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Abstract

Insecticide resistance is a major problem in food production, environmental sustainability,

and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop

pest affecting over 300 crop species. H. armigera has rapidly evolved insecticide resistance,

making it one of the most damaging pests worldwide. Understanding the genetic basis of

insecticide resistance provides insights to develop tools, such as molecular markers, that

can be used to slow or prevent the evolution of resistance. We explore the genetic architec-

ture of H. armigera resistance to a widely used insecticide, flubendiamide, using two com-

plementary approaches: genome-wide association studies (GWAS) in wild-caught samples

and quantitative trait locus (QTL) mapping in a controlled cross of susceptible and resistant

laboratory strains. Both approaches identified one locus on chromosome 2, revealing two

SNPs within 976 bp that can be used to monitor field resistance to flubendiamide. This was

the only region identified using linkage mapping, though GWAS revealed additional sites

associated with resistance. Other loci identified by GWAS in field populations contained

known insecticide detoxification genes from the ATP-binding cassette family, ABCA1,

ABCA3, ABCF2 and MDR1. Our findings revealed an oligogenic genetic architecture, con-

trasting previous reports of monogenic resistance associated with the ryanodine receptor.

This work elucidates the genetic basis of rapidly evolving insecticide resistance and will con-

tribute to developing effective insecticide resistance management strategies.

Introduction

Insecticides play an important role in agricultural pest management and controlling vectors of

human diseases. However, their frequent application has led to the rapid evolution of resistant
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populations, representing challenges to pest management efforts. The development of insecti-

cide resistance threatens sustainability and human health due to the increased frequency and

rate of insecticide applications [1, 2]. Insecticide Resistance Management (IRM) programs are

necessary for creating sustainable and long-term techniques to mitigate the evolution of resis-

tance in pest species. A fundamental component of these programs is understanding the

genetic basis of insecticide resistance and monitoring allele frequencies within field popula-

tions before control failures occur [3–5].

Insecticide resistance in insects is affected by genetic variation in the population, muta-

tional constraints on genes, and the selection pressure imposed by insecticide use [6]. These

factors can lead to monogenic, polygenic, and oligogenic insecticide resistance. Monogenic

resistance typically results from a single, rare mutation with a major effect, often identified

within target-site genes. When the individuals of a field population are exposed to a high dose

of insecticide, the mutations with a major effect may be selected, leading to a rapid increase in

the resistance allele frequency [7]. Conversely, polygenic resistance is caused by many muta-

tions with minor effects. In the absence of alleles with major effects, the individuals of a field

population systematically exposed to a low dose of insecticide over several generations can

accumulate mutations with minor or intermediate effects, leading to a slow increase in resis-

tance allele frequency [3, 8]. Between these two extremes lies oligogenic resistance, in which a

few mutations with major effects account for most of the trait variation, along with minor/

intermediate-effect mutations that modify the resistance phenotype [9, 10]. In the field, popu-

lations can be exposed to different insecticides in multiple applications across time, and the

selection of mutations with major and minor effects makes it difficult to predict insecticide

resistance evolution [10].

In this context, traditional laboratory mortality assays used to screen for resistance often

lack the sensitivity to monitor and discriminate the major and minor alleles related to insecti-

cide resistance in the field, especially when these alleles are at low allele frequencies [4]. Fur-

thermore, laboratory-selected populations often used to study resistance can exhibit polygenic

resistance mechanisms that do not represent those seen in the field [11].

An alternative approach is to use multiple molecular markers to monitor allele frequencies

in pest populations [5, 12, 13]. Both genome-wide association Studies (GWAS) and quantita-

tive trait loci (QTL) mapping have been used to identify markers associated with resistance,

each with distinct advantages and limitations [14–18]. Combining GWAS and QTL mapping

together enhances the ability to study the genetic architecture and identify and refine alleles

linked to interest traits. While QTL mapping can identify loci that control a trait and estimate

their effect size and genetic × environmental interactions, GWAS can narrow down candidate

regions, detecting minor or rare alleles [4, 19, 20]. Thus, GWAS results can be validated

through QTL mapping in crossed populations, and conversely, the QTLs identified can be

examined in natural populations by GWAS [4, 20, 21]. Few studies have applied this combined

approach to the complex genetic architecture of insecticide resistance in agriculture pests.

