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Psychological states influence our happiness and productivity; however, estimates of their impact
have historically been assumed to be limited by the accuracy with which introspection can quantify
them. Over the last two decades, studies have shown that introspective descriptions of psychological
states correlatewith objective indicators of cognition, including task performance andmetrics of brain
function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence
suggests it may be possible to quantify themapping between self-reports of experience and objective
representations of those states (e.g., those inferred from measures of brain activity). Here, we used
machine learning to show that self-reported descriptions of experiences across tasks can reliablymap
the objective landscape of task states derived from brain activity. In our study, 194 participants
provideddescriptionsof their psychological stateswhile performing tasks forwhich the contribution of
different brain systems was available from prior fMRI studies. We used machine learning to combine
these reportswith descriptions of brain function to forma ‘state-space’ that reliably predicted patterns
of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates
that introspective reports can share information with the objective task landscape inferred from brain
activity.

Variation in psychological states plays a prominent role in the health, well-
being, and productivity of members of society1. Descriptions of psycholo-
gical states are made possible by the uniquely human capacity for
introspection2. For almost a century, however, uncertainty regarding the
accuracy of introspection hasmeant that relationships identified in this way
are often treated with scepticism3,4. Recent work has successfully combined
data derived from introspective reportswith laboratory techniques thatmap
objective features of behaviour, establishing that when collected appro-
priately, introspective data can contain meaningful information regarding
underlying psychological processes (for reviews, see5–9:). In particular, cor-
relational studies conducted over the last two decades using experience
sampling have established relationships between self-reported descriptions
of experience and objective indicators of cognition, such as task
performance10, changes in behaviour in daily life11,12, and covertmeasures of
cognition derived from state-of-the-art brain imaging that describes both
brain function13–15 and structure16. These correlational studies establish that

self-reporteddescriptions of experiential states could, in principle, be usedas
a tool to complement objective descriptions of human cognition.

Our study builds on this emerging evidence to assess the accuracywith
which self-reports can describe different psychological states. We used
experience sampling to build a description of the states that emerge as
healthy participants perform a variety of different tasks that sample a range
of different underlying cognitive processes. These include (1) the ability to
maintain information within working memory15,17, (2) the ability to sustain
attention18, (3) the ability to exertmotor control17, (4) the ability to reflect on
the self and on other people19, (5) the ability to retrieve autobiographical
memories20, (6) the capacity for reading20, and (7) the ability to watch
movies21. Note, however, thatwhile our studymaps awide range of different
situations, it is in no way an exhaustive list of the tasks that humans can
perform.

While participants completed this battery of tasks in the behavioural
laboratory,we collecteddescriptions of their ongoing thought patternsusing
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multi-dimensional experience sampling (mDES). mDES asks participants
to describe their experience by rating their thoughts along a number of
dimensions on multiple occasions (for a review see9:). Prior studies have
shown that mDES is sensitive to objective indicators of cognitive function
measured in the laboratory (including functional magnetic resonance
imaging (fMRI)14,15,22,23, EEG24, and measures of brain structure25,26) and
distinguishes activities performed in the laboratory27 and in daily life11,12. In
this study, we used a battery of 16 mDES questions which are presented in
Supplementary Table 1. These samemDES questions have been previously
used in studies examining experience during movie watching28 and in an
analysis of the links between cognition in daily life and mental health29.

Variation in introspective descriptions of experience across tasks was
then compared to variation in patterns of brain activity that these tasks
engage (based onprior fMRI studies from large groups of otherparticipants,
forwhichunthresholdedmapsof the tasks compared to the implicit baseline
were available). To do this, we used machine learning methods to build a
generative model (referred here to as ‘state-space’) of the relationship
between states defined via introspection and features of brain activity.
Finally, we confirmed this model in a new sample of participants using four
exemplar tasks fromour initial task battery that characterized key features of
our ‘state-space.’

Methods
Overview of analytic approach
Tomap introspective descriptions of states onto objectivemeasures of brain
activity, we used a ‘state-space’ approach similar to that used in our prior

studies14,28,30,31. In line with these, we used two separate multi-dimensional
spaces, a 5-d ‘thought-space,’ generated by applying Principal Components
Analysis (PCA) to the mDES data (Fig. 1a), into which we then projected
each original mDES observation, and, a 5-d ‘brain-space,’ generated using
an existing decomposition32 of resting-state connectivity data from the
Human Connectome Project (HCP)21 (Fig. 1b). We projected group-level
unthresholded brainmaps for each of the tasks used in our study onto these
dimensions, yielding a set of coordinates that describe the similarities
between the whole-brain states that each task engenders. Next, we used
Canonical Correlational Analysis (CCA)33 to map these two multi-
dimensional spaces together, forming a ‘state-space’ that combines intro-
spective descriptions of ongoing thought patterns during taskswith patterns
of brain activity recorded in the same tasks. Finally, we evaluated the gen-
eralizability of this model by collecting new experience sampling data for a
subset of exemplar tasks based on their locations in the ‘state-space’ and
examined how well introspective descriptions of experience in this unseen
self-report data recapitulated the location of these tasks in the initial ‘brain-
space’. The current study was not pre-registered.

Participants
Original sample: full 14-task battery. 194 participants were recruited to
complete the full 14-task battery in a behavioural laboratory. The sample
size was guided by the sample sizes of prior studies in the literature that
have investigated differences in ongoing thought across easy and hard
task contexts22,27,34,35. This sample was drawn from the undergraduate
student population at Queen’s University, Canada. The study was

Fig. 1 | Analytic Approach to evaluate howwell states described via introspection
map onto the landscape of task states defined via fMRI. We used two multi-
dimensional spaces: a ‘thought-space’ generated by applying PCA to introspective
reports collected using mDES (see top-right for example questions) while partici-
pants performed 14 different tasks in the lab (see Methods). PCA yielded 5
dimensions, displayed as word clouds (bottom-left) in which font size indicates the
importance of an experiential feature, and colour indicates polarity (i.e., features
with same colour load on component in same direction; red = positive, blue =
negative). These PCA dimensions form the dimensions of the ‘thought-space’ and
each original mDES observation (16 items) was projected into this 5-d space. 3-d
scatter plot shows the task averages of these projected scores along the first three
‘thought-space’ dimensions. b ‘brain-space’ generated using an existing

decomposition32 of resting-state connectivity data from the HCP21 into which we
projected 14 whole-brain, group-level unthresholded fMRI task maps, gained from
different sets of individuals from prior fMRI studies.Whole-brainmaps from a set of
exemplar tasks used to subsequently test the generalisability of our combined ‘state-
space’ in unseen data (see Methods) are shown in the top-right (Supplementary
Fig. 5 presents allmaps), while the dimensions derived from theHCPdata are shown
in the bottom-left (Supplementary Fig. 1 presents lateral and medial views). 3-d
scatterplot shows the location of task maps along the first three ‘brain-space’
dimensions. Note: 3-d plot labels are jittered to prevent overlap of terms (see Sup-
plementary Table 6 for exact task-average locations in ‘thought-space’ and Sup-
plementary Table 3 for exact locations in ‘brain-space’).
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approved by the institutional ethics committee at the Queen’s University
Psychology Department and followed all relevant ethical regulations. All
volunteers provided informed written consent and received 2 course
credits for their participation. Demographic information was missing for
four participants due to errors in data collection. These four participants
were excluded from all analyses, resulting in a final sample of 190 par-
ticipants. Of these 190 participants, 164 identified as women, 24 as men,
and two as non-binary or similar gender identity. Mean age of partici-
pants was 18.56 years (SD = 1.09, range = 17–24 years). All 190 partici-
pants contributed 38 mDES observations each, resulting in 7220 total
observations.

Replication sample: subset of 4 tasks. 101 participants were recruited
to complete a subset of 4 tasks from the full 14-task battery. The sample
size was guided by time and resource constraints, aiming for a minimum
of 100 participants before the mid-term break. This sample was also
drawn from the undergraduate student population atQueen’sUniversity.
The study was approved by the institutional ethics committee at the
Queen’s University Psychology Department and followed all relevant
ethical regulations. Demographic information was missing for five par-
ticipants due to errors in data collection. These five participants were
excluded from all analyses. In addition, one participant was removed
from analyses as they were missing over half their data due to a technical
error during data collection, leaving a final sample of 95 participants. Of
the remaining 95 participants, 87 identified as women, 6 as men, and 2 as
non-binary or similar gender identity.Mean age of participants was 18.24
years (SD = 1.05, range = 17–24 years). 94 out of 95 participants con-
tributed 11 observations each, with one participant missing one obser-
vation due to a technical error in data collection, resulting in 1044 total
observations.

Procedure
Full 14-Task Battery. Participants attended one 2-hour study session in
the behavioural laboratory to complete the 14-task battery. Participants
provided written informed consent before the study session began and
provided their demographic information via a demographic ques-
tionnaire. Once consent and demographic information were acquired,
participants completed the 14-task battery in a room alone with a com-
puter. Participants were asked to refrain from using any technological
devices (phones, smartwatches, tablets, laptops/computers) besides the
computer in front of them to avoid distractions. The task battery was
presented using PsychoPy336 and included the following 14 tasks,
grouped into seven pairs based on task similarity: (1) Easy-/Hard-Math,
(2) Finger-Tapping and Go/No-Go, (3) Self-/Friend-Reference, (4) 0-/1-
Back, (5) 2-Back-Faces/-Scenes, (6) Autobiographical Memory and
Reading, and (7) passive viewing of Documentary and Sci-Fi videos.

