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Ferroptosis triggers mitochondrial fragmentation via Drp1
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Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been
implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating
constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently
identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed. Yet,
how this is regulated and whether it is involved in ferroptotic cell death has remained unexplored. Here, we provide evidence that
Drp1 is activated upon experimental induction of ferroptosis and promotes cell death execution and mitochondrial fragmentation.
Using time-lapse microscopy, we found that ferroptosis induced mitochondrial fragmentation and loss of mitochondrial membrane
potential, but not mitochondrial outer membrane permeabilization. Importantly, Drp1 accelerated ferroptotic cell death kinetics.
Notably, this function was mediated by the regulation of mitochondrial dynamics, as overexpression of Mitofusin 2 phenocopied
the effect of Drp1 deficiency in delaying ferroptosis cell death kinetics. Mechanistically, we found that Drp1 is phosphorylated and
activated after induction of ferroptosis and that it translocates to mitochondria. Further activation at mitochondria through the
phosphatase PGAM5 promoted ferroptotic cell death. Remarkably, Drp1 depletion delayed mitochondrial and plasma membrane
lipid peroxidation. These data provide evidence for a functional role of Drp1 activation and mitochondrial fragmentation in the
acceleration of ferroptotic cell death, with important implications for targeting mitochondrial dynamics in diseases associated with
ferroptosis.
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INTRODUCTION
Ferroptosis is a caspase independent form of regulated necrosis
characterized by the accumulation of iron-dependent lipid
peroxides in cellular membranes [1]. Ferroptosis has been
implicated in several oxidative stress-related diseases such as
ischemia-reperfusion, degenerative diseases, acute renal failure,
traumatic brain injury, and cancer [2–6].
Reactive oxygen species (ROS) in cells can be triggered by

several causes, such as impaired redox capacity, increased
mitochondrial respiration, imbalanced iron metabolism, or, in
the presence of labile iron, increased Fenton reactions generating
hydroxyl radicals. Under physiological conditions, ROS produced
by the respiratory chain in the inner mitochondrial membrane
(IMM) are buffered by cytosolic and mitochondrial antioxidant
enzymes, whose inactivation represents the main trigger of
ferroptosis. A key function in the defense against ferroptosis is
assigned to glutathione peroxidase 4 (GPX4), which depends on
the presence of glutathione (GSH) as a co-factor [1, 7]. As a result,

direct inhibition of GPX4 by small molecule inhibitors such as RSL3
or ML210, or depletion of GSH levels using erastin, are widely used
methods to induce ferroptosis [1, 7]. Given that intracellular
cystine is needed for GSH synthesis, ferroptosis protection is
thereby also critically regulated through cystine import via the
cystine/glutamate antiporter xCT, which is a molecular target of
erastin [8]. As a second line of defense, the oxidoreductase
ferroptosis suppressor protein 1 (FSP1) was recently described to
generate ubiquinol from ubiquinone, the first of which acts as a
radical-trapping agent halting lipid peroxidation specifically at the
plasma membrane [9, 10].
Mitochondria have been proposed to play an important role in

ferroptosis. Notably, the major site of ubiquinone synthesis lies
within mitochondria. On the other hand, plasma, mitochondrial
and endoplasmic reticulum (ER) membranes have been suggested
as potential major sites of lipid peroxidation in ferroptosis [11]. In
addition, several changes in mitochondrial morphology have been
linked to oxidative stress [12]. It is thus not surprising that early in
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the characterization of ferroptotic cell death, mitochondrial
fragmentation was reported [1]. Inhibition of xCT in addition to
mitochondrial fragmentation has also been shown to induce
mitochondrial ROS production, loss of mitochondrial membrane
potential (MMP), and ATP depletion [13–17]. In support of a
requirement for mitochondrial metabolism in the execution of

ferroptosis, mitochondrial depletion via Parkin-mediated mito-
phagy in vitro or inhibition of oxidative phosphorylation
(OXPHOS) rescued cells from ferroptosis induced by cystine
deprivation or erastin treatment [13]. However, mitochondrial
DNA-depleted cells remained sensitive to oxidative stress and
ferroptosis induction [1]. Mitochondrial fragmentation has also
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been observed in various types of regulated cell death besides
ferroptosis [1], such as apoptosis [18, 19], necroptosis [20] and
pyroptosis [21].
The large GTPase Dynamin-related protein 1 (Drp1) promotes

constitutive mitochondrial fission in healthy human cells to
maintain cellular homeostasis, and it was shown to mediate
mitochondrial fragmentation and cristae remodeling in apoptotic
cells to facilitate cytochrome c release [18, 19]. During apoptosis,
Drp1 can directly interact with BAX at apoptotic foci, promoting
mitochondrial outer membrane permeabilization (MOMP) and
finally cell death [19]. Drp1-mediated mitochondrial fragmentation
has also been observed in necroptosis [22, 23] and autophagy [24].
Notably, heterozygous drp1 knockout (KO) mice show defective
mitochondrial fission and lower levels of lipid peroxidation in
tissues [25]. However, despite the massive mitochondrial frag-
mentation observed in ferroptotic cells, the contribution of Drp1
to ferroptotic cell death remains poorly understood.
Here, we characterized kinetics of mitochondrial alterations in

cells undergoing ferroptosis in relation to lipid peroxidation. We
find that Drp1 is activated upon ferroptosis and accelerates
ferroptotic cell death. This function of Drp1 in ferroptotic cell
death acceleration is dependent on its mitochondrial recruitment
and regulation of mitochondrial dynamics. Our findings support a
role for Drp1 in remodeling of the mitochondrial network and in
cell death promotion during ferroptosis.

