphere i may
be considered without loss of generality. Choosing i = 2, we
can write

V = 〈ẋ2〉 = MF + 〈A1u̇� − A3u̇r〉, (A4)

where we have defined M ≡ 〈B〉, which is independent of ε or
F to leading order in the hydrodynamic interactions [40]. The
first term represents the passive drag, whereas the second term
represents the active swimming. The latter results in finite
contributions for each conformational change, so that

〈A1u̇� − A3u̇r〉 = 1

T

∫ T

0
(A1u̇� − A3u̇r )dt,

= J
∑
{βα}

[∫ β

α

A1du� −
∫ β

α

A3dur

]
,

= J
∑
{βα}

�x2,βα = Jd, (A5)

where T = J−1 is the period of a cycle in steady state,
and the sums run over the forward transitions {βα} =
{BA,CB, DC, AD}. Equations (A4) and (A5) together result
in Eq. (2).

The displacement in each transition �x2,βα is calculated
by performing the associated integral in the second line of
Eq. (A5). For instance, in the transition A → B the left arm
shrinks and the right arm stays fixed at ur = δ, so that we find

�x2,BA =
∫ B

A
A1du� =

∫ 0

δ

A1(u�, δ)du� = −αLδ, (A6)

where we have defined

αL ≡ 1

δ

∫ δ

0
A1(u�, δ)du�. (A7)

Conversely, in the transition B → C, the right arm shrinks
while the left arm stays fixed at u� = 0. We thus find

�x2,CB = −
∫ C

B
A3dur = −

∫ 0

δ

A3(0, ur )dur = αSδ, (A8)

with the definition

αS ≡ 1

δ

∫ δ

0
A3(0, ur )dur . (A9)

Repeating this procedure for all transitions and calculating the
corresponding displacement of the first and third sphere, we
obtain the results in Table I, which are valid for a swimmer
with symmetric geometry as in Fig. 1. The calculations for
a more general asymmetric swimmer, their explicit integra-
tion using the Oseen approximation, and the estimation of
the bound 1/3 < αL < αS < 1/2 are performed in Ref. [40].
These recover the known results relating the velocity of the
swimmer to the area swept by cycles in conformational space
[31,32].

To calculate the EPR at steady state, we start from the
hydrodynamic dissipation T σ̇ = ∑

i〈ẋi fi〉. Using (A1)–(A3),
the EPR becomes

T σ̇ = MF 2 + 〈u̇�[ f̃� − (1 − A1)F1 + A1(F2 + F3)]

+ u̇r[ f̃r − A3(F1 + F2) + (1 − A3)F3]〉. (A10)

Here, analogously to the calculation of the velocity, the first
term represents the dissipation due to passive drag, whereas
the second term represents dissipation due to the active
swimming, which gives a finite contribution for each confor-
mational transition.

Indeed, following the same procedure used to derive
Eq. (A5), we may write

T σ̇ = MF 2 + J
∑
{βα}

T �σβα, (A11)

where T �σβα gives the dissipation occurring during the tran-
sition α → β. As an example, we consider again the transition
A → B. In this transition, u� shrinks whereas ur remains con-
stant and fixed to δ. Thus, the discrete dissipation during this
transition is

T �σBA =
∫ 0

δ

[ f̃� − (1 − A1)F1 + A1(F2 + F3)]du�

= �εBA + F1�x1,BA + F2�x2,BA + F3�x3,BA.

(A12)

Here, the first term results from the definition

�εBA ≡
∫ 0

δ

f̃�du�, (A13)

and gives the dissipation due to the internal active mechanism
of the swimmer, while the remaining terms result from the
displacements of the spheres previously calculated and give
the dissipation by the external force during a conformational
change.

An analogous result T �σβα = �εβα + ∑
i Fi�xi,βα is ob-

tained for all other transitions [40]. The transition-induced
dissipation obtained in this way must be used to enforce
local detailed balance in the stochastic transitions, leading to
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Eq. (4). Finally, using this result in Eq. (A11), and noting
that

∑
{βα} �εβα = ε and

∑
{βα},i Fi�xi,βα = Fd , leads to the

expression for the EPR in Eq. (3), which gives Eq. (1) when
combined with Eq. (2).

Appendix B: Linear response regime. In the linear-response
regime (ε, Fd � kBT ), the currents can be written as J =
Lεεε + LεF F and V = LFεε + LFF F , with Lεε = κ̃ , LFF =
κ̃d2 + M, and LεF = LFε = κ̃d , where κ̃ = κ0/(kBT ) and κ0

is an inverse timescale that depends only on the force-free
rates k0βα [40]. Thus, affinities couple to the currents through
Ja = ∑

b LabAb, where Ja = (J,V ) is a vector of currents,
Aa = (ε, F ) is a vector of affinities, and Lab is a symmetric
Onsager matrix. The EPR can then be expressed in the usual
bilinear form T σ̇ = ∑

ab LabAaAb [26–28].
It is straightforward to show that the MTUR (J T · D−1 ·

J � σ̇ /kB) is saturated in linear regime. Indeed, the diffusion
matrix D relates to the Onsager mobility matrix L through
the fluctuation-dissipation theorem D = kBT L, and using this
together with J = L · A directly results in J T · D−1 · J =
σ̇ /kB. The behavior of the standard single-current TUR, Qa ≡

(J 2
a /Da)/(σ̇ /kB) � 1 for current Ja, is more surprising. In

general, for a current Ja driven by N affinities Ab with
b = 1, . . . , N , the quality factor Qa can be written as

Qa =
∑

b,c LabLacAbAc

Laa
∑

b,c LbcAbAc
, (B1)

where we have used the fluctuation-dissipation relation
Da = Daa = kBT Laa. There are two distinct cases with
regards to how the system behaves when only one of the affini-
ties is nonzero: (i) If Ab = 0 for all b 	= a and Aa 	= 0 (weak
direct driving), we find Qa = 1, i.e., the bound saturates; (ii)
If Ab = 0 for all b 	= c and Ac 	= 0 for some c 	= a (weak
indirect driving), we find Qa = L2

ac/(LaaLcc) [48]. The latter
value is guaranteed to be smaller than or equal to one due to
the positive semidefiniteness of the Onsager matrix. Typically,
it is smaller than one, implying that the TUR bound is not sat-
urated. For our swimmer, we thus have QV → L2

Fε/(LFF Lεε )
when F = 0 and ε → 0, which for the parameters used in
Fig. 3 gives QV → 0.8163.
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I. CURRENTS, DIFFUSION COEFFICIENTS, AND CORRELATION

To derive the expressions for the currents, diffusion coefficients, and the correlation, we define the observables n,
which counts the number of cycles completed by the internal process, and y, the displacement due to the passive drag
by the force. The total displacement of the swimmer is given by x = nd+ y, where d = 2(αS −αL)δ as derived in the
main text. At steady-state, we have

lim
t→∞

⟨n⟩/t = J, (S1)

lim
t→∞

⟨y⟩/t = MF, (S2)

lim
t→∞

⟨x⟩/t = Jd+MF = V, (S3)

where the hydrodynamic mobility M of the swimmer is related to its thermal diffusion coefficient through M =
Dth/kBT . We show (below) through a comprehensive hydrodynamic calculation that the mobility is constant to
lowest order, and thus independent of the cyclic process n. To calculate J , we need to solve the master equation

dpα
dt

=
∑

β

(kαβpβ − kβαpα), (S4)

which governs the dynamics of the probability distribution pβ . At steady-state we denote pβ → Pβ , and write the
probability current as J = kβαPα − kαβPβ . We find [1]