There were three task blocks per task, except for the passive-viewing
(Documentary and Sci-Fi) and Two-Back (Faces and Scenes) tasks, which
had twoblocks each (38 taskblocks total).Within each task, task blockswere
randomized (except thepassive-viewing tasks).Across tasks, each task block
lasted ~90 s, jittered by ± 15 s. Task pairs were presented consecutively.
Within task pairs, task order presentation was randomized, and the task
pairs were randomized based on a unique seed generated for each partici-
pant. Written instructions were presented at the start of each task block.
Immediately after each task block, participants were prompted with mDES
questions about their thoughts during the previous block. The task battery
took participants approximately 1.5–2 h to complete. Full code for the
presentation of the 14-task battery is openly available on Zenodo: https://
doi.org/10.5281/zenodo.14290073.

Shortened 4-Task Battery. The procedural details for the shortened
task batterywere identical to those of the full task battery, except only four
taskswere presented in a randomized order across participants: (1)Hard-
Math, (2) Go/No-Go, (3) Autobiographical Memory (4) Documentary.
There were three task blocks per task, except for the passive-viewing

Documentary task which had two blocks (11 task blocks total). The task
battery took participants approximately 30–60min to complete. Full
code for the presentation of the 4-task battery is openly available on
Zenodo: https://doi.org/10.5281/zenodo.14290092.

Multi-dimensional experience sampling (mDES). Participants’ ongo-
ing thought was measured using mDES. Each mDES probe was made up
of sixteen items (see Supplementary Table 1), presented in a random
order. All items were rated by participants on a continuous scale of one to
ten, using the left and right arrow keys to move a marker on a screen (see
Fig. 1a for examples). Themarker start location was randomized for each
item. When participants were satisfied with the marker position on the
scale, they pressed ‘Enter’ to confirm their answer and move on to the
next item. mDES probes were presented at the end of each task block.
Overall, participants completed a total of 38 probes in the full 14-task
battery and 11 probes in the shortened 4-task battery.

Self-/friend-reference task. This task pair was adapted from Murphy
and colleagues19. Participants were required to make judgments as to
whether a presented adjective applied to either to themselves (‘self-
reference’) or a friend of choice (‘friend-reference’; note, in Murphy and
colleagues’ study19, this condition referred to ‘another person’, rather
than a ‘friend’). Participants were instructed to attend to the centre of the
screen, where adjectives were presented one word at a time. Adjectives
were either positive (e.g., ‘enthusiastic’) or negative (e.g., ‘insecure’).
Participants had to indicate whether they would associate the word
presented with the referent (self or friend) or not using the left and right
arrow keys. For the ‘friend’ task, participants were instructed to think of a
single friend throughout the task. Participants saw a unique list of words
in each block which were counterbalanced across tasks.

Go/No-Go task. This task was adapted from Alam and colleagues18.
Participants were required to either make a response (button press) or
inhibit their response (no button press) depending on whether the sti-
mulus presented was a ‘Go’ trial or a ‘No-Go’ trial. Each trial presented
nonsense stimuli (scrambled word) framed in a rhombus outline for
0.75–1.25 s. Participants were instructed to focus on the slant of the
stimulus’ outline. Outlines with a minor slant indicated a ‘Go’ trial, while
boxes with a more significant slant indicated a ‘No-Go’ trial. In the
current study, task blocks only included stimuli from the ‘hard’ condition
from Alam et al.’s18 original study (slants more difficult to differentiate
from each other). Participants viewed a fixation cross between trials for
0.5–1 s. Per Alam et al.18. each block contained 46–54 stimuli and con-
sisted of 80% ‘Go’ trials and 20% ‘No-Go’ trials.

Finger-tapping task. This taskwas designed tomimic that of theHuman
Connectome project17 and adapted from a similar task used by Livesey
and colleagues37. Participants were instructed to press the space bar when
a black square was shown on the screen. A fixation cross appeared
between square presentations. Squares were presented for 2 s, and failure
to press the space bar on timewas recorded as a failure. The delay between
presentations was jittered, with a minimum delay being 2 s and a max-
imum delay being 5 s.

Passive viewing: documentary and Sci-Fi. Participants watched short
clips from either the film ‘Inception’ (‘Sci-Fi’) or from the documentary
‘Welcome to Bridgeville’ (‘Documentary’). Presented clips were each
3 min and 46 s long, adapted from clips from the Human Connectome
Project21. The volume of the clips was balanced to reduce large spikes in
noise. Each movie presentation was interrupted at a random point after
the first 15 s and before the last 15 s with an mDES prompt, with another
shown at the conclusion of the clip (i.e., twoMDESprobes per video task).

2-back tasks: faces and scenes. This task was designed to mimic that
of the Human Connectome project17. Participants indicated using a
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keypress whether a presented stimulus matched the one presented two
trials before. In the 2-back ‘Faces’ task, presented stimuli were images of
faces, while in the ‘Scenes’ task, presented stimuli were images of scenes
(e.g., an outdoor garden or a living room). There were two task blocks for
each 2-Back task. Each block comprised 35 trials with five instances of
‘target’ trials where a stimulus repeated two trials after its initial pre-
sentation and five instances of ‘target-lure’ trials where a stimulus repe-
ated either 1 or 3 trials after its initial presentation. Each trial lasted 2 s,
with an inter-stimulus interval of 500 ms.

Reading task. This task was adapted from Zhang and colleagues20.
Participants read 15-word sentences presented one word at a time. After
viewing a 1–3 s fixation cross, participants were presented with each of
the 15 words 600 ms at a time.

Memory task. This task was adapted from Zhang and colleagues20. In
each block, participants were asked to recall a memory upon viewing a
cue-word (e.g., ‘Airport’) and to press ‘Enter’ when they had thought of
one. They were then shown a fixation cross for 4–5 s. Following this, they
were instructed as follows: “Now we would like you to think about this
event. Please press Enter when you are ready to begin.” Participants were
then shown a 20 s fixation cross, followed by mDES.

0-/1-back task. This task was adapted from Turnbull and colleagues15.
Participants passively viewed non-target trials involving two different
shapes (e.g., a square and a circle) presented for 0.5–1.5 s on either side of
a vertical black line in the centre of the screen. After 2–8 non-target trials,
a target trial occurred, where a smaller shape appeared over the line in the
centre of the screen for 3.5–5 s (or until input was received) between
either: a) two larger shapes in the 0-back condition, or b) two question
marks in the 1-back condition. In the 0-back condition, participants
indicated with a keypress whether the central shape matched the shape
presented to its left or right side. In the 1-back condition, where question
marks surrounded the central shape, participants indicated the central
shape’s match from the previous non-target trial. A fixation cross was
presented for 1–2.5 s between trials.

Easy-/hard-math task. This task was adapted from Wang and
colleagues38. Participants viewed addition expressions and then indicated
with a keypress which of two presented sums was correct. Each expres-
sion was presented for 1.45 s followed by two sums presented on the left
and right sides of the screen for 1.45 s. In the ‘easy’ condition, expressions
only involved one-digit numbers, while in the ‘hard’ condition, expres-
sions included one two-digit number up to 19. Participants completed
three blocks each of the easy and hard conditions involving 28 trials each.
If the participant did not respond within 5 s, the task continued, and the
response was counted as incorrect.

Taskbrainmaps. The spatialmaps summarizing brain activity in each of
the 14 tasks were taken from a variety of prior fMRI studies, summarized
in Supplementary Table 2. All task maps were (unthresholded) group-
averaged z-stat contrast maps and contrasted the task condition against
baseline. Therefore, each taskmap represents the group-averagedBOLD-
signal in each task compared to baseline. Since the coverage of task maps
differed, we created a binarized mask that removed any regions in which
there were missing data in any of the task maps and applied this mask to
all maps prior to the ‘brain-space’ analysis. All brain maps (including the
gradient maps outlined below) used in the current study are openly
available (https://doi.org/10.5281/zenodo.14112468).

Connectivity gradients: ‘brain-space’. The five connectivity gradients
used in the current study were generated by Margulies et al.32, made
openly available via Neurovault (cortical and subcortical): https://
identifiers.org/neurovault.collection:1598. These gradients were gener-
ated by applying a non-linear dimension reduction technique (diffusion

embedding) to the averaged functional connectivitymatrix of theHuman
Connectome Project (HCP) resting state data21. These gradients explain
whole-brain connectivity variance in descending order, such that the first
gradient explains the most variance in the whole-brain connectivity data,
the second explains the second most variance, and so on. Along each
gradient, brain regionswith similar connectivity profiles (to the rest of the
brain) fall close together, and have similar ‘gradient values’, while regions
with more distinct connectivity profiles fall further apart, and have more
dissimilar ‘gradient values’39. This analysis, therefore, results in a spatial
map for each gradient identified in which each parcel contains a ‘gradient
value’. The first five gradients explain approximately 60% of the con-
nectivity variance and prior studies have highlighted that the first three
gradients relate to important features of cognition31,40,41. Supplementary
Fig. 1a–e shows lateral and medial views of each of the brain maps
representing each of the gradients and Supplementary Fig. 1f shows a
radar plot representing the mean gradient values in each of the Yeo-7
networks42 for each gradient. We use these five gradients to construct the
5-d ‘brain-space’ (see Fig. 1b). These details are almost identical to those
described in Mckeown et al.14.