RESULTS
Ferroptosis induces mitochondrial fragmentation and
depolarization, but not mitochondrial outer membrane
permeabilization
To first determine whether mitochondrial integrity might play a
role in ferroptosis, we used live-cell confocal microscopy to
explore alterations in mitochondrial morphology and function
upon ferroptosis induction over time. We used the lipid
peroxidation sensor BODIPY C11 581/591 to visualize lipid
peroxidation in cell membranes, Mitotracker deep red as a marker
of mitochondrial network morphology, and Tetramethylrhoda-
mine ethyl ester perchlorate (TMRE) to visualize changes in
mitochondrial membrane potential.
Upon induction of ferroptosis using the GPX4 small molecule

inhibitor RSL3, we observed an increase in oxidized BODIPY C11
indicative of increased lipid ROS, increased fragmentation of the
mitochondrial network and loss of mitochondrial membrane
potential in NIH3T3 cells (Fig. 1A, B). Mitochondrial depolarization
was accompanied by cell shape changes, including cell rounding
and the appearance of a single swollen bleb at the plasma
membrane, which is considered a ferroptotic hallmark (Fig. 1B,
lower panel) [26].
To further characterize the temporal relationship between

increased lipid ROS, loss of mitochondrial membrane potential
and cell death, we tracked all these events in parallel in HT-1080

cells treated with RSL3 using fluorescent live cell imaging (Fig.
1C, D). We used MitoView 650 to visualize changes in mitochon-
drial membrane potential [27, 28] and the fluorescent DNA-
intercalating agent CytotoxGreen as a marker of irreversible
plasma membrane rupture and cell death. We detected a clear
increase in oxidized BODIPY C11 indicative of lipid peroxidation,
which preceded the loss of mitochondrial membrane potential
and cell death in HT-1080 cells upon RSL3 treatment (Fig. 1C–F).
All of these events were inhibited by the lipophilic radical-trapping
agent and specific ferroptosis inhibitor ferrostatin-1 (Fer-1) [1],
indicating their specific dependence on lipid peroxidation (Fig.
1E, F). From the kinetic curves (Fig. 1E, F), we determined the time
required to reach 50% of each parameter (t50%) which allowed us
to determine the lag time between these ferroptotic phenotypes
(Fig. 1G). Temporally, after RSL3 treatment, HT-1080 cells showed
an increase in lipid peroxidation (t50%= 1.6 h) followed by a
decrease in mitochondrial membrane potential (t50%= 2.5 h) and
cell death (t50%= 4.8 h) (Fig. 1G). Mitochondria are major sites of
iron utilization, especially for the synthesis of iron sulfur clusters
[29]. To test whether mitochondrial membrane depolarization
could also affect availability of cytosolic and/or mitochondrial
labile iron pools, we performed live cell imaging of labile iron
pools in HT-1080 cells treated with RSL3. We observed a clear
increase in labile iron pools preceding cell death (Fig. S1A–D),
which could be blocked with the iron chelating agent deferox-
amine (DFO) (Fig. S1B). Of note, the labile iron pools were
distributed throughout the cell without a preferred subcellular
localization (Fig. S1D).
In apoptosis, MOMP, characterized by loss of mitochondrial

membrane potential and release of cytochrome c and Smac/
DIABLO into the cytosol, is considered the point of no return in the
cells’ commitment to death [30]. Smac is a mitochondrial pro-
apoptotic factor that is released into the cytosol upon MOMP [19].
To next determine whether the observed mitochondrial changes
were accompanied by MOMP, we performed live-cell confocal
imaging of RSL3-treated HT-1080 cells transiently expressing
Smac-mCherry (Fig. 1H). In contrast to MOMP during apoptosis
[19, 31–33], there was no release of Smac into the cytosol despite
loss of mitochondrial potential in NIH-3T3 cells undergoing
ferroptosis (Fig. 1H). This result was confirmed by immunoblot
assay using an anti-Smac antibody in HT-1080 cells (Fig. 1I).
Similarly, we did not detect the release of cytochrome c from the
intermembrane space of mitochondria into the cytosol of HT-1080
cells upon ferroptosis induction (Fig. 1I), indicating that loss of
mitochondrial membrane potential is not followed by MOMP in
ferroptotic cell death.
The contribution of oxidation of subcellular organelles to

ferroptosis execution is not yet clear [13]. Mitochondria generate
a high amount of ROS in the respiratory chain that are potentially
able to oxidize polyunsaturated fatty acid (PUFA)-containing
phospholipids through non-enzymatic reactions [13]. Studies on
the role of mitochondria in ferroptosis suggested that

Fig. 1 Ferroptosis induces mitochondrial fragmentation and depolarization but not mitochondrial outer membrane permeabilization.
A Live cell confocal images of NIH-3T3 cells labeled with Bodipy C-11 [1 µM] and Mitotracker [50 nM] ± RSL3 treatment [2 µM] for 2 h. Scale bar,
10 µm. B Time-lapse confocal images of NIH-3T3 cells treated with RSL3 [2 µM] and monitored for loss of TMRE staining [200 nM]. Scale bar,
20 µm. C, D Time-lapse Incucyte images of HT-1080 cells treated with RSL3 [0.5 µM] and labeled using Bodipy C-11 [1 µM] and MitoView 650
[50 nM] in c or CytotoxGreen staining [250 nM] and MitoView 650 staining [50 nM] in (D). Scale bars in (C, D), 100 µm. E Kinetics of increase in
lipid peroxidation and decrease in MitoView 650 positive cells after RSL3 [0.5 µM] treatment in the presence or absence of Fer-1 [2 µM],
calculated from experiments as shown in (C). F Kinetics of increase in CytotoxGreen staining and decrease in MitoView 650 positive cells after
RSL3 [0.5 µM] treatment ± Fer-1 [2 µM], calculated from experiments as shown in (D). G Graphical representation of the sequence of events
observed in HT-1080 cells following RSL3-induced ferroptosis. t50 of each phenotypic event was calculated from the mean curves shown in
(E, F). These values correspond to the time at 50% of the maximum signal. H Time-lapse confocal microscopy images of Smac-mCherry cellular
localization during ferroptosis induction in NIH-3T3 cells treated with RSL3 [1 µM]. Scale bar, 20 µM. I HT-1080 cells were treated with DMSO
(control) or RSL3 [1 µM] for 3 h. Cells were lyzed and separated into cytosolic and mitochondrial fractions. The indicated proteins were
detected by Western blotting. J Time course of increase in oxidized Bodipy C-11 and CytotoxGreen uptake in HT-1080 cells treated with RSL3
[0.5 µM] in the presence or absence of MitoQ [0.5 µM] or Fer-1 [2 µM]. Images are representative of at least three independent experiments
each performed at least in triplicates throughout. Values in (E, F, J) represent the mean of at least three independent experiments ± STDEV.
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mitochondria play an important role in cysteine starvation-
induced ferroptosis by competitively consuming GSH as a cofactor
for GPX4 to reduce lipid peroxides generated in mitochondria and
plasma membrane [13]. However, how mitochondria-derived ROS
contribute to the execution of ferroptotic cell death remains an
open question. To shed light on this issue, we characterized the
effect of Mitoquinol (mitoQ), a mitochondria-targeted ubiquinol
analog [34] and radical trapping agent, on ferroptotic death in HT-
1080 cells treated with RSL3. Both lipid peroxidation and cell
death were prevented in the presence of MitoQ, suggesting that
ROS residing within mitochondria are relevant to ferroptosis
execution.