J =
kADkDCkCBkBA − kABkBCkCDkDA∑

cycl.perm. of A,B,C,D(kADkDCkCB + kABkBCkCD + kABkADkDC + kADkABkBC)
. (S5)

∗ j.agudo-canalejo@ucl.ac.uk
† ramin.golestanian@ds.mpg.de
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The diffusion coefficients are defined as

lim
t→∞

⟨(n− ⟨n⟩)2⟩/(2t) = DJ , (S6)

lim
t→∞

⟨(y − ⟨y⟩)2⟩/(2t) = Dth, (S7)

lim
t→∞

⟨(x− ⟨x⟩)2⟩/(2t) = DV . (S8)

The explicit expression for calculating the diffusion coefficient DJ can be found in [2]. Using the above equations and
the definition of x, the spatial diffusion coefficient can be found as

lim
t→∞

⟨(x− ⟨x⟩)2⟩/(2t) = DJd
2 +Dth = DV , (S9)

since ⟨ny⟩ − ⟨n⟩⟨y⟩ = 0. The correlation C between the processes x and n and is defined as

C = lim
t→∞

⟨(x− ⟨x⟩)(n− ⟨n⟩)⟩√
⟨(x− ⟨x⟩)2⟩⟨(n− ⟨n⟩)2⟩

, (S10)

and can be straightforwardly calculated as

C =
1√

1 + Dth

DJd2

. (S11)

II. LINEAR RESPONSE THEORY

Expanding the currents J and V around the equilibrium state (ε = F = 0), we find

J(ε, F ) =
∂J

∂ε

∣∣∣∣
ε=F=0

ε+
∂J

∂F

∣∣∣∣
ε=F=0

F, (S12)

V (ε, F ) = d
∂J

∂ε

∣∣∣∣
ε=F=0

ε+

(
M + d

∂J

∂F

∣∣∣∣
ε=F=0

)
F. (S13)

To verify the Onsager reciprocity condition, we need to show that ∂J
∂F = d∂J

∂ε is satisfied.
To this end, we note that

J = κ

(
1−Π

k←βα
k→αβ

)
= κ

(
1− exp(−A/kBT )

)
, (S14)

where

κ =
kADkDCkCBkBA∑

cycl.perm. of A,B,C,D(kADkDCkCB + kABkBCkCD + kABkADkDC + kADkABkBC)
. (S15)

and the cycle affinity A is defined as

A
kBT

= ln

(
kADkDCkCBkBA

kABkBCkCDkDA

)
. (S16)

Thus, close to equilibrium we find

J ≃ κ0
A

kBT
= κ0

(ε+ Fd)

kBT
, (S17)

where κ0 = κ(ε = F = 0) and A = ε+ Fd is the affinity. Therefore, we deduce that Onsager reciprocity is satisfied,
and the Onsager coefficients are as given in the main text. Moreover, one can easily check that in the linear regime
the entropy production is given as T σ̇ = Jε+ V F .
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III. HYDRODYNAMIC CALCULATIONS

The equations for the velocities of each sphere are given in terms of the hydrodynamic mobility tensor Mij , such
that ẋi =

∑
j Mijfj . In what follows we assume arbitrary sizes of the three spheres and also different length of the

arms where uℓ and ur can take maximum expansions of δℓ and δr, respectively.
As describe in Appendix A, it is useful to consider the inverse problem fi =

∑
j Zij ẋj , with the friction matrix

Z = M−1,

Z =
1

detM




M22M33 −M2
23 M13M23 −M33M12 M12M23 −M13M22

M13M23 −M33M12 M11M33 −M2
13 M12M13 −M11M23

M12M23 −M13M22 M12M13 −M11M23 M11M22 −M2
12


 , (S18)

where

detM = M11M22M33 −M11M
2
23 −M22M

2
13 −M33M

2
12 + 2M12M13M23, (S19)

is the determinant of Mij . We thus obtain that

∑

ij

Zij ẋj =
∑

i

fi =
∑

i

Fi = F (S20)

since
∑

fi =
∑

Fi = F and
∑

f̃i = 0 as explained in the main letter. Thus, by dividing both sides with
∑

ij Zij , and
defining

B ≡ 1∑
ij Zij

, (S21)

and

Ai ≡
∑

j Zij∑
ij Zij

, (S22)

we obtain
∑

i Aiẋi = BF . Using u̇ℓ = ẋ2 − ẋ1 and u̇r = ẋ3 − ẋ2 in this expression, we find

ẋ1 = BF − (1−A1)u̇ℓ −A3u̇r, (S23)

ẋ2 = BF +A1u̇ℓ −A3u̇r, (S24)

ẋ3 = BF +A1u̇ℓ + (1−A3)u̇r, (S25)

where the explicit expressions are given as follows

A1(uℓ, ur) =
1

N
(M22M33 −M33M12 −M22M13 +M13M23 +M12M23 −M2

23), (S26)

A2(uℓ, ur) =
1

N
(M11M33 −M33M12 −M11M23 +M12M13 +M13M23 −M2

13), (S27)

A3(uℓ, ur) =
1

N
(M11M22 −M11M23 −M22M13 +M12M23 +M12M13 −M2

12). (S28)

Here N is determined by A1 +A2 +A3 = 1. The expression for B is

B(uℓ, ur) =
1

N
detM. (S29)

A. Swimming velocity

The average swimming velocity V is given by V = ⟨ẋi⟩ where without loss of generality we choose ⟨ẋ2⟩ with

⟨ẋ2⟩ = ⟨B⟩F + ⟨A1u̇ℓ −A3u̇r⟩ = MF + ⟨A1u̇ℓ −A3u̇r⟩ (S30)
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Process ∆x1,βα ∆x2,βα ∆x3,βα

A = LL −→ B = SL (1− αL,ℓ)δℓ −αL,ℓδℓ −αL,ℓδℓ
B = SL −→ C = SS αS,rδr αS,rδr −(1− αS,r)δr
C = SS −→ D = LS −(1− αS,ℓ)δℓ αS,ℓδℓ αS,ℓδℓ
D = LS −→ A = LL −αL,rδr −αL,rδr (1− αL,r)δr

TABLE SI. The displacement of each sphere in each transition for a general asymmetric swimmer. For the reverse transitions,
∆xi,αβ = −∆xi,βα as in the main text. The first index of α coefficients stands for whether the other (fixed) arm is in the long
or short and the second one is for the arm that is changing.

where in the steady-state

M ≡ ⟨B⟩ = B(δℓ, δr)PA +B(0, δr)PB +B(0, 0)PC +B(δℓ, 0)PD, (S31)

with the brackets indicating the state of B. For the second term we have,

⟨A1u̇ℓ −A3u̇r⟩ =
1

T

∫ T

0

(A1u̇ℓ −A3u̇r)dt = J
∑

{βα}

[∫ β

α

A1duℓ −
∫ β

α

A3dur

]
,

= J(∆x2,BA +∆x2,CB +∆x2,DC +∆x2,DA) = Jd, (S32)

where after integrating over each step we obtain the displacement during each transition, and we have used the fact
that in the steady-state J(ε, F ) = 1

T .
Performing the individual integrals for each transition we find that for the transition A = LL → B = SL the

following result holds

∆x2,BA =

∫ 0

δℓ

A1(uℓ, δℓ)duℓ = −αL,ℓδℓ with αL,ℓ ≡
1

δℓ

∫ δℓ

0

A1(uℓ, δr)duℓ. (S33)

Due to the constraint of u̇r = 0, we find that ∆x3,BA = −δℓαL,ℓ, and since −δℓ = ∆x2,BA −∆x1,BA, then ∆x1,BA =
(1− αL,ℓ)δℓ.
For the transition B = SL → C = SS, we find

