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Abstract
Significant uncertainties in terrestrial carbon fluxes exist in regions with limited ground-based
observations, impacting our understanding of ecosystem carbon dynamics and emission reduction
needs. This is particularly true for areas with sparse measurement networks, like India. To address
this, we explore the potential of satellite measurements from various missions such as Sentinel-5
Precursor and the Orbiting Carbon Observatory-2 to improve terrestrial biosphere CO2 fluxes of
India. We follow a data-driven approach, which simulates spatial and temporal distributions of
gross primary productivity (GPP), net ecosystem exchange (NEE), and ecosystem respiration
(Reco). We improve these model predictions by additionally using satellite-based solar-induced
chlorophyll fluorescence (SIF), soil temperature , and soil moisture specific to the vegetation classes
of the domain. Different model refinements were performed to present the improved hourly
distributions of terrestrial biospheric CO2 fluxes on a 0.1◦× 0.1◦ grid from 2012 to 2020. Among
them, the best-performing model simulations show reasonable agreement with eddy covariance
observations for 2012–2018. For example, our best NEE and GPP predictions are highly correlated
with observations with squared correlation coefficient (R2) values of 0.68 (NEE) and 0.74 (GPP) at
the monthly scale for 2018. Based on our improved estimations, the annual NEE and GPP show
values within the range from−0.38 Pg C yr−1 to−0.53 Pg C yr−1 (land C sink) and 3.39 Pg C yr−1

to 3.88 Pg C yr−1, respectively over India for 2012–2020. Our novel approach and findings
highlight the potential of satellite-based SIF measurements to detail the ecosystem-scale vegetation
responses across various biomes in India. The use of satellite observations, as demonstrated in this
study, offers a scalable solution for regions lacking sufficient ground-based observations to
estimate biospheric carbon fluxes reliably.

1. Introduction

The terrestrial biosphere is the largest carbon sink, which sequesters about a quarter of global annual CO2

emissions (Friedlingstein et al 2022). Major terrestrial biosphere carbon fluxes such as gross primary
productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) exhibit significant
spatiotemporal variability due to factors like vegetation type, age, climate response, geography, and other
environmental conditions (van der Meer et al 2002). Hence, accurate estimation of these fluxes at finer scales
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relevant to climate change mitigation remains challenging. Terrestrial biosphere models attempt to simulate
these fluxes at global scales, yet uncertainties persist (e.g. Sitch et al 2008, 2015, Peylin et al 2013, Thompson
et al 2016). Challenges for these models include limited global eddy covariance (EC) flux tower data for
model validation or calibration, the incomplete representation of vital processes in the model (e.g.
drought-related mortality), and insufficient understanding of environmental impacts on carbon exchanges.
For instance, the existing models have limited observational data from India, affecting confidence in India’s
carbon flux estimates despite its global significance (Thompson et al 2016). Annual NEE estimates for India
vary widely across studies (0 to−0.37 Pg C yr−1 ) mirroring uncertainties in India’s carbon flux estimation
(Patra et al 2011, Nayak et al 2015, Sitch et al 2015, Rao et al 2019).

Atmospheric CO2 measurements can be utilised in an atmospheric inverse modelling framework to
evaluate and improve the terrestrial biosphere flux estimates of India. Careful selection of prior fluxes is
crucial in solving the complex inverse problem (Rodgers 2000). Previous studies utilized biospheric models
like the Carnegie Ames Stanford Approach (CASA; Potter et al 1993) and TRENDY model ensembles (Sitch
et al 2015) to estimate biospheric CO2 fluxes over southeast Asia and specifically India (Nayak et al 2010,
2013, Patra et al 2011, Peylin et al 2013, Goroshi et al 2014, Cervarich et al 2016). However, these models
operate at coarse resolutions (typically 0.5◦ or coarser), with CASA providing monthly outputs and
TRENDY offering sub-daily data (with output available monthly) but limited model validation against
Indian observations. This coarse resolution limits the model’s ability to capture detailed spatiotemporal flux
distributions, resulting in varied estimates among studies (Patra et al 2013, Rao et al 2019, Friedlingstein et al
2022).

Recent satellite instruments measuring solar-induced chlorophyll fluorescence (SIF) from space are
valuable for regions with limited ground-based observations. SIF retrievals capture re-emitted solar radiation
(650–850 nm) from chlorophyll-a pigment, providing insights into carbon uptake through photosynthesis at
regional to global scales (Frankenberg et al 2011, Sun et al 2017, Köhler et al 2018, Li et al 2018, Smith et al
2018, Gu et al 2019, Yu et al 2019, Zhang et al 2019, Liu et al 2023). Since the re-emission process
(fluorescence) by chlorophyll is linked to the primary steps in photosynthesis, SIF can be used as the proxy
for photosynthesis (Parazoo et al 2018, Sun et al 2018, Yu et al 2019), despite only about 2% of absorbed
solar energy being re-emitted as fluorescence. So, SIF retrievals from space need advanced spectrometers
with a high spectral resolution and a high signal-to-noise ratio due to narrow Fraunhofer lines and weak
signals. It should be noted that SIF retrievals also are prone to errors related to signal strength, extraction
range, leaf scattering, re-absorption effects, and background noise (Köhler et al 2015, Joiner et al 2016, Li
et al 2018, Liu et al 2020). Limited available information makes it currently challenging to decouple those
uncertainties from global retrievals.

The relationship between SIF and GPP can be linear or nonlinear, influenced by environmental variables
like moisture, temperature, radiation, and precipitation, as well as observational factors such as wavelength
and angle (Guanter et al 2012, 2014, Li et al 2018, Paul-Limoges et al 2018, Sun et al 2018, Wang et al 2020,
Chen et al 2021, Kim et al 2021). Plant functional types and physiological factors further modulate the
SIF-GPP relationship (Sun et al 2018). The first global SIF retrievals (at 755–775 nm) were done by the
Greenhouse gases Observing SATellite (Frankenberg et al 2011). Other satellite missions providing SIF data at
varying spatial and temporal resolutions include Global Ozone Monitoring Experiment 2 (Joiner et al 2013),
Orbiting Carbon Observatory 2 (OCO-2; Sun et al 2018), OCO-3 (Taylor et al 2020), and TROPOspheric
Monitoring Instrument (TROPOMI; Guanter et al 2021 onboard Sentinel-5 Precursor satellite).