Drp1 accelerates ferroptotic cell death
In mammals, mitochondrial fission and fragmentation are
mediated by Drp1, which translocates from the cytosol to the
outer mitochondrial membrane (OMM), where it oligomerizes into
spirals that are believed to mediate mitochondrial constriction and
subsequent mitochondrial fragmentation [15, 18, 35]. Drp1-
mediated mitochondrial fragmentation has been described in
various types of programmed cell death, including necroptosis
[20, 36], autophagy [24, 37] and apoptosis [18, 19]. However, the
contribution of Drp1 to ferroptosis is only poorly understood. To
investigate whether Drp1 plays a role in the mitochondrial
fragmentation observed in ferroptotic cells (Fig. 1A) and in
ferroptotic cell death, we assessed the effect of Drp1-deficiency in
mouse embryonic fibroblasts (MEFs) treated with RSL3, erastin or
cysteine starvation (Fig. 2A–C). We observed that regardless of
ferroptosis-inducing treatment (Fig. S2A–C), there was a delay in
the kinetic of cell death in absence of Drp1, especially at early time
points, suggesting that Drp1 presence accelerates ferroptosis
kinetics (Fig. 2A–C). Similarly, transient genetic depletion of drp1
using drp1fl/fl MEFs infected with adenoviral Cre efficiently
reduced induction of ferroptosis (Fig. 2D). In addition, siRNA-
mediated silencing of Drp1 in MEFs and in human H441 and A549
non-small cell lung cancer (NSCLC) cell lines reproduced this effect
when undergoing ferroptosis induced by RSL3, erastin or
buthionine sulfoximine—an irreversible inhibitor of γ-glutamyl-
cysteine synthetase that causes GSH depletion (Fig. 2E, F, Fig.
S2D–I). Notably, the iron chelating agent DFO blocked residual cell
death irrespective of the presence or absence of Drp1 indicating
that iron was required in both cases (Fig. 2G). Moreover, levels of
mitochondrial iron transport proteins were not changed by
Drp1 silencing (Fig. S2J). We also observed a decrease in cellular
lipid peroxidation after erastin or RSL3 treatment upon
Drp1 silencing (Fig. 2H). Accordingly, treatment with the Drp1
inhibitor Mdivi also partially protected H441 and A549 cells from
ferroptotic cell death (Fig. S2K).
To counterbalance Drp1-mediated mitochondrial fission, the

large GTPases Mitofusin 1 and 2 (Mfn1/2) promote mitochondrial
fusion [38, 39]. As such, both Drp1-deficiency and Mfn1/2
overexpression results in more fused and elongated mitochondria
[40]. Yet, Drp1 has also been described to fulfill other functions
independent of mitochondrial dynamics [38]. To assess whether
the ferroptosis-promoting effect of Drp1 is related to its role in
regulating mitochondrial dynamics, we transiently transfected
wild type (WT) and drp1−/− MEFs with alcohol dehydrogenase
(ADH)-tagged Mfn2-ADH (Fig. S2L) and measured the kinetic of
RSL3-induced ferroptosis. Interestingly, in drp1−/− MEFs, over-
expression of Mfn2 further protected cells from ferroptosis (Fig. 2I).
The protective effect of Mfn2 overexpression against ferroptosis
was not reproduced in WT MEFs, probably because we were
unable to achieve significant levels of expression under similar
conditions (Fig. S2L). In support of a function for mitochondrial
dynamics in regulating ferroptosis kinetics, Mfn2−/− MEFs were
more sensitive to RSL3-induced ferroptosis than controls, which
could be reverted upon Drp1 silencing (Fig. 2J, Fig. S2M).
Collectively, these data suggest that it is the regulation of

mitochondrial dynamics, rather than an independent specific
function of Drp1, that modulates ferroptosis execution.

Drp1 is activated and translocates to mitochondria upon
ferroptosis induction
Drp1 is a cytosolic protein that requires translocation to the OMM
to induce fission events [41, 42]. This translocation depends on
mitochondrial adapter proteins and phosphorylation events of
Drp1 [43, 44]. The most common and important phosphorylation
sites are serine 616 (S616) and serine 637 (S637), which have
opposite effects on Drp1 regulation [45]. Phosphorylation at S616
enhances Drp1 activity and promotes its translocation to
mitochondria, whereas phosphorylation at S637 suppresses Drp1
activity [35, 46]. Interestingly, we observed a time-dependent
phosphorylation of Drp1 S616 in cells treated with erastin (Fig. 3A)
suggesting that cytosolic Drp1 is activated upon ferroptosis
induction.
The GTPase activity of Drp1 is a central factor in the induction of

