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S1. DETAILS OF THE CONTINUUM MODEL AND THE PARAMETERS FROM DFT STUDIES

The continuum model of the moiré system used in this article can be formulated as a k · p model
of monolayer transition metal dichalcogenides (TMD) [1] in the moire potential provided by the
interlayer coupling [2]

Ĥ(k) = h̄vF (τqxσ̂x + qyσy) +
Eg
2
σz + ∆(r) (S1)

where h̄ is the reduced Planck constant, the velocity parameter vF is related to nearest neighbor
coupling between transition metal orbitals, τ is the valley index, q = k− τK is the vector from the
valley τK to any momentum k in the Brillouin zone (BZ), and the Eg stands for the direct band gap
in the monolayer TMD. We use h̄vF = 3.9 eV·Å [1] and Eg = 2.05 eV [3] in this article. The ∆(r)
is the moiré potential. For small twist angles θ, the different position r in the heterobilayer moiré
lattice can be characterized by the in-plane displacement d = θẑ × r [4, 5]. Therefore,

∆(r) ≈ ∆[d(r)] ≈
∑
j

Vj exp(iGj · d) =
∑
j

Vj exp(ibj · r) (S2)

where Gj is the reciprocal lattice vector of a monolayer TMD and bj = θGj× ẑ represents the moiré
reciprocal lattice vector. Constrained by the three-fold rotational symmetry around the ẑ-axis and
the requirement that ∆(r) be a real number, we have V1 = V3 = V5 = V ∗2 = V ∗4 = V ∗6 . In this study,
we use a diagonalized moiré potential V1 = diag(Vce

iφc , Vve
iφv) [2], where the superscripts c and v

indicate the electrostatic potential acting on d-orbitals corresponding to the conduction and valence
bands, respectively.

In the momentum space, this Hamiltonian can be written in a more specific form which can be
easily diagonalized to obtain the eigenenergies and eigenvectors

Hb,b′(k) = [h̄vF (τ(qx + bx)σ̂x + (qy + by)σy) +
Eg
2
σz]δb,b′ +

∑
i

Viδb−b′,bi (S3)

To calculate the moiré electronic structures for the WSe2 layer, we need to solve the effective
continuum models around the K and -K valleys (τ = 1 and -1) of the untwisted TMD, and then fold
them into the moiré BZ [see Fig. S3(a), where the blue region represents the continuum model with
τ = 1 and red region represents continuum model with τ = −1. The two regions are far separated
in momentum space, so the two continuum models are decoupled at the single-particle level]. We
will denote valleys in BZ as ±K while valleys in the moiré BZ as κ and κ′. For simplicity, We also
use ±K to denote continuum models with τ = ±1 somewhere.

To obtain the moiré potential parameters (V i, φi), (i = v, c), we make use of the density functional
theory (DFT) software VASP [6–8] with the spin-orbit coupling (SOC) to calculate the WSe2/WS2

heterobilayer systems. The moiré potential acting on d-orbitals of corresponding valence and con-
duction bands can be interpreted as the variation of the valence band maximum (VBM) and the
conduction band minimum (CBM) as a function of position r in the moiré superlattice. As discussed
above, these variations can be mapped to the changes in the VBM and CBM with different interlayer
displacements d in AA stacked WSe2/WS2 bilayer with zero twist angle.

Herein, we calculate the band structure of three high-symmetry stacking configurations [5]. The
three configurations are denoted as Se/W, AA, and W/S, based on the alignment of the metal atom
and chalcogen atom in the opposite layers. For instance, Se/W indicates that the Se atom in the
top layer is aligned with the W atom in the bottom layer. The vacuum distance is set to be 20
Å in the slab model and the interlayer distances in different structure configurations are obtained by
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structural relaxation. In each calculation, we employ the Perdew-Burke-Ernzerhof (PBE) functional
[9] and set the k-point sampling to be 12 × 12 × 1 in the BZ to achieve energy convergence up to
1 meV/atom. Through orbital projection calculations, we identify the electronic bands with orbital
characters corresponding to the WSe2 A exciton. The band minima or maxima of these bands
relative to the vacuum can be used to fit the moiré potential [10]. The moiré potential parameters
fitted from the three configurations are (V c, φc) = (12 meV,−136◦) and (V v, φv) = (15 meV,−45◦).