∆x2,CB = −
∫ 0

δr

A3(0, ur)dur = αS,rδr with αS,r ≡ 1

δr

∫ δr

0

A3(0, ur)dur, (S34)

where ∆x1,CB = δrαS,r and ∆x3,CB = −(1− αS,r)δr.
For the transition C = SS → D = LS, we find

∆x2,DC =

∫ δℓ

0

A1(uℓ, 0)duℓ = αS,ℓδℓ with αS,ℓ ≡
1

δℓ

∫ δℓ

0

A1(uℓ, 0)duℓ, (S35)

where ∆x1,DC = −(1− αS,ℓ)δℓ and ∆x3,DC = δℓαS,ℓ.
Finally, for the transition D = LS → A = LL, we find

∆x2,AD = −
∫ δr

0

A3(δℓ, ur)dur = −αL,rδr with αL,r ≡ 1

δr

∫ δr

0

A3(δℓ, ur)dur, (S36)

where ∆x1,AD = −αL,rδr and ∆x3,DC = (1− αL,r)δr.
The above results are all summarized in Table SI. By summing any column of the table, we find that the total

displacement due to swimming after a full cycle is

d = (αS,ℓ − αL,ℓ)δℓ + (αS,r − αL,r)δr. (S37)

In the special case of a symmetric swimmer like in the main text with all spheres identical and thus M11 = M22 =
M33 = µ as well as δℓ = δr = δ, we find αS,ℓ = αS,r = αS and αL,ℓ = αL,r = αL and the table in the main text
is recovered, which implies that d = 2(αS − αL)δ. Bounds on the possible values of αS and αL can be obtained by
considering two extreme cases. If in the L state the spheres are very far from each other, hydrodynamic interactions
are negligible and then A1 = A2 = A3 = 1/3, giving a lower bound of αL = 1/3. If in the S state the spheres are so
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close to each other as to be overlapping, we can transform the three-sphere problem into a two-sphere problem. We
take the C → D transition as an example. The internal active force of the left arm is denoted f̃ (positive if it acts to

contract the arm). The positions of the spheres then evolve according to ẋ1 = (−µ +M12)f̃ and ẋ2 = (µS −M12)f̃
with µS defined as the effective mobility of the rigid block. Therefore, we can express αS as

αS =
µS −M12

µ+ µS − 2M12
. (S38)

For the upper bound one can assume that that the effective block with mobility µS becomes a sphere of mobility µ.
Hence, in this limit αS = 1/2. With these two bounds, we find that overall 1/3 < αL < αS < 1/2 as stated in the
main text.

B. Perturbative expansion

We proceed further to find a perturbative expression for the values of the α-coefficients, displacement after a full
cycle, and average velocity. We use the Stokes law for the friction coefficient and the expression for the Oseen tensor.
For simplicity, we take all spheres to be equal. We assume that M11 = M22 = M33 ≡ µ = 1

6πηa where a is the

radius of the spheres and η is the viscosity of the medium. For the off-diagonal components the expressions are,
M12 = 1

4πηsℓ
, M23 = 1

4πηsr
and M13 = 1

4πη(sℓ+sr)
, where si is the distance between the corresponding spheres. We

define, sρ = Lρ + uρ with Lρ being a constant length with uρ ≪ Lρ. By Taylor expanding, the two integrals in
Eq. (S32) become

∫

cycle

A1duℓ =
1

3

∫

cycle

duℓ +
a

3

∫

cycle

(K0,ℓr +K1,ℓruℓ −K2,ℓrur) duℓ +O
(
au2

ρ

L3
ρ

)
, (S39)

−
∫

cycle

A3dur = −1

3

∫

cycle

dur −
a

3

∫

cycle

(K0,rℓ −K2,rℓuℓ +K1,rℓur) dur +O
(
au2

ρ

L3
ρ

)
, (S40)

where

K0,ρν =
Lρ

Lν(Lρ + Lν)
− Lν

2Lρ(Lρ + Lν)
, (S41)

K1,ρν =
1

(Lρ + Lν)2
+

Lν

Lρ(Lρ + Lν)2
+

L2
ν

2L2
ρ(Lρ + Lν)2

, (S42)

K2,ρν =
1

2(Lρ + Lν)2
+

2Lρ

Lν(Lρ + Lν)2
+

L2
ρ

L2
ν(Lρ + Lν)2

. (S43)

This allows us to calculate the perturbative expressions for α coefficients as follows

αL,ℓ =
1

3
+

a

3

(
K0,ℓr +

1

2
K1,ℓrδℓ −K2,ℓrδr

)
, (S44)

αS,r =
1

3
+

a

3

(
K0,rℓ +

1

2
K1,rℓδr

)
, (S45)

αS,ℓ =
1

3
+

a

3

(
K0,rℓ +

1

2
K1,ℓrδℓ

)
, (S46)

αL,r =
1

3
+

a

3

(
K0,rℓ +

1

2
K1,rℓδr −K2,rℓδℓ

)
, (S47)

which implies

d =
a

3
(K2,ℓr +K2,rℓ) δℓδr =

a

3

(
1

L2
ℓ

+
1

L2
r

− 1

(Lℓ + Lr)2

)
δℓδr. (S48)

This recovers the expected result [1]

V (F = 0) = Jd =
a

3

(
1

L2
ℓ

+
1

L2
r

− 1

(Lℓ + Lr)2

)
Jδℓδr =

a

3

(
1

L2
ℓ

+
1

L2
r

− 1

(Lℓ + Lr)2

)〈
dA
dt

〉
, (S49)
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for the propulsion of a swimmer in the absence of an external force being proportional to the area A enclosed by its
trajectory in conformation space.

In the special case of Lℓ = Lr ≡ L0, one obtains

αL,ℓ =
1

3
+

a

12L2
0

(
L0 +

5

4
δℓ −

7

2
δr

)
, (S50)

αS,r =
1

3
+

a

12L2
0

(
L0 +

5

4
δr

)
, (S51)

αS,ℓ =
1

3
+

a

12L2
0

(
L0 +

5

4
δℓ

)
, (S52)

αL,r =
1

3
+

a

12L2
0

(
L0 +

5

4
δr −

7

2
δℓ

)
, (S53)

which implies

d =
7a

12L2
0

δℓδr. (S54)

If we further assume that δℓ = δr ≡ δ as in the main text, we find

αL,ℓ = αL,r ≡ αL =
1

3
+

a

12L2
0

(
L0 −

9

4
δ

)
, (S55)

αS,ℓ = αS,r ≡ αS =
1

3
+

a

12L2
0

(
L0 +

5

4
δ

)
. (S56)

As stated in the main text, we observe that we generically have αL < αS . The lower bound of 1/3 corresponds to the
limit L0 ≫ a. The total displacement after a full cycle is then

d =
7a

12L2
0

δ2. (S57)

C. Hydrodynamic mobility

As derived above, the average mobility M describing the passive drag of the particle by the external force is given
in Eq. (S31).

In general, M therefore depends on the chemical affinities and external forces through the probabilities Pα, and is
not purely geometric. However, to the first order in the hydrodynamic interactions O(Mij/Mii), the instantaneous
mobility B can be written as

B = (M−111 +M−122 +M−133 )−1
(
1 + 2

M11M23 +M22M13 +M33M12

M11M22 +M11M33 +M22M33
+O

(
M2

ij

M2
ii

))
, (S58)

where the dependence on (uℓ, ur) is only contained in the cross-mobilities Mij with i ̸= j, which are of higher order.
Therefore, the average mobility M is independent of the chemical affinities and external forces to the lowest order
and reads

M = (M−111 +M−122 +M−133 )−1 + ⟨O(Mij/Mii)⟩. (S59)

In particular, for equal-sized spheres with mobility µ we find M ≈ µ/3.

