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ABSTRACT
DNA analyses have revolutionized species identification and taxonomic work. Yet,
persistent challenges arise from little differentiation among species and considerable
variation within species, particularly among closely related groups. While images are
commonly used as an alternative modality for automated identification tasks, their
usability is limited by the same concerns. An integrative strategy, fusing molecular and
image data through machine learning, holds significant promise for fine-grained species
identification. However, a systematic overview and rigorous statistical testing concerning
molecular and image preprocessing and fusion techniques, including practical advice for
biologists, are missing so far. We introduce a machine learning scheme that integrates both
molecular and image data for species identification. Initially, we systematically assess and
compare three different DNA arrangements (aligned, unaligned, SNP-reduced) and two
encoding methods (fractional, ordinal). Later, artificial neural networks are used to extract
visual and molecular features, and we propose strategies for fusing this information.
Specifically, we investigate three strategies: I) fusing directly after feature extraction, II)

fusing features that passed through a fully connected layer after feature extraction, and
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III) fusing the output scores of both unimodal models. We systematically and statistically
evaluate these strategies for four eukaryotic datasets, including two plant (Asteraceae,
Poaceae) and two animal families (Lycaenidae, Coccinellidae) using Leave-One-Out
Cross-Validation (LOOCV). In addition, we developed an approach to understand
molecular- and image-specific identification failure. Aligned sequences with nucleotides
encoded as decimal number vectors achieved the highest identification accuracy among
DNA data preprocessing techniques in all four datasets. Fusing molecular and visual
features directly after feature extraction yielded the best results for three out of four
datasets (52-99%). Overall, combining DNA with image data significantly increased
accuracy in three out of four datasets, with plant datasets showing the most substantial
improvement (Asteraceae: +19%, Poaceae: +13.6%). Even for Lycaenidae with high
identification accuracy based on molecular data (>96%), a statistically significant
improvement (42.1%) was observed. Detailed analysis of confusion rates between and
within genera shows that DNA alone tends to identify the genus correctly, but often fails
to recognize the species. The failure to resolve species is alleviated by including image data
in the training. This increase in resolution hints at a hierarchical role of modalities in
which molecular data coarsely groups the specimens to then be guided towards a more
fine-grained identification by the connected image. We systematically showed and
explained, for the first time, that optimizing the preprocessing and integration of molecular
and image data offers significant benefits, particularly for genetically similar and
morphologically indistinguishable species, enhancing species identification by reducing
modality-specific failure rates and information gaps. Our results can inform integration
efforts for various organism groups, improving automated identification across a wide range

of eukaryotic species.

Key words: data fusion, species identification, deep learning, DNA, images, integrative

taxonomy, species confusion
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DNA has established itself as a widely used data source for automated species
identification efforts in both ecology and evolutionary research, helping to explore
evolutionary relationships and genetic diversity (Stuessy, 2009; Karbstein et al., 2024).
Traditionally, DNA-based species identification methods rely on short (approx. <1000 bp)
genetic markers known as barcodes that can be queried against large databases for species
identification (Hebert et al., 2003a; Ratnasingham and Hebert, 2007). Examples include
the NCBI nucleotide or the Barcode of Life initiative (BOLD) databases (Dietz et al.,
2023; Wiechers et al., 2023). Barcodes and the use of metabarcoding facilitate the
assessment of, e.g., environmental samples from aerobiological surveys to discern plant
species through pollen (Leontidou et al., 2021), or analyse biodiversity hotspots (Lahaye
et al., 2008; Bessey et al., 2020). Nevertheless, identification based on genetics can provide
suboptimal results in cases where sequences are too few or too short due to sampling or
sequencing issues, or where genetic regions are less variable due to strong pressures for
natural selection (Braukmann et al., 2017; Meiklejohn et al., 2019). Multi-locus analyses
have been repeatedly proposed to circumvent apparent drawbacks of single genetic
marker-based identification, ranging from two to hundreds of loci (Krawczyk et al., 2014;
Dietz et al., 2023). However, multi-locus compared to single-locus analyses increase lab
work and sequencing costs, are computationally more expensive, or are sometimes difficult
to interpret in case of gene tree conflicts (Karbstein et al., 2022; Dietz et al., 2023). In
recent years, machine learning (ML) and, in particular, deep learning (DL) approaches
have gained recognition in automatizing DNA-based tasks such as the identification or
delimitation of species (Zhang et al., 2008; Derkarabetian et al., 2019), DNA basecalling
(Boza et al., 2017), genome assembly polishing (Huang et al., 2021), and phylogenetic tree
building (Bhattacharjee and Bayzid, 2020).

Besides genetics, taxonomic research still largely relies on the study of

morphological characteristics. ML and, in particular, DL as a branch of ML have become
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especially popular in the identification of species based on images (Buschbacher et al.,
2020; Méader et al., 2021; van Klink et al., 2022; Green et al., 2023). This advancement can
be attributed to DL’s ability to efficiently learn to recognize discriminatory, e.g., visual
patterns, which in turn enables the algorithm to evaluate the often extensive, feature-rich
biological datasets like diverse images of species (Waldchen and Méder, 2018).

Additionally, DL algorithms are becoming increasingly prevalent in image-based
species identification due to the availability of seminal network architectures such as
ResNet (He et al., 2016), which offer scientists a solid foundation for a myriad of derived
applications, especially in the automatic identification of different species groups
(Norouzzadeh et al., 2018; Mader et al., 2021; Hgye et al., 2021).

Image-based identification can either utilize in situ, i.e., field recorded (Terry et al.,
2020; Rzanny et al., 2022), specimens or preserved specimens from collections
(Carranza-Rojas et al., 2017; Marques et al., 2018; Hodac et al., 2023). The availability of
in situ images is rapidly increasing, particularly due to citizen science initiatives (Boho
et al., 2020; Mesaglio et al., 2023). Preserved specimens, represented by millions of samples
in natural history collections (Bebber et al., 2010; Scott and Livermore, 2021), have become
more relevant through increasing efforts to automate digitization (Blagoderov et al., 2012;
Tegelberg et al., 2014). Compared to genetics-based approaches, images from either in situ
or collection material provide a fast and low-cost means to species identification that can
reliably discriminate between species with a characteristic morphology (e.g. Méader et al.,
2021; Shirai et al., 2022). Nevertheless, image-based species identification comes with its
own set of weaknesses, mainly introduced by cryptic species, high phenotypic plasticity,
and multiple origins of the same morphotype. These factors can also cause discrepancies
between systematics inferred from genetics and morphology, leading to revisions of former
morphospecies (e.g. Karbstein et al., 2020; Marcussen et al., 2022). Highly variable image
qualities and ways of recording further complicate identification and can lead to poor

identification accuracy, especially for species that are intrinsically hard to distinguish
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(Wiéldchen et al., 2018; Barbedo and Castro, 2019; Chiu et al., 2020).