Locating task states in ‘brain-space’. To locate the 14 task states in the
5-d ‘brain-space,’ we calculated the pairwise spatial correlations (Spear-
man rank) between each (masked) task brain map and each of the first
five connectivity gradients described in Margulies et al.32. The code used
for this process is openly available (https://doi.org/10.5281/zenodo.
14112468). This analysis resulted in five correlation values for each task
brain map, indicating where that brain map falls along each dimension.
These correlation values act as ‘coordinates’ in the 5-d ‘brain-space’ (see
Fig. 1b for a 3-d scatterplot showing the coordinates for each task state
along the first three dimensions and Supplementary Table 3 for the five
coordinates associated with each of the 14 tasks). To determine whether
the associations between the task maps and gradient maps were above
those associated with the artefactual features of the spatial maps (i.e.,
smoothing), we conducted a Spin test using the Neuromaps toolbox
(https://github.com/netneurolab/neuromaps). See the openly available
code associated with this study for further details.

Generation of ‘thought-space’. To construct the low-dimensional
‘thought-space,’ we applied PCA, with no rotation, to the mDES data
from the full task battery sample (14 tasks; N = 190). PCA was applied at
the probe-level in the same manner as our prior work (e.g.,11,14,27,35,43–45).
Specifically, we concatenated the responses of each participant for each
probe into a single 7220 × 16 matrix—in which each column was an
experience sampling item (16 items), and each row was an mDES
observation (7220 observations; 38 observations per participant). PCA
was applied using the ‘ThoughtSpace’ package (https://doi.org/10.5281/
zenodo.14112233), which uses scikit-learn46 for PCA computations.

To ensure that at least 50% of the total variance in the mDES data was
explained by this low-dimensional ‘thought-space,’we retained the first five
components for further analysis (1st component = 21.28% explained var-
iance; 2nd = 11.85%; 3rd = 9.16%; 4th = 6.61%; 5th = 5.89%; see Supple-
mentary Fig. 2 for scree plot). This analysis resulted in a set of five PCA
scores for each observation, indicating the prevalence of each PCA com-
ponent identified for that observation (via the computation of the dot
product between the component loadings of each component and the
experience sampling items of that observation).

Generalizability of PCA ‘thought-space’. To establish the robustness
and generalizability of the 5-d ‘thought-space,’ generated by applying
PCA tomDES data fromall 14 tasks, we performed a leave-one-out cross-
validation analysis in which we systematically excluded mDES data
associated with each task one at a time. For each iteration, we removed all
mDES data related to a specific task from the original dataset (N obser-
vations = 570, apart from 2-back and passive-viewing tasks where N
observations = 380), and applied PCA to the mDES data from the
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remaining 13 tasks. Next, we applied the trained PCAmodel to the held-
out task data, resulting in observation-level PCA scores for the held-out
task (via the computation of the dot product between the component
loadings of each component from the held-out model and the experience
sampling items of each observation in the held-out data).

Following the generation of observation-level PCA scores for each
held-out task, we calculated the (two-tailed) Pearson correlation (and 95%
CIs, Bonferroni-adjusted for 14 tasks) between the participant-averaged
PCA scores for each task obtained from the omnibus PCA model—which
was trained on all 14 tasks—and the participant-averaged projected scores
derived from the held-out PCA model in which that task was held out
(N = 190). We then made these correlation values and CIs absolute for
plotting (see Fig. 2b).

Generation of ‘state-space’. To assess whether there is a significant
mapping between the two multi-dimensional spaces (‘thought-space’
and ‘brain-space’), we implemented CCA in Python [version 3.8.13]
using the scikit-learn46,47 [version 1.2.1] package (N = 190,N observations
= 7220). CCA is a multivariate technique that identifies the linear com-
binations between two sets of variables (X and Y) that maximizes their
correlation. In our analysis, the X variables were the observation-level
scores for each of the five PCA components (7220 × 5). The Y variables
included brain coordinates at the task-level for each of the five gradients
(14 × 5; see Supplementary Table 3). To align the dimensions, task-level
brain coordinates were replicated for each occurrence of the corre-
sponding task in the X variables (resulting in a matrix of size 7220 × 5).
Both X and Y variables were z-scored before applying CCA.

We implemented permutation tests to evaluate the statistical sig-
nificanceof observed canonical correlations.To this end, thePCArowswere
randomly shuffled 1000 times, and CCA was repeated on each shuffle to
generate a ‘null’ set of canonical correlations on each iteration. The shuffle
procedure involved first grouping PCA rows by participant ID, and then
shuffling eachparticipant’s rows using the current iteration number (0-999)
as the seed, ensuring a consistent shuffle order across participants on each
iteration. This procedure generated a null distribution of canonical corre-
lations (see Fig. 3a). P-values were calculated as the proportion of permuted
canonical correlations greater than or equal to the observed values. The
alpha level was Bonferroni-adjusted to account for five dimensions (i.e.,
0.05/5 = 0.01). A significant p-value indicates that identified associations
between ‘brain-space’ and ‘thought-space’ are unlikely to have arisen by
chance.

Visualizing the CCA ‘state-space’. We next visualized the X variates
(i.e., CCA-weighted PCA scores) using word clouds. For each X variate,
we multiplied the (z-scored) PCA component loadings for each mDES
item for each PCA component included in the CCA by the CCA’s X
weight for that PCA component. This step resulted in, for each X variate,
a new set of CCA-weighted component loadings for each PCA compo-
nent.We then summed eachmDES item’s CCAweighted loadings across
all five components, resulting in one value for eachmDES item for each X
variate (see Fig. 3b). In each word cloud, a word is anmDES item, the size
represents the magnitude of the summed weighted loading, and the
colour represents the direction (red = positive, blue = negative).

Using spatial brain maps, we then visualized the Y variates (i.e., CCA-
weighted gradient scores). For each Y variate, we multiplied the (z-scored)
gradient values in each parcel for each gradient included in the CCA by the
CCA’s Y weight for that gradient. This step resulted in, for each Y variate, a
new set of CCA-weighted parcels for each gradient. We then summed each
parcel’s CCA-weighted gradient values across all five gradients, resulting in
one value for each parcel for each Y variate (see Fig. 3c). In each brainmap,
positive values are in red, and negative values are in blue.

Neurosynth decoding of CCA brain maps. Having created brain maps
to visualize each Y variate, we used Neurosynth’s online meta-analytical
decoder to identify cognitive and psychological terms most strongly

associated with our maps in the available literature (four maps; one for
each significant CCA dimension). The decoder identifies terms most
strongly associated with the patterns of neural activity in each map by
comparing the patterns of activity in the input map to patterns of activity
in the brain maps available in the Neurosynth database. This results in a
set of psychological, cognitive, and anatomical terms that are most likely
to be associated with the patterns of activity in the input map14. To
visualize the results of this analysis as word clouds, we selected the top ten
positive and top ten negative cognitive and psychological terms asso-
ciated with each map, retaining only the first term in instances of
duplicates (e.g., ‘episodic’ and ‘episodic memory’) and excluding terms
related to anatomy instead of function (e.g., ‘precuneus’)14. These word
clouds are shown in Fig. 3d.

Generalizability of CCA ‘state-space’. To establish the generalizability
of the CCA ‘state-space,’ we performed a leave-one-out cross-validation
analysis in which we systematically excluded all X variables (z-scored
PCA scores) and Y variables (z-scored brain coordinates) associated with
each task one at a time (N observations = 570, apart from 2-back and
passive-viewing tasks where N observations = 380). To prevent data
leakage during the PCA process, we used the PCA models generated
based on held-out data. Subsequently, we applied the trained CCAmodel
to the held-out task data, resulting in observation-level CCA X and
Y variates for the held-out task. To create one score for each set of X and
Y variates, we summed the z-scored X and Y variates. We then calculated
the Pearson correlation (two-tailed) between the participant-averaged
summed CCA scores for each task obtained from the omnibus CCA
model, which was trained on all 14 tasks, with the participant-averaged
projected scores derived from the held-outCCAmodel (N = 190; 95%CIs
Bonferroni-adjusted for 14 tasks). A consistently high correlation sug-
gests a given CCA dimension is generalizable (i.e., is not unduly influ-
enced by any single task).

Linear mixed models (LMMs). LMMs were fitted by restricted
maximum-likelihood estimation in R [version 4.1.148] using the lme4
package [version 1.1.3149]. We used the lmerTest package [version
3.1.350] to obtain (two-tailed) P values for the F-tests returned by the lme4
package. For each set of models, the alpha level for each F-statistic was set
based on 0.05 divided by the number of models (i.e., Bonferroni-
corrected alpha level). The reported p-values are unadjusted. Degrees of
freedom were calculated using Satterthwaite approximation and for F-
tests, type 3 sum of squares was used. Contrasts were set to ‘contr.sum,’
meaning that the intercept of eachmodel corresponds to the grandmean
of all conditions51. Estimated marginal means and their confidence
intervals (shown in Fig. 2c and Fig. 3e) were calculated using the
emmeans package [version 1.8.352] and Bonferroni-adjusted for the
number of tasks (14). Across all models, to account for multiple obser-
vations per participant, ‘participant’ was included as a random intercept.
In addition, across all models, age and gender were included as nuisance
covariates. Finally, for all LMMS, we concatenated the PCA or CCA
scores derived from the held-out models into one matrix. In cases where
the held-out PCAorCCA component was flipped relative to the omnibus
component (as indicated by a negative correlation between omnibus and
held-out observation-level scores), we multiplied the observation-level
scores by−1 for interpretability. Across all models, 190 participants were
included (N observations = 7220; 38 observations per participant).
Diagnostic plots confirmed normality and homogeneity of the residuals.