D. Entropy production rate

As described in Appendix A, starting for the expression of the EPR T σ̇ =
∑

i⟨ẋifi⟩, splitting the forces into internal
and external, and using Eqs. (S23)–(S25), the EPR becomes

T σ̇ = ⟨BF 2 + u̇ℓ[f̃ℓ − (1−A1)F1 +A1(F2 + F3)] + u̇r[f̃r −A3(F1 + F2) + (1−A3)F3]⟩. (S60)
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As explained in the main text the contributions to entropy production from each stochastic transition can be calculated
as was done explicitly for the displacements in Eq. (S32). By following the procedure per step and averaging over the
steady-state limit, one easily finds

T σ̇ = MF 2 + J(ε, F )
∑

{βα}
T∆σβα, (S61)

where the contributions to dissipation in each transition are given by the following expressions

T∆σBA =

∫ 0

δℓ

[f̃ℓ − (1−A1)F1 +A1(F2 + F3)]duℓ = ∆εBA +
∑

i

Fi∆xi,BA with ∆εBA ≡
∫ 0

δℓ

f̃ℓduℓ, (S62)

T∆σCB =

∫ 0

δr

[f̃r −A3(F1 + F2) + (1−A3)F3]dur = ∆εCB +
∑

i

Fi∆xi,CB with ∆εCB ≡
∫ 0

δr

f̃rdur, (S63)

T∆σDC =

∫ δℓ

0

[f̃ℓ − (1−A1)F1 +A1(F2 + F3)]duℓ = ∆εDC +
∑

i

Fi∆xi,DC with ∆εDC ≡
∫ δℓ

0

f̃ℓduℓ, (S64)

T∆σAD =

∫ δr

0

[f̃r −A3(F1 + F2) + (1−A3)F3]dur = ∆εAD +
∑

i

Fi∆xi,AD with ∆εAD ≡
∫ δr

0

f̃rdur. (S65)

By summing the chemical energies ∆εβα over all four transitions we recover (by definition) the total chemical affinity
ε. In turn, the sum of

∑
i Fi∆xi,βα over all four transitions gives Fd, as the sum of displacements for any of the

spheres leads to the swimming distance d, and the sum of the forces Fi correspond to the total external force F .
Therefore,

T σ̇ = MF 2 + J(ε, F )(ε+ Fd) = V (ε, F )F + J(ε, F )ε, (S66)

as stated in the main text.
The local detailed balance between forward and backward rates requires that we account for the dissipation asso-

ciated with each transition [3], so that

kβα
kαβ

= exp

[
T∆σβα

kBT

]
= exp

[
∆εβα +Wβα

kBT

]
=

k0βα
k0αβ

exp

(
Wβα

kBT

)
, (S67)

where we have defined the work done by the external forces during the transition α → β as Wβα ≡ ∑
i Fi∆xi,βα.

This gives the modification of the rates due to the external forces as stated in the main text.

IV. INTUITIVE MEANING OF θβα

The parameter θβα can be related to the position of the energy barrier between states α and β along a continuous
reaction coordinate, in the context of a Kramers escape problem [4]. Without loss of generality, let us focus on a
reaction involving the expansion of an arm from u = 0 (state α) to u = δ (state β), where u acts as the reaction
coordinate. Consider a bistable potential U(u) which, in the absence of any additional forces, has one minimum at
u = 0, one minimum at u = δ, and an energy barrier between them located at the transition state u = uba = θβαδ.

Now consider an additional constant force fβα acting on the arm (in our model, this corresponds to the internal
stress in the arm that is caused by the presence of the external force). The total potential including the effect of the
force is then Utot(u) = U(u)− fβαu. The total energy of state α remains Utot(0) = 0, while that of state β becomes
Utot(δ) = U(δ)− fβαδ. Assuming that the energy barrier is sharply peaked, so that its location remains unchanged,
the energy of the transition state becomes Utot(uba) = U(uba)− fβαθβαδ.

Using Kramers rate theory [4], the transition rate from α to β is related to the height of the transition energy
barrier as seen from α, with

kβα ∝ exp

{
−Utot(uba)− Utot(0)

kBT

}
= exp

{
−U(uba)− fβαθβαδ − U(0)

kBT

}

= exp

{
−U(uba)− U(0)

kBT

}
exp

{
fβαθβαδ

kBT

}
,
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while the transition rate from β to α is related to the height of the transition energy barrier as seen from β, with

kαβ ∝ exp

{
−Utot(uba)− Utot(δ)

kBT

}
= exp

{
−U(uba)− fβαθβαδ − U(0) + fβαδ

kBT

}

= exp

{
−U(uba)− U(δ)

kBT

}
exp

{
−fβα(1− θβα)δ

kBT

}
.

If, again, we assume the energy barrier to be sharply peaked, the force does not significantly alter the curvature of the
energy barrier, so that the prefactor of Kramers’ rate (omitted in the proportionality relations given above) remains
unchanged in presence of the force. We can then write

kβα = k0βα exp

{
θβαfβαδ

kBT

}
, (S68)

kαβ = k0αβ exp

{
− (1− θβα)fβαδ

kBT

}
. (S69)

Identifying the work done by the force in the α → β transition as Wβα = fβαδ, from Eq. (S68) we immediately recover
Eq. (4) in the main text. On the other hand, self-consistency with Eq. (S69) implies the requirements θαβ = 1− θβα
and Wαβ = −Wβα already stated in the main text.

In summary, θβα = 0 corresponds to the limit in which the energy barrier is close to the “origin” state α, whereas
θβα = 1 corresponds to the opposite limit in which the energy barrier is close to the “destination” state β.

V. RESULTS FOR NEGATIVE CHEMICAL AFFINITY

In this section, we report results for negative values of cycle affinity ε; see Figs. S1, S2, and S3. This implies, that
the cycle will run in reverse in the absence of the force, and the swimmer will swim backwards (towards the left). The
force F still remains exerted on the first sphere (which now becomes the front of the swimmer). The sign convention
for the force is still such that positive forces point towards the right, so positive forces F in this case oppose the
self-propulsion of the swimmer.

FIG. S1. Dependence on the external force F , for several values of the chemical affinity ε, of (a) the chemical current J , (b)
the spatial current or velocity V , (c) the chemical diffusion coefficient DJ , and (d) the correlation C between J and V .

FIG. S2. (a) Entropy production rate σ̇ as a function of the external force F , for several values of the chemical affinity ε, and
(b) as a function of both the external force and ε.
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FIG. S3. (a,b) The quality factor QV of the precision-dissipation tradeoff for the spatial current V , (a) as a function of F for
fixed values of ε, (b) as a function of ε for fixed values of F . (c) Ratio of the MTUR-inferred [Eq. (8) of the main text] and
true chemical force ε/d. F∗ is the critical force at which the chemical current vanishes. For F < F∗ the inferred value is a lower
bound, for F > F∗ an upper bound, for F = F∗ it is exact.
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Chapter 7

Nonlinear response theory of
molecular machines

This chapter is reproduced from the Letter Michalis Chatzittofi,
Jaime Agudo-Canalejo, and Ramin Golestanian, EPL 147 21002
[136].