To overcome the limitations of species identification using a single data point per
specimen, multiple data points either of the same modality or of different modalities can
be combined (e.g. Terry et al., 2020). Fusion of data can leverage machine learning
algorithms, which are adept at efficiently integrating disparate information (Karbstein
et al., 2024). Across disciplines, some attempts have been made to incorporate multiple
inputs into ML training. For example, the fusion of different image perspectives yields
enhanced results in terms of species identification accuracy (Marques et al., 2018; Rzanny
et al., 2022). On the other hand, integrative taxonomy seeks to overcome the limitations
outlined above by incorporating various types of data, thereby reducing modality-specific
(i.e., data type-specific) failure rates and information gaps (Dayrat, 2005; Schlick-Steiner
et al., 2010; Karbstein et al., 2024). While its utility has been limited by the large amount
of data required since traditional procedures rely on extensive pipelines that often include
manual labour and do not scale well, the application of machine learning methods offers a
solution. For instance, recent developments involve fusing with supplementary metadata
such as location or date (Terry et al., 2020). Nevertheless, particularly the integration of
DNA and image data emerges as a promising route to high-accuracy species identification.
So far, deep learning-assisted fusion of DNA and images has primarily been applied in
biomedical research (Stahlschmidt et al., 2022). To date, few studies have used genetic and
image input for species identification. Yang et al. (2022) have developed a new
convolution-based architecture for integrative species identification (MMNet) using
barcodes and images. They found that MMNet outperformed existing methods on 10
distinct datasets comprising both animal and plant groups while achieving very high
accuracies with up to 100% identification success. Badirli et al. (2023) used a hierarchical
Bayesian model to integrate DNA and image features of four insect orders derived from
unimodal convolutional neural networks (CNN). They found that multimodal species

identification performed better than unimodal ML methods but was surpassed by
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traditional distance-based identification on DNA data. In addition, notable efforts in
species delimitation include the successful unsupervised training of a SuperSom, i.e., an
ANN producing a multi-layer grid, where each layer represents an input type

(Alexander Pyron, 2023). Another example is the use of a Bayesian approach that can
incorporate multiple loci and quantitative traits to suggest alternatives for provided
species labels (Solis-Lemus et al., 2015). Guillot et al. (2012) employ a statistical approach
with the goal of building homogeneous clusters without needing prior knowledge and using
spatial, phenotypic, and genetic information. Our exploration of the fundamental question
of how to preprocess genetic data for use with DL models and how to fuse genetic data
with other types of input extends the aforementioned studies.

Generally, DNA has to be specifically preprocessed in order to work with ML
methods. Multiple options of DNA arrangement and numerical encoding are imaginable.
Researchers can either choose to input sequences in their raw state, align them, or
additionally reduce them to single nucleotide polymorphisms (SNPs). DNA must also be
transformed into a numerical representation by turning each base into a vector of a chosen
length n, by assigning a specific numerical value to each base, or by learning an
informative representation. Such a representation can be learned using, for instance,
similarity learning approaches or, alternatively, a transformer architecture. Notable
examples of DNA-focused transformers are DNABERT (Ji et al., 2021) and DNAGPT
(Zhang et al., 2023). Transformers are powerful encoder-decoder structures that are
applied to text-like input. For comparability between the two modalities images and DNA,
we have opted to use CNNs instead. Additionally, there is a diverse range of deep learning
fusion methods (e.g. Seeland and Méder, 2021). These methods encompass techniques such
as feature fusion, where features extracted from different modalities after any but the last
layer are combined to provide a more comprehensive representation of the data. Moreover,
score fusion aggregates predictions from multiple models or modalities to make a final

decision (Seeland and Méder, 2021). To date, there has not been a systematic and
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statistical comparison of DNA preprocessing and multimodal fusion approaches combining
genetic and image input applied across eukaryotes. Nonetheless, the choice for a
preprocessing and fusion method can enhance or limit both the achievable identification
accuracy and the efficiency of the model. For instance, reducing the DNA to SNPs can
decrease noise (e.g., missing data/gaps) and greatly accelerate training times when
working with very long sequences. Determining preprocessing and fusion methods that
yield consistently robust results across eukaryotic groups is, therefore, critical for species
identification efforts using ML. In addition, a comparison to the baseline, i.e., the accuracy
achieved by relying on a single datatype, is of importance as fusion always involves
additional effort and, thus, should only be considered when accompanied by a considerable
increase in identification accuracy. In this study, we use the genetic markers C'OI for two
animal and rbcLa for two plant families in combination with image-based morphological
data to systematically investigate preprocessing and fusion methods. In addition, we want
to provide future studies on integrative systematics with a baseline to guide them during
sample collection and the process of choosing an appropriate model architecture.
Specifically, we explore four key targets: 1) the determination of the DNA arrangement
and 2) encoding options that yield the most accurate species identification across diverse
datasets, 3) investigation of the impact that data fusion has on species identification
success, 4) assessment of the effectiveness of the proposed fusion strategies. Finally, we
explore the mechanisms underlying accuracy improvements resulting from the combination

of genetic and image data as a contribution to explainable Al

MATERIAL AND METHODS
Dataset collection and filtering

We assembled four datasets, each comprising DNA and image data: two plant
datasets and two animal datasets (Table 1). Each dataset focuses on a specific family, with

varying numbers of genetic distances between and within genera and species to present
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various levels of complexity with regard to differentiation. We gathered data from the
Asteraceae and the Poaceae family for the plant datasets. In the Poaceae dataset, we
utilized images captured in natural habitats, while for the Asteraceae dataset, we relied on
digitized herbarium material. This approach enabled us to examine the viability of our
method for in situ plant images as well as for digitized preserved specimens. The animal
datasets consist of the Coccinellidae and the Lycaenidae family. Due to data availability
constraints, we could only utilize images from preserved specimens, i.e., from collections,
for both datasets. For the same reason, we chose to set the minimum number of records
per species to four for all datasets, where each record is composed of a molecular and an
image sample. The low number of records reflects the reality many researchers face in their
sampling efforts (e.g., compare to Zarrei et al., 2015; Karbstein et al., 2020; Yang et al.,
2022). Although other papers such as (Badirli et al., 2023) have already collected datasets
comprising molecular and image data, we opted to gather our own. This decision was
motivated by our need for multiple datasets from both plants and animals, the intention to
include in situ and preserved material, and the nature of our research questions. Since we
were not interested in the total success rates of our models, but rather the relative gains
and losses between single- and multimodal trainings, we did not include any comparisons
to architectures proposed by other research papers. We have used the genetic markers
COI-5P for animals and rbcLa for plants. Although genome-level data would have been an
alternative to using genetic markers, they entail multiple challenges. First, DNA barcoding
has been a widely used method for species identification due to its relative efficiency in
terms of time, cost, and resources, which lead to extensive data collections and the
establishment of dedicated databases, such as BOLD (Ratnasingham and Hebert, 2007).
When selecting genetic markers, we considered both data availability and resource
efficiency, as well as how these choices would enhance the study’s value for future research.
Second, additional formatting questions arise when working with genome-level data and

CNNs. Genome-level data is much more high-dimensional than the purposefully short
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genetic markers and, thus, is more suited as input to alternative architectures and
attention mechanisms (e.g., transformer) that can digest genome-level data more
effectively. However, in this study, we actively decided on CNNs for their use in both
image-based and DNA-based research. Implementing a CNN for both modalities facilitated

an easy and valid comparison between models.