S2. BETHE-SALPETE EQUATIONS

The eigenvalues and eigenvectors of the moiré continuum Hamiltonian at momentum k, Hb,b′(k),
in the n-th band are denoted as Enk and Ub,n(k), respectively. The eigenvectors Ub,n(k) lead to the
Bloch eigenstates

ψnk(r) =
∑
b

ei(k+b)·rUb,n(k) (S4)

Based on these Bloch orbitals, the Hamiltonian matrix elements of Bethe-Salpete equations (BSE)
[11–14] with the center-of-mass exciton momentum Q can be further constructed

Hexc
vck,v′c′k′(Q) = (Eck+Q − Evk)δc,c′δv,v′δk,k′ +

[
V̄vkck+Q,v′k′c′k′+Q −Wvkck+Q,v′k′c′k′+Q

]
(S5)

where c and v correspond to conduction and valence bands and the specific form of the BSE kernel
matrix elements can be written as

Wvkck+Q,v′k′c′k′+Q =
1

Ω

∑
g,g′

〈ck + Q|ei(q+g)·r|c′k′ + Q〉Wg,g′(q, ω)〈v′k′|e−i(q+g′)·r|vk〉δq,k−k′

=
1

Ω

∑
g,b,b′

U∗b+g,c(k + Q)Ub,c′(k
′ +Q)WRK(|q + g|)U∗b′,v′(k′)Ub′+g,v(k)δq,k−k′

V̄vkck+Q,v′k′c′k′+Q =
1

Ω

∑
g 6=0

〈ck + Q|ei(Q+g)·r|vk〉v(Q + g)〈v′k′|e−i(Q+g)·r|c′k′ + Q〉

=
1

Ω

∑
g 6=0,b,b′

U∗b+g,c(k + Q)Ub,v(k)v(Q + g)U∗b′,v′(k
′)Ub′+g,c′(k

′ + Q)

(S6)
Herein, |nk〉 is the Bloch state, Ω is the normalized area, and g is the moiré reciprocal lattice vector
to be summed over. The term Wvck,v′c′k′ is called the direct attraction term [see Fig. 3(a) in the
main text], describing a scattering process between an electron and a hole where a virtual photon
scatters the electron to an electron and the hole to a hole, satisfying the conservation of momentum.
WRK(q) = e2

ε
2π

q(1+qr0)
is Rytova-Keldysh potential, which is widely used in 2D materials considering

the Coulomb screening [15–17]. In this work, we set the average permittivity of the environment
ε = 1.5 and the screening length r0 = 38.0 Å [18] in the main text. Ub,n(k) is the Bloch eigenvector
solved from the continuum model. On the other hand, the term V̄vck,v′c′k′ is called the exchange term
which contributes to the processes of the annihilation and creation of electron-hole pairs at different
momenta through a virtual photon, and v(q) = 2πe2

q
is the bare 2D Coulomb potential.

The exciton eigenenergy ΩS
Q and exciton wavefunctions in momentum space ASQcvk satisfy the Bethe-

Salpete equations ∑
v′c′k′

Hexc
vck,v′c′k′(Q)ASQc′v′k′ = ΩS

QA
SQ
cvk (S7)
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where S represents the index of the excitons. The real space exciton wavefunctions can be described
in the basis of electron-hole pairs through ASQcvk

ΨSQ(re, rh) =
∑
cvk

ASQvckψck+Q(re)ψ
∗
vk(rh) (S8)

and the absorption spectra can be expressed as [11]

Im[εM(ω)] = Im

[
1− 1

Ω
lim
q→0

v(q)
∑
S

|
∑

cvkA
S
cvk〈vk− q|e−iq·r|ck〉|2

ω − ΩS + iη

]
(S9)

S3. SPIN-SINGLET AND SPIN-TRIPLET MOIRÉ EXCITONS

When we consider the continuum models near both K and -K valleys, four types of electron-hole
pairs can be identified according to the valley origin of the electron and hole. For example, The pair
where electron and hole are both from the K valley can be denoted as |c,K; v,K〉. Similarly we can
define the |c,−K; v,−K〉, |c,K; v,−K〉, |c,−K; v,K〉. The electron and hole in the last two types of
electron-hole pairs are from opposite valleys. Due to the spin-valley locking in the original untwisted
TMD materials [see Fig. S3(a)], |c,K; v,K〉 and |c,−K; v,−K〉 can contribute to the spin-singlet
bright moiré excitons, while |c,K; v,−K〉 and |c,−K; v,K〉 can contrinute to the spin-triplet dark
moiré excitons.