This study presents the improved high-resolution mapping of terrestrial biosphere CO2 fluxes across
India from 2012 to 2020 at 0.1◦ × 0.1◦ grid and hourly temporal resolution. This is achieved by employing a
satellite-based data-driven approach using a biosphere model and combining it with surface reflectance, SIF,
meteorological, and environmental variables to capture the spatiotemporal variations of biosphere fluxes.
The gridded NEE, GPP, and Reco are initially generated using a diagnostic satellite-based biosphere model,
the Vegetation Photosynthesis and Respiration Model (VPRM; Mahadevan et al 2008). The VPRMmodel is
driven by observational-based data, which utilizes model parameters optimized with direct EC
measurements (Mahadevan et al 2008, Kountouris et al 2018, Gerbig and Koch 2021, Gourdji et al 2022,
Bazzi et al 2024). Previously, Thilakan et al (2022) generated VPRM simulations (0.1◦ × 0.1◦, hourly) with
uncalibrated model parameters. The novelty of the present study is the incorporation of the SIF-based
information and soil-related variables in VPRM to improve the seasonality and magnitudes of NEE
predictions in the absence of sufficient EC measurements to calibrate the model parameters. VPRM’s benefit
lies in its limited number of model parameters that need to be trained with direct measurements, making it
ideal for carbon assimilation studies. These improved high-resolution biospheric flux products can be used
in the near future as priors in the inverse data assimilation of CO2 or can be coupled with high-resolution
transport models for understanding the atmospheric CO2 transport or variability associated with natural
fluxes. The lack of reliable, observation-based biospheric carbon flux distribution at a resolution sufficient to
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represent vegetation activities posed a significant challenge for the scientific community and policymakers,
hindering effective climate change mitigation efforts in India. This study presents a novel approach by
utilizing available observational proxies of vegetation activities, such as SIF and VIs from satellite remote
sensing platforms, to address the limitations of ground-based observations and enable a comprehensive
analysis of the biosphere–atmosphere carbon exchange in India.

2. Methods

For deriving improved estimates of terrestrial biosphere CO2 fluxes across the ecosystems over India: we (i)
implemented and customised the standard VPRM (hereafter referred to as VPRMINI) for a domain covering
India (5◦ N–40◦ N, 66◦ E–100◦ E, figure 2) and performed the simulations of NEE, GPP, and Reco fluxes
(section 2.1); (ii) derived ecosystem-specific linear relations between SIF and GPP and this information is
provided to VPRMINI to improve the GPP estimates (section 2.2), and (iii) further modified the
VPRMINI-derived Reco to include the influence of soil-related variables specific to each vegetation classes
(section 2.3). The figure 1 provides an overview of the approach followed in this study.

2.1. Initial implementation of VPRM
The VPRMINI employs a remote sensing-based scheme to obtain high-resolution flux estimates using the
enhanced vegetation index (EVI), and land surface water index (LSWI), derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) reflectance measurements onboard NASA’s Terra and Aqua
satellites. The vegetation indices from MODIS reported an accuracy within±0.025 for high-quality
observations to retrieve the top of the canopy data (https://modis-land.gsfc.nasa.gov/ValStatus.
php?ProductID=MOD13). The VPRM uses annually varying vegetation classification from synergetic land
cover product (SYNMAP; Jung et al 2006) available from https://databasin.org/datasets/112a942ec4294e
5284e63d5e6bf14b29/. According to vegetation classification based on SYNMAP, we considered seven major
biomes over the Indian region, which include Cropland (68.2%), Shrubland (16.7%), Evergreen forest
(4.8%), Deciduous forest (4.4%), Mixed forest (3.7%), Grassland (1.73%), and Savanna (0.47%) with their
areal coverage given in percentage. NEE is calculated based on GPP (light-dependent process) and Reco

(light-independent process). We followed the sign convention for NEE in which negative values indicate CO2

uptake (land sink) and positive values represent CO2 release into the atmosphere (land source).

NEEVPRM,INI =−GPPVPRM,INI +Reco,VPRM,INI (1)

The calculation of GPPVPRM,INI and Reco,VPRM,INI is explained in detail in the companion article Ravi et al
(2024). Also, please refer to the figure 1 of Ravi et al (2024)

Model parameters are usually calibrated using site-level EC measurements across different ecosystem
types, minimizing the least squares between modeled fluxes and EC observations. This optimization
procedure, utilizing discrete tower locations representing major vegetation classes, aims to improve model
performance for the region of interest (Luus and Lin 2015, Dayalu et al 2017). Due to insufficient
observational EC measurements to calibrate the Indian region, we used the standard model parameters,
initially optimized against flux measurements representing tropical biomes over the Amazonian region
(Botía et al 2022) (table S1). However, these parameters may not fully represent subtropical Indian biomes,
potentially resulting in reduced model performance compared to VPRM simulations in regions like Europe
or North America, where sufficient EC observations are available for calibration. Consequently, we also
utilized the other sets of model parameters and examined their impacts on the model performance over the
Indian region, which is detailed in the companion article Ravi et al (2024).

2.2. Ecosystem uptake refinements using SIF
The performance of the VPRMINI model depends on the density of long-term ground-based observations
(e.g. EC) used for calibration. Thus, the unavailability of EC measurements in India hinders the model’s
reliability. To overcome this limitation, we utilized satellite products based on OCO-2 and TROPOMI,
adding more observational constraints to the model, VPRMINI, for improving GPP distribution. Table S2
provides an overview of the various datasets used in this study.

We used two global SIF products in this study. Daily SIF retrievals have been available from TROPOMI
(hereafter referred to as TROPOSIF, http://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/l2b/;
Guanter et al 2021) since May 2018. Also, we utilized SIF from GOSIF_v2 (hereafter referred to as GOSIF,
http://data.globalecology.unh.edu/; Li and Xiao 2019b), having longer data record than TROPOSIF,
providing retrievals at spatial and temporal resolutions of 0.05◦ and 8 d, respectively. TROPOSIF is a newer
product with denser data coverage than GOSIF. The spatial discontinuity in the original daily OCO-2
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Figure 1. An overview of the methodology followed in the VPRM refinement. CT: carbon tracker, EC: eddy covariance, SIF: solar
induced fluorescence, NEE: net ecosystem exchange, GPP: gross primary productivity, Reco: ecosystem respiration.

retrievals is improved in GOSIF using a machine learning (ML) approach based on MERRA-2
meteorological fields, MODIS reflectance, and land cover data, preserving the observed variability of discrete
SIF retrievals as explained in Li and Xiao (2019b). Although TROPOSIF is expected to yield better results
due to its higher data coverage, we compared these two SIF products and investigated considerable product
differences that could lead to variations in GPP estimates over India. A fully calibrated SIF dataset, correcting
the errors due to differences in instrument characteristics and retrieval algorithms, is not available owing to
the challenges in obtaining reference SIF values representative of a kilometer scale across the world as
reported by Parazoo et al (2019) and Zhao et al (2024). Further, to the best of our knowledge, there are no
ground-based SIF measurements in India for conducting local calibration. To tackle this limitation, the
separate SIF values in the red and far-red windows have usually been compared for their patterns and
consistency. Patterns of red SIF and far-red SIF were found to be consistent, which is also consistent with
ground-based measurements Celesti et al (2018) and Magney et al (2019). Additionally, satellite-based SIF
has been used to derive GPP and then calibrated with flux tower GPP across the globe (e.g. Zhang et al 2020).
Some regional studies in Europe and North America, where extensive EC observation networks are available,
have conducted such analyses (e.g. Li and Xiao 2019a, Qiu et al 2020, Kunik et al 2023). The limited
availability of EC flux data in India hinders similar regional analyses over India.