In this article, I contributed in designing the research and deriv-
ing the equations of motion. I performed the analytical calculations
and contributed in writing the paper.
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Abstract – Chemical affinities are responsible for driving active matter systems out of equilib-
rium. At the nano-scale, molecular machines interact with the surrounding environment and are
subjected to external forces. The mechano-chemical coupling which arises naturally in these sys-
tems reveals a complex interplay between chemical and mechanical degrees of freedom with strong
impact on their active mechanism. By considering various models far from equilibrium, we show
that the tuning of applied forces gives rise to a nonlinear response that causes a non-monotonic
behaviour in the machines’ activity. Our findings have implications in understanding, designing,
and triggering such processes by controlled application of external fields, including the collective
dynamics of larger non-equilibrium systems where the total dissipation and performance might be
affected by internal and inter-particle interactions.

open  access Copyright c© 2024 The author(s)

Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License
(CC BY). Further distribution of this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

Active matter systems [1] convert chemical energy into
motion or useful work. In the biological context, the chem-
ical energy typically comes from ATP hydrolysis [2]. In
general, such systems may be enzymes, molecular mo-
tors [3,4], stochastic micro-swimmers [5–8], rotors [9–11],
and even synthetic active matter [12–14]. When model-
ing the motion or the activity of such active matter sys-
tems, especially in the case of self-propelled particles, the
existence of an “active force” that creates propulsion or
motion is typically assumed [15].

In reality, the mechanism that generates the use-
ful work is some non-equilibrium cyclic process that is
driven by some chemical affinity which is the free energy
dissipated per cycle [16]. This affinity generates an out-
of-equilibrium current associated to the reaction velocity
of the specific process, and the product of the current
and the affinity is related to the total entropy production
rate [17]. Any external forces (conservative or otherwise)
must be treated carefully due to the mechano-chemical
coupling of the internal mechanism of the nano-machines
with the external, spatial, or hydrodynamic degrees
of freedom which determine the extraction of work or
power [18–21].

(a)E-mail: ramin.golestanian@ds.mpg.de (corresponding author)

In the past, theoretical models for how internal energy
dissipation is transduced into actuation of external de-
grees of freedom have been used successfully to explain the
enhanced diffusion [22], chemotaxis [23], and synchroniza-
tion [24] of enzymes, the motion of rotors by using flashing
ratchets [12], or the steps of molecular motors [3,25]. On
the other hand, these models often lack an important miss-
ing piece: how applied forces or other experimentally con-
trolled triggers feed back on the dynamics of the internal
degrees of freedom via the mechano-chemical coupling, be-
yond what linear response theory can predict [26,27].

In this letter, we focus on the activity of enzymes (see
fig. 1(a)), rotors (fig. 1(b)), and force-free micro-swimmers
(fig. 1(f)) in the presence of external forces. The key in-
gredient for activity is a chemical affinity Δμ which drives
the system out of equilibrium and induces motion or per-
forms work, depending on the system. To model discrete
chemical reactions that dissipate an energy Δμ, we assume
that nano-machines carry an internal reaction coordinate
φ which is subject to a washboard potential, see fig. 1(c),
where a reaction corresponds to the phase φ advancing by
2π. We show that an applied force effectively modifies ei-
ther the energy barriers of the energy free landscape that
governs the dynamics of the internal process or reaction
coordinate (fig. 1(d)), the chemical driving force (fig. 1(e)),
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Fig. 1: Examples of molecular machines: (a) an enzyme that undergoes conformational changes attached to a surface, (b) a
molecular rotor surrounded by a fluid medium. (c) The internal dynamics of the molecular machine involves the conversion
of a “fuel” or “substrate” molecule into a lower-energy “waste” or “product” molecule. The reaction is here described by a
phase φ that advances by 2π in each step along a potential V (φ) that represents the free energy landscape of the chemical
reaction, with Δμ being the free energy difference or driving force, and Eba being the energy barrier of the process. (d) For
an enzyme, an applied force F effectively changes the energy barrier of the internal process. (e) For a rotor, an applied torque
τ effectively changes the driving force of the internal process. (f) A stochastic three-sphere swimmer model with four possible
conformations [5]. Transitions between the states happen along a cycle driven by the affinity Δμ, which generates a current
J(Δμ). (g) The electric dipole (−Q, 0, +Q) and the electric quadrupole (−Q, +2Q,−Q) models for micro-swimmers with overall
charge neutrality. The arrows show the influence of the external electric field E that generates electrostatic forces with vanishing
net sum. The cycle affinity is still equal to Δμ, but the current now depends also on the strength of the electric field E.

or both. This can be used to tune the catalytic activity of
enzymes and motors in both directions, from enhancement
to stalling. Experimentally, such manipulations might
arise from ultrasound irradiation, electromagnetic fields,
and other methods [28,29]. Various experiments have re-
ported a non-monotonic behaviour of the enzymatic ac-
tivity due to such external manipulations [28].

In the case of micro-swimmers, to emphasize how a
mechano-chemical coupling cannot generally be modelled
as an active force, we consider examples of neutrally
charged swimmers with spatially non-uniform charge dis-
tributions subjected to an external electric field (fig. 1(g))
which applies different forces on the different sub-units of
the complex. These serve as examples where applied forces
do not cause any net drift or direct hydrodynamic dissi-
pation. In particular, this simple consideration highlights
how, for force-free micro-swimmers, external fields affect
the activity and the total chemical energy dissipation in a
non-trivial way.

Enzymes. –

Model. To model an enzyme that can undergo confor-
mational changes, we consider a minimal model in which
the enzyme is represented with two sub-units reflecting its
softest mode, as shown in fig. 1(a) [22]. We denote with

x1 and x2 the positions of the two sub-units. To model
its catalytic cycle (e.g., ATP hydrolysis in the biological
case), we use a cyclic coordinate φ, with Δμ being the dif-
ference in Gibbs free energy catalyzed in every reaction;
see fig. 1(c). The non-equilibrium potential U(x1, x2, φ),
which governs the coupled dynamics of the two spatial
coordinates and the internal coordinate, reads [24]

U(x1, x2, φ) = Ṽ (φ)−fφ+
k

2

(
x1−x2−L(φ)

)2−Fx1. (1)

Here, Ṽ (φ) is a 2π-periodic function that represents the
conservative part of the chemical dynamics —that is re-
lated to the energy barriers of the washboard potential—
and the second term is the non-equilibrium contribution
with f being the chemical driving force related to Δμ
through Δμ = 2πf . The third term in eq. (1) corresponds
to a harmonic potential governing the conformation (elon-
gation) of the enzyme. The rest length L(φ) (with L(φ)
being a 2π-periodic function) depends on the internal re-
action coordinate φ, and is responsible for the reaction-
induced conformational changes of the enzyme. The last
term of eq. (1) represents the external force F that is ap-
plied on one of the sub-units (here sub-unit 1, without loss
of generality).
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The overdamped dynamics of this system is

ẋ1 = −m1∂1U, (2)

ẋ2 = −m2∂2U, (3)

φ̇ = −mφ∂φU, (4)

where m1, m2, and mφ are the corresponding mobilities of
the coordinates. To proceed further we assume that sub-
unit 2 is rigidly attached to a substrate (see figs. 1(a), (d)).
This implies that x2 is constant (as m2 → 0), and can thus
absorbed in the definition of the rest length L(φ). More-
over, we assume that the enzyme is relatively stiff, i.e.,
m1k � mφΔμ, and therefore the length relaxes relatively
more quickly, as compared to the dynamics of the phase φ.
This is equivalent to assuming a strong mechano-chemical
coupling of the internal cycle and the spatial conformation.
We define δx1 ≡ x1−L(φ), which yields δẋ1 = ẋ1−L′(φ)φ̇.
This allows us to enslave x1 to the dynamics of φ via the
stiff enzyme assumption, which implies that δẋ1 � 0 and
the actual enzyme elongation closely trails behind the rest
length L(φ). This projection reduces the deterministic dy-
namics of the internal phase φ to a single, closed equation
of motion given by