We can analyze the coupling between these four electron-hole pairs through direct or exchange
Coulomb interactions. For the |c,K; v,K〉 and |c,−K; v,−K〉, the direct Coulomb attraction between
an electron and a hole does not couple them [see Fig. 3(b) in the main text]. This is because the
scattering amplitude for an electron to be scattered to the opposite valley, which requires virtual
photons with large wave vectors, is much smaller than that within the same valley. We can ne-
glect this process in the following calculations. Conversely, the exchange interactions describe the
scattering process of annihilation and creation of electron-hole pairs at different k points, without
requiring a virtual photon with a large wave vector. Therefore, the annihilation of an electron-hole
pair in the K valley and the creation of a pair in the -K valley are of the same order as processes
within the same valley. This interaction enables the coupling for states at different valleys. For the
|c,K; v,−K〉 or |c,−K; v,K〉, neither direct nor exchange interactions can couple them to other types
of electron-hole pairs, and the corresponding matrix elements Wvck,v′c′k′ and V̄vck,v′c′k′ are both zero.
The specific coupling details can be found in the table below.

|c,K; v,K〉 |c,−K; v,−K〉 |c,−K; v,K〉 |c,K; v,−K〉
|c,K; v,K〉 Direct & Exchange Exchange × ×
|c,−K; v,−K〉 Exchange Direct & Exchange × ×
|c,−K; v,K〉 × × Direct ×
|c,K; v,−K〉 × × × Direct

TABLE S1. The coupling details between the four types of electron-hole pairs defined through their valley origin. The table
shows which kind of interaction can contribute to the coupling. The label of × means neither direct or exchange interaction
can lead to the coupling.

Therefore, the BSE Hamiltonian can be block diagonalized according to the coupling rules for
different electron-hole pairs shown above. In the main text, we mainly discuss the block |c,K; v,K〉
and |c,−K; v,−K〉, corresponding to the bright spin-singlet excitons, which are the focus of opti-
cal experiments. However, we would like to note that the electron-hole pairs of |c,K; v,−K〉 and
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|c,−K; v,K〉 are also of great importance to understand the complete landscape of the moiré exci-
tons, despite being optically inactive, since the ordering of bright and dark excitons and the exciton
dispersion can influence the exciton dynamics and the temperature-dependent optical behavior [19]
and we will discuss below.

S4. CONVERGENCE OF THE CALCULATIONS

The convergence of the number of conduction and valence bands considered for constructing the
BSE Hamiltonian in our article is tested on the spin-singlet moiré excitons from two perspectives. At
different twist angles, the number of conduction/valence bands used in the calculations of spin-triplet
moiré excitons is the same as spin-singlet ones.

FIG. S1. The exciton amplitudes projected onto the conduction and valence bands in the continuum model near the K valley.
(a) Exciton amplitudes of the three bright intralayer moiré excitons at θ = 2.5◦. The three peaks are shown in FIG. 2 (e) in
the main text. (b-d) Exciton amplitudes of the first two bright intralayer moiré excitons at θ = 3.0◦, 2.0◦ and 1.5◦. The peaks
are shown in FIG. S2.