Table 1. Dataset overview. Datasets vary in the number of genera, species, and samples within the respective
family. We relied on either in situ images or pictures from preserved specimens (collections). Information on the
number of samples with related image and DNA data (combined) is listed alongside total sample size. We used
COI-5P for both animal and rbcLa for the plant datasets. Mean gene lengths as well as standard deviations are
listed as well. M=median. y=mean

Family No. of Samples No. of Species No. of Barcode Gene No. Image
samples per species per genera length of type
(combined) species genus (1) SNPs
(M) (M)
Asteraceae 970 5 146 1 45 rbcLa 550 106  collections
(447) (£13)
Poaceae 1118 7 123 1 54 rbcLa 555.9 114 in situ
(0) (+22)
Coccinellidae 1092 9 72 1 33 COI- 618.4 398  collections
(683) 5P (£59)
Lycaenidae 5520 8 259 1 98 COI- 645.3 482  collections
(2559) 5P (£45)

Barcodes We sourced all genetic data from publicly available repositories, namely
BOLD (Barcode of Life Data Systems) and GenBank via their APIs. Our queries primarily
relied on the family name. Since BOLD stores image and molecular data, we searched for
combined records, i.e., ’specimen’ and ’sequence’. GenBank does not offer image data.
Thus, within our GenBank queries, we focused on 'genomic DNA/RNA’ (property) and
‘gene or RNA’ (feature key) data. Inspired by Paris et al. (2017) and Karbstein et al.
(2020, 2021), we decided to assess and use sequence clustering and alignment features for
filtering and to ensure a reasonable similarity between same-locus sequences. First, we
ensured duplicate removal of GenBank records that were already sourced from BOLD by
checking the GenBank accessions. Within each dataset, we then selected the five most
abundant genetic markers. All associated sequences underwent clustering, with sequence

similarity thresholds ranging from 0.5 (low similarity) to 0.99 (high similarity) in 0.01
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increments using VSEARCH v2.22.1 (Rognes et al., 2016). To be able to keep as many
samples as possible, we conducted all further calculations on the largest cluster per
threshold. We determined the number of species and samples in this cluster as well as
generated an alignment with MAFFT v7.490 (Katoh and Standley, 2013) to compute the
SNP and gap counts relative to the aligned sequence length using SNP-sites v2.5.1 (Page
et al., 2016) and VCFtools v0.1.16 (Danecek et al., 2011). For each category (i.e., SNP and
gap), we then calculated the differences in values between the score of one threshold z and
the optimal score y. The optima represented the highest SNP and the lowest gap count
across all thresholds. To combine both aspects — SNP and gap counts — we calculated a
weighted mean, with double the emphasis on reducing the gap score. Finally, we chose the
threshold with the lowest combined divergence. Choosing a threshold based on a high SNP
and a low gap score allowed us to maximize the information content while ensuring that
our sequence clustering was correct.

Based on the chosen thresholds for each marker, we then decided on the genetic
marker for the respective dataset by considering the number of species retained in the
respective final datasets based on the chosen cluster and the average sample size per
species. Naturally, a high number of species leads to a more complex learning task while
the number of samples strongly impacts how well the model is able to distinguish between
classes, i.e. species (e.g. Durden et al., 2021). In detail, all values were sorted within their
respective property group, i.e., species number, and sample size. Based on these sorted
lists, we assigned numeric indices to each marker (e.g. first position in species number and
second in sample size). We picked the genetic marker with the lowest averaged index, i.e.,
the marker presenting the best possible balance between information content and inherent
task complexity introduced by many possible species. Our filtering resulted in the choice of
COI-5P for Coccinellidae and Lycaenidae, and rbcLa for Asteraceae and Poaceae with
identity thresholds set to 0.78, 0.88, 0.97, and 0.96 respectively. For clustering, we set the
maximum sequence length to 660 bp for COI-5P (Hebert et al., 2003b) and 670 bp for
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rbcLa (Dong et al., 2014) respectively, while the minimum was set to 40% of the maximum
length. All sequences outside that range were discarded.

We observed duplicate sequences in all four datasets. As this is a known obstacle to
barcoding, especially in plants (Fazekas et al., 2009), we decided to regard duplicates as
naturally occurring identical sequences to more accurately represent the real world instead

of removing them from the dataset.

Images 1In addition to images obtained from BOLD, we collected further images
using the GBIF API. Similarly to the search for genetic and combined samples in BOLD,
our GBIF search was also based on the dataset family name. For the herbarium material
search in GBIF, we specified the basis of the record as 'preserved specimen’ and 'material
sample’. In regards to in situ images, since most images deposited in BOLD depict
herbarium specimens, we decided to eliminate all BOLD-derived images before querying
other databases. We restricted GBIF results to iNaturalist research-grade observations as
well as including images from Flora Capture (Boho et al., 2020) to maximize the
trustworthiness of observations. Images from ’collections’ belong to museums and
museum-acknowledged private collections that were labeled by experts instead of citizen
scientists as is the case for iNaturalist observations.

Duplicate images were automatically removed in both training and validation sets.
Regarding our validation sets, we ensured the following criteria in regards to image quality:
The image had to be of the correct type (i.e. showing in situ or preserved specimen) and
the sample needed to be the focus of the image. Images of low quality, i.e. visibly pixelated
images or images with no specimen depicted, were manually removed. Besides the removal
of duplicate images, we did not apply any filtering on the training sets. Our reasoning for
skipping further filtering steps on the training sets was as follows: A prominent goal when
leveraging online databases is to cut down on manual labor. Thus, being able to trust that
their derived large, heterogeneous datasets are of reasonable quality and can excel in the

context of ML is a vital aspect of future ventures into ML-assisted species identification.
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Ezxperimental setup

Model architectures and BLAST Both images and barcodes were trained using the
ResNet-50 architecture (He et al., 2016). ResNets, termed for their residual connections,
are seminal and widely adopted convolutional neural networks (CNNs) often chosen as a
baseline in computer vision projects (e.g. Mathur and Goel, 2021; De Nart et al., 2022).
CNNs are also prevalent in DNA-based research (e.g. Yang et al., 2022; Liu et al., 2022).
Here, we have used all 49 convolutional layers of the ResNet-50 as the feature extractor for
both unimodal model portions. Thus, our feature extractors have ~23.5M parameters. For
the ordinal encoding, we prepended an embedding layer, composed of a 1x1 convolution
with a sliding window of 1 and no padding. The model’s input channel size was set to four
to accommodate the size of our fractional encoding vector and to one for the ordinal
encoding. The classifiers for our separate models have ~1.8M parameters. For
comparability, we adjusted the number of parameters for the fused models to be twice the
size of the individual models. We have implemented all models using the framework
PyTorch v1.13.0+cull7 (Paszke et al., 2019) under Python v3.9.13. We trained on a Tesla
V100-SXM2 and a NVIDIA A40 GPU. Species identification was also performed using
blastn with default parameters (Camacho et al., 2009). To avoid bias from the extensive
records in the NCBI GenBank repository, locally created BLAST databases were used with
the BLAST+ makeblastdb command.