φ̇ = −M(φ)∂φV (φ), (5)

with a modified effective potential V (φ) and mobility
M(φ) for the phase given by

V (φ) = −fφ − Ṽ (φ) − FL(φ), (6)

M(φ) =
mφ

1 + mφ(∂φL)2/m1
. (7)

Because enzymatic systems operate at the nano-scale,
the thermal fluctuations that help the system overcome
the free energy barriers in the potential V (φ) must be
included in a thermodynamically consistent way that re-
spects the fluctuation-dissipation theorem. The Langevin
equation for the stochastic dynamics, to be interpreted in
the Stratonovich convention, takes the form

φ̇ = −M(φ)∂φV (φ)+
kBT

2
∂φM(φ)+

√
2kBTM(φ) ξ, (8)

where kB is the Boltzmann constant, T the temperature,
and ξ is a Gaussian white noise with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t−t′). The second term is the spurious drift
which guarantees that in the absence of non-equilibrium
driving (f → 0) the phase φ will reach a Boltzmann equi-
librium distribution [24,30]. It is worth noting that for a
free enzyme (not bound to a substrate) a similar derivation
can be carried out leading to the same phase dynamics,
eq. (8). This coarse-graining procedure has also been re-
cently used to derive a model to study synchronization for
coupled enzymes [24].

For concreteness, we now make a choice for the form of
the scalar functions Ṽ (φ) and L(φ). To describe the dy-
namics of a chemical reaction two key energetic scales are
needed. One is the chemical driving or Gibbs free energy of
the reaction, which is captured by the parameter Δμ. The
second is the height of the energy barrier Eba that must be

overcome, which defines a characteristic rate (inverse time
scale) of the reaction, namely, the Kramers rate rK ∝
e−Eba/kBT . Choosing Ṽ (φ) = −v cos(φ + arcsin(f/v))
leads to the standard form of a washboard potential shown
in fig. 1(c), given by

Vch(φ) = −fφ − v cos(φ + arcsin(f/v)), (9)

where the phase shift arcsin(f/v) is introduced as a
convention such that the minima of the chemical poten-
tial are located at multiples of 2π. The mapping be-
tween (f, v) and (Δμ, Eba) is given by Δμ = 2πf and

Eba = [2
√

1 − (f/v)2 − (f/v)π]v [24,30].
The rest length L(φ) must be a 2π-periodic function,

so that after a full reaction the rest length remains un-
changed. At the leading harmonic order, the function
L(φ) can be described by L = L(0) + � cos(φ + δ),
where L(0) is the average length of the enzyme, � is
the amplitude of expansion and contraction, and δ is an
arbitrary phase shift. The choice of only the first har-
monic implies that, during a catalytic reaction, the en-
zyme will expand and contract once. For example, if δ = 0
(= π) then the enzyme is initially in a fully expanded
(contracted) state and undergoes one contraction (expan-
sion) during the reaction. As we show in what follows,
the phase δ strongly affects the response to the applied
force F .

Results. We have managed to reduce the problem to
the dynamics of a single degree of freedom. This allows us
to use analytical tools from the literature to calculate the
average reaction rate J and the diffusion D of the number
of reactions at steady state, defined as

J ≡ limt→∞
〈φ〉t

2πt
, (10)

D ≡ limt→∞
〈φ2〉t − 〈φ〉2t
(2π)2 · 2t

, (11)

where 〈. . .〉 stands for the time average.
As eq. (7) shows, the projection on the slow manifold

gives rise to multiplicative noise. Both J and D have
been calculated analytically in the case of additive [31]
and multiplicative [32] noise. The general expressions for
the case with multiplicative noise are

J = kBT
1 − e−2πf/kBT

∫ 2π

0
dxI+(x)

, (12)

D = mφkBT

∫ 2π

0 dx [I+(x)]
2
I−(x)

[∫ 2π

0 dxI+(x)
]3 , (13)

where we define

I+(x) ≡ 1

M(x)
eV (x)/kBT

∫ x

x−2π

dy e−V (y)/kBT , (14)

I−(x) ≡ e−V (x)/kBT

∫ x+2π

x

dy
1

M(y)
eV (y)/kBT . (15)
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Fig. 2: (a), (b): the internal current (a), and the diffusion of the current (b) for an enzyme that undergoes catalysis-induced
conformational changes, as a function of the dimensionless applied force F�/(kBT ) for different chemical forces for the case
of δ = 0. (c), (d): heat maps for the current (c) and the diffusion (d) as functions of δ and the external force for fixed
Δμ/kBT = 102.

In the following, we focus on different values of Δμ/kBT ,
F�/kBT , and δ, while we fix the dimensionless mobility ra-
tio as mφ�2/m1 = 1 and noise strength as kBT/Eba = 1.
Our results for the effect of an external force F on the
catalytic dynamics of an enzyme are summarized in fig. 2.
More specifically, figs. 2(a) and (b) display the average
reaction rate and diffusion for δ = 0 as functions of the
applied force, for several values of the chemical driving
Δμ. For all choices of Δμ, we observe stalling of both
the reaction rate and the diffusion at high forces (inde-
pendently of the sign, i.e., |F | → ∞). The reaction rate
typically shows a maximum at a finite force value, whereas
the diffusion typically shows two peaks.

The stalling as |F | → ∞ can be understood as coming
from the last term in eq. (6), as the energy barrier in the
effective potential goes as F� that becomes much larger
than kBT , which implies that J(F ) → 0 and D(F ) → 0.
The maxima of the reaction rate and the diffusion at fi-
nite force can be understood as coming from a delicate
interplay between all three terms in eq. (6), or more specif-
ically, between F , δ, f , and v. As a particularly strik-
ing illustration, let us consider the special case where
δ = arcsin(f/v) and the elongation L(φ) is in (anti-) phase
with Ṽ (φ). When the external force reaches the critical
value F = −v/�, the second and third terms in eq. (6)
cancel each other, and the internal phase experiences only
the constant force f . This special case corresponds to the
global maximum of J(F ) of the heat map (dark region)
in fig. 2(c) and local minimum of D(F ) (light region) in
fig. 2(d). On the other hand, when F = (±f − v)/�, the
effective potential develops an inflection point which leads
to the phenomenon known as giant diffusion [31,33] and
explains the two peaks in D(F ).

Rotors. –

Model. With a similar kind of model as used for an
enzyme, we can derive the equations of motion for a ro-
tor (fig. 1(b)), representing, e.g., F1-ATPase [10,11]. The
rotor is described by two coordinates: φ, which represents
an internal reaction coordinate, and θ which is the actual

angular state of the rotor [34]. The potential describing
their coupling in this case is

Urot(θ, φ) = Ṽ (φ) − fφ − kθ cos(φ − nθ) − τθ, (16)

where the first two terms are the same as in eq. (6) and
describe the chemical free energy. The third term is a
“toothed gear” coupling with strength kθ between the an-
gle θ and the internal phase φ. The integer n describes
how many reactions it takes to complete a full turn of the
rotor (in the case of ATP-synthase, the motor rotates by
120o per reaction and therefore n = 3 [10,11]). The last
term corresponds to an externally applied torque.