oligomerization at the OMM and ultimately, in mitochondrial
fission. Therefore, we tested whether Drp1 GTPase activity is
increased after ferroptosis induction by isolating Drp1 by
immunoprecipitation followed by GTPase activity assays (Fig.
3B). We found that the GTPase activity of Drp1 indeed increased
over time after erastin treatment (Fig. 3C, D). Accordingly,
treatment of cells with the Drp1 inhibitor Mdivi-1 reverted the
increased GTPase activity of Drp1 during erastin-induced ferrop-
tosis (Fig. 3C, D). Both the increased phosphorylation at Ser616
and GTPase activity of Drp1, suggested that Drp1 might
translocate to mitochondria during ferroptosis. Indeed, using
confocal microscopy, we observed significant recruitment of Drp1
to mitochondria following erastin treatment (Fig. 3E, F). Moreover,
mitochondrial fractions isolated from cells treated with DMSO or
erastin, also showed a time-dependent increase in S616-
phosphorylated and total Drp1 (Fig. 3G). In summary, we find
that Drp1 is activated and accumulates at mitochondria upon
induction of ferroptosis.

Mitochondrial recruitment of Drp1 is required for promotion
of ferroptosis
Drp1 recruitment to mitochondria is initiated by its phosphoryla-
tion, but also by the presence of adapter proteins that facilitate its
localization to the OMM [43]. In mammals, the OMM proteins
mitochondrial fission factor (Mff), mitochondrial fission 1 protein
(Fis1), mitochondrial dynamics of 49 kDa (MiD49) and mitochon-
drial dynamics of 51 kDa (MiD51) are described as adapters of
Drp1 [43]. However, while Fis1 and Mff are also localized in other
organelles such as peroxisomes, MiD49 and MiD51 are exclusively
found in mitochondria [47, 48]. Drp1-dependent mitochondrial
fission events driven by MiD49 and MiD51 were shown to be
required for cytochrome c release during the early phase of
intrinsic apoptosis [18]. To test whether these mitochondrial
adapters are also involved in ferroptotic cell death, we used siRNA-
mediated knockdown of MiD49 or MiD51 upon erastin treatment
followed by a cell death read-out using propidium iodide (PI)
staining. Remarkably, partial silencing of these mitochondrial
adapters was sufficient to rescue cells from undergoing ferroptosis
(Fig. 4A–C).
While phosphorylation of Drp1 at S616 activates it, depho-

sphorylation of the inhibitory S637 site is important for the
oligomerization of Drp1 and therefore for the execution of
fission events [49]. During intrinsic and extrinsic apoptosis, Drp1
is recruited to fission sites on mitochondria where it is further
activated in a secondary step by S637-Drp1 dephosphorylation
by the mitochondrial phosphoglycerate mutase/protein phos-
phatase (PGAM5) [50]. PGAM5 functions as a Ser/Thr phospha-
tase and a proportion of it has been shown to localize to the
OMM with its C-terminus facing the cytoplasm [51]. To
determine/confirm PGAM5 localization in our cellular system,
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we isolated mitochondria from cells treated with erastin for
several time points and subjected them to proteinase
K-mediated digestion of OMM-exposed proteins. While the
bona-fide OMM protein translocase of outer mitochondrial
membrane protein 70 (TOM70) was effectively cleaved off the
mitochondrial surface, PGAM5 behaved similar to the IMM
control protein translocase of the inner membrane protein 23

(TIM23), i.e., a sub-proportion was constitutively cleaved off
while a larger proportion was inaccessible for proteinase
K-mediated cleavage (Fig. S3A). Importantly, inducing ferropto-
sis using erastin did not change proteinase K-accessibility over
time indicating that a proportion of PGAM5 is indeed
constitutively available at the OMM, but that this amount does
not change upon induction of ferroptosis.
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Recently, PGAM5 was found to interact with Mfn2 and Drp1 in
a stress-sensitive manner [52]. We thus tested whether PGAM5
might be involved in ferroptosis. Interestingly, we found that
PGAM5−/− cells were indeed more resistant to erastin and
cysteine-deprivation-induced ferroptosis compared to WT cells
(Fig. 4D–E). Moreover, reconstitution of PGAM5−/− cells with
cDNAs of the long isoform of WT (Fig. S3B) but not catalytically
inactive (H105A) PGAM5 [53] restored ferroptosis sensitivity to
wild-type cell levels (Fig. 4F) indicating that expression and
catalytic activity of this isoform is sufficient to promote
ferroptosis.
Since Drp1 depletion slowed down ferroptosis kinetics, we

hypothesized that the subcellular spread of lipid peroxidation
from intracellular membranes to the plasma membrane [11]
might be impaired in absence of Drp1. To address this, we
developed a method in which we stained mitochondria using
Mitotracker, which we used to generate a binary mask to
determine mitochondrial co-localization with oxidized BODIPY
C11 staining in 3D stacks. Plasma membrane oxidation was
estimated in parallel using the contour of the cells in bright field
images as a reference. This approach allowed single cell
quantification of subcellular lipid peroxidation distribution in
real-time. Strikingly, we found that, in contrast to wild-type cells,
lipid peroxidation at the plasma membrane was initially
unchanged but impaired after 80 min in drp1−/− cells. Impor-
tantly, mitochondrial lipid peroxidation accumulation was
strongly impaired in drp1−/− cells throughout (Fig. 4G–I). Taken
together, these data suggest that mitochondrial fragmentation
mediated by Drp1 promotes mitochondrial lipid peroxidation
and subcellular lipid peroxidation spread thereby accelerating
ferroptosis kinetics.