The insecticide flubendiamide comprises the group of diamides, more specifically, the phy-

talic acids sub-group. This insecticide was commercially released in 2007, with a different

mechanism of action compared to existing products, effectiveness against lepidopteran and

coleopteran pests, and low toxicity to mammals [22]. Flubendiamide acts by irreversibly bind-

ing to ryanodine receptors (RyRs) in the sarco/endoplasmic reticulum, causing uncontrolled

Ca2+ efflux. This calcium acts on muscle contraction, but the excess of calcium promotes mus-

cle paralysis, leading to the insect’s death [23–26]. However, the extensive application of this

insecticide has led to control failures worldwide due to an increase in resistance evolution [27].

Resistance to flubendiamide has been reported in some species, including Plutella xylostella
(L.) (Lepidoptera: Plutellidae), Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), Tuta
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absoluta (Meyrick) (Lepidoptera: Gelenchiidae), and Spodoptera frugiperda (Smith) (Lepidop-

tera: Noctuidae) [18, 28–32]. By monitoring the susceptibility of field populations of Helicov-
erpa armigera (Hübner) (Lepidoptera: Noctuidae) during the 2014 to 2018 crop seasons, it was

possible to verify a reduction of flubendiamide susceptibility in different regions of Brazil [33].

In this way, an H. armigera laboratory strain was established in the 2016 crop season, which

reached resistance ratios exceeding 50,000-fold to flubendiamide after being selected in the lab

for a couple of generations [34].

Since the release of flubendiamide, many studies have focused on understanding the genetic

mechanisms of flubendiamide resistance. These resistance mechanisms are linked to specific

mutations in the T2 to T6 transmembrane domains of the C-terminal region of RyR and with

differential expression of detoxication enzymes such as cytochromes P450 (P450), carboxyles-
terases (CE), and glutathione S-transferases (GST) [18, 35–42]. In contrast, the H. armigera lab-

oratory-selected strain (> 50,000-fold) exhibits only synonymous mutations in the RyR and

no alterations in mortality associated with insecticide synergists such as P450, CE, and GST

[34]. Thus, there is a gap in knowledge of the genetic architecture of flubendiamide resistance

in H. armigera in Brazil. Unlike previous works, we employed a more robust and comprehen-

sive approach by combining GWAS and QTL mapping studies to investigate the genetic archi-

tecture of the flubendiamide resistance in H. armigera. This information is crucial for

understanding the evolutionary process associated with insecticide resistance and its manage-

ment in the field, especially given the rapid evolution of flubendiamide resistance in H. armi-
gera in Brazil.

Materials and methods

Permit access to collect material used in our research at various crop sites was granted by Sis-

tema de Autorização e Informação em Biodiversidade (Sisbio) from the Brazilian Ministry of

Environment to Promip Consultoria e Assessoria em Agronomia (Sisbio License: 61824–4).

Field population for GWAS analysis

One thousand individuals of H. armigera were collected in the field from a soybean crop in the

municipality of Luiz Eduardo Magalhães, Bahia (12˚05058”S and 45˚47054”W) during the 2019

crop season. This population was subsequently maintained in the laboratory up to the adult

stage on a modified artificial diet [43]. On average, 300 adults were reared in each PVC cage

covered at the top with fabric as an oviposition substrate. The fabric with eggs was replaced

every two days. The newly hatched larvae (F1 generation) were then transferred into 100 mL

plastic cups containing an artificial diet. These larvae were maintained under controlled envi-

ronmental conditions at 25±1˚C, with relative humidity (RH) of 70±10%, and a 14:10 h light/

dark photoperiod. The beginning of F1 third instar larvae were used for phenotypic bioassay.

The F1 larvae were used for the phenotypic bioassay due to the difficulty of standardizing the

size of individuals collected in the field.

Segregating backcross population for QTL mapping

The H. armigera flubendiamide-resistant strain (Flub-R) originated from individuals collected

on soybean in Luiz Eduardo Magalhães, Bahia, Brazil (12˚05058”S and 45˚47054”W) in the

2016 crop season. These individuals were initially selected in the susceptibility monitoring

using a diagnostic dose (2.64 μg a.i. cm-2) of flubendiamide (Belt1, Bayer S.A.; 480 g a.i. L-1)

and maintained under insecticide selection for several generations [33]. The Flub-R strain

exhibited a resistance ratio of more than 50,000-fold, as reported by Abbade-Neto et al. [34].
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The susceptible H. armigera strain (TWBS) is from Australia and has been maintained without

insecticide selection in the laboratory for more than 40 generations.