The over-damped deterministic equations of motion are
given as

θ̇ = −mθ∂θUrot, (17)

φ̇ = −mφ∂φUrot, (18)

where mθ is the angular mobility. For strong coupling,
i.e., mθkθ � mφΔμ, the dynamics of θ is fast relative to
the dynamics of φ, and therefore, enslaved to it, such that
θ̇ � φ̇/n. After further coarse graining and inclusion of
the appropriate noise as above, we find that the stochastic
evolution of the internal phase is given by

φ̇ = −Mrot∂φVrot(φ) +
√

2kBTMrot ξ, (19)

to be interpreted in the Stratonovich convention, where

Vrot(φ) = −φ(f + τ/n) − v cos(φ + arcsin(f/v)), (20)

Mrot =
mφ

1 + mφ/(mθn2)
. (21)

Notice that there is no spurious drift term in eq. (19) since
Mrot is constant and, thus, the thermal noise is additive.

Results. As eq. (20) shows, external torques on ro-
tors have a very different effect compared to external
forces on enzyme: instead of affecting the energy bar-
riers, the torque τ now effectively changes the driving
force f and thus the chemical affinity Δμ (see fig. 1(e)).
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Fig. 3: (a) The internal current and (b) the diffusion of the
current as functions of the external torque for several values of
the chemical driving force, for a chemically driven rotor.

Figure 3 summarizes our results for the rotor model.
For negative values of the torque τ , which oppose the
chemically driven motion of the rotor, the reaction rate
vanishes and switches sign (fig. 3(a)), implying that the
reaction now happens in the reverse direction, e.g., ATP
synthesis instead of hydrolysis.

From eq. (20), we see that this reversal occurs at the
stall torque τ = −nf where the effective driving force
becomes zero. At high torques, we expect the dynamics
to be mostly deterministic, since the energy barriers of
the effective potential disappear when |f + τ/n| > v, as
shown in fig. 3(a) (see also the inset) where the current
depends linearly on the torque as τ → ±∞. At the stall
torque, the diffusion coefficient reaches a minimum since
diffusion is lower for a non-driven system (fig. 3(b)). On
either side of this local minimum, we find two peaks in
the diffusion, corresponding to giant diffusion occurring at
the values of the torque for which the effective potential
develops inflection points, τ = n(−f ± v). At large values
of the torque, the dynamics is effectively reduced to that
of a particle under the influence of a constant force, and
hence, the diffusion plateaus towards a constant value of
MrotkBT , as expected (the Einstein relation).

Stochastic micro-swimmers. –

Model. In this last example, we consider the Najafi-
Golestanian micro-swimmer model [35], which is made up
of three spheres that are linked together by two arms
(see fig. 1(f)), in its stochastic form [5,18,36]. The mo-
tion of the mechanical arms is assumed to be due to
an internal non-equilibrium mechanism that dissipates
some energy Δμ after a full chemical cycle and drives
the non-equilibrium current J as shown in fig. 1(f). This
coordinated expansion-contraction of the arms ultimately
leads to a net displacement of the swimmer after a full
cycle, and thus to active swimming. In the absence of a
driving affinity Δμ, there would be no net current in the
chemical cycle, and the micro-swimmer would show no
net swimming. Generally speaking, the number of states
needed to generate swimming can vary depending on the
model, with the minimum number needed to form a cycle
being three [6].

Here, we consider four possible conformations for the
swimmer, which are associated with four states in a

Table 1: Displacement of each sphere during each transition
step. For the reverse transitions, Δxi,αβ = −Δxi,βα.

Process Δx1,βα/� Δx2,βα/� Δx3,βα/�
A → B 1 − αL −αL −αL

B → C αS αS −(1 − αS)
C → D −(1 − αS) αS αS

D → A −αL −αL 1 − αL

discrete Markovian stochastic dynamics [5]. The states
of the arms are described by the deformations of the left
and right arms, uleft and uright, respectively, where we
assume that the expansions and contractions take place
relatively fast. During a conformational transition, one of
the two arms expands or contracts by a distance �. As
an example, state B corresponds to (uleft, uright) = (0, �).
The transition from α to β happens with rate kβα. For a
thermodynamically consistent description we must require
local detailed balance, given by

kβα

kαβ
= exp(Δσβα/kB), (22)

where Δσβα is the entropy production during the transi-
tion α → β [37]. In the absence of external forces on the
micro-swimmer, the entropy production is purely due to
the chemical and the internal processes. Hence, TΔσβα =
Δμβα and the transition rates satisfy k0,βα/k0,αβ =
exp(Δμβα/kBT ). The total energy dissipation after a
complete cycle in the absence of external forces is then∑

{βα} TΔσβα =
∑

{βα} Δμβα = Δμ.

To examine the effect of external forces, let us now con-
sider a micro-swimmer with charged components, in the
presence of an external electric field, as generalizations of
the model presented in ref. [36]. We will consider two
different classes of micro-swimmers (see fig. 1(g)). The
first one, namely the “dipole model”, has two charged
sub-units: the left sphere is negatively charged (−Q), the
middle one is neutral, and the right sphere is positively
charged (+Q). The second one, namely the “quadrupole
model” has the left and right spheres with negative charge
−Q, while the central one has positive charge +2Q.
In both cases, the micro-swimmer is overall neutrally
charged. As a consequence, the external field E (paral-
lel to the axis of the micro-swimmer) generates external
forces on the charged spheres but does not cause an ex-
tra net drift since the net force on the micro-swimmer
is zero, i.e.,

∑
i Fi = 0 where Fi denotes the force on

sphere i, with i = 1, 2, 3. The forces on the spheres, how-
ever, modify the work done by the arms during the confor-
mational transitions and thus the dissipation during each
step. To calculate this dissipation, we need to know the
displacements of each sphere in every transition. These
displacements have been calculated in ref. [18] through
a full hydrodynamic derivation, and are summarized in
table 1. The parameters αL and αS depend purely on
the geometry of the swimmer and satisfy the constraint,
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Fig. 4: (a), (c) The internal current and (b), (d) the diffusion of the current as functions of an externally applied electric field,
for the dipole model micro-swimmer (a), (b) and the quadrupole model micro-swimmer (c), (d); see fig. 1(g).

1/3 < αL < αS < 1/2 with the lower bound occurring
in the limit of no hydrodynamic interactions (when the
spheres remain very far away from each other in all con-
formations).

The work done by the external field on the spheres in
the case of the dipole model is

Wβα = EQ(Δx1,βα − Δx3,βα), (23)

whereas, for the quadrupole model, it is

Wβα = EQ(Δx1,βα − 2Δx2,βα + Δx3,βα). (24)

Importantly, because the displacement of every sphere
is the same across a full cycle, i.e.,

∑
{βα} Δx1,βα =∑

{βα} Δx2,βα =
∑

{βα} Δx3,βα, we find that there
is no net work done by the field after a full cycle,
i.e.,

∑
{βα} Wβα = 0. Thus, the external field does not

contribute to the total affinity driving the cycle, which is
still Δμ (see fig. 1(g)). However, it still affects the dynam-
ics by modifying the individual transition rates.

To determine the form of the transition rates, we use
the expression

kβα = k0,βα exp(θβαWβα/kB), (25)

where k0,βα are the rates in the absence of external forces.
Since we must maintain local detailed balance (eq. (22)),
the parameters θβα satisfy θβα = 1 − θαβ , and are related
to the location of the energy barrier between states α and
β [18].

Results. For the stochastic dynamics of the three-
sphere swimmer we consider the master equation

dPα

dt
=

∑

β

(kαβPβ − kβαPα). (26)

At steady state (where we have dP ss
α /dt = 0), the current

J is constant, and is given by J = kBAP ss
A − kABP ss

B (or
any other pair of neighbouring states may be used). An
explicit expression for J and the diffusion coefficient D
associated with this stochastic current can be found in
refs. [38,39]. It is worth noting that the self-propulsion
speed of the micro-swimmer is proportional to J while its
spatial diffusion is closely related to D [18].