DISCUSSION
While rapid progress has been made in our understanding of
ferroptosis in recent years, the relevance of mitochondrial
alterations to ferroptosis progression and the underlying mole-
cular mechanisms involved have remained poorly understood.
Here, we investigated several mitochondrial alterations during
ferroptosis execution including an increase in mitochondrial
fragmentation and mitochondrial depolarization, and kinetically
correlated them with lipid oxidation. We found that GPX4
inactivation induces an increase in lipid peroxidation that
precedes mitochondrial depolarization and complete plasma
membrane disruption.
Mitochondrial fragmentation is a feature of ferroptosis

[1, 13, 14, 54] that is common to a variety of programmed cell
death pathways such as apoptosis [18, 19, 30], necroptosis [20]
and pyroptosis [21]. Early studies in the ferroptotic field have
proposed that mitochondria are fragmented due to the accumu-
lation of ROS [1]. However, whether peroxidation of PUFAs-PL at

mitochondria would be sufficient to cause mitochondrial frag-
mentation has not been investigated. In apoptosis, mitochondrial
fragmentation is mainly triggered by the GTPase Drp1 and has
been associated with MOMP, which releases cytochrome c and
Smac/DIABLO into the cytosol [18, 30, 55]. However, mitochondrial
fragmentation is conserved in apoptotic cell death, even in
organisms where MOMP is not involved [56]. Interestingly, we find
that mitochondrial fragmentation and potential loss are also not
associated with MOMP in ferroptosis.
Interfering with the mitochondrial fission machinery by deple-

tion or silencing of Drp1 delays ferroptosis execution, unraveling
an important role of this protein in ferroptosis. Our results also
showed that overexpression of Mfn2 in Drp1 KO MEFs partially
rescues ferroptosis. Interestingly, homozygous drp1 KO mice are
embryonically lethal [57, 58] whereas heterozygous drp1 KO mice
survive and show lower levels of H2O2 and lipid peroxides in
tissues compared to wild-type littermates [25]. In line with the
ferroptosis-promoting function for Drp1, Drp1 activity was
correlated with tissue ferroptosis levels in injury models of
temporary middle cerebral artery occlusion/reperfusion [59].
Consistent with this, we observed decreased lipid peroxidation
in response to ferroptosis induction in the mitochondria and
plasma membrane of Drp1-deficient MEFs. However, Drp1 has
previously been suggested to limit the induction of ferroptosis
using erastin in oral squamous cell carcinoma [60]. Since erastin
can also induce generic ROS-driven cell death due to the resulting
loss of GSH and that the latter study used the general ROS
scavenger N-acetyl cysteine to revert cell death, it is possible that
Drp1 can fulfill additional and opposing functions depending on
whether lipid ROS or general ROS are the driver of cell death.
The activity of Drp1 is dependent on several post-translational

regulations, of which phosphorylation at S616 and S637 are the
best described. P-S616 induces Drp1 activation and translocation
to mitochondria, but some studies have shown that P-S616 does
not necessarily affect Drp1 GTPase activity [56, 57]. In this study,
we found that Drp1 is phosphorylated at S616 and translocates
to mitochondria upon ferroptosis induction hand in hand with an
increase in GTPase activity. In necroptosis, PGAM5 has been
described to recruit Drp1 and activate its GTPase activity by
dephosphorylating P-S637 [22, 61]. Consistent with this, we also
observed decreased cell death in PGAM5−/− cells compared to
the corresponding control. PGAM5 activation during mitochon-
drial stress has been specifically described in response to
interfering with the electron transport chain, subsequently
triggering mitochondrial fission and mitophagy [22]. It has been
proposed that PGAM5 interacts with and dephosphorylates
FUN14 Domain Containing 1 (FUNDC1) at serine 13 in response
to mitochondrial depolarization or hypoxia, thereby enabling the
interaction between the LC3-interacting region (LIR) of FUNDC1
and LC3, which represents a key step in mitophagy [62].
Additionally, BCL2L1, but not BCL2 interacts with and inhibits

Fig. 2 Drp1 accelerates ferroptotic cell death. Control or drp1−/−MEFs were treated with A RSL3 [0.5 µM], B erastin [10 µM] or C cysteine
starvation in the presence of Draq7 [3 µM] for the indicated time. Dead cells were quantified as Draq7 positive cells using Incucyte live cell
imaging. D Control or drp1FL/FL MEFs cells were infected with Adenoviral-Cre for 24 h. The indicated cells were subsequently treated with
DMSO or erastin [10 µM] for 16 h. % Propidium iodide (PI) positive cells were quantified by flow cytometry. Representative immunoblots of the
used cells (insert). Wild-type MEFs were subjected to mock or Drp1-targeting siRNA for 72 h followed by treatment with E erastin [10 µM] or
F RSL3 [1 µM]. Dead cells were quantified as Draq7 positive cells using Incucyte live cell imaging. G wild-type MEFs ± Drp1 knockdown as in
(E, F) were treated with erastin [10 µM] and/or DFO [10 µM]. Dead cells were quantified as Draq7 positive cells normalized to cell confluence
using Incucyte live cell imaging. H wild-type MEFs ± Drp1 knockdown as in (E, F) were treated with erastin [10 µM] or RSL3 [1 µM] in the
presence of STY-BODIPY [1 µM] for 4 h and imaged using the Incucyte live cell imaging system. The ratio of oxidized STY-Bodipy (STY-
Bodipyox) to reduced STY-Bodipy (STY-Bodipyred) is shown. I Control or Drp1 knockout (KO) MEFs were transiently transfected with mitofusin
2-ADH (Mfn2-ADH) for 24 h and subsequently treated with RSL3 [0.5 µM] in the presence of Draq7 [3 µM] for the indicated time and imaged
using the Incucyte live cell imaging. J wild-type or Mitofusin-2 Knockout (mfn2−/−) MEFs were subjected to mock or Drp1-targeting siRNA for
72 h followed by treatment with RSL3 [1 µM] and/ or Fer-1 [1 µM]. Dead cells were quantified as Draq7 positive cells using Incucyte live cell
imaging. All graphs represent means ± STDEV or ±SEM of at least three independent experiments each performed at least in triplicates
throughout. Ordinary one-way ANOVA and multiple comparisons test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
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PGAM5, to prevent the dephosphorylating of FUNDC1, which
activates hypoxia-induced mitophagy [63]. PGAM5 also depho-
sphorylates Bcl-xL at Ser 62, restoring BCL-xL inhibition of BAX
and BAK and resistance to apoptosis [64]. Conversely, oxidative
stress drives the oligomerization of PGAM5, causing its dissocia-
tion from BCL-xL, consequently promoting apoptosis. In this
regard, it has been proposed that the interaction of PGAM5 with
FUNDC1 and BCL-xL, which is dependent on PGAM5’s oligomer-
ization state, serves as a pivotal point in the switch between

mitophagy and apoptosis [64]. In our conditions, it is reasonable
to speculate that PGAM5 is activated during oxidative stress
during ferroptosis, leading to mitochondrial fragmentation,
although the molecular mechanism is still unknown. Interest-
ingly, a recent study reported protein-protein interactions
between Drp1 and ACSL4 and a requirement for Drp1 depho-
sphorylation at S637 to stabilize ACSL4 and promote ferroptosis
[65]. Hence, it is possible that the observed failure to accumulate
peroxidized lipids in mitochondria observed in Drp1-deificient