Task locations inPCA ‘thought-space’. To examine the differentiation
of tasks within the PCA ‘thought-space,’ we performed a series of LMMs
—one for each of the five thought patterns—to compare the observation-
level PCA scores between each task context derived from the held-out
models. Therefore, in each model, the outcome variable was the
observation-level ‘PCA score’ and the explanatory variable was ‘task’
(14 levels).
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Fig. 2 | Building a 5-D ‘thought-space’ via the application of PCA to mDES data.
aWord clouds representing the five thought patterns identified via PCA applied to
mDES data from all 14 tasks in the task battery (each word = mDES item; the size of
word = magnitude of item loading on that pattern; colour = direction of loading,
red = positive, blue = negative). b Bar graphs showing the high correlations between
PCA scores derived from the omnibus PCA (with all 14 tasks included) and the held-
out PCA models (one task held out each time). Y-axis = which task was held out
(and which task’s scores are being correlated), and X-axis = Pearson correlation

value. Error bars = 95% CI, Bonferroni-adjusted for 14 tasks. c Bar graphs showing
the predicted mean score of each thought pattern in each of the 14 tasks, derived
from the LMMs comparing the held-out PCA scores between each task. Error bars =
95%CI, Bonferroni-adjusted for 14 tasks. dWord clouds summarizing the predicted
mean of each thought pattern in each of the 14 tasks (each word = task; size =
magnitude of the predicted mean PCA score; colour = direction, red = positive
predicted value, blue = negative predicted value).
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Example model formula: lmer(PCA Component Score ~ Task +
Age+ Gender+ (1|Participant)).

Task locations in CCA ‘state-space’. To examine the differentiation of
tasks within the CCA ‘state-space,’we performed a series of LMMs—one
for each of the four significant CCA dimensions—to compare the
observation-level summed CCA variates between each task context
derived from the held-outmodels. Therefore, in eachmodel, the outcome
variable was the observation-level ‘CCA summed variate score’ and the
explanatory variable was ‘task’ (14 levels).

Example model formula: lmer(CCA Dimension Summed Variate ~
Task + Age+ Gender+ (1|Participant)).

Prediction accuracy of brain states. To assess whether the CCA
model, trained on all 14 tasks, can make accurate predictions of brain
states using unseen experience sampling data, we collected new
experience sampling data in an independent sample (N = 95) in a subset
of 4 tasks (Memory, Go/No-Go, Documentary, and Hard-Math). These
tasks were selected as they fall at the extreme ends of the first two CCA
dimensions (see Supplementary Table 4 for task locations along all four
significant dimensions). We projected the new experience sampling
data from these 4 tasks into the omnibus PCA ‘thought-space’ trained
on all 14 tasks in the original sample (via the computation of the dot
product between the component loadings of each component identified
in the original sample and the experience sampling items of each
observation in the new data). We then used the trained CCA model to
predict brain coordinates in ‘brain-space’ for each PCA observation (N
observations = 1044) in the new sample using scikit-learn’s method
‘predict’46.

To assess the accuracy of these predictions, we first averaged the
observation-level predictions by participant (resulting in each participant
having one prediction per task so that these predictions can be compared in
the next steps). We then calculated the Euclidean distance between the true
brain coordinates for each observation’s task and the predicted brain coor-
dinates in ‘brain-space’ (i.e., the error). Euclidean distance was calculated as
the square root of the summed squared distances between each predicted
gradient value and the true gradient value for the task associated with that
observation. Next, we calculated the Euclidean distances between the true
gradient coordinates for that observation’s task and the predicted gradient
coordinates for the other three tasks. For each task, this process resulted in
(1) a distribution of distances between the true and predicted brain coor-
dinates, and (2) three distributions of distances between the true coordinates
for that task and the predicted coordinates of the other three tasks.

Next, we ran a series of paired one-tailed t-tests to compare the task-to-
task distribution to the other-task-to-task distributions (3 t-tests per task, 12
total) to test the hypothesis that the task-to-task distances were significantly
smaller than the other-task-to-task distances. The Bonferroni-adjusted
alpha level for all 12 tests was 0.003. Data distribution was assumed to be
normal, but this was not formally tested. We also performed a similar
analysis inwhichwebuilt aCCA ‘state-space’ fromthe initial datausingonly
the 10 tasks that were not tested in the second sample so that thismodel had
never been trained on any of the data (PCA scores or gradient scores)
associated with the four tasks in which we collected new experience
sampling data.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Fig. 3 | Application of CCA to generate a ‘state-space’ that combines ‘thought-
space’ and ‘brain-space.’. a Density plots showing null distribution of canonical
correlations derived from shuffling PCA observations (N iterations = 1000). True
canonical correlations represented as green dotted lines. bWord clouds representing
how each CCA dimension organizes thought patterns identified via PCA applied to
mDES data (each word = mDES item, size = magnitude of the summed weighted
loading (see Methods), and colour = direction [red = positive, blue = negative]).
c Spatial brain maps representing how each CCA dimension organizes whole-brain
neural patterns identified by correlating task brain maps with dimensions of brain
function variation (gradients; seeMethods). In eachmap, positive values are red and
negative values are blue. d Word clouds representing results from a Neurosynth

meta-analysis identifying the most likely terms used to describe the pattern of brain
activity seen in the CCA-weighted brainmaps shown in panel C (size =magnitude of
relationship, and colour = direction [red = positive, blue= negative)]). e Bar graphs
showing consistency of CCAvariates between omnibus CCA (all tasks included) and
held-out CCAmodels (one task held out each time). Y-axis =which task held out and
X-axis = Pearson correlation. Error bars = 95%CI, Bonferroni-adjusted for 14 tasks.
fWord clouds summarizing the predicted mean score of each summed CCA variate
in each of the 14 tasks (each word = task, size = magnitude of mean score, colour =
direction [red = positive predicted mean, blue = negative predicted mean]).
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Results
‘Thought-Space’
To build a multi-dimensional ‘thought-space,’ we applied PCA with no
rotation to the mDES data at the observation level (matrix shape =
7220 × 16). The Kaiser–Meyer–Olkin measure of sampling adequacy was
0.80, above the commonly recommended value of 0.6, and Bartlett’s test of
sphericity was significant [χ2(120) = 18570.04, P < 0.001], indicating the
resulting dimensions provide an accurate description of the initial data. To
assess the robustness of the PCA solution for the set of experience-sampling
probes, we conducted a bootstrapped split-half reliability using the RHom
module in the ThoughtSpace package53. The component structure of the
dataset demonstrated strong internal reliability, components generated
from random halves of the dataset repeatedly produced highly correlated
component scores, RHom.=.99, 95% CI[0.98, 1].

We selected the first five PCA components for inclusion in the CCA,
namedbroadly according to themDES itemswith themost extremepositive
loading on each component: (1) ‘Episodic Knowledge’—describing patterns
of report with the highest positive loadings on ‘Past,’ ‘Detailed,’ and
‘Knowledge’; (2) ‘Intrusive Distraction’—with the highest positive loadings
on ‘Distracting’ and ‘Intrusive,’ and the highest negative loading on
‘Deliberate’; (3) ‘Task Problem-solving’—with the highest positive loadings
on ‘Problem-solving’ and ‘Task,’ and the highest negative loading on
‘People’; (4) ‘Sensory Engagement’—with the highest positive loadings on
‘Sounds’ and ‘Images,’ and the highest negative loading on ‘Knowledge’; and
(5) ‘Inner Speech’—with the highest positive loadings on ‘Words’ and
‘Sounds,’ and the highest negative loading on ‘Images’. Three of these
components (‘Episodic Knowledge’, ‘Intrusive Distraction’, and ‘Sensory
Engagement’) are similar to a decomposition of an independent data set
recorded in daily life29. Likewise, four of these components (‘Task Problem-
Solving’, ‘Episodic Knowledge’, ‘Intrusive Distraction’ and ‘Sensory
Engagement’) were present in a four component solution identified during
an independent study of movie-watching28.

Thesefive components form thedimensionsof the5-d ‘thought-space.’
In Fig. 1a, word clouds describing how the 16 experiential features assessed
viamDESmap onto the five dimensions are shown in the bottom-left panel
(see Supplementary Table 5 for the exact component loadings) and a 3-d
scatterplot representing how the first three dimensions organise the tasks
that the data was sampled in is shown in the bottom-right panel (see Sup-
plementary Table 6 for exact task-average locations in ‘thought-space’).

Generalizability of ‘thought-space’
To establish the generalizability of the ‘thought-space’ (i.e. whether it is
unduly impacted by any single tasks context), we performeda leave-one-out
cross-validation analysis in which we systematically excluded mDES data
associated with each task one at a time. For each iteration, all mDES data
related to a specific task was removed from the original dataset, and PCA
was applied to the remaining 13 tasks. Next, we projected themDES data of
the held-out task into the held-out PCAmodel space. Finally, we correlated
the PCA scores for each task obtained from the omnibus PCAmodel, which
was trained on all 14 tasks, with the projected scores derived from the held-
out PCA model. The resulting correlations were above 0.88 (Range:
0.88–1.00; see Fig. 2b). This consistently high correlation across all leave-
one-out iterations indicates that the ‘thought-space’ formed in our study is
generalizable, at least within the domain of the taskswe have sampled in this
study (i.e., is notunduly influencedbyany single task context in our sample).
Due to small deviations in normality in some of the PCA variables, we
confirmed that the results were highly similar when using Spearman rank
correlation instead of Pearson correlation. We also confirmed that the
results were highly similar when removing outliers (as defined by any case
with a z-score of <−2.5 or > 2.5).