For QTL mapping, reciprocal couples were established with the Flub-R and TWBS strains

(♀ TWBS × ♂ Flub-R and ♀ Flub-R × ♂ TWBS). The heterozygote individuals (HET) gener-

ated by the couple ♀ TWBS x ♂ Flub-R were used for backcrossing with individuals of the

susceptible strain (TWBS). In the same way, from the HET and TWBS strains were established

reciprocal couples (♀ TWBS × ♂HET and ♀HET × ♂ TWBS) to originate the backcross popu-

lation S1 Fig. The resulting offspring, segregating backcross 1 (BC1) from the couple ♀ TWBS

× ♂ HET, was submitted to phenotypic bioassays.

Phenotypic bioassays

Phenotyping of H. armigera larvae for QTL mapping and GWAS analysis was conducted

using a dose-response bioassay. This involved the superficial application of the artificial diet

with 30 μL of a diagnostic dose of 2.64 μg a.i. cm-2 of flubendiamide (LD99) per cell [33]. The

dose was prepared in distilled water with 0.1% Triton1 X-100 surfactant. For the bioassay,

24-cell acrylic plates, each cell containing 1.25 mL of diet, were used. After drying the insecti-

cide solution in a laminar flow chamber, early third-instar larvae were individually placed in

each cell. A total of 110 larvae from the field population were tested for GWAS, and 110 larvae

from BC1 were tested for QTL, with each larva representing a single repetition. The plates

were maintained at 25±2˚C under a 14:10 h light/dark photoperiod. Mortality was assessed

after 96 hours, with immobile individuals upon prodding considered dead. Phenotypic data

were coded with ‘1’ for survival and ‘0’ for dead.

DNA extraction and sequencing

Genomic DNA was extracted from four parents and 110 phenotyped individuals from the BC1

and 110 from the field populations using the modified CTAB protocol [44]. DNA concentra-

tion and quality were assessed using spectrometry (NanoDrop1) and 1% agarose gel electro-

phoresis in 1x TAE buffer. Following Elshire et al. (2011) [45], Genotyping by Sequencing

(GBS) libraries were prepared using PstI restriction enzyme, individual tags, a common

adapter, and barcodes for sample identification. Sequencing was conducted on the Illumina

HiSeq 25001 platform.

Data pre-processing

Reads were demultiplexed and trimmed using Stacks (version 2.62) [46] and aligned to the

H. armigera genome assembly GCF_030705265.1 (BioProject: PRJNA713413) [17] using

BWA (version 2.0) [47]. An average alignment rate of�95 was achieved. SAM files were con-

verted to BAM format using Samtools (version 1.4) [48].

SNP calling was performed using the Stacks pipeline. First, a map of each population was

generated in TXT format, which was then used by subsequent commands in the Stacks pro-

gram. The first column of this map contains the sample names, and the second column indi-

cates the population to which each sample belongs. Subsequently, the gstacks command was

used to assemble loci, perform variant calling, and generate libraries of loci and variants.

Finally, the populations command was employed to export the data in VCF format. Data filter-

ing was conducted using VCFtools, retaining SNPs with Genotype Quality > 40, Haplotype

Quality> 20, Read Depth > 5, and a maximum of 25% missing data.
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GWAS analysis

Population structure analysis was executed using the Discriminant Analysis of Principal Com-

ponents (DAPC) model from the DAPC package [49] in R software [50]. The Genome Associ-

ation and Prediction Integrated Tool (GAPIT) package [51] was employed for the association

study. The GAPIT function uses the HAPMAP format, so the VCF file was converted by the

vcfR package [52] in R.

The GWAS utilized the Blink model within the GAPIT function, integrating parameters

like the number of principal components (PCA) estimated (K) and minor allele frequency

(MAF) set at 0.01. The Blink model, designed to mitigate the assumption of evenly distributed

causal genes across the genome, selectively includes or excludes genes based on linkage dis-

equilibrium (LD) signals.

SNP significance was established using the Bonferroni multiple test correction, supple-

mented by a permutation test with 10,000 iterations, setting a global 5% significance level for

type I error. Pairwise LD around significant SNPs was calculated using the GAPIT package

[51], adopting the R2 method with a 10-SNP moving window. The high LD region surround-

ing significant SNPs was scrutinized for potential high-field survival genes in the H. armigera
genome.