Fig. 3 Drp1 is activated and recruited to mitochondria upon induction of ferroptosis. A A549 cells were treated with erastin [10 µM] for the
indicated time, lyzed and subjected to Western blotting. B schematic illustration of experimental setup in (C, D). C, D A549 cells were pre-
treated with Mdivi-1 [75 µM] for 24 h followed by additional treatment with erastin [10 µM] for the indicated time points followed by
immunoprecipitation of Drp1 and C GTPase activity assay with one part and D Western blotting of another part. E Confocal images of A549
labeled with Mitotracker [150 nM] and co-stained with Drp1-Antibody, ±erastin treatment [10 µM] for the indicated time points. Scale bar,
10 µm. F quantification of colocalization of Drp1 and mitochondria using Pearson’s coefficient. Images were analyzed using ImageJ and Jacob
Plugin. Pearson’s coefficient values are plotted. Every dot represents a single cell quantified. G representative immunoblots of isolated
mitochondria and their respective cytosolic fraction of A549 cells after treatment with erastin [10 µM] for the indicated time points. Images are
representatives of at least three independent experiments. Data represent means from three independent experiments ±STDEV. Ordinary
one-way ANOVA+multiple comparisons test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
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cells is promoted by alterations within the organelle-specific
lipidome.
In summary, our results support a general role for Drp1 in

controlling mitochondrial alterations during the progression of
different types of regulated cell death.

MATERIALS AND METHODS
Reagents
erastin (Bectin Pharma, Calbiochem®, Germany), Mdivi-1 (Sigma Aldrich),
Ferrostatin-1 (Sigma Aldrich), RSL3 (Sellekchem), zVAD (Enzo Life Sciences),
Nec1s (Abcam), DFO (Merck). RPMI without methionine, cysteine and
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L-glutamine was supplemented with 100 nM methionine and 2 mM L-
glutamine, 10% FCS and 1000 U/mL of both penicillin and streptomycin (all
from Sigma Aldrich). DMEM medium was purchased from (Invitrogen,
Germany). C11 BODIPY 581/591, Draq7 and CytotoxGreen were purchased
from Thermofisher (Germany).

Generation of cell lines
HEK293 Flp-In T-Rex PGAM5 KO cells were generated using CRISPR-SpCas9
mediated gene editing. Cells were transiently transfected with the px335
(#42335) expression plasmid containing hSpCas9n (D10A) nickase and
hPGAM5 guide RNAs. Cell cultures were subjected to monoclone selection
by serial dilution. Single clones were validated by immunoblotting and
genomic sequencing. PGAM5 KO cells were complemented by stable
integration of C-terminally Myc-labeled murine PGAM5 (long isoform) or
PGAM5 H105A at the FRT site followed by immunoblot verification.

Cell lines and culture conditions
Human NSCLC cell lines (H441, A549) were kindly provided by Prof. Julian
Downward. They were cultured in RPMI 1640 medium (Thermo Fisher)
supplemented with 10% fetal bovine serum (FBS) (Sigma Aldrich) and
1000 U/mL of both penicillin and streptomycin (Sigma Aldrich). Mfn2−/−

Murine embryonic fibroblasts (MEFs) were kindly provided by Prof. Lena
Pernas (University of California Los Angeles, Los Angeles). NIH-3T3 cells
were kindly provided by Prof. Dr. Andreas Linkermann (University Hospital
Carl Gustav Carus of the Technical University of Dresden). HT-1080 cells
were provided by Dr. Marcus Conrad (Helmholtz Zentrum München) under
a material transfer agreement. Drp1fl/fl MEFs were kindly provided by Luca
Scorrano (Veneto Institute of Molecular Medicine, Padova). NIH-3T3, HT-
1080, HEK, and wt and Drp1 KO MEFs were cultured in Dulbecco´s
modified Eagle´s medium (DMEM, Thermo Fisher) supplemented with 10%
FBS (Sigma Aldrich), 2 mM L-glutamine and 1000 U/mL of both penicillin
and streptomycin (Sigma Aldrich). All cells were cultured at 37 °C in
humidified atmosphere containing 5% CO2 and periodically tested for
mycoplasma (Mycoplasma barcodes, Eurofins genomics). Cells were
frequently passaged at subconfluence and seeded at a density of
0.5–5 × 104 cells/mL.

Reverse transfection with siRNA
For Drp1 knockdown experiments, 300,000 NSCLC cells or 150,000 MEFs
were plated on top of mixed Dharmafect Reagent I (Dharmacon) and the
specific siRNA (stock 20mM, SMART-pool, Dharmacon) in 6-well plates for
72 h.