Task locations in ‘thought-space’
Next, we examined how the ‘thought-space’ organised the tasks we sampled
in our study. The predicted means for each task for each thought pattern
(PCA component) are shown in Fig. 2c (note: 95% CIs are Bonferroni-

adjusted to account for 14 tasks) and see Supplementary Fig. 3 for task-
grouped box plots of raw data.

To examine these data, we performed a series of linear mixed models
(LMMs) to examine how the ‘thought-space’ differentiated the tasks in
which we sampled experience (five models in total, one for each PCA
dimension). Each LMM compared the PCA scores derived from the held-
out models to avoid circularity. The LMMs indicated that PCA scores
differed significantly between tasks along each of the five dimensions
(Bonferroni-adjusted alpha level for five models = 0.01; reported p-values
unadjusted): ‘Episodic Knowledge’: [F(13, 7017) = 131.99, P < 0.001];
‘Intrusive Distraction’: [F(13, 7017) = 60.52, P < 0.001]; ‘Task Problem-
Solving’: [F(13, 7017) = 266.12, P < 0.001]; ‘Sensory Engagement’: [F(13,
7017) = 107.87, P = 0.001]; ‘Inner Speech’: [F(13, 7017) = 81.32, P = 0.001].
Table 1 shows the unstandardized parameter estimates and 95% CIs for all
five models.

When a moment (or task) falls at the centre of a dimension this
indicates that dimension does not explain the observed data, while strong
positive or negative loadings indicate that this dimension explains the data
in the specific task context. For example, for the Reading task, the strongest
loadings are positive on ‘Intrusive Distraction’—consistent with the notion
that states of distraction, such as mind-wandering can happen frequently
during reading29—and negative on ‘Sensory Engagement’. In this latter
dimension, features with negative loadings include the terms ‘Knowledge’
and ‘Past’, indicating that the participants described the reading task as
relying on past knowledge, highlighting the known role that prior knowl-
edge plays in making sense of a narrative54.

Summary of PCA space
For ‘Episodic Knowledge,’ the most positive predicted mean was for the
Memory task (mean = 1.35, adjusted 95% CI [0.53, 2.17]), and the most
negative predicted mean was for the Go/No-Go task (mean =−0.87,
adjusted 95% CI [−1.69,−0.06]). This suggests that participants described
the experience of autobiographical retrieval as relying on prior knowledge, a
pattern which was absent from the Go-No-Go task. For ‘Intrusive Dis-
traction,’ the most positive predicted mean was for the Go/No-Go task
(mean=0.63, adjusted 95%CI [0.16, 1.11]), and themost negative predicted
mean was for the Friend-Reference task (mean =−0.52, adjusted 95% CI
[−0.99,−0.04]). This suggests that Intrusive distraction is relatively absent
whenwe imagine our friends but is commonwhen participants perform the
Go/No-Go task. It is notable, that a similar Go/No-Go paradigm has been
used for over 20 years to study states of distraction such asmind-wandering
and its neural correlates55,56. For ‘Task Problem-Solving,’ the most positive
predictedmean was for the Hard-Math task (mean = 1.10, adjusted 95%CI
[0.73, 1.48]), and themost negative predictedmeanwas for theMemory task
(mean =−1.22, adjusted 95% CI [−1.59, −0.85]). For ‘Sensory Engage-
ment,’ the most positive predicted mean was for Documentary (one of the
passive movie-watching tasks) (mean = 0.48, adjusted 95% CI [0.16, 0.81]),
and the most negative predicted mean was for the Self-Reference task
(mean =−0.89, adjusted 95% CI [−1.20, −0.57]). Importantly, in a prior
study from our lab, this pattern of thought was shown to be present during
periods of films dominated by increased brain activity within the visual and
auditory systems28. Finally, for ‘Inner Speech,’ the most positive predicted
mean was for the Self-Reference task (mean = 0.43, adjusted 95% CI [0.12,
0.74]), and the most negative predicted mean was for the 2-Back-Scenes
(working memory) task (mean =−0.76, adjusted 95% CI [−1.07,−0.44]).
Figure 2d summarizes the predicted task means for each component as
word clouds.

It is clear from Fig. 2 that the ‘thought-space’ classifies tasks in a
complexmanner. For example, theMemory task and the Self-reference task
(which are both assumed to depend on autobiographical memory proces-
sing) are grouped together by the ‘Episodic Knowledge’ dimension but were
separated by the ‘Inner Speech’ dimension. Likewise, the Friend Task was
grouped together with the Documentary Task by the ‘Task Problem-sol-
ving’ dimension, but these tasks were separated by the ‘Sensory Engage-
ment’ dimension. In other words, our ‘thought-space’ provides a series of
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five dimensions that act to organise the tasks in terms of their similarities
and differences in a multivariate manner.

As well as comparing PCA scores between tasks, we also conducted a
supplementary analysis examining the association between each dimension
of the ‘thought-space’ and performance metrics on the tasks (where it was

Table 1 | Unstandardised parameter estimates for the linear
mixed models comparing PCA scores for each of the five
‘thought patterns’ identified between tasks in the 14-task
battery

Parameters b 95% CI t p

Episodic Knowledge

(Intercept) 0.17 −2.58 – 2.93 0.13 0.901

Easy math −0.12 −0.22 – −0.01 −2.12 0.034

Hard math −0.32 −0.43 – −0.21 −5.82 <0.001

Finger tapping −0.66 −0.76 – −0.55 −11.92 <0.001

Go/No-Go −0.81 −0.92 – −0.70 −14.66 <0.001

Friend 1.14 1.03 – 1.25 20.72 <0.001

You 0.84 0.73 – 0.95 15.23 <0.001

Documentary −0.47 −0.60 – −0.34 −7.07 <0.001

SciFi −0.22 −0.35 – -0.09 −3.25 0.001

1B −0.22 −0.33 – -0.12 −4.05 <0.001

0B -0.18 −0.29 – -0.07 −3.27 0.001

Read 0.04 −0.06 – 0.15 0.80 0.426

Memory 1.42 1.31 – 1.53 25.74 <0.001

2B-Face −0.14 −0.27 – −0.01 −2.09 0.037

Age −0.01 −0.16 – 0.13 −0.18 0.861

Man −0.04 −0.64 – 0.56 −0.14 0.889

Non-binary −0.01 −1.04 – 1.03 −0.01 0.992

Intrusive Distraction

(Intercept) −0.04 −1.61 – 1.54 −0.04 0.965

Easy math −0.34 −0.43 – −0.26 −7.62 <0.001

Hard math −0.15 −0.24 – −0.06 −3.31 0.001

Finger tapping 0.43 0.34 – 0.51 9.43 <0.001

Go/no-go 0.46 0.37 – 0.55 10.23 <0.001

Friend −0.69 −0.78 – −0.60 −15.28 <0.001

You −0.19 −0.28 – −0.10 −4.17 <0.001

Documentary 0.25 0.15 – 0.36 4.63 <0.001

SciFi 0.29 0.19 – 0.40 5.38 <0.001

1B −0.21 −0.30 – −0.12 −4.62 <0.001

0B 0.45 0.37 – 0.54 10.05 <0.001

Read 0.32 0.23 – 0.41 7.14 <0.001

Memory −0.45 −0.53 – -0.36 −9.86 <0.001

2B-Face −0.08 −0.19 – 0.03 −1.44 0.149

Age 0.01 −0.07 – 0.09 0.26 0.792

Man −0.19 −0.53 – 0.16 −1.07 0.285

Non-binary 0.25 −0.35 – 0.84 0.82 0.415

Task Problem-solving

(Intercept) −0.05 −1.26 – 1.17 −0.08 0.939

Easy math 0.96 0.89 – 1.04 24.55 <0.001

Hard math 1.15 1.07 – 1.23 29.36 <0.001

Finger tapping 0.13 0.06 – 0.21 3.38 0.001

Go/no-go 0.28 0.21 – 0.36 7.20 <0.001

Friend −0.95 −1.03 – −0.87 −24.20 <0.001

You −0.19 −0.26 – −0.11 −4.77 <0.001

Documentary −0.69 −0.78 – −0.60 −14.60 <0.001

SciFi −0.69 −0.78 – −0.59 −14.53 <0.001

1B 0.47 0.39 – 0.55 11.98 <0.001

0B 0.27 0.20 – 0.35 7.00 <0.001

Table 1 (continued) | Unstandardised parameter estimates for
the linearmixedmodels comparingPCAscores for eachof the
five ‘thought patterns’ identified between tasks in the 14-task
battery