We derived GPP from GOSIF and TROPOSIF, detailed in companion article Ravi et al (2024). By
including SIF information, GPPVPRM,INI is modified as follows:

GPPVPRM,SIF (i, j, t,vg) = ηvg ×GPPVPRM,INI (i, j, t,vg)+ ϵvg (2)

GPPVPRM,SIF is the modified GPP that includes GOSIF (denoted as GPPVPRM,GOSIF) or TROPOSIF (denoted
as GPPVPRM,TROPOSIF). i, j, and t correspond to latitude, longitude, and time respectively. ηvg is the scaling
factor corresponding to the specific vegetation class, vg, applied to upscale GPPVPRM,INI to include the
information provided by SIF. The ηvg values based on TROPOSIF are provided in table S1. ϵvg represents the
error term corresponding to each vegetation class.

2.3. Soil moisture (SM) and temperature in respirationmodel equation
The soil properties can influence both autotrophic and heterotrophic respiration, particularly in regions with
distinct wet and dry seasons (Flexas et al 2006, Meir et al 2008, Molchanov 2009). A recent study over the
Eastern USA and Canada demonstrated improved simulations of Reco by incorporating the effects of
changing foliage, water stress, and the non-linear relationship with temperature (Gourdji et al 2022). We
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utilised the surface SM fields from GLEAM v3 (www.gleam.eu/#datasets; Martens et al 2017) model and level
2 (7–28 cm) soil temperature (ST) fields from ERA5 reanalysis product (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land?tab=overview; Hersbach et al 2020) (see table S2). These datasets were
compared with SM and ST outputs from the high-resolution land data assimilation system (HRLDAS; Chen
et al 2007) driven by the Noah land surface model (LSM) for the period 2012–2017. Here, we relied on model
products due to the limitations of observation data covering the entire domain. The distribution of Reco is
re-defined as follows (see the companion article Ravi et al (2024) for more details):

Reco,VPRM,SMST (i, j,vg) = τvg × ST(i, j,vg)+ νvg × SM(i, j,vg)+κvg ×
(
αvg ×Tair (i, j,vg)+βvg

)
(3)

where, τvg, νvg, and κvg represent the vegetation-specific parameters used to improve Reco,VPRM,INI

predictions. The observation-based respiration fluxes from FLUXNET-Random forest (https://db.cger.nies.
go.jp/DL/10.17595/20200227.001.html.en, Jiye 2020) dataset (hereafter referred to as FLUXNET) are used as
a baseline to derive the above parameters. Table S1 provides the details of the vegetation-specific model
parameters derived for refining Reco,VPRM,INI.

2.4. Other model products for comparison
We used simulated surface CO2 fluxes from commonly used process-based terrestrial biosphere models for
the inter-model comparison and performance assessment. Also, we used the global inversion-based flux
estimates consistent with atmospheric mixing ratio observations.

We used simulations from 14 Dynamic Global Vegetation Models within the TRENDYv10 model
ensemble for the Indian region (see table S3). All LSMs under TRENDY were driven with common
input/forcing data from 1901 to 2020 and followed a common simulation protocol. Model simulations
include climate forcing from CRU+CRU-JRA (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/)
monthly and 6 h historical forcing for the period 1901–2020, ice core data from 1700 to 2020 and land-use
change data from Hyde database for the period 1850–2021. Specifically, this study used TRENDY S3
simulations, which consider the impact of atmospheric CO2 concentration changes, climate change, and
land cover changes on the global terrestrial ecosystem (see https://blogs.exeter.ac.uk/trendy/). Notably, some
TRENDY models also incorporate nitrogen cycling; for these models, time-varying nitrogen inputs are
provided. Examples include CABLE-POP, CLM5.0, DLEM, ISAM, OCN, and ORCHIDEE-CNP. The
TRENDY models used in this study differ in spatial resolution, but each provides fluxes at a monthly
temporal resolution.

We used inverse model flux estimates from Carbon Tracker (CT2019B, hereafter referred to as CT)
modelling system (https://gml.noaa.gov/ccgg/carbontracker/download.php; Peters et al 2007). The
biospheric module of CT used prior fluxes from CASA biogeochemical model based on the remotely sensed
monthly fraction of Photosynthetically Active Radiation. We used three hourly gridded estimates of
optimised biospheric CO2 fluxes with 1◦ × 1◦ horizontal resolution over the Indian domain for the years
2016 to March 2019, available at https://gml.noaa.gov/ccgg/carbontracker/. All these gridded flux estimates
used for comparing spatial patterns are aggregated or disaggregated to a common spatial and monthly
temporal resolution for comparison (see section 2.6).

2.5. EC flux tower observations for model evaluation
For model evaluation, we used EC observations of terrestrial biosphere CO2 fluxes from a flux tower located
at Betul in Central India (Jha et al 2013). Betul tower (commissioned in November 2011) is situated 507 m
above mean sea level inside the mixed Deciduous forest where a tropical climate prevails. Generally, the flux
towers have small footprints of approximately 1 km radius around the measurement site. The forest in which
the Betul flux tower is located covers an area of 176 ha and has a tree density of 400–500 trees ha−1. The
forest is homogeneous and free of anthropogenic impacts within a 1 km radius around the tower. The land
cover in the model identifies the area (∼100 km2) around this site as majorly dominated by Deciduous Forest
(38.2%), and the remaining biomes in the region are unmanaged homogeneous Crops, Shrubs, and Savanna.
The land-cover details are further examined for a zoomed area (∼25 km2) around the site using
higher-resolution Sentinel-2 data (10 m, Brown et al 2022), which also supports that the region is mainly
surrounded by thick forest-type vegetation (38%) with a significant mixture of unmanaged homogeneous
lands, rangeland (see figure S1). These results from SYNMAP and Sentinel-2 thus ensure less impact of
land-cover error on our VPRM simulations due to classification mismatches. However, it should be noted
that the representation error (due to scale mismatch) is inherent in the simulations, which adds to the
model-observation bias, as mentioned earlier.

