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With climate extremes’ rising frequency and intensity, robust analytical tools are crucial to predict 
their impacts on terrestrial ecosystems. Machine learning techniques show promise but require 
well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets 
comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data 
complexity can challenge the effectiveness of machine learning models. Despite recent progress in 
deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse 
compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes 
database, tailored to map around these extremes, focusing on persistent natural vegetation. It 
comprises over 40,000 globally sampled small data cubes (i.e. minicubes), with a spatial coverage of 2.5 
by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated 
extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The 
paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific 
reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.

Background & Summary
There has been an unprecedented rise in the frequency and severity of climate extremes1. These rising extremes 
can have severe ecological2 and socio-economic consequences3, challenging our established paradigms of cli-
mate science4. For instance, in 2018, central and northern Europe experienced a record-breaking Compound 
Heatwave and Drought (CHD) event, which extensively impacted agriculture, forests, water supply, and the 
socio-economic sector5. Given the increasing intensity and adverse impacts of CHD events in the warming 
climate, it is critical to understand their intricate dynamics and interactions with climate drivers, spatial condi-
tions, timing, and terrestrial ecosystems6–9.

The exponential increase in Earth observation data represents a significant advancement but also introduces 
complex data management and analysis challenges10,11. In an era marked by rapid advances in remote sensing 
capabilities, including satellite observations, aerial imaging, and ground-based records, researchers have access 
to unprecedented amounts of information. These data are crucial for understanding the impacts of climate 
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extremes12–15. Effective sampling strategies are required to harness this data deluge, ensuring relevance and man-
ageability. Data cubes provide a flexible and efficient way to organise and analyse large volumes of multidimen-
sional data, making such datasets manageable and streamlined across variables and spatio-temporal scales10,16.

Machine Learning (ML) has been introduced into climate science as a valuable tool to understand and pre-
dict climate extremes and their impacts, as well as to decipher the interactions between climate and ecosys-
tems17–22. Moreover, Deep Learning (DL) allows the identification of complex patterns and correlations that 
might elude traditional data science methods, thereby helping scientists to better understand the underlying 
mechanisms of climate variability and change. However, since ML generally performs best with large sample 
sizes, extreme impact prediction often has significantly smaller sample sizes compared to non-extreme con-
ditions, which complicates the application of ML. In this dataset, we tackle this issue by oversampling extreme 
areas using the minicube strategy, which has a large distribution in space instead of time. This method intro-
duces additional biases, as ML tends to amplify them. Nonetheless, this trade-off is necessary and must be con-
sidered when training models.

The sophisticated Earth observation databases that train ML models for analysing climate extremes are 
growing. These datasets primarily focus on addressing the scarcity of curated data concerning complex weather 
patterns and climate extremes’ impacts on ecosystems. For instance, The ExtremeWeather dataset23 provides 
labelled extreme weather events (i.e., tropical depression, tropical cyclone, extratropical cyclone, atmospheric 
river) as boxes, along with climatic and meteorological variables on a global grid of 768 by 1152. This dataset 
allows training ML models to leverage spatial and temporal information to predict the localisation of extreme 
weather events. ClimateNet24 provides an expert-labelled dataset that enables pixel-level identification of 
extreme events using ML models. Additionally, cross-domain and high-resolution datasets are designed to 
include localised variables critical for analysing responses to climate extremes, incorporating data from diverse 
domains. For example, EarthNet202125 aims to bridge the data gap by integrating a variety of data variables 
such as precipitation, temperature, sea-level pressure, digital elevation models, and Sentinel-2 Multi-Spectral 
Instrument (MSI) images, offering a holistic view of Earth system. A model trained on EarthNet2021 can fore-
cast optical satellite images of high perceptual quality. The newly enhanced version, GreenEarthNet26, focuses 
more on predicting vegetation dynamics and includes an improved high-quality cloud mask27. The FluxnetEO 
data cubes28 provide fully gap-filled Nadir BRDF Adjusted Reflectance (NBAR) data from MODIS, as well as 
Land Surface Temperature (LST) and several vegetation indices for the Fluxnet sites29, aiming for modelling 
carbon and water fluxes. Moreover, DynamicEarthNet30 tracks daily land use and land cover changes across 
75 global regions from 2018 to 2019, focusing on detecting land cover changes. BigEarthNet31 is a large-scale 
benchmark dataset consisting of Sentinel-2 satellite images with multi-label land use and land cover. Presto’s 
Training Dataset32 is a high-resolution dataset that provides detailed data for training ML models to significantly 
improve the prediction and understanding of climate extremes and their impacts.