First, we decompose the exciton amplitude to the contributions from each pair of conduction and
valence bands, represented as

∑
k |Acvk|2 for a specific conduction band c and valence band v pairs

(see Fig. S1). The exciton amplitudes projected onto the conduction and valence bands in the
continuum model near the K valley are presented, and the projected amplitudes for the continuum
model near the other valley exhibit a similar decay behavior. We find that the exciton amplitudes
of the three bright intralayer moiré excitons that we focus on with θ = 2.5◦ [see Fig. 2(e) in the
main text] are predominantly contributed by at most the first 20 conduction and valence bands
(approximately ten pairs at each valley) [see Fig. S1(a)]. The projected amplitudes of the first two
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bright moiré excitons (denoted in Fig. S2) on electron-hole pairs at other twist angles of θ = 1.5◦,
2.5◦ and 3.0◦ have also been tested, with results shown in Fig. S1(b-d) below. We can draw similar
conclusions for these cases, confirming that the size of minibands used in our calculations is large
enough.

Second, although it appears that a few electron-hole pairs can adequately describe the low-energy
bright moiré excitons, we also test the exciton energy convergence with respect to the number of
conduction and valence bands included in the construction of the BSE Hamiltonian matrix. We
ensure that the peak energy of the ground moiré exciton state converges to approximately 1.0 meV,
as shown in Fig. S2. Finally, for twist angles θ = 4.0◦, 3.0◦, 2.5◦, 2.0◦, 1.5◦ and 1.0◦, we use 15,
20, 25, 30, 40 and 60 conduction/valence minibands from the continuum model near each valley,
respectively, throughout the article. This ensures that the low-energy bright moiré excitons are well
described, achieving convergence of the ground state energy up to approximately 1.0 meV at each
twist angle.

FIG. S2. (a-d) Convergence of the calculated absorption spectrum with the number of moiré conduction and valence bands in
each valley at θ = 3.0◦, 2.5◦, 2.0◦ and 1.5◦. The legend indicates the number of conduction and valence bands used.

S5. TRIPLET-SINGLET SPLITTING

In this section, we focus on the triplet-singlet splitting of moiré excitons resulting from the Coulomb
exchange interactions, as well as the spin-valley locking in TMD materials. As exotic properties in
TMDs, the spin and valley degrees of freedom are coupled at the band edges, resulting in excitons
that can be excited by circularly polarized light. In twisted TMD materials, the band folding
introduces new moiré bands with opposite spins but similar energies on the band edges, leading
to the emergence of new low-energy spin-triplet moiré excitons. We argue that the triplet-singlet
splitting induced by the exchange interactions, which is important in unpolarized semiconductors
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[14, 20], can occur in this context. More interestingly, the twist angle provides a new degree of
freedom to tune these characteristics. To the best of our knowledge, such an effect has never been
reported in moiré exciton systems, either theoretically or experimentally.

As shown in Fig. S3(a), we use the effective continuum models around the K and -K valleys in
the BZ of untwisted TMD to calculate the moiré electronic structures for WSe2 layer (see details
in S1). Its moiré bands originating from the K and -K valleys are denoted by blue and red lines,
respectively, and are folded into the moiré BZ. Due to the spin-valley locking in the original untwisted
TMD materials, these bands [see blue and red lines in Fig. S3(b)] are spin-polarized. Considering
the attractive Coulomb interaction, we predict that the spin-singlet bright moiré excitons are direct
excitons and exhibit energy splitting from the spin-triplet moiré excitons. Furthermore, as shown
in Fig. S3(a), if we only consider the energy positions of electrons and holes, the spin-triplet moiré
excitons with Q = 0 which have electrons originating from the continuum model near the -K valley
and holes near the K valley [labeled as |c,−K; v,K〉 in Table S1 and the long red dashed line in
Fig. S3(b)] seems to have higher energy than the singlet ones labeled as blue dashed line in Fig. S3
(b). However, based on our calculations which take into account the exchange Coulomb interactions,
we find that the ordering of the moiré excitons and the splitting between spin-triplet and spin-singlet
moiré excitons strongly depend on the twist angles.