Uncertainties in the model-observation mismatch due to this spatial scale difference are expected when
observations within a 1 km radius are compared with the data from larger areas, such as the 100 km2 scale of
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Figure 2. An overview of the major vegetation classes for the study region. The solid black star denotes the EC observation site at
Betul.

VPRM. Further descriptions of the site and details of the instrumentation from Betul can be found in
published studies (Jha et al 2013, Rodda et al 2021). Table S4 provides an overview of the characteristics of
the flux tower site, and figure 2 shows the location map of the flux tower. The station provides NEE, GPP, and
Reco fluxes, where the GPP and Reco are derived from NEE using flux partitioning algorithms as reported by
Rodda et al (2021). For Betul station the mean annual NEE is reported to be of−0.52± 0.040 kg C m−2

yr−1, GPP of 3.35± 0.16 kg C m−2 yr−1, and Reco of 2.83± 0.15 kg C m−2 yr−1 by Rodda et al (2021).
The half-hourly data from Betul was aggregated into hourly, monthly, and annual time scales for this

analysis. There exist data gaps for specific years. Model simulations are evaluated against observations by
taking simulations from the grid cell nearest to the flux tower location (which is 21.89◦ N, 77.40◦ E). While
model comparison with observations provides valuable insights into model performance, the interpretation
must be done cautiously due to scale mismatches between the model and the observations. The
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model-observation mismatches due to this spatial scale difference are expected in the present study when
observations within a 1 km radius are compared with those from larger areas, such as the 10 km× 10 km
scale of VPRM. These spatial scale mismatches in the representativeness of the observations may explain a
fraction of the model-observation bias we report in the present study. These representation errors are
inherent in simulations but can be reduced when increasing the spatial resolution of the model with highly
resolved input data and adequate representation of processes. For example, a recent study has shown the
improved performance of VPRM in European cropland flux sites when integrated with high-resolution
Sentinel-2 indices with EC measurements (Bazzi et al 2024). The future availability of more flux observations
representing diverse biomes would enable us to perform a rigorous model evaluation at the ecosystem level.
The observation-based fluxes from ML products FLUXCOM (www.bgc-jena.mpg.de/geodb/projects/
DataDnld.php, Jung et al 2020) and FLUXNET were also used for model comparison.

2.6. Spatial and biome-specific pattern analysis
Here, we used flux simulations generated by refined VPRM to examine spatial gradients and seasonal
variations of biospheric fluxes. Since some ecosystems can be more biologically productive than others, we
aggregated flux patterns separately for each vegetation class based on SYNMAP land cover types to estimate
the productivity of each ecosystem in capturing atmospheric CO2. Refined VPRM fluxes at a monthly time
scale are employed here.

3. Results

As explained in section 2.2, we utilised satellite retrievals of SIF from OCO-2 (GOSIF) and TROPOMI
(TROPOSIF) to improve GPPVPRM,INI. The spatial and temporal analysis of SIF across Indian biomes and the
SIF-GPP relationship derived for each vegetation class is provided in the companion article Ravi et al (2024).

3.1. Model evaluation with EC flux observations
Figure 3 compares EC observation from Betul with model simulations. Inter-annual variations exist in GPP,
Reco, and NEE fluxes over Betul (figure 3), with significant data gaps in 2014 and 2017. While the observed
NEE showed positive values (carbon release to the atmosphere) during summer (March–June), the
ecosystem uptake was observed (negative NEE values) for the rest of the year (July–February). VPRMINI

shows better agreement in predicting the seasonality in observed monthly averaged NEE fluxes (coefficient of
determination (R2)= 0.59) than CT (R2 = 0.24) and TRENDY (R2 = 0.45), but with a significant
underestimation of NEE fluxes at a monthly scale (see table S5). Note that we have used the TRENDY model
ensemble for comparison, and the variation among TRENDY simulations for NEE (as calculated by the
standard deviation from the ensemble mean over the seven years) ranges from−3.50 to 2.47 µmol m−2 s−1

over Betul. Similar to NEE, the model predicted the monthly mean variations in GPP reasonably well
(coefficient of determination (R2)= 0.71), but with considerable bias (mean bias error (MBE)=−6.7 µmol
m−2 s−1, root mean square error (RMSE)= 8.3 µmol m−2 s−1). Previous studies have shown the
underestimation of GPP when MODIS-derived products are used for GPP estimation (e.g. Zhang et al 2008).
Similar underestimation is also observed when MODIS derived GPP product (MODIS-GPP, see table S2)
compared with EC data from Betul (R2 = 0.58, RMSE= 8.75 µmol m−2 s−1, MBE=−6.96 µmol m−2 s−1,
from 2012 to 2015). Zhang et al (2012) and Turner et al (2006) have reported that the MODIS-derived GPP
shows underestimation for high productive vegetation and overestimation for low productive areas. This bias
is particularly pronounced in vegetation types with significant seasonal variability, such as croplands. The
MODIS GPP algorithm, which employs a light-use efficiency (LUE) approach, does not account for several
factors that influence photosynthesis or for the coupling between water and carbon cycles. This can lead to
an inadequate representation of seasonal variations and inconsistencies in the results (Zheng et al 2019).
Additionally, the MODIS algorithm’s use of a constant LUE per vegetation type tends to result in
overestimation in low LAI conditions due to shaded leaves and underestimation at high LAI levels (Zhang
et al 2012, Liu et al 2014).

The SIF-based GPP products (GPPGOSIF and GPPTROPOSIF with R2 = 0.80) are closer than GPPVPRM,INI to
the observed GPP in terms of magnitude. But the observed patterns in GPP are better captured by VPRMINI

(R2 = 0.83) (figure S2) than the SIF-based GPP products. This shows the potential of the VPRMmodel to
predict the observed variations in GPP, which leads us to calibrate VPRMmodel parameters using SIF-based
GPP rather than directly using them in our GPP estimations (detailed in the article Ravi et al 2024). The
GPPVPRM,INI modified based on GOSIF (GPPVPRM,GOSIF), and the GPPVPRM,INI modified based on
TROPOSIF (GPPVPRM,TROPOSIF) are evaluated with EC observations, and the inter-comparison with
GPPVPRM,INI shows remarkable improvement in the model performance for GPP with a significant reduction
in RMSE and MBE values (see figure 3(a) and table S5).
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Figure 3. Comparison of monthly averaged EC observations with (a) GPP, (b) Reco, and (c) NEE simulations over Betul for the
period 2012–2018. The mean (black line) and±1 standard deviation (grey shade) of 14 models from the TRENDY model
inter-comparison project are provided.