Parameters b 95% CI t p

Read −0.02 −0.10 – 0.05 −0.64 0.524

Memory −1.17 −1.25 – −1.10 −29.91 <0.001

2B-Face 0.10 0.01 – 0.19 2.09 0.037

Age 0.00 −0.06 – 0.06 0.00 1.000

Man −0.06 −0.32 – 0.21 −0.42 0.675

Non-binary 0.03 −0.43 – 0.49 0.13 0.897

Sensory engagement

(Intercept) −0.29 −1.33 – 0.75 −0.55 0.581

Easy Math −0.30 −0.37 – −0.24 −8.90 <0.001

Hard Math −0.52 −0.59 – −0.45 −15.28 <0.001

Finger tapping 0.06 −0.01 – 0.12 1.68 0.093

Go/No-Go 0.03 −0.03 – 0.10 0.95 0.341

Friend −0.29 −0.36 – −0.23 −8.55 <0.001

You −0.63 −0.69 – −0.56 −18.32 <0.001

Documentary 0.74 0.66 – 0.83 18.07 <0.001

SciFi 0.53 0.45 – 0.61 12.93 <0.001

1B 0.28 0.22 – 0.35 8.32 <0.001

0B 0.07 0.01 – 0.14 2.17 0.030

Read 0.01 −0.06 – 0.07 0.21 0.836

Memory −0.45 −0.52 – −0.39 −13.28 <0.001

2B-Face 0.26 0.17 – 0.34 6.20 <0.001

Age 0.00 −0.05 – 0.06 0.06 0.952

Man 0.33 0.11 – 0.56 2.89 0.004

Non-binary −0.65 −1.04 – -0.25 −3.25 0.001

Inner Speech

(Intercept) −0.33 −1.34 – 0.67 −0.65 0.514

Easy math 0.25 0.18 – 0.32 7.19 <0.001

Hard math 0.23 0.16 – 0.29 6.49 <0.001

Finger tapping −0.08 −0.15 – −0.01 −2.34 0.019

Go/no-go −0.30 −0.37 – −0.23 −8.63 <0.001

Friend 0.19 0.13 – 0.26 5.59 <0.001

You 0.61 0.54 – 0.68 17.61 <0.001

Documentary 0.24 0.16 – 0.33 5.82 <0.001

SciFi 0.28 0.20 – 0.36 6.74 <0.001

1B −0.02 −0.09 – 0.05 −0.64 0.523

0B −0.25 −0.32 – −0.18 −7.20 <0.001

Read 0.27 0.20 – 0.34 7.80 <0.001

Memory −0.31 −0.37 – −0.24 −8.79 <0.001

2B-face −0.55 −0.63 – −0.47 −13.06 <0.001

Age 0.01 −0.05 – 0.06 0.30 0.766

Man 0.12 −0.10 – 0.34 1.08 0.279

Non-binary −0.34 −0.72 – 0.04 −1.78 0.077

Note: P-values < 0.001 are in bold.
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possible to assess performance; 8 tasks total), including accuracy and
response time (see Supplementary Methods and Supplementary Fig. 4). In
brief, this analysis identified a clear association between ‘Intrusive Dis-
traction’ and task performance, both as a main effect [F(1, 1392) = 60.98,
P < 0.001], indicating that this pattern of thought was linked to worse
accuracy [b =−0.13, 95% CI [−0.16,−0.10]] across all tasks, as well as an
interaction [F(7, 1387) = 4.26, P < 0.001], indicating that the negative
association between ‘Intrusive Distraction’ and accuracy was strongest in
the Hard-Math task [b =−0.31, adjusted 95% CI [−0.42, −0.20]. This
analysis shows that of thefive components examined in our study, ‘Intrusive
Distraction’ was the most clearly linked to task performance, and its pre-
sence was associated with less efficient performance. Notably, in a prior
study examining the links between cognition during movie watching and
comprehension of information from the film we also found a negative
impact of a similar thought pattern28.

‘Brain-space’
To generate a multi-dimensional ‘brain-space,’ we used an existing
decomposition of resting-state connectivity data collected as part of the
Human Connectome Project (HCP)21 by Margulies and colleagues32. This
analysis identifies large-scale patterns, commonly referred to as ‘gradients’,
that explain whole-brain connectivity variance in descending order,
according to the similarity of each brain region’s functional connectivity
profile (see Methods). In line with prior work14,28,30,31,57, we used these gra-
dients to build a 5-d ‘brain-space’ in which the relative locations within this
space provide information regarding the balance of different brain systems
in a particular context. Note, we used gradients calculated from the HCP
data to form the dimensions of the ‘brain-space’—rather than gradients
calculated from the specific data sets in question— to avoid circularity in the
mapping between the tasks states and the dimensions themselves14. Thefirst
dimension differentiates sensory-motor cortex from association cortex, the
second dimension differentiates motor and visual cortex, the third dimen-
sion differentiates regions of the default mode network from the fronto-
parietal network, the fourth dimension differentiates regions of the dorsal
attention network from regions of the ventral attention network and visual
cortex, and the fifth dimension differentiates regions of the visual cortex
from the ventral attention network (see Supplementary Fig. 1 for lateral and
medial views of the spatial brain maps representing each ‘brain-space’
dimension and a radar plot showing how thesefive dimensions organize the
Yeo-758 networks).

The combination of these five gradients forms a 5-d ‘brain-space’.
We projected each group-level task map, derived from previous fMRI
studies in which participants performed the same tasks as our beha-
vioural participants, into the low-dimensional ‘brain-space’ by
calculating the pairwise correlations between spatial brain maps sum-
marizing neural activity in each task (see Supplementary Fig. 5) and
each of the five connectivity gradients, resulting in five sets of ‘coordi-
nates’ per task map (see Methods). Using this approach, if a brain map
has a positive association with a specific gradient, then there will be
greater activity in the brain map in regions which fall towards the
positive end of the gradient. In contrast, a negative mapping between a
gradient and a task map shows the reverse pattern: regions in the task
map that show high levels of activation will be regions that tend to fall at
the negative end of the gradient. Finally, as the correlation between a
brain map and a gradient approaches zero, then the regions at either
end of the gradient will tend to show neither high nor low levels of
activity.

The task locations along the first three dimensions of the ‘brain-
space’ are represented in Fig. 1b (see Supplementary Table 3 for task
locations along all five dimensions). To assess the robustness of the cor-
relations calculated by our analyses we conducted spin tests59 (see
Methods, and Supplementary Table 7), which address whether para-
meters such as spatial smoothing may artefactually drive the observed
correlations. This analysis found that for every task, our correlation
method identified at least one gradient in which the association was

greater than would be expected by low level features of the brain maps
(e.g., spatial smoothing).

A combined ‘state-space’
Having generated a 5-d ‘thought-space’ and a 5-d ‘brain-space’ to char-
acterize the task contexts used in our study, we next sought to generate a
‘state-space’ that combines bothdatasets andassesswhether such amapping
could occur by chance. We used CCA33, a multivariate technique that
identifies the linear combinations between two sets of variables (X and Y)
that maximize their correlation (see Methods). In our analysis, the X vari-
ables were the observation-level scores for each of thefive PCA components
(7220 × 5). The Y variables included brain coordinates at the task level for
each of the five gradients (14 × 5). To align the dimensions, task-level brain
coordinateswere replicated for eachoccurrenceof the corresponding task in
the X variables (resulting in a matrix of size 7220 × 5).

We used permutation testing to evaluate the statistical significance of
the observed canonical correlations (correlation 1 = 0.56, correlation
2 = 0.35, correlation 3 = 0.19, correlation 4 = 0.12, correlation 5 = 0.00). The
PCA rows were shuffled 1000 times (see Methods), and CCA was repeated
on each shuffle. This procedure generated a null distribution of canonical
correlations, allowing us to estimate the likelihood that the correlations in
the real data occurred by chance. The p-values, calculated as the proportion
of permuted canonical correlations equal to or greater than the observed
values,were significant for thefirst fourCCAdimensions atP < 0.001.These
results suggest that the identified associations between ‘brain-space’ and
‘thought-space’ dimensions are unlikely to have arisen by chance. Density
plots showing the null distributions and observed canonical correlations are
shown in Fig. 3a. CCA is a method that is robust to the comparison of
matrices with different features, however, our analysis combined
7220 scores in the ‘thought-space’ with a fixed set of co-ordinates in the
‘brain-space’. To allay concerns that this artificially altered the relationships,
we reran theCCAusing the averagemDES score for each individual on each
task. Comparison of this model with our initial model indicated that they
produced similar results (for the ‘brain-space’: r = 0.99, p < 001 and for the
‘thought-space’: r = 0.97, p < 001).

We visualized the X variates (i.e., CCA-weighted PCA components)
using word clouds (seeMethods, see Fig. 3b). In each word cloud, a word is
an mDES item, the size represents the magnitude of the summed weighted
loading, and the colour represents the direction (red = positive, blue =
negative).We visualized the Y variates (i.e., CCA-weighted gradient scores)
in MNI space (see Methods, see Fig. 3c). In each brain map, positive values
are in red, and negative values are in blue. Having created CCA-weighted
brain maps, we used Neurosynth’s60 online meta-analytical decoder to
identify cognitive and psychological terms most strongly associated with
these brainmaps (fourmaps; one for each significant CCA dimension).We
visualized the results of this analysis as word clouds (see Fig. 3d), showing
the top ten positive and top ten negative cognitive and psychological terms
associated with each map. To generate the Neurosynth data, we uploaded
the CCA maps one at a time (https://neurosynth.org/decode/) and copied
the terms with the top most positive and most negative correlations
(removing duplicates or anatomical terms). The data upon which these
word clouds are basedare alsopresented in SupplementaryTable 8.For each
CCA-weightedbrainmap,we also calculated the average value in eachof the
17 Yeo Networks (see Supplementary Fig. 6 for a radar plot).

Generalizability of CCA ‘state-space’
To establish the generalizability of the CCA ‘state-space’ (i.e,. whether the
model is overly dependent on a single task context), we performed a leave-
one-out cross-validation analysis in which we systematically excluded all
X variables (PCA scores) and Y variables (brain coordinates) associated
with each task one at a time. To prevent data leakage during the PCA
process, we used the PCA models generated based on held-out data.
Subsequently,we applied the trainedCCAmodel to theheld-out task data,
resulting in observation-level CCAX and Y variates for the held-out task.
To create one score for each set of X and Y variates, we summed the
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corresponding z-scoredX andY variates.We then correlated the summed
CCA scores for each task obtained from the omnibus CCAmodel, which
was trained on all 14 tasks, with the projected scores derived from the
held-out CCA model. In this analysis, the minimum correlation for
dimension 1 was 0.98, dimension 2 was 0.95, dimension 3 was 0.83, and
dimension 4 was 0.21 (see Fig. 3e). This analysis suggests that the first
three CCA components were generalizable (i.e., they are not unduly
influenced by any single task). In otherwords, ourCCAproduced amodel
of the mapping between thoughts and brain activity that was not overly
influenced by any thoughts and brain activity produced within a single
task context.We confirmed that the resultswere highly similarwhenusing
Spearman rank correlation and confirmed that the results were highly
similar when removing outliers (as defined by any case with a z-score
of <−2.5 or > 2.5).