However, these multi-purpose initiative datasets do not focus specifically on the impact of CHD extremes. 
We need harmonised datasets tailored for spatio-temporal ML methodologies, aiming to train ML methods to 
forecast and explain the impacts of extreme events such as droughts and heatwaves. Given the importance of 
CHD extremes and challenges arising from data biases and their repercussions, this paper is poised to propose 
a solution that encapsulates precision and reproducibility. Here, we present the DeepExtremeCubes dataset33, a 
collection of minicubes that use a sampling methodology to focus on capturing the impact of CHD extremes 
globally. Specifically, we introduce 1) a globally stratified sampling procedure, 2) a reproducible data process-
ing pipeline combining multi-modal data, and 3) a representative global dataset to train ML models on CHD 
extremes, which is analysis-ready and shared in cloud-native format.

Methods
The analysis of CHD extremes necessitates examining a broad range of Earth observation variables across 
climatic, meteorological, ecological, and topographical dimensions at various spatial and temporal scales10. 
Sampling these relevant datasets is crucial to focus on CHD impacts and to understand the complex interactions 
of different drivers, spatial conditions, and timing of these processes. The DeepExtremeCubes dataset33 employs 
sampled minicubes targeted at regions experiencing extreme CHD events and their surroundings, facilitating 
a more detailed investigation. From a practical viewpoint, managing the vast, high-dimensional Earth system 
datasets requires significant computational resources. Segmenting these datasets into smaller, manageable sub-
sets (i.e. minicubes) can enhance machine learning computations efficiency11.

Input data sources. Two categories of input data sources are used to create DeepExtremeCubes33. One is the 
reference dataset used to determine the strata. This encompasses the Dry and hot extreme events database (Dheed 
dataset, a predefined global dataset of CHD extreme events)34,35 and the European Space Agency (ESA) Climate 
Change Initiative (CCI) land cover map36. The other category of data sources consists of the comprehensive Earth 
system datasets from which the data included in individual minicubes is extracted. We first introduce the refer-
ence datasets and then provide details on the comprehensive datasets within the generated minicubes.

Dheed event detection dataset. Dheed34,35 is a database of labelled CHD events utilising daily aggregated ERA5 
reanalysis data37. A spatially and temporally example piece of a Dheed dataset is shown in Fig. 1. The maxi-
mum daily Temperature at 2 m (Tmax) is used to detect heatwaves, and the daily differences of Precipitation 
and Evapotranspiration (PE) averaged over 30, 90, and 180 days (PE30, PE90, PE180) are employed to detect 
droughts34,35. The CHD events in Dheed are defined as groups of spatio-temporally connected daily extremes. 
Extremely hot and dry days are defined as those when (1) the maximum temperature exceeds the 99th percentile 
for 1950-2021 at that location, and (2) at least one of three drought indicators (Precipitation- Evapotranspiration 
averaged over the last 30, 90, and 180 days) falls below the 1st percentile. The Dheed database covers a time 
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range from 2016-01-01 to 2021-12-31, with a spatial resolution of 0.25°. Groups of spatio-temporal grid cells 
with extreme values connected across space and/or time are each assigned a unique event label. Dheed’s labelled 
events have been benchmarked against extreme events documented in the literature or the media. The Dheed 
Label-Cube containing the labelled events (last row in Fig. 1) is used for sampling the locations of the minicubes.