Training To prevent overfitting, we applied early stopping, i.e., stopping on the
training epoch that best generalized over the validation set, with a patience of 20 epochs
(Prechelt, 1998; Ying, 2019). The maximum number of epochs was set to 500. Following
Seeland and Mader (2021) and derived from standard values, we applied categorical
cross-entropy loss with Adam as the optimizer, using an initial learning rate of le-4, and
set our mini-batch size to 32. Due to sample size constraints, we merely relied on the

validation set for performance evaluation. We validated model performances on two records
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per species. All samples beyond that belong to the training sets. For images, we followed
standard procedures and applied common augmentation techniques (RandomResizedCrop,
RandomVerticalFlip, RandomHorizontalFlip). As a side effect of RandomResizedCrop,
most of the time, the model does not encounter the relatively small, but potentially
informative labels included in the images of preserved specimens. Since we were only
interested in determining which fusion approach performed best, label learning also did not
impact our conclusion. We optimized our Random Forest classifiers by applying grid search
to each of the datasets beforehand (Text S1). Our decision to optimize the Random Forest
was based on the much less time-consuming nature of the algorithm and the meager results
we attained in a preemptive test compared to the FC-based classifiers.

Our procedure included training on barcodes and images separately at first to
obtain a baseline for comparison. In image classification, it is a common procedure to
apply fine-tuning to pre-trained networks (e.g. Mathur et al., 2020; Kirbag and Cifci,
2022). Here, our image model leveraged the ImageNet1K_V2-trained weights (Deng et al.,
2009). When training the multimodal model, we reused the weights acquired by the
unimodal training for both image and DNA data. We opted to freeze all layers but the last
block of the feature extractor during the second training step to concentrate on
higher-level feature learning (i.e., complex visual structures).

To test whether any differences in accuracy between the best fusion approaches and
the DNA- and image-only models were statistically significant, we implemented a
Leave-One-Out Cross-Validation (LOOCV) for all datasets (see Brownlee, 2020, for
detailed explanation). LOOCYV is defined by running the model once for each sample in the
dataset. Every training uses the entire dataset except for one sample. Validation is then
performed on the excluded sample. However, due to time constraints, we decided to
validate on a subset of four samples per species for LOOCV. For example, we trained 4
(samples) times 146 (species) models for Asteraceae, summing up to 584 models per

uni- /multimodal method in total. Each model utilized all but one sample for training and
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evaluated on the excluded sample. An alternative to using LOOCV would have been, e.g.,
a K-Fold Cross-Validation (K-Fold CV). With K-Fold CV, the dataset is split into K folds
or subsamples, where all but one fold are used for training and one fold is used to evaluate
the model’s performance. Consequently, LOOCYV is an extreme version of K-Fold CV.
While both approaches have their pros and cons, the very limited number of records per
species was the main reason we decided on LOOCV. Employing this approach, we also
conducted LOOCYV for BLAST, creating the databases from all but one sample per dataset
and then querying the left-out sample against the database. Only the first listed hit was
considered for the accuracy calculation. To further test the stability of our limited
LOOCV, we conducted a more thorough LOOCYV for one plant (Asteraceae) and one
animal (Coccinellidae) dataset that tested on all samples instead of the subset of 4. The

results are shown in Figures S1-S6.

Metrics and statistics We evaluated the performance of our models by means of
validation accuracy, i.e., the ratio of correctly classified samples to all samples in the
dataset. To check for significant differences in non-normally distributed accuracies within
all datasets, we employed the non-parametric, binary Cochran’s Q test for datasets
characterized by more than two group factors and paired data using the R package
RVAideMemoire (Herve, 2023). Then, we performed pairwise group comparisons based on
the McNemar test to investigate differences in detail. Using R v4.3.1 (R Core Team, 2023)
and the caret package (Kuhn, 2008), we calculated confusion matrices based on our image,
barcode, and best multimodal model predictions to provide a basis for subsequent
analyses. We then determined confusion rates and grouped them by intergeneric and
intrageneric confusions. For the statistics on confusion rates, we applied the
non-parametric Kruskal-Wallis test for paired data in combination with pairwise Wilcoxon
signed rank tests. In addition, generalized linear models (GLMs) with binomial response
were used to check whether confusion rates are related to barcode (gene) length and

sample size using a custom R package. Using, in our case, confusion rates (species-level and
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derived genus-level) as the response variable and different gene length features (min, max,
median) and sample size indices as the predictors, a custom package automates model
simplification. To avoid disturbance of modeling procedures (Dormann et al., 2013), the
main package function removes autocorrelated variables beforehand (r>0.8; i.e., general
gene features and sample size indices to those indices in the training set). The
corresponding R scripts together with a README describing their explicit functions will

be available upon publication.

Multimodal species identification scheme

The workflow of our proposed multimodal species identification is illustrated in
Figure 1. It comprises three main steps: A) preprocessing of the DNA data, B) unimodal
species identification that serves as baseline and C) multimodal identification after

different fusion approaches of DNA and image data.

DNA preprocessing For automated species identification using DNA and deep
learning technologies, it is crucial to prepare the genetic data for input (arrangement) and
convert it into numerical representations (encoding). We refer to the combination of both
as DNA preprocessing. We examined three arrangements for genetic datasets: (i) aligning
DNA sequences, (ii) further reducing aligned sequences to SNPs, or (iii) padding the DNA
with zeros to the same length instead of aligning. As a result, we obtained three sequence
variants referred to as ’aligned’, ’aligned-SNP’; and 'unaligned’ (Fig. 1 A(I)).

The arranged sequences are then encoded numerically before being subjected to
deep learning models (Fig. 1 A(II)). One approach is the fractional encoding, which is a
variant of the commonly used one-hot encoding method. For one-hot encoded
representation, the input sequence is represented by a 4 x L matrix, where 4 is the size of
the bases vocabulary (A, T, C, and G) and L is the length of the sequence. Each position

in the sequence corresponds to a vector of length four, with a single non-zero element
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representing the bases at that position. Specifically, the bases A, T, C, and G are encoded
as four one-hot vectors: [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1]. Therefore one-hot
encoding transforms DNA sequences into binary images with four channels corresponding
to A, C, G, and T. The special form of fractional encoding allows for values between 0 and
1. For instance, we encoded T as [0,1,0,0], C as [0,0,1,0], and Y (i.e., T or C) as
[0,0.5,0.5,0]. Gaps are encoded as zeros instead of extending the vector to maintain
consistency between aligned and unaligned sequences.

The second encoding method is an ordinal encoding, where decimal numbers
ranging from 0 to 1 are assigned to each of the bases. Instead of manually selecting them,
we let the model learn suitable decimals (see Model architectures for details). The optimal
combination of arrangement and encoding methods serves as the input for the subsequent

multimodal identification step.

Unimodal baselines To obtain a baseline with which to compare the results of the
multimodal approaches, genetic data and images were first trained individually. Here, we
extracted the features after the last CNN layer from the image- and DNA-trained models.
Subsequently, we passed the features through a classifier consisting of two fully connected
layers (see Fig. 1B). Additionally, the traditional method BLAST (Altschul et al., 1990)
was applied to assess whether it outperforms ML approaches for DNA-based species

identification.