QTL mapping

The linkage map was constructed by the LepMap3 program [53]. The pedigree design used

to construct the linkage maps consists of two grandparents (♂ Flub-R and ♀ TWBS) who

are the parents of the heterozygous individual (♂ HET) and two dummy grandparents (♂
GP1 and ♀ GP2) who are the parents of the susceptible female (♀ TWBS2), used for back-

crossing with the heterozygous (♂ HET). Additionally, it includes 109 BC1 individuals

S2 Fig. The ParentCall function was executed with the parameters removeNonInforma-

tive = 1. Due to the previous filter, we did not use the Filtering2 function. The ordered

arrangement of markers within each chromosome was achieved using the OrderMarkers2

function, employing the outputPhasedData = 1, recombination2 = 0, useKosambi = 1, prox-

imityScale = 100 and usePhysical = 1 0.1 parameters. The OrderMarkers2 function was run

individually for each chromosome, and after this, the markers ordered were converted to

genotypes by the map2genotypes.awk script from LepMap3. Ultimately, the markers’

names were recovered by the script ChangeMarkerNames.awk, and the chromosomes were

merged into one file.

QTL mapping for the resistance trait employed the r/QTL program [54]. Chromosomal

TXT files were manually converted to CSV format, with genotypes 11, 12, 21, and 22 tran-

scribed as AB, AB, AA, and AA, respectively S2 Fig. The CSV file, incorporating the linkage

group map, genotypes, and phenotypes, was imported into r/QTL. Data quality was ensured

by removing markers with low genotypic information and merging markers at the same posi-

tion. Genotype imputation was executed using the fill.geno function and genotypic probability

were calculated using the calc.genoprob function.

Interval mapping (IM) analysis was performed using the scanone function, considering

binomial regression for survival phenotype (binary variable). The LOD threshold for signifi-

cance was determined through a permutation test with 10,000 iterations. The makeqtl and

fitqtl functions analyzed LOD scores and effects for each QTL. The bayesint function estimated

QTL confidence intervals while flanking markers determined the locus size in centiMorgans

(cM). An in-depth investigation identified candidate genes associated with flubendiamide

resistance within the QTL interval.
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Candidate genes

To investigate potential genes associated with H. armigera resistance to flubendiamide, we

used a 300 kb upstream and downstream of regions near each significant SNP identified. This

process utilized the genome annotation file (GCF_030705265.1-RS_2024_03) from H. armi-
gera genome assembly GCF_030705265.1 published in the NCBI.

Results

Genome-wide association studies (GWAS)

We used the GBS from 110 individuals from a field population of H. armigera to conduct a

GWAS for flubendiamide resistance. After data filtering, 103 individuals and 9,259 SNPs were

retained for analysis. Of these individuals, 47 (46%) were observed to be sensitive to flubendia-

mide, while 56 (54%) survived. Structure analysis sorted these 103 individuals into three clus-

ters (K = 3), as shown in S3 Fig. The number of clusters was incorporated into the association

model to minimize the potential for false positives. Linkage disequilibrium (LD) decay analysis

suggested a window size of approximately 10 Kb. However, we also employed a 300 Kb win-

dow, as suggested by Anderson et al. (2018) [55]. Employing the Blink model for the geno-

type-phenotype association, we found a good fit for the data S4 Fig. Four markers showed

significant associations, surpassing the Bonferroni-corrected threshold (p-value = 5.4×10−6)

Table 1 and Fig 1.

Among the six significant markers, the markers rs2P2759433, rs2P3779183, and

rs2P6931787, located on chromosome 2, accounted for 8%, 10%, and 27% of the phenotypic

variation, respectively Table 1. One additional marker on chromosome Z and two markers on

chromosome 13 were collectively responsible for 30% of the variation Table 1. All six markers

explained approximately 77% of the observed survival phenotype.

QTL mapping

Next, we performed phenotype and genotype analyses on a sample of 109 individuals from a

backcross population derived from the cross between susceptible and resistant strains of H.
armigera to flubendiamide. Among these, 49 individuals (45%) were susceptible to the diag-

nostic dose of flubendiamide, while 60 (55%) exhibited resistance. We developed a linkage

map for H. armigera for the 31 linkage groups using 1,118 markers that met our stringent cri-

teria S5 Fig. These groups varied in size from 91.56 to 153.25 cM, with a total length of

3,722.75 cM S1 Table.

Table 1. Markers identified in the genome-wide association of field-collected H. armigera individuals associated with flubendiamide survival trait.