Land cover map. The ESA CCI land cover dataset36 employs the GlobCover unsupervised classification chain 
framework to generate global annual land use maps from 1992 to 202038. It uses a combination of multi-year 
and multi-sensor strategies, incorporating data from various satellites such as ENVISAT-MERIS (2003-2012)39, 
AVHRR (1992-1999)40, SPOT-Vegetation (1999-2013)41, and PROBA-Vegetation (2013-2020)42,43. The dataset 
categorises 37 land cover classes according to the United Nations Land Cover Classification System44 and offers 
the data at a 300 m spatial resolution in GeoTIFF and NetCDF formats. The selection criteria for a reliable 
land cover map aim to best meet the requirements to analyse vegetation responses to CHD extremes. First, 
the map must cover most of the study period from 2016 to 2022, ensuring data continuity to reflect land cover 
changes. Second, data must be readily accessible for direct download and use. Third, a detailed classification 
of vegetation types is crucial, particularly focusing on persistent vegetation covers such as broad-leaved trees, 
needle-leaved trees, and grassland. While some vegetation classes were merged to simplify the initial sampling 
process, it was essential to retain the original and finer classifications in the minicubes for subsequent anal-
yses. Various global land cover maps were evaluated45–47, but none met these criteria as well as the ESA CCI 
WorldCover map. For instance, the Global Land Analysis and Discovery (GLAD) laboratory’s Land Cover and 
Land Use Change (LCLUC) data45, based on Landsat48, offers high accuracy in certain non-forest regions and 
detailed classifications of open canopy forests in Africa. However, its infrequent updates (every five years) during 
2000 and 2020 and limited vegetation classification hinder its suitability as the reference land cover map for the 
DeepExtremeCubes dataset33. The ESA CCI WorldCover map47 offers high-resolution data for 2020 and 2021. 
However, it does not cover the entire study period and lacks comprehensive tree-type classifications. Therefore 
it is not suitable for the detailed vegetation analysis required for this study.

Data sources within each minicube. In addition to subsets of the Dheed dataset and the CCI land cover map, 
each minicube contains multiple data modalities: (1) Sentinel-2 MSI surface reflectance (L2A) time series data49, 
(2) a corresponding deep-learning-based cloud mask26,27, (3) ERA5-Land meteorological reanalysis variables50, 
and (4) data from the Copernicus Digital Elevation Model (DEM)51. The ERA5-Land reanalysis data provides 
information on the historical weather conditions, represented by variables such as temperature, humidity, 
soil moisture, and others. Sentinel-2 MSI satellite images are a proxy observation for vegetation health. We 
include bands B02, B03, B04, B05, B06, B07, and B8A, which can be used to compute vegetation indices52,53. 
Together, the ERA5-Land and Sentinel-2 data allow us to study the impact of CHD extremes on vegetation 

Fig. 1 An example of CHD detection in the Dheed database showing the evolution across Europe of the 
maximum daily temperature (Tmax, top row), the Precipitation - Evapotranspiration balance averaged over 
the previous 30 days (PE30, second row), along with the threshold of 0.01 on the ranked values used to detect 
extremes (Rank, first and second rows), the synthesis of the four indicators (Event-Cube, third row) and the 
labelled CHD events lasting at least three days (Label-Cube, fourth row) from 2019-06-27 to 2019-07-01.
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in the DeepExtremeCubes dataset33. In Sentinel-2 images, pixels obscured by clouds and cloud shadows can 
be difficult to distinguish from actual changes in the underlying ecosystem, which may challenge subsequent 
analyses’ accuracy. By incorporating the EarthNet Cloud Cover Mask26, which is based on the CloudSEN12 
dataset27, obscured pixels can be filtered out, ensuring that vegetation biological dynamics are based on clear and 
reliable optical remote sensing data. In addition, the Copernicus DEM data is included as one of the key factors 
in climate-vegetation interactions. The Copernicus DEM provides topographical data at 30 m, enabling us to 
consider how elevation influences local climate conditions, subsurface hydrology and vegetation patterns. It is 
crucial in regions where elevation varies significantly and is also important on a global scale. For our minicubes, 
Sentinel-2 and the cloud mask are spatio-temporal arrays, ERA5-Land is included as a single-pixel time series 
(temporal array), and the DEM is a static image (spatial array).

approach. We incorporated comprehensive data sources to develop the DeepExtremeCubes dataset33, which 
comprises minicubes with a spatial size of 2.5 km by 2.5 km, covering the period from 2016 to 2022. The schematic 
approach is shown in Fig. 2. The Dheed dataset was used to generate a CHD event days map to determine the sam-
pling locations for the minicubes. Subsequently, the DeepExtremeCubes minicubes were created with various varia-
bles. Additionally, we prepared a spatial data split strategy for subsequent users to train their ML forecasting models.