Multimodal fusion approaches Multimodal fusion in our study refers to conducting
a combined analysis of molecular and image data to investigate whether the combination
yield a more accurate species identification result. Data fusion can be implemented at
different stages within the model architecture. Recently, it was demonstrated that
approaches fusing multiple image perspectives late in the network typically perform better
than those that fuse at an early stage (Seeland and Méder, 2021). Similarly, in their review

on unimodal and multimodal fusion in the biomedical field, Stahlschmidt et al. (2022)
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Fig. 1. Overview of the multimodal species identification scheme. A) DNA preprocessing route with different I)
DNA arrangement and II) DNA encoding methods yielding six variations of the genetic model input in total. B)
Unimodal identification with either image or DNA serve as baselines. C) Different fusion approaches for multimodal
species identification I) image and DNA fusion after feature extraction (Intermediate fusion (conv)), II) after the
first fully connected layer (Intermediate fusion (fc)), and III) after the second fully connected layer (late fusion).
SNP = Single Nucleotide Polymorphisms, conv=convolution, fc=fully connected. (Preprocessed) DNA and flower
images are from https://pixabay.com (free to use under the Content License).

noted that early fusion approaches often underperform when dealing with heterogeneous
modalities. Consequently, we have combined the separate models within the last two layers
of the network.

Specifically, we have fused image and barcode features I) directly after the last
convolutional layer ('intermediate fusion (conv)’), II) after the first of two fully connected

(i.e., dense) layers ("intermediate fusion (fc)’) and III) after the final dense layer ("late’)
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responsible for generating the output scores (see Fig. 1C). Here, we expand on the
terminology used in Stahlschmidt et al. (2022). Instead of the two dense layers in the
intermediate fusion approach, we also employed a Random Forest (RF) using the
scikit-learn library to offer an easy and fast-to-train alternative to a fully connected
(fc)-based classifier (Pedregosa et al., 2011). Despite not being classified as neural
networks, they are highly capable of approximating any function and can learn non-linear
relationships (Hastie et al., 2009). In the score-level fusion approach, we examined three
methods: sum, product, and max score-level fusion. Therefore, we analyzed a total of six

different multimodal identification scenarios per dataset.

RESULTS
DNA preprocessing methods

Overall, DNA-based species identification was more accurate in the two animal
datasets (i.e., Coccinellidae, Lycaenidae) compared to the plant datasets (Asteraceae,
Poaceae; Fig. 2). Within the datasets, we observed significant differences in identification
accuracy between the arrangement and encoding methods. Notably, these differences
exhibit consistent patterns between all families. In both plant families, all arrangement
methods with ordinal encoding proved to be inferior compared to their respective
fractional encoding counterparts, with mean accuracies surpassing those of ordinal
encoding by 11% for Asteraceae and 13% for Poaceae. Within fractional encoding, padding
unaligned sequences resulted in the lowest identification rate (Asteraceae: 44.2%; Poaceae:
72%). In Poaceae, there was no significant difference between aligned and SNP-reduced
sequences, whereas in Asteraceae aligned sequences significantly outperformed
SNP-reduced sequences by ~6%. The animal datasets yielded significantly higher
identification accuracy for aligned and SNP-reduced fractional encoded sequences than for
the remainder of the arrangement and encoding options (>6% improvement). The three

ordinal encoded and the unaligned fractional encoded barcodes provided similar results.
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Similarly to Poaceae, there was no significant difference between aligned and aligned-SNP
sequences in Coccinellidae. In Lycaenidae, aligned sequences exceeded aligned-SNP
sequences in identification success (96.7% compared to 95%).

In both animal and plant datasets, fractional encoding performed better for aligned
and aligned-SNP sequences than ordinal encoding (p<0.0001). For unaligned sequences,
fractional encoding was significantly better for the two plant groups (p<0.0001) and the
Lycaenidae family (p<0.01), whereas in the Coccinellidae family no significant differences
could be determined. For fractional encoding, unalignment resulted in a severe dip in
identification success compared to alignment (p<0.0001). Furthermore, the magnitude of
the differences in accuracy between the preprocessing methods varied between datasets.
For example, in Poaceae and Coccinellidae, the biggest margin between two preprocessing
methods was between fractional encoded aligned sequences and ordinal encoded unaligned
sequences with ~18% and ~12%, respectively.

An expanded LOOCYV that included all samples within the Asteraceae and
Coccinellidae datasets confirmed the results found when using the subsets. The only
difference observed was a minor change within the ordinal encoded sequences within the
Coccinellidae dataset, which shows that the unaligned sequences performed significantly

worse than the other two arrangements (Fig. S1).

Unimodal species identification

In a first step towards fusion and to obtain a baseline for the evaluation of our fusion
approaches, we trained on each modality separately. We observed significant differences
between models trained on images or DNA data across all datasets (p<0.0001, Figure 3).
For the Poaceae dataset as well as the two animal datasets, the image-based model was
inferior to the one trained on DNA data. However, for the Asteraceae dataset, the
identification accuracy achieved by the model trained on images significantly exceeded the

DNA-only model, with 66.3% compared to 52.4%, respectively. For the Poaceae dataset,
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Asteraceae Poaceae
Fractional Ordinal Fractional Ordinal
100 A B B C C C A A B BC C C
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Barcode arrangement
Fig. 2. DNA-based species identification accuracy after different arrangement (aligned, aligned-SNP, unaligned) and
encoding (fractional, ordinal) methods for genetic data. Identification accuracy describes the percentage of samples

within the validation set correctly identified by the model. Letters indicate significant differences in performance
(paired Cochran’s Q and pairwise McNemar’s tests, p<0.001). SNP = Single Nucleotide Polymorphisms.

DNA-based identification surpassed image-based identification by roughly 20% (80.3% and
60.6%, respectively). Regarding the Coccinellidae, DNA-based identification achieved
species identification with 99% accuracy, whereas images achieved sub-optimal results with
81.3%. Similarly, in the Lycaenidae family, DNA data yielded 96.7% identification
accuracy, while the image-based model identified 82.4% of samples correctly. In addition to
our DL approach, we investigated the performance of BLAST, the traditional method for
DNA-based species identification. BLAST’s performance varied substantially across

datasets. In the Asteraceae dataset, it misidentified more samples than the ML unimodal
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image or DNA approaches, with only 33.4% correctly identified. In Poaceae, it performed
similarly to the image-based model, achieving 58.3% identification accuracy. However, in
Lycaenidae, BLAST outperformed images, achieving 91.7% accuracy, and in Coccinellidae,

it achieved similar results to the DNA-based DL model, with a success rate of 98.6%.