Task locations in CCA ‘state-space’
We next examined how the CCA ‘state-space’ distinguishes the tasks by
performing a series of LMMs—one for each of the four significant CCA
dimensions. To avoid circularity in this analysis, we used the summed CCA
variates derived from the held-out models. The LMMs comparing the CCA
variates of each task along each dimension of the CCA ‘state-space’ indicated
that theCCAvariatesdiffered significantlybetween tasksalongeachof the four
dimensions (Bonferroni-adjusted alpha level for fourmodels = 0.013; reported
p-values unadjusted): ‘Deliberate Problem-Solving’ [F(13, 7017) = 3332.37,
P < 0.001]; ‘Detailed Knowledge’ [F(13, 7017) = 1608.64, P < 0.001]; ‘Intrusive
Distraction’ [F(13, 7017) = 2861.18, P < 0.001]; ‘Positive Engagement’ [F(13,
7017) = 2293.23, P= 0.001]. This analysis indicates that each of the CCA
dimensions identified in our model distinguished between one or more task

contexts measured in our study. Supplementary Table 9 shows the unstan-
dardized parameter estimates and 95% CIs for all four models.

The predicted means for each task for each CCA dimension are
represented as word clouds in Fig. 3 and bar plots in Fig. 4 (see also Sup-
plementary Fig. 7 for task-grouped box plots of raw data). For ‘Deliberate
Problem-Solving,’ the most positive predicted mean was for the Go/No-Go
task (mean = 3.21, adjusted 95% CI [2.95, 3.46]), and the most negative
predicted mean was for the Memory task (mean =−0.87, adjusted 95% CI
[−3.93, −3.42]). For ‘Detailed Knowledge,’ the most positive predicted
mean was for the Hard-math task (mean = 2.32, adjusted 95% CI [1.99,
2.64]), and the most negative predicted mean was for Documentary
(mean =−3.40, adjusted 95% CI [−3.73, −3.07]). For ‘Intrusive Distrac-
tion,’ themost positive predictedmeanwas for the Go/No-Go task (mean =
2.75, adjusted 95% CI [2.40, 3.11]), and the most negative predicted mean
was for Documentary (mean =−5.66, adjusted 95% CI [−6.02, −5.30]).
Finally, for ‘Positive Engagement,’ themost positive predictedmeanwas for
the Hard-Math task (mean = 3.77, adjusted 95% CI [3.47, 4.07]) and the
most negative predicted mean was for the 0-back task (mean =−3.59,
adjusted 95% CI [−3.90, −3.29]).

Summary of CCA dimensions
The first component, ‘Deliberate Problem-Solving’, was anchored at the
positive end by mDES items ‘Problem’ and ‘Deliberate’ and at the negative
end by ‘Past’, ‘People’ and ‘Self’. In the brain, this was associated with
positive weightings for regions of the Dorsal Attention and Fronto-Parietal
Networks and negative loadings within regions of the Default Mode Net-
work. It weighed highly on tasks like the Go/No-Go and the 2B Faces task,
and the Neurosynth analysis suggested that the most appropriate term

Fig. 4 | Summary of each CCA dimension identified in our ‘state-space’ analysis.
a Shows the self-reported features in the form of a word cloud (each word = mDES
item, size =magnitude of the summedweighted loading (seeMethods), and colour =
direction [red = positive, blue = negative]). b Spatial brain maps representing how
each CCA dimension organizes whole-brain neural patterns identified by correlat-
ing task brain maps with dimensions of brain function variation (gradients; see

Methods). In each map, positive values are red and negative values are blue (left
hemisphere is shown). c Bar graphs showing the predicted mean score of each CCA
dimension in each of the 14 tasks, derived from the LMMs comparing the held-out
CCA summed variates between each task. Error bars = 95%CI, Bonferroni-adjusted
for 14 tasks.
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would be ‘Task’. Together, this suggests that ‘Deliberate Problem-Solving’ is
a pattern of thought prevalent in demanding task contexts. Notably, in a
recent ‘state-space’ analysis of online thought reports in combination with
mDES we found a similar association between a pattern of ‘Detailed Pro-
blem-Solving’ and in the brain, a relative increase in activity within the
Fronto-Parietal Network14. The second component, ‘Detailed Knowledge’,
was anchored at the positive end by mDES terms ‘Detailed’, ‘Knowledge’
and ‘Absorbing’ andat thenegative endby terms ‘Images’ and ‘Sounds’. This
was associated with a brain map with positive loadings in regions of the
Fronto-Parietal and Sensory Motor cortex and negative loadings in regions
of theDefaultMode, Limbic andVisual Networks. This patternwas present
in tasks such as HardMaths, 2B Face and 2B Scenes, Self-reference, Friend-
reference and Autobiographical Memory. Neurosynth analysis highlighted
terms like ‘Social,’ ‘Autobiographical’ and ‘Comprehension’. This pattern
may describe a state ofmemory-guided behaviourwhere prior knowledge is
necessary to guide action61. The third component, ‘Intrusive Distraction’,
was anchored at the positive end by the items ‘Intrusive’, ‘Distraction’ and
the ‘Self’ and at the negative end by ‘Images’. In the brain, this was associated
with positive weights in regions of the Default, Limbic, Ventral Attention
and Motor Cortex and with negative loadings in regions of the Fronto-
parietal, Dorsal Attention and Visual Networks. This component was
prevalent in the Go-No/Go task and Neurosynth analysis highlighted the
term ‘Pain’. This pattern may reflect an aversive state, an interpretation
consistent with a relationship between ‘Intrusive Distraction’ and increased
anxiety in daily life29. Notably, in a recent study of thinking during movie
watching, we observed that states of ‘IntrusiveDistraction’ often emerged at
moments in films when activity in Fronto-parietal regions were reduced28.
Finally, the fourth component, ‘Positive Engagement’, was anchored at the
positive end by the terms ‘Words,’ ‘Sounds’, ‘Deliberate’ and ‘Positive
Emotion’ and at the negative end by ‘Images’, ‘Future’ and ‘Intrusive’. In the
brain, this was associated with positive weightings in Auditory, Superior
Parietal and Visual Cortex and negative weightings in regions including the
Default Mode and Temporo-parietal Networks. This pattern was most
prevalent in theHardMaths task andbothmovies (Documentary andSciFi)
and Neurosynth identified the terms ‘Visual’ and ‘Motor’. Together, this
component may reflect a pattern of engagement with the outside world.

It is important tonote that aswith our ‘thought-space’, the ‘state-space’
organised the tasks in a complex manner. For example, the ‘Deliberate
Problem-Solving’ dimension distinguished between theMemory and Hard
Math tasks, while the ‘DetailedKnowledge’dimensiondid not. Likewise, the
Reading and Memory tasks were distinguished along the ‘Deliberate Pro-
blem-Solving’ and ‘Intrusive Distraction’ dimensions, but were paired on
the ‘Detailed Knowledge’ dimension.

We also conducted a supplementary analysis examining the associa-
tion between each CCA dimension and performance on the tasks (where it
was possible to assess performance; 8 tasks total), including accuracy and
response time (see Supplementary Methods and Supplementary Fig. 8). In
brief, this analysis revealed a main effect [F(1, 1401) = 12.66, P < 0.001],
indicating that ‘Deliberate Problem-Solving’ was associated with lower
accuracy across all tasks in which accuracy could be assessed [b =−0.10,
95% CI [−0.15, −0.05]], possibly because this component separated diffi-
cult tasks (for example, 2B-Scene, 2B-Face andGo-No/Go tasks) fromeasier
tasks (for example, Self-Reference and Friend tasks). In addition, the task
accuracy analysis revealed a significantmain effect of ‘Intrusive Distraction’
[F(1, 1273) = 20.79, P < 0.001], indicating that ‘Intrusive Distraction’ was
associated with lower accuracy [b =−0.10, 95% CI [−0.14,−0.6]]. Finally,
there was a significant main effect of ‘Positive Engagement’ [F(1,
1433) = 11.76, P < 0.001], indicating it was associated with higher accuracy
[b = 0.07, 95% CI [0.03, 0.11]].

Prediction accuracy of brain states
Having established the significance and generalizability of the CCA ‘state-
space’ across the tasks we sampled, we conducted a final hypothesis driven
analysis to assess whether ourmodel canmake accurate predictions of brain
states using unseen experience sampling data. To this end, we collected new

experience sampling data in an independent sample (N = 95; see Methods)
in a subset of 4 tasks (Memory,Go/No-Go,Documentary, andHard-Math).
These taskswere selected as they fall at the extreme ends of thefirst twoCCA
dimensions (see Fig. 5a for task locations along the first three dimensions
and Supplementary Table 4 for task locations along all four significant
dimensions). To ensure the component structure sufficiently generalized
from the original set of mDES probes to the replication set, we conducted a
bootstrapped direct-projection reproducibility analysis using the RHom
module in the ThoughtSpace package53. In this analysis we divided the
original and replication sets each into 5 folds and compared the component
similarity of every combination of folds in the original set to every combi-
nation of folds in the replication set. Components derived from the original
set both exhibited good loading similarity (ϕ=0.89, 95% CI[0.86, 93]) with
the replication set and generated strongly correlated component scores
(RHom.=0.84, 95% CI[0.76, 93]) with the replication set53. Altogether, the
analysis indicated that the component structure from the original set of
mDES probes robustly generalized to those collected in the replication set.