Sampling locations for minicubes. The sampling of minicube locations began with identifying areas frequently 
experiencing CHD extremes. We sampled from both areas affected by extremes and surrounding areas with 
similar land covers (“extreme” and “non-extreme” locations). This approach allows ML models to learn from 
both CHD-impacted and non-impacted instances, enhancing prediction accuracy and facilitating accurate esti-
mation of carbon sequestration loss in CHD extremes. Additionally, we adjusted the locations based on land 
cover, with particular emphasis on persistent vegetation land covers.

The Dheed Label-Cube was compressed to a CHD event days map, marking all pixels that experienced ten 
or more CHD event days during 2016 and 2021. Due to the large size of the Dheed dataset, it could not be pro-
cessed quickly in the following steps. Therefore, we aggregated the temporal dimension and generated the CHD 
event days map (see Fig. 2(b)). All pixels that experienced ten or more CHD event days were marked as potential 
central sampling locations. Around 80% of the “extreme” minicubes were located in heavily impacted areas (i.e., 
areas marked in the event days map), while roughly 20% “non-extreme” minicubes were situated in the vicinity 
of “extreme” areas and did not experience any CHD events (i.e., areas with zero event days). This step serves two 
main purposes: first, it enables the models to learn from CHD-impacted and non-impacted instances, enhanc-
ing predictive accuracy. Second, it allows for more accurate computation of carbon sequestration losses within 
regions covered by minicubes by comparing paired minicubes from both “extreme” and “non-extreme” condi-
tions. To avoid spatial autocorrelation at very close distances in random sampling within “extreme” areas, where 

Fig. 2 A schematic diagram illustrating the DeepExtremeCubes database33 development and validation 
workflow. It includes (a) The Dheed dataset presenting an example of a CHD event in this data. (b) The CHD 
event days map shows locations that experienced ten or more event days according to the Dheed event detection 
dataset. (c) Minicubes that experienced ten or more CHD days (“extreme” minicubes) and those that did not 
experience any CHD days in the Dheed dataset (“non-extreme” minicubes). (d) A demonstration of a minicube, 
which includes remote sensing images, climatic and meteorological variables, Digital Elevation Model (DEM), 
land cover, etc. (e) The representativeness and spatial autocorrelation of the DeepExtremeCubes dataset33 for 
minicubes with different land cover types. (f) The spatial data split of DeepExtremeCubes for potential users to 
train their forecasting models.
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sampled locations tend to cluster, we maintained a spatial grid of 0.125° (half of the Dheed dataset’s resolution). 
We selected no more than one sample per grid cell for each land cover type.

We defined a set of target vegetation types that best summarise all the persistent land covers while keeping a 
focus on vegetation. In this study, we define “persistent land covers” as land covers that show minimal changes in 
their spatial extent or composition during the dataset period (2016-2022). This is crucial as stable land covers are 
less affected by anthropogenic activities, thereby minimising confounding effects from these changes. This stabil-
ity is essential as the primary objective of the derived dataset is to assess vegetation responses to CHD events. In 
this sampling step, we merged most of the land covers to simplify the sampling categories (see details in Table s1). 
These merged vegetation classes include broad-leaved trees, needle-leaved trees, mixed trees, and grassland. To 
enhance the diversity of land covers and examine prediction accuracy through comparisons between vegetation 
land covers and other persistent land covers, we also included bare area and urban area. Thereby, we focused 
on six land cover types (i.e. broad-leaved trees, needle-leaved trees, mixed trees, grassland, bare area, and urban 
area) in total. In addition, we assessed the purity of land covers within defined minicubes to evaluate the varying 
behaviours of the ML prediction model concerning pure versus mixed land covers. Given the ESA CCI land 
cover map’s resolution of 300 meters per pixel, a minicube (2.5 km by 2.5 km) encompasses approximately 9 × 9 
pixels. We established a spatial window of 81 pixels (9 × 9), centred on the central pixel, to determine the purity 
of each minicube’s land cover. If 65 or more pixels within this window exhibit the same land cover (equivalent to 
an 8 × 8 pixel area, about 80% of the spatial coverage of a minicube), the central pixel is classified under “pure 
land cover” and is eligible to be the central point of a minicube. Conversely, if fewer than 65 pixels share a single 
cover type, the central pixel is considered to have “mixed land cover.” Given the importance of land cover purity 
in one minicube for ML prediction models, we set a lower threshold such that the central pixel must display at 
least 50% similarity (40.5 pixels in a 9 × 9 matrix). If a land cover meets this threshold range of 50%–79%, the 
central pixel is still considered a potential sampling location and is marked with this land cover as the dominant 
land cover. We also list the second dominant land cover by tallying the remaining land cover classes and selecting 
the most frequent. Figure S1 presents the detailed distribution of (a) the pure land cover map and the mixed land 
cover maps, including (b) the dominant land cover map and (c) the secondary land cover map.