Asteraceae Poaceae
Unimodal If (conv) If (fc) Late fusion Unimodal If (conv) If (fc) Late fusion
100 ¢ B D | A B ¢ Cc B A
80
60
_
2
2 20 | 3 1 1 1
o 20 | | | | |
g | | | | |
3 33.2% 2.9% | 50.7% 56.8% | 57.2% 59.6% 43.5% 194% 1.1% | [71.1% 69.5% | 66.3% | 68.7% 58.5%
% o DNA image BLAST RF fc  fc max product sum DNA image BLAST RF fc  fc  max product sum
IS Coccinellidae Lycaenidae
§ Unimodal If (conv) If (fc) Late fusion Unimodal If (conv) If (fc) Late fusion
£ 100 A B A A A B D C A
c | | | | |
(] : ! . . .
o | | | | |
8 | | | -
60
40
20
46.5% 18.2% | 95.8% 98.6% 98.6% 97.9% 95.8% 431% 22.2% | 89% 89.8% | 86.7% 87.8% 88.4%
0 "Dna image BLAST RF fc  fc max product sum DNA image BLAST RF fc  fc  max product sum

Fig. 3. Results of unimodal and multimodal species identification using different fusion approaches (If (conv), If
(fc), Late fusion). Non-LOOCYV training results and results of the traditional querying against a BLAST database
are shown in saturated bars. The unimodal models, the traditional querying against a BLAST database, and the
best fused model(s) were subjected to Leave-One-Out Cross-Validation (LOOCV; shown in light-colored bars). The
distribution of identification success was statistically compared, resulting in letters indicating significant differences
(paired Cochran’s Q and pairwise McNemar’s tests, p<0.001), where A indicates the best performance and C/D
the worst. The solid horizontal line illustrates the identification accuracy achieved by the superior unimodal model
during the non-LOOCYV training, reinforcing which of the multimodal models outperformed the unimodal models.
If=Intermediate fusion, RF=Random Forest, fc=fully connected.


https://doi.org/10.1101/2025.01.22.634270
http://creativecommons.org/licenses/by-nc/4.0/

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.22.634270; this version posted January 24, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

22 KOSTERS, KARBSTEIN, HOFMANN, HODAC, MADER, WALDCHEN

Multimodal species identification

Reusing the weights gained from training on a single modality (see Section
Training), we combined the two modalities in a second training. In general, the fusion of
DNA and image data outperformed unimodal species identification models across all
datasets using the initial training and validation split (Fig. 3), with the increase in
accuracy being more pronounced for the plant datasets than for the animal datasets.
Product score fusion, as well as the intermediate (conv) and intermediate (fc) fusion
approaches employing fully connected layers, consistently performed the best across
datasets.

We validated our findings by applying LOOCV on both image- and DNA-only
models as well as the fusion model(s) that yielded the highest success rate, i.e.,
product-score for Asteraceae, intermediate (conv) using a fully connected classifier for
Poaceae, Coccinellidae, and Lycaenidae, and intermediate (fc) for Coccinellidae. In the
Asteraceae dataset, both the DNA-based and image-based models exhibited a lower
identification accuracy compared to the multimodal model. The score-level fusion approach
using the score product outperformed the best unimodal model, the image-based model, by
approximately 19% (p<0.0001). Based on the initial training with the traditional
training-validation split, we observed that the best fusion approach for all other datasets
was the intermediate fusion (conv) approach using two fully connected layers for
classification. In Poaceae, the intermediate fusion (conv) achieved a more accurate species
identification compared to DNA alone (p<0.0001) with 93.9% compared to 80.3%,
respectively. Even when DNA-based models achieved very high identification success in the
unimodal approach, as is the case for Lycaenidae (96.7%), we have been able to exceed the
accuracy scores by using the interemediate fusion (conv) approach (98.8%, p<0.0001).
Only in Coccinellidae did both selected fusion methods not surpass the DNA-based model
significantly. Here, the intermediate (conv) and intermediate (fc) fusion methods, the

DNA-based model, and the approach using BLAST resulted in comparable identification
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accuracies.

For both plant datasets, the baselines were still considerably lower than those of the
two animal groups. Thus, in plants, the fusion approaches that outperformed the unimodal
models do so by a large margin (Asteraceae: +19%; Poaceae: +13.6%). In animals, where
DNA-based models achieve very high accuracies on their own, the differences were less
pronounced (Lycaenidae: +2.1%).

The expanded LOOCYV that included all samples within the Asteraceae and

Coccinellidae datasets confirmed the results of the subset-based approach (Fig. S2).

Inter- and intrageneric confusion

To understand which characteristics of the dataset may lead to low baseline
accuracies and to understand what effect the two modalities have on the model
performance, we compared intra- and intergeneric confusion rates. We observed middle to
low levels of misidentification per species across datasets and models with means ranging
from 0% to ~37% per dataset (Table 2). In general, plants showed higher levels of
confusion compared to animals (p<0.0001). DNA-based and fused models were
significantly less prone to confusing samples between genera than image-based models
(Asteraceae: p<0.0001, Poaceae: p<0.0001, Coccinellidae: p<0.05, Lycaenidae: p<0.0001).
In plants, barcodes and fused data were predominantly confused within rather than
between genera (p<0.0001), while images tend to be confused more often between than
within genera (p<0.0001). In animals, DNA is rarely confused with only 2.8% of species
showing any level of misidentification. Images, however, display the pattern observed in
plants and are more frequently misclassified on the level of genus than of species (p<0.05).
Across datasets and confusion levels, the fusion approach that yielded the highest
identification accuracy delivers comparable results to the unimodal approach that performs
better (see Figure S7 for a per-genus perspective on confusion rates). The only exception

poses intrageneric confusion of Asteraceae images, where images alone are confused less
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often than the combined modalities. However, in all other cases, fusion is a combination of
the superior result of each modality. When investigating further and looking into duplicate
sequences within all four datasets, DNA confusion was shown to be strongly linked to
duplicates within and in between genera as revealed by Figure 4 (sample duplicate level:
‘intrageneric’/’intergeneric’). Particularly in Asteraceae and Poaceae, DNA samples were
mainly falsely assigned to species that contained a duplicate to the respective sample in
the training set (sample duplicate level: 'combi’). In all datasets, they were often confused
with species that exclusively included duplicates and, therefore, had a genetic distance of
0, or with species with very little genetic difference to the DNA sample. Oftentimes, these
confusions could be solved by integrating image information since the genetic difference
between true and assigned species was much larger when identifying using images.
Information on samples that were only correctly identified by a single modality or not

correctly identified at all is shown in Figures S8-S10.

Table 2. Results of paired Kruskal-Wallis and pairwise Wilcoxon signed rank tests for intergeneric (above) and
intrageneric (below) confusion rates between tested modalities. Tests were applied to the confusion found during
Leave-One-Out Cross-Validation (LOOCYV). Letters indicate significant differences between modalities (A=highest
confusion).

Asteraceae Poaceae Coccinellidae Lycaenidae

intergeneric confusion

Kruskal 108.67 176.9 42.1 168
df 2 2 2 2
p-value <0.0001 <0.0001 <0.0001 <0.0001
modality mean confusion;,oocv
barcode 10.8%7 4.3%" 0.7%" 0.5%"
image 25%4 36.8%" 5.9%4 11.9%4
both 2.2%° 2.6%7° 1.7%° 0.5%%
intrageneric confusion
Kruskal 35.09 23.01 21.78 38.73
df 2 2 2 2
p-value <0.0001 <0.0001 <0.0001 <0.0001
modality mean confusiony,oocv
barcode 36.8%" 15.4%% 0.3%" 2.8%"
image 8.7%° 2.6%° 5.9%4 5.7%4

both 12.5%5 3.5%75 0% 0.7%¢



https://doi.org/10.1101/2025.01.22.634270
http://creativecommons.org/licenses/by-nc/4.0/

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.22.634270; this version posted January 24, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

DEEP LEARNING-BASED INTEGRATIVE SPECIES IDENTIFICATION 25
Confusion in relation to gene length and sample size