At relatively large twist angles, for example, θ = 4.0◦ shown in Fig. S3(e), the lowest energy bright
spin-singlet moiré exciton has a similar energy to the spin-triplet moiré excitons and is nearly the
ground state at zero momentum. Meanwhile, the lowest spin-triplet moiré exciton is indirect and has
lower energy at finite momentum (Q 6= 0) compared to its energy at zero momentum (Q = 0). When
the twist angle becomes smaller, the spin-triplet moiré excitons become the ground state even at
zero momentum, exhibiting a flattened dispersion [see Fig. S3(c-e), the spin-singlet moiré excitons
are labeled by blue lines and the spin-triplet ones by red lines], while the triplet-singlet splitting
increases and appears to converge at small twist angles [see Fig. S3(f)]. We attribute this effect to
the suppression of the kinetic energy of the electrons and holes. As the twist angle decreases, there
is a reduced splitting in the band structure between the two spins [the energy difference between
blue and red lines shown in Fig. S3(b)] becomes smaller. Consequently, the energy of the spin-triplet
moiré excitons at zero exciton momentum decreases, and their dispersion becomes flat. Moreover,
the spin-triplet excitons, where the electrons and holes originate from valleys with opposite spins,
do not experience the Coulomb exchange interactions, which could contribute to an increase in
the energy of the spin-singlet moiré excitons (see Table S1). As a result, the spin-triplet excitons
will have lower energy than the spin-singlet ones at small twist angles, and the triplet-singlet (or
dark-bright) splitting will increase as the twist angles decrease.

As highlighted in many previous studies [19, 21, 22], although dark excitons are not optically
active and are difficult to observe directly in optical experiments, they can significantly influence the
dynamics of excitons through exciton-phonon scattering or other non-radiative relaxation processes.
Therefore, it is crucial to reveal the properties of dark excitons in moiré systems, including their
binding energy and exciton band structures. According to our calculations, we deduce that bright
moiré excitons at small twist angles will have a larger relaxation rate to the dark spin-triplet moiré
excitons due to the increase in the triplet-singlet splitting. As the temperature rises, once the bright
spin-singlet moiré excitons at small twist angles are optically pumped, they will have a greater
equilibrium population, as they are higher in energy than the dark spin-triplet moiré excitons.
However, at some larger twist angles, for example, when θ is larger than 4.0◦, the population of
bright spin-singlet moiré excitons may decrease with increasing temperature, as they become similar
in energy to the dark spin-triplet moiré excitons and nearly the ground state. These effects will
strongly influence the dynamic of moiré excitons, resulting in different optoelectronic properties.
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FIG. S3. (a) The BZ of twisted WSe2/WS2 heterostructures, and the moiré BZ of the moiré structures. K and -K points are
momentum points in untwisted BZ. Blue and red dots are equivalent κ and κ′ points in the moiré BZ. (b) The moiré band
structure of WSe2 layer in the twisted WSe2/WS2 heterostructures with θ = 4.0◦. The moiré band structures calculated from
the effective continuum models around K and -K valleys of untwisted WSe2 layer are denoted by blue and red lines, respectively.
Due to the spin-valley locking in untwisted TMD materials, these blue and red lines stand for different spin-polarized states in
the moiré BZ. The blue dashed line represents the formation of spin-singlet moiré exciton, while the red dashed lines represent
the formation of spin-triplet moiré exciton. (c-e) The band structures of spin-singlet and spin-triplet moiré excitons at θ = 1.5◦,
2.5◦ and 4.0◦, where the spin-singlet moiré excitons are labeled by blue lines and the spin-triplet ones by red lines. The physical
meaning of the triplet-singlet splitting is denoted in (c). (f) The variation of the triplet-singlet splitting ∆E with different twist
angles, or equivalently, with the moiré superlattice constant aM .

S6. EFFECTS OF EXCHANGE INTERACTION ON INTERVALLEY COUPLING

In this section, we focus on the spin-singlet moiré excitons which correspond to the block |c,K; v,K〉
and |c,−K; v,−K〉, and ignore the spin-triplet ones. The advantage of the method proposed in this
work over the previous continuum exciton model [4, 23] lies in its ability to resolve the effects of
exchange interactions in the framework of BSE. We can modify the BSE by introducing a coefficient
α, which varies from 0 to 1, to the exchange term.

Hexc
vck,v′c′k′ = (Eck − Evk)δc,c′δv,v′δk,k′ + (fvk − fck)

[
αV̄vck,v′c′k′ −Wvck,v′c′k′

]
(S10)
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By solving these equations at different values of α, we can identify the evolution of each exciton
band and observe the lifting of degeneracy of the lowest spin-singlet moiré excitons as a result of the
intervalley exchange coupling introduced in S3 [See Fig. S4].