In summary, the minicube location sampling is based on two factors: whether the area is impacted by CHD 
extremes, and is purely or mixed covered by the target land covers. First, the minicube location sampling pri-
marily focuses on selecting areas affected by CHD extremes, specifically only those with more than ten event 
days. From this set 80% of all mincubes are chosen. The other 20% is selected from areas surrounding these 
extremes, which did not experience CHD extremes. We want to distinguish between minicubes covered by pure 
or mixed land covers, to facilitate exploration of land cover purity for prediction. This categorisation considers 
pure land cover (about 80%–100% covered by one land cover) and mixed land cover (about 50%–79% covered 
by one land cover). When a minicube has mixed coverage, its second land cover class is provided to offer addi-
tional contextual information. The results of the minicube sampling are shown in Fig. 3. The samples’ latitude 
and longitude coordinates indicate the central location of each minicube.

Minicube Generation and variables. We generated minicubes given the previously established central locations. 
A minicube is a dataset covering an area of 2.56 km by 2.56 km around the central location, ranging from 2016 
to 2022, incorporating elements from various data sources (as listed in Table 1). To minimise the distortion of 
the original data, we opted to maintain separate spatial and temporal resolutions, which can be harmonised 
during subsequent processing if necessary. We collected data from various sources during the generation process 
and documented details about processing steps in configuration files. We consolidated the variables into a single 
dataset54 and stored them in the Zarr format. The generation process comprised two stages: initially, we created a 
“base-minicube” composed exclusively of Sentinel-2 data. In the second stage, this “base-minicube” was updated 
with the remaining components. By adopting this strategy, we reduce the frequency of Sentinel-2 data pooling, 
which is the most resource-intensive part of the process. Additionally, we generate corresponding configuration 
files for these two phases. The final collection consists of 42,477 minicubes.

Fig. 3 The distribution of all sampled minicube locations. (a) Minicubes that experienced ten or more CHD 
days (“extreme” minicubes) and (b) minicubes that did not experience CHD events during 2016 and 2021 
(“non-extreme” minicubes). The land cover types depicted represent either the pure land cover type for the pure 
land cover minicubes or the dominant land cover for the minicubes covered by mixed land covers.
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Data Records
The DeepExtremeCubes dataset33,55 is accessible via OPARA, with maintained versions available at zenodo, with 
this section being the primary source of information on the availability and content of the data being described. 
The database includes the DeepExtremeCubes minicubes, a registry table providing all attributes within each 
minicube, and a demonstration Jupyter notebook to help explore the DeepExtremeCubes minicubes. Table 2 lists 
all attributes in the registry table. Users can use it to find minicubes based on specific criteria, such as spatial 
extent, components, land classes, labelled extreme events or located continent.

Technical Validation
Land cover representation. To validate the land cover representation in the DeepExtremeCubes dataset, 
we compared it with those of the global land cover (see Fig. 4). Our analysis reveals an overrepresentation of 
broad-leaved and needle-leaved trees in minicubes compared to the global distribution. Conversely, grassland 
and urban area align proportionally with the global distribution, while mixed trees samples are underrepresented. 
This underrepresentation is the result of our method, which defines the dominant land cover in each minicube as 
its primary land cover, and mixed trees often coincide with either broad-leaved or needle-leaved trees. From the 
ML perspective, having a larger number of minicubes covered by broad-leaved or needle-leaved trees, as opposed 
to mixed trees, enhances prediction accuracy.