We projected the newexperience sampling data from these 4 tasks into
the omnibus PCA ‘thought-space’ trained on all 14 tasks in the original
sample. We then used the trained CCAmodel to predict brain coordinates
in ‘brain-space’ for each PCAobservation in the new sample. The average of
these predictions for each task along the first three ‘brain-space’ dimensions
is shown in Fig. 5b in red, while the ‘true’ location of each task in ‘brain-
space’ is shown in black.

To determine the accuracy of these predictions, we calculated the
Euclidean distance between the true brain coordinates for each observa-
tion’s task and that observation’s predicted brain coordinates in ‘brain-
space’ (i.e., the error; see Methods). Next, we calculated the Euclidean dis-
tances between the true gradient coordinates for that observation’s task and
the predicted gradient coordinates for the other three tasks. For each task,
this process resulted in 1) a distribution of distances between the true and
predicted brain coordinates, and 2) three distributions of distances between
the true coordinates for that task and the predicted coordinates of the other
three tasks (see Supplementary Fig. 9 for histograms). The averages of these
distributions are shown inFig. 5c.Next,we rana seriesof pairedone-tailed t-
tests to compare the task-to-task distribution to the other-task-to-task
distributions (3 t-tests per task) to test the hypothesis that the task-to-task
distances were significantly smaller than the other-task-to-task distances.
All t-tests, except for the comparisonofGo/No-Godistances toHard-Maths
distances (bottom row of Fig. 5d), were significant (P < 0.001) at the
Bonferroni-adjusted alpha level of 0.003. These findings are highlighted by
the diagonal of the heatmap shown in Fig. 5d, which shows the smallest
values.We also performed a similar analysis in whichwe built a CCA ‘state-
space’ from the initial data using only the 10 tasks that were not tested in the
second sample, yielding highly similar results, with the only non-significant
comparison being between Go/No-Go distances to Hard-Maths distances
(see Supplementary Fig. 10).

Discussion
Our study set out to understand how accurately self-reported data could
characterise different task states. To this end, a sample of 190 healthy par-
ticipants completed a battery of 14 tasks for which existing maps of brain
activity were available.We usedmachine learningmethods to map the self-
reported data onto the landscape of tasks states as defined by brain activity.
Using this approach, we established that in the context of the tasks we used,
introspective reports contain information that accurately reflect features of
different task states as determined using fMRI. In particular, we demon-
strated that our ‘state-space’ (that mapped self-reported experience sam-
pling data onto brain activity) was generalisable within the context of the
tasks we sampled: it could predict features of brain activity based on unseen
introspective reports with reasonable accuracy. Our study, therefore, shows
that introspection can provide accurate information about an individual’s
current task context, an important observation given that self-reported
information is often the only available ground-truth for investigations into a
wide variety of aspects of human experiences such as mental health.
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In our study, we exploited the difference in task states to understand the
accuracy with which introspective information can characterise a person’s
task state.This allowedus to exploit objectivedescriptionsof states frombrain
imaging studies, an approach which is similar in principle to work on meta-
cognition (the ability with which a person can accurately characterise their
performance). This approach contrastswithmany prior experience sampling
studies that have often focused on covert states, such as mind-wandering,
where cognition is related to information that is often hidden from an
external observer. Since a similar implementation of mDES has already been
used to explore the neural correlates of both internal and external states14,22, it
is possible that in the future the ‘state-space’ constructed in this study could
provideauseful framework for studiesof internal states. For example,wehave
previously shown that the autobiographical memory task used in our battery
of tasks evokes patterns of neural responses that share features of neural
activity observed during spontaneous self-generated states20.

Our study also provides a useful approach for evaluating features of
brain states. Historically, cognitive neuroscience has focused on examining
the functions supported by specific regions of cortex, however, an emerging
literature has begun to focus on the emergence of brain states62 both in the
context of tasks, and in less constrained situations such as those that emerge
at rest. In this context, our ‘state-space’ approach is helpful because it pro-
vides a framework within which to evaluate holistic psychological and
neural features that distinct moments in time may have, a question that is
related to, but distinct from, assessments of the specific component pro-
cesses that contribute particular states6,63. In the future, it may be possible to
leverage the ‘state-space’ approach we have developed to provide insight
into the likely experiential features that different neural statesmayhave.Our
data provide a useful starting point for this endeavour because techniques
like Bayesian Optimization could be used to optimise both the task states
being examined and the mDES items themselves64.

Limitations
Although our study highlights the value of introspection as a tool for
characterising important features of task states, there are nonetheless
important questions surrounding its use as a tool in both psychology and
neuroscience. For example, one of the traditional limitations of introspec-
tion is its capacity to describe what people do, not why they are doing it3. In
this regard, it is important to note that although our study shows that self-
reported information contains information that can distinguish task states,
it does not indicate that individuals have direct insight into why their
thoughts have the features that they do, nor the neural mechanisms that
underly cognition more generally. In other words, it seems unlikely that
participants’ responses directly reflect insight into the underlying cognitive
or neural processes that drive their behaviour. Instead, our results can be
parsimoniously described by assuming that participantshave the capacity to
distinguish how it feels to perform different tasks, and this may be possible
even if introspection does not allow access to the underlying processes
themselves. So, while our data show that mDES data has the capacity to
distinguish between tasks in a complex multi-dimensional manner,
important questions about the underlying mechanisms remain. For
example, one question is which features of mDES relate to more overt
aspects of behaviour, and which features relate to the hidden psychological
states that can occur during tasks. Clearly, some features of our data relate to
superficial features of tasks such as their reliance on frequent behavioural
responses. However, it seems unlikely that this is the whole story since our
analysis often linked task states together that are different in their beha-
vioural features. For example, the Memory task (which depends on auto-
biographical memory) is distinguished from tasks which rely on working
memory (i.e. 2B-Faces, 2B-Scences and 1-Back) along three of the fourCCA
dimensions. However, these tasks are close together on the Detailed
Knowledge dimension which likely reflects a common reliance on the

Fig. 5 | Using the CCA ‘state-space’ to make pre-
dictions of brain coordinates in ‘brain-space’
using new experience sampling data. a 3-d scat-
terplot showing the distribution of all 14 tasks along
the first three dimensions of the 4-d CCA ‘state-
space’ (see Supplementary Table 4 for exact avera-
ges). b A 3-d scatter plot showing (1) the true loca-
tions of the subset of 4 tasks (in black) and (2) the
average predicted locations (in red) of the subset of 4
tasks along the first three dimensions of the 5-d
‘brain-space.’ c Bar graphs showing the (1) mean of
the distribution of distances between the true and
predicted coordinates for each task (emboldened
title indicates which task), and (2) the mean of the
three distributions of distances between the true
coordinates for that task and the predicted coordi-
nates for the other three tasks. Error bars = Standard
Error, unadjusted. Supplementary Fig. 9 shows the
distributions behind these averages. d Heatmap
highlighting that the mean distance between each
tasks’ true brain coordinates and predicted brain
coordinates (the diagonal) is smaller than the mean
distance between each task’s true brain coordinates
and the other three tasks’ predicted brain
coordinates.
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application of knowledge to perform these tasks accurately (albeit from
different sources). In this regard, it is also important to note that using a
similar implementation of mDES, we were able to distinguish different
neural states within an individual while they performed a single task14,
indicating that mDES can distinguish different psychological states that
occur within a specific situation. It is, therefore, an important question for
future research to attempt to quantify the aspects of mDES sensitive to
simple behavioural differences and those which are sensitive to psycholo-
gical states.

Finally, although our study shows a mapping between introspective
data and patterns of brain activity, it is likely that a more nuanced approach
than ours is needed to fully understand the neural basis behind different
states. Conceptually, our study capitalises on the fact that tasks, which may
show superficial differences in their task structure, may also share similar
broad features (for example, the role of executive control in demanding
tasks65, or language processes in task like reading or watching movies66).
However, an important limitation in our ‘state-space’ comes from the fact
that our task battery, while encompassingmany different types of task, is by
no means an exhaustive list of the tasks humans can engage with. For
example, despite reading being a core feature of human cognition67 we only
had one task to sample this important andmulti-faceted process. Similarly,
over the last decade, it has become apparent that there are important
individual differences in the architecture of brain systems across
individuals68,69 and there are individual differences in how different indivi-
duals perform tasks, for example based on their levels of expertise70. Col-
lectively, therefore, idiosyncrasies in our task battery, the brain organisation
of specific individuals and task capabilitiesmean that our data provides only
a modest contribution into the neural correlates that accompany different
patterns of thought. In the future, this important question could be resolved
by integrating our ‘state-space’ method with the online collection of brain
activity in both groups of individuals using an expanded set of tasks, and
importantly in single individuals using precision mapping (e.g.71,).

Data availability
All data required to reproduce the results reported in the currentmanuscript
are openly available on Mendeley: https://data.mendeley.com/datasets/
vpgzg24h8g/1.

Code availability
Code required to reproduce the results reported in the currentmanuscript is
openly available on Zenodo: https://doi.org/10.5281/zenodo.14262793.
Code for the presentation of the 14-task battery (https://github.com/
ThinCLabQueens/Task-Battery/tree/production) and 4-task battery
(https://github.com/ThinCLabQueens/Shortened-Task-Battery) is also
openly available on GitHub.
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