The VPRMINI model fails to capture the seasonality in respiratory fluxes (R2 = 0.02), with a significant
underestimation of Reco by−3.5 µmol m−2 s−1 (RMSE= 5.7 µmol m−2 s−1) (see figure 3(b) and table S5).
To improve the model performance, we utilised observation-based datasets of ST and SM in addition to the
air temperature used for Reco,VPRM,INI simulations. The Reco,VPRM,INI modified based on various datasets (e.g.
HRLDAS ST/SM, ERA5 ST, and GLEAM SM) provided similar results. Here, we present the analysis using
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Figure 4. Spatial patterns in annual (a) NEE and (b) GPP fluxes simulated by VPRMREFD over the Indian region averaged for the
years from 2012 to 2020.

ERA5 ST and GLEAM SM, considering the large temporal coverage of the data. For the period from 2012 to
2018, the VPRM respiration modified using SM (Reco,VPRM,SM) shows much improvement in model
prediction than when ST alone is used (detailed in article Ravi et al 2024). Using both SM and ST
(Reco,VPRM,SMST), the model-observation bias reduced considerably, with RMSE reducing from 5.7 µmol m−2

s−1 to 1.9 µmol m−2 s−1 and MBE reducing from−3.5 µmol m−2 s−1 to−0.01 µmol m−2 s−1. The
statistics from 2018 provided in table S5 also support the above findings.

The VPRM NEE estimated based on GPPVPRM,GOSIF and Reco,VPRM,SMST (hereafter referred to as
NEEVPRM,GOSIF,SMST) and based on GPPVPRM,TROPOSIF and Reco,VPRM,SMST (hereafter referred to as
NEEVPRM,TROPOSIF,SMST) are evaluated with EC observations (figure 3(c)). The modified models showed
improvement over NEEVPRM,INI in capturing the observed seasonal pattern with a reduction in errors during
the period from 2012 to 2018 (RMSE: NEEVPRM,GOSIF,SMST = 4.4 µmol m−2 s−1, NEEVPRM,TROPOSIF,SMST = 3.8
µmol m−2 s−1and MBE: NEEVPRM,GOSIF,SMST = 3.2 µmol m−2 s−1, NEEVPRM,TROPOSIF,SMST = 2.4 µmol m−2

s−1) (see table S5). The observed seasonal anomalies in NEE ranges from−4.9 to 8 µmol m−2 s−1 with a
standard deviation of 3.6 µmol m−2 s−1. These variations are well captured by our model with a mean bias
of 1.6 µmol m−2 s−1. The modifications made to GPP and Reco fluxes in VPRM improved the model’s ability
to capture NEE fluxes over Betul. Since VPRMTROPOSIF,SMST (providing NEEVPRM,TROPOSIF,SMST,
GPPVPRM,TROPOSIF, and Reco,VPRM,TROPOSIF,SMST distribution) is found to be closer to the observation among
other modified VPRMmodels, the rest of the analysis uses the simulations from VPRMTROPOSIF,SMST

(hereafter referred to as VPRMREFD).
With the refined model VPRMREFD, the NEE estimates for Betul range from−1.46± 0.71 kg C m−2 yr−1

to 2.02± 0.79 kg C m−2 yr−1, aligning closely with observed values of−1.91± 0.39 kg C m−2 yr−1 to
2.04± 0.81 kg C m−2 yr−1 (Rodda et al 2021). At Kaziranga National Park, a deciduous broadleaf forest in
northeast India, our estimates suggest the region as a net carbon source within the range of 0.65± 0.06 kg C
m−2 yr−1 to 1.11± 0.13 kg C m−2 yr−1 annually (see table S9), compared to observed values ranging from
−0.029 kg C m−2 yr−1 to 0.207 kg C m−2 yr−1 (moderate carbon source) reported by Burman et al (2021).
At the Kozi Katarmal evergreen forest site, VPRMREFD estimates range from−1.46± 0.18 kg C m−2 yr−1 to
0.42± 0.16 kg C m−2 yr−1 reporting the region predominantly acts as a net carbon sink (see table S9) while
EC measurements also indicate it as carbon sink, ranging from−0.64 kg C m−2 yr−1 to−0.9 kg C m−2 yr−1

(Burman et al 2021).

3.2. Flux spatial patterns
We find strong spatial variations in the annual NEE and GPP distribution by VPRMREFD over the Indian
region (see figure 4), with distinct zonal and meridional variations. Annually, most parts of the country
remained as carbon sinks, particularly the southwest and northeast, which are dominated by Evergreen and
Mixed forests. They also showed higher GPP values, indicating high productivity. The eastern part of central
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India dominated by Deciduous ecosystems also showed high GPP values, but respiration surpassed
productivity, making the region a carbon source annually. A major part of the country shows moderate GPP
values (∼0.05 kg C m−2 yr−1–1.5 kg C m−2 yr−1), while a large area is covered by Croplands. Ecosystem
productivity is minimal in the northern and northwestern parts of the country under Shrubland vegetation.

During our study period (2012–2020), the Indian terrestrial biosphere acted as a net carbon sink
annually. The NEE(GPP) value increased from−0.38 Pg C yr−1(3.39 Pg C yr−1) in 2012 to−0.53 Pg C
yr−1(3.88 Pg C yr−1) in 2020 (table S6). The multi-year mean annual NEE and GPP estimates from
VPRMREFD over the Indian region is−0.45± 0.05 Pg C yr−1 and 3.57± 0.14 Pg C yr−1, respectively
(figure 4). The model inter-comparison shows that the total NEE fluxes are lower in CT and TRENDY
compared to those of VPRMREFD (µ(VPRMREFD-TRENDY)=−0.34 Pg C yr−1; µ(VPRMREFD-CT)=−0.25
Pg C yr−1 in which µ represents sample mean of differences, statistics presented for the year 2018). An
ensemble average using 14 TRENDY models was used for the analysis. Our annual NEE estimates show
higher uptake than the previously published studies in which process-based and LUE models were used
(Nayak et al 2015, Cervarich et al 2016, Rao et al 2019). Based on the CASA model, Nayak et al (2015)
estimated a NEE value of−0.01 Pg C yr−1 for a 26 year period from 1981 to 2006, showing ecosystem
transition from a carbon source in the 1980s to a carbon sink in the subsequent decades. Using the TRENDY
model ensemble, Cervarich et al (2016) and Rao et al (2019) estimated annual NEE values of−0.2 Pg C yr−1

and−0.14 Pg C yr−1, respectively for India.
The spatial patterns for monthly averaged NEE and GPP are presented in figure 5. Carbon uptake shows

the highest value during the summer monsoon season (August–October) and the lowest value during the dry
and hot months from April to June. The Indo-Gangetic plain shows high carbon sink capacity during the
winter (January–February) and summer monsoon months (August–September). The southeastern part of
the country shows an increase in productivity during the northeast winter monsoon (October–December),
which is reflected in the GPP and NEE values. Most parts of the country remained carbon neutral from April
to May except the Deciduous forest of central India and Evergreen Forests on the southwestern and
northeastern sides.