IncuCyte assay
The kinetics of cell death, lipid peroxidation, labile iron pools and
mitochondrial membrane potential were recorded using the IncuCyte
bioimaging platform (Essen, Germany). Cells were seeded in 96-well plates
(104 cells per well) 1 day prior to treatment. After treatment, four images
per well were acquired every hour, analyzed and averaged using cell-by-cell
analysis software provided by the manufacturer. Cell death was measured
by incorporation of Draq7, PI or CytotoxGreen. The labile iron pools were
visualized using Bio Tracker TM 575 Red Fe2+. All dyes were used at the
concentrations recommended by manufactures. Data were collected as the
number of cell positive for each fluorescent marker and divided by the
total number of cells detected in the bright field under each condition. The
oxidation of C-11 Bodipy 581/591 or STY-BODIPY was calculated as an
indicator of lipid peroxidation per cell and was estimated based on the

fluorescence intensity per pixel of the green channel fluorescence images
corresponding to the oxidized fraction of Bodipy (Bodipyox). t50% of
Bodipyox, cell death, labile iron pools and mitochondrial depolarization
were calculated by fitting the corresponding kinetic curves to a single
exponential growth function using Origin 8.0.

Bright field and confocal microscopy imaging
Cells were seeded in DMEM in IBIDI eight-well chambers (Ibidi, Germany)
24 h before the experiment. The next day, the cells were washed with PBS
and the media was replaced with phenol red-free DMEM (Sigma-Aldrich,
Germany) supplemented with FBS and antibiotics. Cells were loaded with
the appropriate fluorescent dye for 30min at 37 °C. Confocal microscopy
was performed using a gSTED Leica confocal microscope (Leica
Microsystems) equipped with a 63X, NA= 1.4 oil immersion CS2 objective
on the sample. Excitation light came from Argon ion (488 nm) or HeNe
(561 nm) lasers. Fluorescence emission was detected using HyD SMD
detectors. Live cell imaging was performed under 5% (v/v) CO2 and
temperature control at 37 °C. For Drp1 translocation to mitochondria
studies, compounds were added 1 day after plating and cells were
incubated for 3, 6 or 24 h. For mitochondrial staining, MitoTracker Deep
Red (150 nM) was added to each well during the last 30 min of incubation.
After staining, cells were washed twice in PBS, fixed with 4% formaldehyde
for 20min, permeabilized with 0.1% Triton X-100 in PBS for 5 min, and
blocked with 0.1% Triton X-100, 1% BSA in PBS for 1–2 h at room
temperature. Cells were incubated with primary Drp1 antibody (CST, 8570)
at 4 °C overnight, washed three times with PBS, followed by incubation
with the appropriate secondary antibody at 37 °C for 1–2 h at room
temperature. Finally, cells were washed five times in PBS and stored at 4 °C
in 100 µL of PBS per well until imaging. Images were adjusted for
brightness and contrast using Fiji/ImageJ. Fiji´s Jacob plug-in from was
used to quantify co-localization. For visualizing iron labile pools cells were
loaded with Bio Tracker TM 575 Red Fe2+ (4 µM) 30min after ferroptosis
induction. To measure the subcellular distribution of oxidized lipids we
stained mitochondria with Mitotracker DeepRed (150 nm) and Bodipy C-11
(1 µM) for 30min at 37 °C. We then generated a binary mask from the
Mitotracker signal obtained to determine mitochondrial co-localization
with oxidized BODIPY C11 staining in 3D stacks, while plasma membrane
oxidation was estimated using as a reference the contour of the cells in the
transmitted light images. All images were processed in Fiji.

PI uptake/Cell death FACS assay
To determine cell death, 25,000 cells were plated in 500 µL of media in
each well of a 24-well plate. Compounds were added 1 day after plating
and cells were incubated for 48 h followed by staining with PI (1 µg/ml)
(Sigma Aldrich) in PBS (Thermo Fisher) supplemented with 2% FBS. PI-
positive cells were quantified by flow cytometry using an LSR-FACS
Fortessa (BD Bioscience) and FlowJo software (BD Bioscience). Flow
cytometry data were collected from a minimum of 5000 cells with at least
three replicates per condition.

Western blotting
After treatment, cells were washed in PBS, lysed in IP lysis buffer (30mM
Tris-HCl pH 7.4, 120mM NaCl, 2 mM EDTA, 2 mM KCl, 1% Triton X-100, 1×
complete protease inhibitor cocktail) and frozen at -20°C. After thawing,
lysate concentrations were adjusted to equal protein concentrations using
the bicinchoninic acid (BCA) protein assay (Biorad). Equal amounts of
protein were mixed with a final concentration of 1x reducing sample buffer

Fig. 4 Mitochondrial Drp1 recruitment accelerates ferroptotic cell death. A A549 cells were subjected to mock or MiD49- and/or MiD51-
targeting siRNAs for 72 h followed by erastin treatment [10 µM] for 24 h. Cell death was quantified by propidium iodide (PI) uptake and flow
cytometry. B, C Representative Western blots are shown. Wild type and PGAM5−/− HEK cells were subjected to (D) erastin [10 µM] or (E)
cysteine starvation ± Fer-1 treatment [1 µM] for 24 h. Cell death was determined as in (A). F Wild type and PGAM5−/− HEK cells or PGAM5−/−