In the following, we assume Δμβα = 0 for all transitions
except for ΔμDC = Δμ. For the displacements, we fix
the geometric parameters as αL = 2.1/6 and αS = 2.2/6
(which implies weak hydrodynamic interactions). We fur-
ther assume θβα = 1/2 for all transitions. The remain-
ing dimensionless parameter are Δμ/kBT and EQ�/kBT .
Figure 4 summarizes the results for the chemical current
J(E) and the corresponding diffusion coefficient D(E) as
functions of the applied electric field. Note that we con-
sider E > 0 to correspond to the electric field pointing
towards the left (fig. 1(g)), i.e., against the direction of
self-propulsion (whereas for E < 0 the field points towards
the right). The different charge distributions in the two
examples give rise to different internal forces during the
cycle. Indeed, for the dipole model swimmer we observe
that both J(E) and D(E) peak at positive values of E,
whereas they peak at negative values for the quadrupole
model swimmer. The enhancement is similar to that ob-
served for our model enzyme above, where the phase shift
δ controlled the optimal force.

In summary, the chemical current, which controls the
self-propulsion of the micro-swimmer [5,18], exhibits a
nonlinear dependence on the applied external field, de-
pending on the charge distribution of the micro-swimmer.

Concluding remarks. – In this work, we have
studied three minimal models describing the stochas-
tic, non-equilibrium dynamics of biological and synthetic
nano-machines: an enzyme, a rotor, and a micro-swimmer.
We focused, in particular, on the nonlinear response of
the internal (chemical) dynamics of these nano-machines
to externally applied (spatial) forces. Our results indicate
that the average currents and diffusion coefficients describ-
ing the reaction dynamics inside these nano-machines ex-
hibit a strongly non-monotonic behaviour in terms of the
dependence on the external forces, and typically peak at
intermediate values of the applied forces. Interestingly,
such non-monotonic behaviour has been reported experi-
mentally for a variety of enzymes, in response to multiple
external stimuli [28]. While we developed proof-of-concept
models, more elaborate models based on similar principles
may be able to quantitatively capture the results of these
experiments.

The observed behaviour can be ascribed to sev-
eral nonlinear mechanisms. For enzymes that undergo
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conformational changes during catalysis, external forces
can effectively reduce the energy barrier in the reaction
free energy. In the case of the rotors, an external mechani-
cal torque can effectively increase (or decrease) the driving
force of the internal reaction. Lastly, an external electric
field can affect the performance of a micro-swimmer even
if the latter is neutrally charged overall, by affecting the
energy dissipation and thus the local detailed balance in
individual stochastic transitions between conformations of
the micro-swimmer.

The various systems considered here unravel a rich inter-
play between chemical and mechanical degrees of freedom,
which emerges when the mechano-chemical coupling is ac-
counted for in a thermodynamically consistent manner. In
the particular case of force-free micro-swimmers, these are
subtle but important effects that are lost in models where
the swimming is considered to come simply from an “ac-
tive force”. We hope that the nonlinear response frame-
work developed here will prove useful in modelling other
molecular-scale non-equilibrium systems where a precise
formulation of the mechano-chemical coupling is of utmost
importance.
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Kaupp U. B., Alvarez L., Kiørboe T., Lauga E.,
Poon W. C. K., DeSimone A., Muiños-Landin S.,
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Chapter 8

Discussion and conclusions

In this thesis we explored various scenarios related to stochastic non-equilibrium
processes linked to molecular systems. This led us in developing new and in-
teresting results towards different directions.

Extending the work related to the synchronization of two mechanically
coupled enzymes, we have shown in Chapter 2 that synchronization occurs
in a system of arbitrary oscillators in the presence of an all-to-all coupling.
This is a new model of synchronization with different dynamical structure
compared to the classical models in the literature. The crucial difference is
the dissipative coupling Mαβ which couples the oscillators through a velocity
force relation and it serves as a potential mechanism for cooperation at small
scales.

To further demonstrate the importance of the dissipative coupling, we have
generalized the idea to non-identical processes. Particularly, in Chapter 3,
we work on examples of two asymmetric processes, which might demonstrate
examples of molecular oscillators. By considering two molecular rotors that
hydrodynamically interact with each other, we explicitly show how one can
derive the phase equations coupled through the dissipative mobility matrix.
By tuning the free energy landscapes and off-diagonal coupling of the mobility
a rich phenomenology of phase locked dynamics emerges. The oscillators in
the presence of the coupling become phase-locked with different coprime ra-
tios depending on the asymmetry in their free energy landscapes. At certain
combinations there is also the emergence of topological phase locking (TPL).

These two models introduce novel mechanisms for coordination and en-
hancement in the activity at the molecular scale. Along these lines, it has
been observed that oligomeric structures of enzymes operate at higher activity
compared to isolated monomers [137]. Moreover, this intriguing result suggests
that the slow process might get boosted by the fast one. The TPL and the
effects of the dissipative coupling potentially might be achieved experimentally
in designed systems with molecular rotors [138] or turbines [139], optomechan-
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ical oscillators [140] and others. Another aspect that might be explored in
the future are systems of phase oscillators with local interactions and vari-
ous topologies, e.g one dimensional ring or higher-dimensional lattices [141].
The nearest-neighbour interactions could potentially generate a chemical wave
propagation along a chain of oscillators. Furthermore, it would be possible to
study this problem from the point of view of disordered systems, by including
disorder in the coupling (off-diagonal terms of the mobility tensor) and how
it could affect the performance and the synchronization [142, 143]. Different
combinations of these ideas would be interesting for exploration . For instance,
the dynamics of three or more asymmetric driven coupled phase oscillators gov-
erned by the presented dynamical system might lead to unexpected results like
for instance chimera states [144, 145].

A system of an enzyme mechanically coupled to a passive molecule was
introduced in Chapter 4. This mechanistic description of an enzyme allowed
us to propose three rules for designing an enzyme. These are linked to the
arising dissipative coupling which is controlled by the geometry of the com-
plex and leads to a global bifurcation in the dynamical system of equations.
Our results can be important for designing and understanding synthetic cata-
lysts and complement developed machine learning strategies for the design of
enzymes.

In Chapter 5 we proposed a method for inferring correlations that is appli-
cable to many-body non-equilibrium systems. To demonstrate the application
of the uncertainty relation, we have included various different models (both an-
alytically and numerically solvable) where a single current measurement can
apparently outperform the classical TUR. A possible experimental realisation
of this idea is the motion of two hydrodynamically interacting colloids inside
an optical ring [146].

In Chapter 6, we use an analytically tractable model and we fully determine
the dissipation of a stochastic swimmer far from the linear response regime
[135]. Assuming that the active swimming arises from a non-equilibrium cyclic
process and not from an active force we calculate the entropy production rate.
Our calculation unravels the complex interplay of systems far-from equilibrium
and the effect of external fields in the total dissipation. This is essential for the
collective dissipation of active matter systems where interactions between the
various agents might affect the dissipation. For instance, density fluctuations
around an active particle exert different forces on it which should be taken into
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account to properly quantify dissipation.
Finally in, Chapter 7, we studied the effect of external forces on chemically

driven machines and showed that these typically display a non-monotonic be-
havior in their activity as a function of the applied forces [136]. These forces
could arise from electromagnetic fields, light irradiation, optical tweezers and
others. A direct extension of this problem is considering time-dependent forces,
i.e forces generated by an alternate electric field. There is ongoing research
about controlling the chemical activity of chemical reactions with forces, which
sometimes can effectively lower the energy barrier [147], in agreement with our
theory.
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