3.3. Model comparison with observation-based products
The FLUXCOM and FLUXNET are two widely accepted observational data-driven ML products in
representing the vegetation carbon dynamics (Friend et al 2007, Melaas et al 2013, Jung et al 2020, van Dijke
et al 2020, He et al 2022, Jiao et al 2024). Therefore, we compare VPRMINI and VPRMREFD simulations with
those from FLUXCOM and FLUXNET (figure S3) to examine the overall agreement between our GPP
products and these global products. Since we used FLUXNET to scale the Reco fluxes, we restrict our analysis
to GPP only here. In general, we find that the VPRMREFD is close to FLUXNET and FLUXCOM compared to
VPRMINI in terms of capturing the seasonality and magnitude of fluxes. The cropland occupies around
68.2% of the total land area of India; hence, we also specifically analysed fluxes from Cropland where
VPRMREFD showed a significant reduction in RMSE and MBE compared to VPRMINI (table S7).

Although the reduced inter-model differences between VPRMREFD and observational data-driven
products are encouraging, it should be noted that neither FLUXCOM nor FLUXNET has incorporated the
EC observations from Indian biomes. In this case, we have chosen EC measurements to evaluate how well
our models represent Indian biospheric fluxes. To do this, we compared FLUXCOM and FLUXNET data
with long-term records of EC observations from Betul, assessing the extent to which they captured the
observed variability (figure S3). FLUXNET (R2 = 0.80) captured the pattern in observed fluxes better than
FLUXCOM (R2 = 0.56), but the bias exhibited by both models is in a similar range. Our VPRMREFD

outperformed FLUXCOM and FLUXNET in capturing the observed flux distribution.
Additionally, observation-based ML products, such as FLUXNET and GOSIF_GPP, are used to compare

NEE and GPP fluxes against VPRMINI and VPRMREFD at selected pseudo-EC flux tower sites in India (see
figures S4 and S5).

3.4. Derived ecosystem productivity and exchanges across different biomes
We have analysed the derived GPP and NEE across seven vegetation classes used in VPRM for 2020 (table
S8). On an annual scale, the Mixed forest vegetation shows the highest (GPP= 6.35 kg C m−2 yr−1)
productivity, followed by the Evergreen forest, Deciduous forest, and Savanna biomes (GPP= 5.51 kg C m−2

yr−1, 4.63 kg C m−2 yr−1, 4.60 kg C m−2 yr−1, respectively) during 2020. As expected, lower productivity
rates are found for Shrubland (1.74 kg C m−2 yr−1) and Cropland (1.43 kg C m−2 yr−1). Even though
Cropland covers a large fraction of Indian land mass, its GPP per unit area is lower compared to that of
Deciduous Forests, Evergreen Forests, and Mixed Forests, despite the smaller total land area covered by these
vegetation types. The annual productivity for Grasslands is the lowest with a GPP value of 0.66 kg C m−2

yr−1. Even though Deciduous vegetation shows high GPP values, Reco dominates GPP across this biome,
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Figure 5. Spatial pattern in the monthly averaged fluxes of (a) NEE and (b) GPP from VPRMREFD for the year 2020.

leaving it as a carbon source or carbon neutral on an annual scale (Burman et al 2021, Sarma et al 2022). The
highest productivity by forests over Grassland is also seen in other parts of the globe (Yu et al 2013).

The contribution of each vegetation to the national GPP also depends on the area covered by each
vegetation. As a result, to the national GPP value of 3.88 Pg C yr−1, for the year 2020, Cropland is the major
contributor (49.6%), followed by Evergreen forest (14.9%), Mixed forest (12.2%), Shrubland (12.0%),
Deciduous forest (9.7%), Savanna (1.1%) and Grassland (0.5%). On an annual scale, Mixed and Evergreen
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Figure 6. The annual GPP (black box) and NEE (blue box) per m2 of each biome in India simulated by the VPRMREFD averaged
over the period 2012–2020. The upper and lower limit of the box shows the 5th and 95th percentile of the data and the center line
shows the median. All the values that are 1.5 times higher than the 5th and 95th percentile are considered outliers and are
removed from the graph.

forest vegetation show large GPP variability, while Cropland and Grassland exhibit lower GPP variability
(figure 6(a)).

The Evergreen and Mixed forest vegetation have the highest carbon fixation sink capacity, showing high
negative NEE values close to∼−2.5 kg C m−2 yr−1, followed by Savanna with an annual NEE value of
∼−1.31 kg C m−2 yr−1 (table S8). A moderate net carbon fixation efficiency (NEE of∼−0.39 and
∼−0.28 kg C m−2 yr−1) is shown by Shrubland and Cropland vegetations, respectively. The lowest net
carbon fixation efficiency is found for Deciduous vegetation, followed by Grasslands. On an annual scale,
Mixed forest and Savanna vegetation classes show large NEE variability while lowest by the Cropland and
Grassland (figure 6(b)).

Based on the statistical analysis for the year 2020, the Cropland and Evergreen forests are the largest
contributor (also considering the area of coverage), in terms of CO2 sink capacity, to the national NEE
budget (∼63.5%) followed by Mixed forest (∼21.2%), Savanna (∼13.5%), Shrubland (∼1.4%), Grassland
(∼0.3%), and Deciduous forest (∼0.1%).

3.5. Seasonal and diurnal cycles across different biomes
Figures 7 and 8 shows the seasonal variations in VPRMREFD simulated NEE and GPP fluxes across different
biomes averaged from 2012 to 2020. The seasonality in NEE and GPP varied across the vegetation showing a
transition from dry and cooler winters to wet and hot summers. Most vegetation showed higher carbon
uptake during the monsoon period (negative NEE and high GPP) while they remained as carbon source
(positive NEE and low GPP) during the summer months (March–May). The ecosystem GPP for croplands
showed a semi-annual cycle with a primary productivity peak during the winter months
(December–January) and a secondary peak during the monsoon season (August–September). Savanna
vegetation showed strong seasonality in flux pattern (NEE: 12.6 µmol m−2 s−1; GPP: 17.1 µmol m−2 s−1),
while Grassland displayed the least (NEE: 2.2 µmol m−2 s−1; GPP: 3.4 µmol m−2 s−1). The interannual
variability in the seasonal cycle (see the standard deviation curve in figures 7 and 8) is greater for forests than
for other biomes. This variation may be attributed to the differing responses of forest carbon fluxes to
climate extremes, land use changes, natural disturbances, forest product harvesting, and vegetation growth
(Li et al 2021).