HEK cells containing a doxycycline-inducible PGAM5-expression plasmid (WT or H105A) were subjected to doxycycline treatment [100 nM] for
24 h followed by erastin treatment [10 µM] for 24 h and cell death analysis using PI staining. G Time lapse live cell confocal images of wt and
H drp1−/− MEFs labeled with BODIPY-C11 [1 µM] and Mitotracker Deep Red [150 nM], and treated with RSL3 [4 µM]. Scale bar, 20 µm. The
upper panel shows merged color channels: oxidized BODIPY-C11 in green and non-oxidized BODIPY-C11 in red. The lower panel displays
Mitotracker Deep red fluorescence and bright field images of the equatorial focus plane. I Quantification of the oxidation ratio (Bodipyox/
(Bodipyox+ Bodipyred)) in wt (n= 10 cells) and drp1−/− MEFs (n= 16 cells), scatter box plot displays the interquartile range (IQR) and median
oxidation ratio. Points beyond 1.5 times IQR are considered outliers. Values in (a, d–f) represent the mean of three independent experiments
each performed at least in duplicates ± STDEV. Statistical test: Two-way ANOVA+ Tukey’s multiple comparison test. ****p < 0.0001,
***p < 0.001, **p < 0.01, *p < 0.05.
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(Invitrogen) and 200 mM DTT (VWR). Samples were heated to 80 °C for
10 min, separated by gel electrophoresis, and transferred to nitrocellulose
membranes (Biorad) using the TurboBlotting system (Biorad). Membranes
were blocked for at least 30 min in PBS containing 0.1% Tween 20 (PBST)
(VWR) with 5% (w/v) dried milk powder (AppliChem). The membranes
were then incubated overnight at 4 °C with primary antibodies against
DRP1 (Cell signaling, 14647), PS616-DRP1 (CST, 3455), PS637-DRP1 (CST,
4867) PGAM5 (Sigma, HPA036978), MiD49 (Sigma Aldrich, PA5-46624),
MiD51 (Sigma Aldrich, PA5-43348), ß-actin (Sigma Aldrich, A1978), α‐Cytc
(BD, 556433), α‐GAPDH (Cell signaling, 97166S), β-tubulin (Cell signaling,
55559), Smac/Diablo (Cell signaling, D5S3R), α‐TOM70 (Santa Cruz,
sc390545), α‐TIM23 (BD, BD611223), α‐Mfn2 (Abcam, ab56889) α‐
Mitoferrin-1 (Proteintech, 26469-1-AP), α‐Frataxin (Abcam, ab113691),
all diluted 1:1000 in PBST containing 5% bovine serum albumin (BSA)
(Thermo Fisher). After washing with PBST, the membranes were
incubated with horseradish peroxidase (HRP)-coupled secondary anti-
bodies (Biotium) diluted 1:10,000 for at least 1 h at room temperature.
After another wash, bound antibodies were detected using chemilumi-
nescent Classico Western HRP Substrate (Millipore) and x-ray films
(Thermo Fisher) or Imaging System Fusion Solos S (Vilber) with the
Software Fusion Solo 7S Edge.

Transduction with AdenoCre virus
For the inducible drp1 KOs, 250 µL Opti-MEM and 0.75 µL Polybrene
Transfection Reagent were mixed and used per well of a 6-well plate. The
mixture was incubated at room temperature for 5–10min. Next, 2 × 108 UI
of AdenoCre virus (Vectors Uniowa, Ad4364) was added to the mixture.
The transduction solution was added to each well of a 6-well plate
containing 100,000 inducible drp1-floxed MEFs in 1mL media. The 6-well
plates were centrifuged at 2500 rpm at 30 °C for 45 h. The transduction
mixture was incubated for 24 h. After incubation, the cells were washed 3
times in PBS 1x and incubated in fresh media for another 24 before adding
the specific treatment.

Immunoprecipitation of Drp1
First, endogenous Drp1 was isolated from A549 cells instead of using
recombinant Drp1. Cells were treated with the indicated compounds for
the indicated time before isolation of total protein. Protein was extracted
as described for Western blotting. 50 µL of protein G agarose beads were
taken per condition and incubated with 0.01 µg/µL Drp1 antibody (CST,
8570) or 1 µg isotype control antibody (CST, 3900) at 4 °C overnight. After
incubation, the Drp1/isotype-protein-G-agarose beads mixture was cen-
trifuged and washed three times in RIPA lysis buffer. Whole cell protein
from each group was allowed to bind to the Drp1-protein G-agarose beads
mixture overnight at 4 °C.

GTPase activity assay
After incubation with the protein-antibody mixture (Drp1), samples were
centrifuged and washed five times with RIPA lysis and extraction buffer
and twice with GTPase buffer (50 µM Tris-HCl pH 7.5, 2.5 µM MgCl2) for
30 min at 30 °C. Isolated Drp1 was incubated with GTP for 30 min at
30 °C. The released free phosphate was quantified using a high
throughput colorimetric GTPase assay kit according to the manufac-
turer´s protocol. Optical density (OD) at 620 nm was measured with a
plate reader.

Mitochondrial isolation
Cytosolic and mitochondrial fractions were isolated from cultured A549
cells. Briefly, 1.8 × 106 cells were plated on 10 cm petri dishes and treated
with DMSO or erastin (10 µM) for 3 and 6 h, respectively. After treatment,
cells were centrifuged, and the pellets were dried and frozen at −80 °C.
Mitochondrial and cytosol fractions were isolated using a mitochondrial/
cytosol fractionation kit according to the manufacturer´s protocol (Abcam,
ab110171). For mitochondrial OMM protein digestion the mitochondrial
pellet was resuspended in isotonic buffer (10mM HEPES-KOH, pH 7.4,
0.22 M mannitol, 0.07 M sucrose) and incubated for 10min. Subsequently,
0.5 μg/mL of proteinase K was added and incubated for 10min. The
reaction was stopped by adding Laemmli buffer, followed by boiling at
85 °C for 10min prior to loading the samples onto SDS-PAGE gels for
protein analysis.

Cytochrome c and Smac release assay
To measure the release of cytochrome c and Smac from mitochondria,
5 × 105 HT-1080 cells were treated with RSL3 (1 µM) for 3 h to induce
ferroptosis. For separation of mitochondria and cytosol, cells were
harvested by trypsinization, washed in PBS and permeabilized with
permeabilization buffer (20 mM HEPES/KOH pH7.5, 100 mM sucrose,
2.5 mM MgCl2, 100 mM KCl, freshly added 0.025% (w/v) digitonin and
protease inhibitor cocktail in PBS) for 10 min on ice. Cell membranes
were pelleted by centrifugation at 15,000 × g for 10 min at 4 °C. After
removal of the supernatant (cytosolic fraction), the membranes were
solubilized with RIPA buffer. Protein levels were analyzed by
Western blot.

Quantification and statistical analysis
Statistical analysis was performed using GraphPad software (GraphPad
Software Inc.). Two-tailed t-tests were used to compare two conditions,
and two-way ANOVA and Bonferroni post-test were used to compare
multiple samples. All measurements were performed at least three times,
and results are presented as mean ± standard deviation.

DATA AVAILABILITY
All original data are available from the corresponding authors upon reasonable
request.
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