Data Variable Spatial size/pixel Spatial resolution/m Temporal extent Temporal resolution/day

CCI land cover map Land cover class 9 * 9 300 2016 —

Copernicus DEM DEM 128 * 128 20 — —

Sentinel-2 L2A Bands 2-8A, Scene Classification Layer 128 * 128 20 2016.01.01 - 2022.10.10 5

EarthNet cloud mask Cloud mask 128 * 128 20 2016.01.01 - 2022.10.10 5

ERA5-Land data Min, max, and mean of selected variables 1 * 1 — 2016.01.01 - 2022.10.10 5

Event Data Event codes and labels 1 * 1 — 2016.01.01 - 2021.12.31 1

Table 1. The components of a minicube.

Attributes Description

mc_id Identifier of the minicube within the DeepExtremeCubes system with latitude, longitude, generation version, and 
generation date.

path Path to the minicube file in the storage system.

location_source Source file for the event location data.

location_id Geographical identifier associated with the latitude and longitude of the minicube.

version The generation version of the minicube

type
Type of minicube. Either “full”, “backup”, or “base”, where “full” means that the minicube has all required 
properties, “backup” refers to cubes that were created not based on the determined events and “base” means they 
are missing properties.

geometry Geometric boundary of the minicube.

creation_date Date and time when the minicube was created.

modification_date Date and time when the minicube was last modified.

events IDs of detected compound events of heatwaves and droughts were recorded at the minicubes location, along 
with each respective event’s start and end times.

class The type of land cover in case the minicube occupies ≥80% of one land cover. None if the minicube has mixed 
land cover.

dominant_class The most frequent land cover in case it covers between 50% and 80%. None for pure land cover cubes.

second_dominant_class The second most frequent land cover in case of a mixed land cover minicube. None for pure land cover cubes.

s2_l2_bands Version of the Sentinel-2 reflectance data in the minicube.

ERA5-Land Version of the ERA5-Land climate reanalysis data in the minicube.

cci_landcover_map Version of the CCI land cover data in the minicube.

copernicus_dem Version of the Copernicus DEM data in the minicube.

de_africa_climatology Version of climatology data specific to Africa in the minicube (applicable only to some cubes).

event_arrays Version of data of recorded events in the minicube.

s2cloudless_cloudmask Version of cloud masking data generated using the S2Cloudless model (where applicable).

sen2cor_cloudmask Version of cloud masking data generated using the Sen2Cor tool (where applicable).

unetmobv2_cloudmask Version of cloud masking data processed using the UnetMobV2 model (where applicable).

continent Continent where the minicube is located.

remarks Additional notes.

Table 2. Summary of minicube attributes in the DeepExtremeCubes dataset.
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Spatial analysis of minicube distribution. To assess the impact of our stratified sampling on the spatial 
distribution of minicube locations, we computed the spatial autocorrelation of their extreme event occurrences. 
The analysis yielded a Moran’s I value of 0.89, with a p-value of 0.001 and a z-score of 300.48. The high Moran’s 
I value (0.89) reveals a significant and strong positive spatial autocorrelation among minicube locations. This 
suggests that locations with similar event statuses (“extreme” or “non-extreme”) are clustered together. The statis-
tical significance of this clustering is confirmed by the p-value of 0.001 and the high z-score (300.48), indicating 
that the observed spatial pattern is highly unlikely to be the result of random chance. Additionally, the proximity 
of “extreme” minicubes to “non-extreme” minicubes demonstrates a correlation in our dataset due to the sam-
pling strategy. This effective sampling approach ensures that “non-extreme” samples are geographically close to 
“extreme” samples, confirming that our dataset’s spatial correlation is preserved.

We analysed the shortest distance along which an “extreme” minicube can find a “non-extreme” minicube 
with the same land cover and computed the proportion of these minicubes in the total “extreme” minicubes 
along that distance. It maintains comparable environmental and vegetation characteristics while differing only 
in the impact of the CHD event on the “extreme” minicube. The results indicate that at a surrounding distance 
of 200 km, approximately 25% to 35% of extreme minicubes of each land cover type (excluding urban areas) can 
find a non-extreme minicube with the same land cover as a reference. Urban areas have a 10% probability at this 
distance, which is attributed to their low coverage in both the global map and minicube coverage (see Fig. 5). At 
a surrounding distance of 100 km, extreme minicubes covered by bare areas have a relatively high probability of 
finding a non-extreme minicube, as bare areas dominate global land coverage. A similar pattern applies to mixed 
trees. Although the likelihood of finding a paired minicube covered with mixed trees within a surrounding dis-
tance of 75 km is relatively low, the high global coverage increases the chances of finding a paired non-extreme 
minicube at larger distances. For the three main vegetation land covers (broad-leaved trees, needle-leaved trees, 
and grassland), there is a 5% to 10% chance of finding a paired non-extreme minicube with the same land cover 
type within a surrounding distance of 100 km. Needle-leaved trees slightly exceed grassland at a distance of 150 
km, but overall, they exhibit a similar proportion.