We found significant relationships between inter- and intrageneric confusion rates
and number of training samples and species within the genus as well as gene length (Table
S1). In detail, fewer samples were misidentified when the number of training samples was
larger in the following cases: a) Asteraceae, DNA-based model, intra- and intergeneric
(p<0.05), b) Poaceae, image-based model, intrageneric (p<0.05), and ¢) Lycaenidae,
image-based model, inter- and intrageneric (p<0.01). The mean gene length and the
number of species within the genus had a significant impact on the confusion rate when
examining pooled data from all datasets. Here, the influence gene length has on confusion
was not conclusive in terms of positive/negative impact. For example, while a longer
validation gene length increases intrageneric confusion (p<0.001), it decreases intergeneric
confusion in DNA-based species identification (p<0.0001). In multimodal species
identification, the effect was positive for both intra- and intergeneric confusion (p<0.0001
and p<0.05, respectively). The number of species within the genus increases intrageneric
confusion levels of both DNA-based and multimodal models (p<0.001, p<0.01). Lastly, the
difference between the gene length in the training set compared to the validation set
impacted intrageneric confusion rates for DNA-based and multimodal models. However,
while the effect was positive in the DNA-based model (p<0.0001), it was negative in

multimodal training (p<0.01).

DiscussioN

This study, for the first time, systematically analyzed various DNA preprocessing
methods and multimodal fusion approaches. We demonstrated that (i) fusion widely
outperforms unimodal identification, with fractional encoding of DNA combined with
intermediate (conv) and intermediate (fc) data fusion achieving the highest identification
accuracy in three out of four eukaryotic species groups, (ii) fusion significantly improved

identification even when genetic data yielded high species identification accuracy, (iii)
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fusion reduces both high intrageneric confusion of barcode-based identification and high

intergeneric confusion of image-based identification.

DNA preprocessing

To date, there has not been an investigation on the effect of different DNA
preprocessing techniques. Yet, DNA preprocessing is a crucial step to ensure the efficiency
and effectiveness of a model. In this study, we compared six preprocessing methods. We
observed the most accurate species identification when first aligning the sequences before
applying fractional encoding in one plant and one animal dataset. This approach is
consistent with the practice of the majority of studies dealing with genetic data in the
context of ML while contrasting projects that rely on unaligned sequences for analyses
(e.g. Zhang et al., 2008; Fiannaca et al., 2018; Yang et al., 2022). Notably, we also found
that in Poaceae and Coccinellidae an additional step that reduces the aligned sequences to
their SNPs yielded results that were on par with the performance of complete sequences.
We conclude that the relative number of SNPs; i.e., the retained information, and its
balance with the loss of information that may arise by removing conservative regions is the
major factor contributing to the difference in performance between SNPs vs complete
alignments in some datasets. In detail, discarding conservative positions can disrupt
meaningful patterns that then form simpler patterns that, without the respective context,
are much more prevalent across locations within the sequence and between samples.
However, the success with using SNPs in Poaceae and Coccellindae shows that SNPs can
be as informative as the complete sequence. This finding can contribute to model runtime
reduction efforts when dealing with large multi-gene datasets in future research. In
addition, the use of a non-CNN architecture that does not rely on recognizing patterns
within immediate local surroundings could improve the identification using SNPs. For
instance, transformers are a viable option for capturing non-local interactions as they use,

in contrast to ResNets, an attention mechanism (e.g. Ji et al., 2021).
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Uni- and multimodal training

We have provided a fundamental comparison of fusion stages and classifiers that can
serve as a basis for future studies seeking a more holistic perspective on species identity
when training ML models. With respect to unimodal models, barcode-based models usually
yielded higher identification accuracy than image-based models. Notably, the identification
of plant species has proven to be much more challenging than the identification of animals,
with substantial differences in the ability to classify on barcodes alone. In Asteraceae, the
models based on barcodes were significantly outperformed by images. We attribute this to
the frequent occurrence of duplicate sequences in our plant datasets, particularly in the
Asteraceae dataset, which not only affects within-species confusion but also
misidentification between species or even genera. Events like apomixis, hybridization, and
polyploidy may contribute to this circumstance (Fazekas et al., 2009; Karbstein et al.,
2024). We discovered, however, that some of the cases in which species are confused due to
one or more duplicate sequences in the training set can be resolved by including the
information provided by the image. Our results show that the fusion of morphology and
genetics is usually beneficial, even when the genetic information itself is sufficient to
identify a vast majority of test samples. Fusing genetics with image data significantly
outperformed unimodal models for three out of four datasets. In Lycaenidae, fusion after
feature extraction with two shared fully connected layers outperformed the barcode-only
model by 2% while barcodes alone already classified 97% of samples correctly. While
identification accuracy did not increase with fusion in Coccinellidae, it is worth noting that
the dataset included fewer species and, at the median, more samples per species compared
to all other datasets, potentially rendering the task less difficult for the model. Overall,
integrating genetic and image features using a fully connected classifier consistently
produced the best or near-best results and therefore be recommended for integrative
species identification efforts. An explanation for the improvement brought by fusing

genetics with image data is the limited resolution of barcodes that has been discussed
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several times in the past (Besse et al., 2021; Ahmed et al., 2022). The genes that we used
in this study were, on average, 550-650 bp long, while the median 1C-value (DNA in a
haploid nucleus) of, e.g., angiosperms, is 2.4 Gbp. Furthermore, plant genomes comprise
~40,000 genes on average (Sterck et al., 2007). Considering this, a single gene is only a tiny
snapshot of the entire genome. In addition, natural selection acts on these DNA fragments,
reducing their variability and, in turn, their ability to differentiate closely-related species in
particular. In combination with the aforementioned intricate evolutionary processes, these
effects may result in large amounts of completely indistinguishable samples (Zarrei et al.,
2015; Karbstein et al., 2022). The stark contrast between accuracies achieved by animal
versus plant DNA-based models can be attributed to the specific markers used in this
study. When barcoding animals, C'OI represents the consensus due to its discriminatory
power (Hebert et al., 2003b; Ahmed et al., 2022). However, in plants, the mitochondrial
gene C'OI shows lower variation because it evolves too slowly in plants, therefore, nuclear
and plastid genes are used more often (Hollingsworth et al., 2011). Furthermore, it has
been shown that one marker alone tends to not be sufficient to distinguish between species
(Hollingsworth et al., 2016). Two or three markers are commonly used in conjunction to
provide fine-grained resolution (e.g. Romeiro-Brito et al., 2016). Consequently, a
substantially higher identification accuracy in animals compared to plants when using only
one plant marker is to be expected. Notably, the potential of an integrative approach to
species identification depends on the information already contained within each modality.
Researchers should choose carefully when opting for a multimodal, more time and resource
consuming approach by first assessing the relative gain of such a method, particularly
when working with animal DNA. Yet, the remaining, not sequenced DNA the network is
not trained on as well as environmental factors that reflect in epigenetics can be discernible
by the network through a condensed manifestation in the morphology of the specimen.
Our findings reinforce the direction proposed by Karbstein et al. (2024) for integrative