FIG. S4. The evolution of the bandstructure of WSe2 intralayer moiré excitons in WSe2/WS2 with increasing exchange
interactions. The value of α represents the strength of the exchange interaction, varying from 0 to 1.

S7. THE ESTIMATION OF THE RATE OF VALLEY DEPOLARIZATION

As shown in previous research on exciton of monolayer TMDs [12, 24, 25], the splitting of the
lowest spin-singlet 1s-excitons with the center-of-mass momentum Q near γ (Q=0) from two opposite
valleys can be described by a two-band effective Hamiltonian within the basis of excitons from two
valleys

ĤQ = Ω0σ̂0 + A|Q|[σ̂0 + cos(2θ)σ̂x + sin(2θ)σ̂y] +

[(
h̄2

2M
+ α + β

)
σ̂0 + β′(σ̂x + σ̂y)

]
Q2 (S11)

where σ0, σx,y are the identity and Pauli matrix, respectively, M is the effective mass of the moiré
excitons, h̄ is the reduced Planck’s constant, Ω0 is the binding energy of the lowest 1s state for the
spin-singlet moiré exciton with Q = 0, A is the constant representing the dominant order of the
exchange coupling, the α, β, and β′ are the constants of Q2 order originating from the both direct
and exchange Coulomb interactions [12]. Via solving this Hamiltonian, we can obtain a parabolic
band structure for the lower band and a nonanalytic linear dispersion for the upper band.

Ωl(Q) =Ω0 +

(
h̄2

2M
+ α + β − |β′|

)
Q2

Ωu(Q) =Ω0 + 2A|Q|+
(
h̄2

2M
+ α + β + |β′|

)
Q2

(S12)

The stronger the coupling between moiré excitons from the two valleys, the faster the exciton de-
polarizes to the opposite valley. For simplicity, we can estimate the rate of valley depolarization of
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exciton states with momentum Q as ΓvQ = 2A|Q|
h̄

[24], and the average valley depolarization rate in
the light cone can be estimated as

Γv =
2π

τv
=

∫
l.c.
dQΓvQ∫
l.c.
dQ

=
4AQc

3h̄
(S13)

where l.c. means the integral is performed in the light cone |Q| < Qc. The average valley depolar-
ization rate is proportional to the coupling strength A. Finally, the degree of circular polarization
P can be expressed as [26]

P =
P0

1 + 2τre/τv
(S14)

where the τre represents the recombination rate of the excitons, and the estimated results are dis-
played in Fig. 4(e) in the main text.

S8. TWSIT ANGLE-DEPENDENT BOHR RADUIS

In this section, we focus on the spin-singlet moiré excitons. In addition to the behavior of the
twist angle-dependence of the binding energy and the exchange coupling strength discussed in the
main text, our method proposed in this work also allows us to investigate the variation of the real-
space wavefunctions of the moiré excitons with the change of the moiré period. Herein, we focus
on the peak I of the moiré excitons with an isotropic hydrogen-like envelope. The hole position
rh is fixed at the Se/W and the wavefunction is assumed to be approximated by |Ψ(re, rh)|2 ∼
exp(−|re − rh|/aB). As shown in Fig. S5(a), we calculate the real space wavefunctions of peak
I excitons at various twist angles ranging from θ = 1.0◦ to 4.0◦. The Bohr radius aB can be
further fitted and plotted in Fig. S5(b). We can observe that the Bohr radius increases with the
enlarging of the moiré period as the twist angle is decreased. We argue that the Bohr radii of
WSe2 intralayer excitons in twisted WSe2/WS2 heterostructures can be compared with the future
experimental observations directly, such as the optical spectroscopy and the time- and angle-resolved
photoemission spectroscopy (trARPES) [27, 28].

FIG. S5. (a) The real space wavefunctions |Ψ(re, rh)|2 of peak I moiré excitons with the hole fixed at the Se/W region (similiar
to Fig. 2(f) in the main text) at θ = 1.0◦, 1.5◦, 2.5◦ and 4.0◦. (b) The dependence of the Bohr radius aB of the peak I moiré
excitons on the moiré period aM .
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