Fig. 4 Land cover representation in the DeepExtremeCubes dataset. The two plotted datasets use different 
reference points. The red bars consider the global areas of selected land cover as 100%, while the light and heavy 
orange bars treat the total sum of land cover types across all minicubes as 100%.

Fig. 5 The proportion within a certain distance where an “extreme” minicube can find a “non-extreme” 
minicube covered by the same land cover.
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Limitation of the data. The DeepExtremeCubes dataset focuses on forecasting and analysing the impact of 
CHD extremes on persistent vegetation types. Although we included bare area and urban area as additional land 
covers, the diversity of land cover in the real world is not fully encompassed. For example, land covers primarily 
impacted by anthropological effects were omitted (e.g. croplands). This is the trade-off we must make to narrow 
variables for better prediction and training results in ML models.

The created event days map includes areas experiencing ten or more event days in the Dheed dataset. This 
might not be the best approach for a base map for minicube sampling. As mentioned by Weynants et al.35, the 
amount and volume of extreme events generally follow a power-law distribution, with a few extremely large 
events and many small ones. Additionally, events in the Dheed dataset with small spatial coverage and short 
duration could be false alarms. Therefore, selecting the event days map masking areas of more than ten event 
days might be simplistic and effective as it accurately reflects the real CHD detection results. Considering this 
limitation, we propose an alternative strategy, setting criteria that require a volume greater than 1000 units, an 
area exceeding 30 pixels (equivalent to a 0.25° increment), and a duration longer than five days. Using these con-
ditions, we identified 114 significant events out of 26,935 events. The resulting event days map is shown in Fig. s2 
in the supplementary information. This alternative map can directly replace the 10-day event map.

Usage Notes
The spatial distribution of the minicubes is strongly uneven. Climatic and meteorological data are correlated 
across large spatial ranges. This leads to minicubes being clustered in and around extreme events. When design-
ing AI methods, one should circumvent this spatial autocorrelation, and samples may not be randomly selected 
from the minicubes collection to create the training and test sets. To limit the dependence between training, val-
idation and test sets, we implemented a split of the collection into ten folds, ensuring that the distance between 
minicubes locations from different folds is larger than 50 km56. This split is created in three steps. First, we build 
a balltree from the haversine distance for all locations (lon, lat). A ball tree (also called metric tree) is a tree that 
is created from successively splitting points into surrounding hyperspheres whose radii are determined from the 
given metric57,58. The Haversine distance is the angular distance between two points on the surface of a sphere. 
Second, we create clusters of locations, ensuring that the distance between locations from different clusters is 
always larger than 50 km. Third, clusters are distributed into ten groups, in decreasing order of size, always add-
ing the largest cluster to the smallest group. Figure 6 shows the spatial distribution of the resulting groups. One 
application case is that Pellicer et al.59 used the DeepExtremeCubes dataset and demonstrated a convolutional 
LSTM-based approach to forecast Earth surface impacts during CHD events, achieving high accuracy while 
leveraging explainable AI to analyze predictive drivers and regime changes both before and during these events.

The criteria for defining “paired minicubes” are primarily determined by the user’s study objectives and 
model training requirements. Users can typically adjust the definition of “paired minicubes” with criteria such as 
the distance between minicubes, the study period, land cover types (both primary and secondary), specific CHD 
extremes, and the model’s training needs, such as the volume of input data required. If users wish to compute 
standard spectral indices53,60, the minicubes allow for easy (and even lazy) computation of the required indices, 
tailored to their specific objectives.

Code availability
The code to create the minicubes is hosted on GitHub.

Received: 6 June 2024; Accepted: 10 January 2025;
Published: xx xx xxxx

Fig. 6 The spatial division of minicube locations into ten folds using a spatially blocked design to reduce 
autocorrelation between folds.
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