species delimitation and that there is a need for, at least, utilizing a multitude of genetic
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and morphological information as well as metadata for accurate species delimitation (i.e.,
species delimitation > 3.0). The identification accuracy achieved by using herbarium
material for the Asteraceae dataset proves that specimens from collections are a valuable
data source for integrative taxonomic ML approaches. Collection data has already started
to gain traction in biological ML research. For example, studies focusing on phenological
stage identification (Pearson et al., 2020; Katal et al., 2022), and plant organ segmentation
(Weaver and Smith, 2023) leverage herbarium material. Given that museum samples are
reliably labeled, even supervised learning algorithms can be applied without further work
necessary. Recently, features learned by an ML network and geometric
morphometrics-based features extracted manually from both in situ and herbarium
specimen images have been shown to be significantly correlated (Hodac et al., 2024),
demonstrating that ML is able to learn meaningful features from herbarium samples. Use
of collection material allows for cheaper studies with larger datasets and, potentially, more
robust results and should therefore be considered when working with ML. An important
aspect of this study is the usage of independent data points for DNA and images. Studies
such as Yang et al. (2022) use co-occurring data, i.e., DNA and image originate from the
same individual. Dependent data ensures that the variance experienced by the model is
part of the naturally occurring distribution, which may lead to better generalization when
confronted with other samples of the same distribution. Yet, this poses a vital problem as
co-occurring data can be hard to come by and, thus, can further limit and complicate
expensive dataset collection efforts. Consequently, no sampling effort will ever cover all
variance encountered within the naturally occurring distribution. When working with
images, a common procedure is data augmentation to semi-artificially increase the dataset
size and introduce more variation, which leads to better generalisation. Even when working
with DNA| data augmentation can improve model performance (Lee et al., 2023). When
working with multiple modalities, a way to augment the data can be to shuffle the

modalities independently, thereby creating more variation. Co-occurring data should
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therefore not be a hard requirement for sampling efforts.

Confusion

Confusion patterns differ between images and barcodes. Images are oftentimes
confused between genera while barcodes tend to be confused within genera. In addition,
our findings suggest that datasets that contain species with significant genetic overlaps,
i.e., in cases where the barcoding gap is nearly or completely nonexistent, benefit the most
from inclusion of additional modalities. In those cases, these confusions could be solved by
integrating image information, highlighting the usefulness of an integrative taxonomic
approach to machine learning (Derkarabetian et al., 2019; Alexander Pyron, 2023;
Karbstein et al., 2024). Furthermore, cases in which either or both the molecular data and
the image alone did not suffice for a correct prediction but succeeded when used in tandem
hint towards a hierarchical role of the molecular data in the identification process. The
barcode may guide the model to the correct genus and then settle on the correct species

with the help of the image.

Limatations

The choice and quality of the genetic markers is an essential prerequisite to the
success of fusion approaches using ML. As seen, fusion was not able to outperform the
barcode-based approach in Coccinellidae as the baseline resolution provided by the
barcodes was close to perfect for the species in our dataset. The barcodes used in this study
were chosen based on the number of samples found in freely available online repositories.
We did not assess multiple barcodes for, e.g., the plant datasets, to confirm that no other
genetic marker would be better suited for species discrimination. However, rbcLa is widely
used in plant research, oftentimes in combination with matK (Li et al., 2015). In addition,
taxonomically challenging groups such as those where apomixis, hybridization, and /or

ploidy are prevalent pose a significant challenge to all plant barcodes (Fazekas et al., 2009;
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Hollingsworth et al., 2016). We have shown that fusion can improve discrimination even in
groups where duplicate sequences are common. Therefore, irrespective of the marker used
in this study, we believe that these findings can be universally applied where species are
hard to distinguish by genetics alone. DL algorithms typically require substantial data to
perform effectively. While we acknowledge that the datasets our models were trained on
are relatively small, given the scarcity of many species groups, it becomes imperative to
explore and understand how ML models operate under conditions of limited data
availability. We are aware that the sample sizes of our datasets are not ideal for training
DL models, but believe that working with a limited amount of data is essential, as it
reflects the reality of taxonomy-focused studies (Karbstein et al., 2020; Klasen et al., 2022;
Opatova et al., 2024). Furthermore, our focus was not on the absolute accuracies attained
by our networks, but rather on the relative gains and losses between uni- and multimodal
models and different fusion strategies. Given that all models had access to the same
number of records, we consider the relative results to be unaffected by the total sample
size. Imbalanced sample sizes across classes, as is the case with all our datasets, cause some
features/classes to be trained more often than others, leading to model bias. However, as
all tested models were trained on the same data, model performance is comparable. We
also sampled our validation set evenly across classes to get a balanced look at identification
success. In addition, the learning process of ML models is still a 'black box” for human
observers. Although new explainable Al approaches are emerging to visualize and detect
biological features learned by the ML model (Samek et al., 2021; Hodac et al., 2024),
previous delimitation results from integrative taxonomy are needed, as well as experienced

taxonomists to control and validate ML-based species identification or clustering.

CONCLUSIONS

Modern integrative taxonomy aims to combine 21st century high-throughput

sequencing (genomics) methods with multiple complementary data sources, such as
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morphology from geometric morphometrics, ploidy reproduction from flow cytometry,
physiology from biochemical screenings, behavior from camera field observations, or
biogeography /ecology from environmental statistical modeling (Dayrat, 2005;
Schlick-Steiner et al., 2010; Karbstein et al., 2024). Modality-specific shortcomings are
reduced in this way, for example single, few, or even hundreds of genes are often not
variable enough to differentiate closely-related species (e.g. Tomasello et al., 2020; Dietz
et al., 2023) and therefore images of field or herbarium specimens, ploidy, reproductive,
behavioral, or ecological niche information can help to add subtle features for more
accurate and reliable species identification. As integrative taxonomy is a major avenue for
meeting the nature of species in (semi-)manual species delimitation (Dayrat, 2005;
Schlick-Steiner et al., 2010; Karbstein et al., 2020, 2022), the joint use of modalities should
also be considered a crucial pillar of any ML-based or -assisted approach to identification.
The rationale behind this lies in the fact that the taxonomic labels of the underlying
dataset are derived from the evaluation of multiple modalities. Consequently, future ML
studies should focus on evaluating >2 datasets to test generalizability across taxonomic
groups and >1 modality, preferably including >1 genetic marker to reflect delimitation
procedures.

This study paves the way by demonstrating, for the first time, that DNA+image
fusion strategies merging the features directly after the last convolution tend to yield the
best species identification success. Modern integrative taxonomic approaches produce
many, and often extraordinarily large datasets, which regularly cannot be handled by
traditional phylogenetic and statistical methods in time-efficient ways. DL approaches have
the advantage of automatically extracting and concentrating the most important, even
complex or subtle features not visible to the human eye for identification from extremely
large data matrices in short time frames (Borowiec et al., 2022; Badirli et al., 2023).
Consequently, future developments in data fusion are likely to accelerate integrative

taxonomic workflows for species identification and delimitation.
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Fig. 4. Shown are confused samples that were either correctly identified by a) the barcode-only and (best) fused
model, b) only the fused model, or ¢) the image-only and fused model. The y-axis displays the mean genetic
distance (rounded to two decimal places) between the tested sample and the training samples of the predicted
species. The level at which the samples were confused is indicated by the color; the shape provides information on
whether and where there is a duplicate sequence in the training dataset. Numbers of samples matching genetic
distance, duplicate status and confusion level are shown via data point size.
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