Figure 9 shows the diurnal variations in VPRMREFD simulated monthly GPP fluxes for different
vegetation classes during 2020. The diurnal variability of GPP varies with the season. The peak uptake time is
found to vary with vegetation. Larger productivity is found during noon hours (10:00–14:00 local time).
Strong daytime variability (peak uptake during noon hours and weak uptake during afternoon hours
(15:00–20:00 local time)) is found for Grassland, followed by Shrubland, Savanna, and Cropland vegetation.
From the standard deviation curves, vegetation such as Grasslands, Cropland, Savanna, and Shrublands
show large monthly variability in the diurnal cycle, while forests have the least variability.
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Figure 7. Temporal variations in monthly averaged NEE fluxes from VPRMREFD averaged from 2012 to 2020. The solid blue line
indicates the multi-year mean and the shaded region indicates±1 standard deviation of temporal and spatial variability.

4. Discussions

Betul is a tropical deciduous forest, and hence, the strong seasonality observed in the fluxes is likely linked to
changes in plant physiology. GPP fluxes from VPRMINI were underestimated, which can be attributed to the
use of MODIS reflectance products. While these MODIS products capture vegetation dynamics more
effectively than SIF, they fall short in accurately representing the magnitude of fluxes when compared to
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Figure 8. Temporal variations in monthly averaged GPP fluxes from VPRMREFD averaged from 2012 to 2020. The solid blue line
indicates the multi-year mean, and the shaded region indicates±1 standard deviation of temporal and spatial variability.

observations (see figure S2). Nonetheless, VPRMINI demonstrates a better ability to capture seasonal patterns
in NEE and GPP compared to other biospheric models, such as the inversion product CT and the ensemble
of process-based models TRENDY. It is important to note that these global models (CT and TRENDY)
operate at a coarse spatial resolution, and when compared with site-level data (maximum representativeness
of only 1 km2), the scale mismatch between models and observations may significantly contribute to the
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Figure 9. Diurnal variations in VPRMREFD GPP fluxes during 2020. The solid blue line indicates the annual mean for different
vegetation classes and the shaded region indicates±1 standard deviation of the monthly variations.

models’ reduced performance. This highlights a potential limitation when applying these models in regional
scale applications. Similar to TRENDY models, the VPRMREFD showed reduced capability when performed
at a coarser resolution of 0.5◦ × 0.5◦ (RMSE= 7.53 µmol m−2 s−1, and MBE= 5.74 µmol m−2 s−1). The
model’s high spatial resolution is thus crucial for accurately resolving flux variability.

A significant drawback of VPRMINI is the lack of calibration of model parameters against EC flux
measurements in India, as conventionally practiced in regions such as Europe or North America. The
unavailability of long-term flux observations across different biomes over the Indian sub-continent is thus a
limiting factor for choosing sufficient calibration sites for the VPRMINI parameter tuning, affecting the
model performance.

Incorporating SIF in VPRM has noticeably improved the ability of the model to capture the observed
seasonal variability of GPP (see figure 3). Also, as a direct proxy for photosynthesis, SIF is expected to
provide improved estimates than conventional vegetation indices (Zhang et al 2016) (e.g. EVI, LSWI) used in
VPRMINI GPP estimation. The observed seasonal anomalies in GPP (variability after subtracting the decadal
mean), associated with ecosystem stress and phenology, range from−7.0 to 17.0 µmol m−2 s−1 with a
standard deviation of 6.3 µmol m−2 s−1. These variations are well captured by our model with a mean bias
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of−1.8 µmol m−2 s−1. For instance, The above levels of model improvements confirm the potential of using
high-resolution satellite-derived SIF to capture the seasonal cycle of GPP at an ecosystem level. Hence, our
results are broadly consistent with the findings by Joiner et al (2018), Qiu et al (2020)and Wood et al (2017)
where incorporating SIF data improved GPP estimates.

Incorporating the ST and SM in addition to air temperature for Reco calculation in VPRM improves the
model’s ability to simulate more realistic values over the Deciduous ecosystem of Betul. The improvement in
VPRM Reco while incorporating ST is also reported elsewhere (e.g. Luus and Lin 2015). However, the model
simulations can be impacted by the spatial scale mismatch between the VPRM simulations and soil variables
used for the model refinements. This needs to be considered while interpreting our results and the model
comparisons. While we approximate 85% confidence on our GPP estimations based on input data
uncertainties, the confidence can be reduced to 65%–75% (relative error) over Deciduous Forest while
comparing them with point measurements (e.g. EC observations) due to other model uncertainties (e.g.
inadequate representation of processes and spatial mismatches). Because of these, we approximate less
confidence in our Reco estimations (60%–75%). These uncertainties can be minimized by the availability of
accurate spatial distributions of soil-related variables at high spatial and temporal resolutions. The
modifications made to GPP and Reco fluxes in VPRM improved the model’s ability to capture NEE fluxes
over Betul.

It should be noted that exclusively data-driven methods using ML tools on observational data (e.g. EC
measurements) can be a valuable tool in representing carbon fluxes (Dou et al 2018, Joiner et al 2018, Zheng
et al 2020, Lu et al 2021, Virkkala et al 2021), provided these methods are also subjected to uncertainties and
limitations. While these methods are immensely useful in proving gap-filled carbon flux data, some major
issues remain, arguably due to heavy dependence on the historical fluxes without advancing the process
understanding. Recent studies have pointed out the considerable uncertainties in the inter-annual variability
of the carbon uptake estimated by ML methods (Jung et al 2020, De Bartolomeis et al 2023). Nevertheless,
given the availability of an adequate amount of training data, future research using ML methods can be
planned to generate complementary datasets. These datasets can thus be used to correct the potential biases
in the physics-based models, following the recent work of Upton et al (2024).

The analysis of flux spatial patterns revealed that the country exhibited notable spatial variations in NEE
and GPP fluxes. These variations are primarily influenced by factors such as the annual mean patterns of
temperature, precipitation, and radiation, which play a significant role in shaping the spatial distribution of
ecosystem carbon fluxes (Yu et al 2013). Despite high GPP values, the deciduous forests of central India acted
as a carbon source, as respiration exceeded productivity, leading to a net annual carbon release. The high
negative NEE and positive GPP values observed across the Indian region from August to October indicate
significant sink capacity, which is linked to increased agricultural crop production driven by monsoonal
rainfall. In contrast, winter crop harvesting and unfavorable conditions for plant growth, such as high
temperatures, low water availability, and reduced SM content, lead to minimal productivity during the
April–May period.

The biome-specific analysis revealed that forests sequester more carbon through photosynthesis than
other vegetation groups. Forests have always shown larger efficiency in storing carbon than other vegetation
types (McKinley et al 2011, Gray and Whittier 2014). However, croplands are the primary contributors to the
national carbon budget, largely due to their extensive coverage. In terms of net NEE, Evergreen and Mixed
forests exhibit the highest carbon fixation sink capacity, whereas Deciduous forests and Grasslands
demonstrate the lowest. Regarding the national NEE, Croplands and Evergreen forests significantly
contribute to negative NEE values, while Deciduous forests contribute the least.

The following factors can explain the seasonality observed in India’s major vegetation: During the
monsoon season, increased water availability stimulates vegetation growth, resulting in GPP surpassing Reco,
making the vegetation a carbon sink. In contrast, the hot and dry summer months increase Reco for plant
maintenance and hinder vegetation development, leading to a net carbon source (Valsala et al 2013).
Croplands, however, exhibit a double peak in growing seasons, corresponding to India’s two main cropping
periods (rabi-winter and kharif-summer), which is also reported by Goroshi et al (2014) and Varghese and
Behera (2019). The primary GPP peak occurs in February during the winter season, with a secondary peak in
September during the summer monsoon. High productivity during the summer monsoon is driven by
substantial rainfall across the country, with GPP beginning to increase in June and peaking in September (see
figure S6). As the pre-monsoon season (March–May) begins in March, GPP declines, reaching its lowest
point in April. Despite average rainfall, low productivity during the pre-monsoon season is likely attributed
to severe water stress from elevated temperatures. Local agricultural practices, including irrigation and
nitrogen fertilization, also influence crop development and carbon exchange on a local scale. These effects
vary regionally based on species type and farming practices. However, on a national scale, Cropland GPP
aligns more closely with the seasonality of water availability through precipitation (see figure S6), also
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reported by Varghese and Behera (2019). Most Indian biomes show high GPP values in response to rainfall
during the monsoon. Furthermore, most Indian vegetation shows high carbon uptake, increasing GPP when
direct sunlight is available (Rodda et al 2016, Sarma et al 2022).

The main limitation of the present study is the lack of EC observations over India, which are essential for
model validation and parameter calibration. This reliance on parameters calibrated for Amazonian and
European biomes can introduce uncertainty, further compounded by cloud cover during the monsoon
season, which hinders satellite data acquisition. While we attempted to evaluate the model using EC
observations from Deciduous Forests and compared it with other process-based models, future research
should focus on using a more comprehensive set of flux site observations and atmospheric CO2

measurements. These should be strategically selected to cover India’s diverse geography, climate, and
vegetation types to test the model’s robustness and identify any mismatches in process-based understanding.
Additionally, the study assumes a linear relationship between SIF and GPP across all vegetation types and
seasons despite some evidence elsewhere suggesting a non-linear relationship influenced by physiological
factors. However, there are no ground-based SIF measurements in India that are co-locating with GPP
measurements, which hinders the direct derivation of SIF-GPP relationships across biomes under diverse
environmental conditions in India. Further, probable errors in satellite RS product extraction of SIF values
under all sky conditions can contribute additional uncertainties to our results. The study also notes that
vegetation rapidly responds to environmental changes, and the satellite data used—8 to 16 d
composites—may miss significant events or processes, especially in agricultural fields, which can change
rapidly. The long revisit time of satellites may miss critical plant responses during these transitions.

While our approach integrated SM and ST with air temperature in VPRM Reco calculations to improve
the simulations, future work is required to examine the impact of factors such as moisture and heat stress,
phenology, biological influences, and biomass disturbances on Reco.

5. Conclusions

This study presents the improved terrestrial flux distribution of CO2 over India on a 0.1◦ × 0.1◦ grid at a
temporal resolution of 1 h from 2012 to 2020. We utilise satellite reflectance products and high-resolution
meteorological data in a data-driven biospheric model, VPRM to improve the model estimates of terrestrial
biosphere CO2 flux components over India. In particular, we take advantage of satellite missions, such as
TROPOMI and OCO-2, which provide SIF retrievals and relate them to ecosystem productivity across
different biomes. The derived flux products explain the magnitude and fine-scale variability over the region
better than other model estimates.

Our standard VPRMmodel captures the observed seasonal patterns in NEE (R2 = 0.59) and GPP (R2 =
0.71) well compared to other biospheric models with different model structures, such as the inversion
product CT (R2 = 0.24) and the ensemble of process-based models from TRENDY (R2 = 0.45). But with
considerable underestimation in magnitudes on a monthly scale. By improving GPP and Reco simulations,
the model has improved its ability to capture the observed NEE fluxes with a significant reduction in model
biases. Our analysis showed the highest productivity by forests and the lowest by Shurblands. Despite high
productivity, Deciduous forests are an annual carbon source due to elevated respiratory fluxes. Since more
than 68.2% of the country is covered with Croplands, the agricultural pattern influences the seasonality in
GPP and NEE. Overall, we find that the Indian biosphere acts as a sink with an annual NEE ranging from
−0.38 Pg C yr−1 to−0.53 Pg C yr−1 and an annual GPP ranging 3.39 Pg C yr−1–3.88 Pg C yr−1 for the years
from 2012 to 2020.

Given the considerable difference in flux components among the terrestrial biospheric models, the
analyses demonstrated here can guide future model improvements in deriving GPP and Reco. By showing the
potential of the VPRMmodel to predict the observed variations in GPP better than solely SIF-based GPP
products, the present study demonstrates the way to calibrate the model parameters in the absence of EC
measurements.

Potential improvements to VPRM include (i) further refinement in the Reco accounting for moisture and
heat stress and other biomass disturbance and (ii) incorporating flux observations from different ecosystems
to enhance the flux representativeness with better empirically derived and biome-specific model parameters.
Given the availability of additional EC observations and satellite retrievals, we anticipate further refinements
in our current model. While we report fluxes at a 10 km spatial scale in this study, future studies can focus on
conducting VPRM simulations at site or ecosystem scales when additional site-specific observations (e.g. EC
measurements) and satellite input fields to match such spatial resolution (e.g. 1 km) become accessible.
Performing VPRM at a finer resolution with more observations would likely reduce the currently reported
model uncertainties and enhance its potential to capture the finer flux variations over India. The increased
availability of future flux tower observations will help optimise the model parameters to enhance the
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robustness of these simulations. The next step would be to combine atmospheric observations of CO2 in an
inverse modelling framework together with our derived flux maps to better understand the Indian carbon
budget. The demonstrated approach is scalable to other regions, especially where ground-based EC
observations are the current limitation. Future research can also focus on incorporating high-resolution
land-cover maps such as those from Sentinel-2 into VPRM to quantify its impact on improving the
representation of flux variations (Ienco et al 2019, Brown et al 2022, Bazzi et al 2024).
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