Marker RefSeqa Chr Position p-value Mafb Effect PVEc

rs1P3460302 NC_087120.1 Z 3460302 2.494 × 10−6 0.131 0.150 2.352

rs2P2759433 NC_087121.1 2 2759433 2.133 × 10−9 0.116 −0.285 8.388

rs2P3779183 NC_087121.1 2 3779183 2.318 × 10−13 0.155 0.392 10.382

rs2P6931787 NC_087121.1 2 6931787 4.034 × 10−27 0.106 0.904 27.774

rs13P4171996 NC_087132.1 13 4171996 5.197 × 10−8 0.024 0.424 20.865

rs13P6678940 NC_087132.1 13 6678940 1.622 × 10−7 0.043 0.429 6.926

aNCBI genome reference sequence assembly (GCF_030705265.1);
bMinor allele frequency;
cPercentage of phenotypic variation explained by the marker.

https://doi.org/10.1371/journal.pone.0318154.t001
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The genotype proportions across the linkage groups were 50.4% for AA and 49.6% for AB.

Our QTL mapping identified a single significant QTL associated with flubendiamide resis-

tance on chromosome 2, which had a LOD score of 6.92, surpassing the threshold of 3.30

established by permutation tests Fig 2. This QTL accounts for 25.5% of the phenotypic varia-

tion. At the peak of this QTL, genetic position 6 × 10−6, the SNP rs2P2760409 was located, and

within the upper confidence interval, the SNP rs2P14104337 was identified at a genetic posi-

tion of 8.31 cM (physical position 14,104,337 bp) Table 2. Given the relatively small proportion

of variance explained, the QTL result is also consistent with resistance to flubendiamide being

an oligogenic trait, as the identified QTL does not fully account for the resistance phenotype.

Therefore, the QTL mapping and GWAS results are highly consistent. In terms of physical

position, the SNP rs2P2759433 identified by GWAS is approximately 976 bp from the SNP

rs2P2760409 in the QTL peak Fig 3. This region, therefore, plays a significant role in the phe-

notype of H. armigera resistance to the insecticide flubendiamide.

Fig 1. Genome-wide association plot of single nucleotide polymorphisms associated with flubendiamide survival traits in field-

derived Helicoverpa armigera. The x-axis denotes the number and position of markers across chromosomes. The y-axis illustrates the

−log10(p- values) to depict the significance of each SNP. A horizontal dashed line indicates the Bonferroni-adjusted significance threshold

of 5.4 × 10−6. A red arrow identifies the location of the ryanodine receptor gene on the H. armigera reference genome.

https://doi.org/10.1371/journal.pone.0318154.g001

Fig 2. QTL mapping for flubendiamide resistance in the Helicoverpa armigera. Flub-R laboratory strain. The x-axis details the

chromosomes and marker positions, while the y-axis displays the LOD scores. A horizontal dashed line marks the significance threshold at an

LOD of 3.30, as determined by permutation tests. A red arrow highlights the location of the ryanodine receptor gene on the H. armigera
reference genome.

https://doi.org/10.1371/journal.pone.0318154.g002
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Candidate genes

Identification of specific candidate genes is necessarily speculative at this stage due to broad

confidence intervals around QTL and GWAS SNPs. However, to investigate possible candi-

dates, regions spanning 300 kb upstream and downstream of SNPs identified by GWAS and

QTL analyses were scanned for possible candidate genes. In the window surrounding the SNP

rs1P3460302 on chromosome Z, 16 characterised genes were found. Among these are the

Table 2. Localisation and LOD scores of markers within QTL peak intervals for flubendiamide resistance on linkage group 2 in the Helicoverpa armigera Flub-R lab-

oratory strain.

SNP ID Linkage Group RefSeqa Position (cM)b LOD

rs2P2760409 2 NC_087121.1 6 × 10−6 6.917

rs2P1937820 2 NC_087121.1 0.918 6.550

rs2P14104337 2 NC_087121.1 8.310 3.863

aNCBI genome reference sequence assembly (GCF_030705265.1);
bGenetic position of the SNP on linkage group (in centiMorgans).

https://doi.org/10.1371/journal.pone.0318154.t002

Fig 3. Overlap of GWAS and QTL mapping results. The x-axis represents the physical position of the SNPs, while the y-axis shows the p-value of the

GWAS result transformed by −log10(p- values). The red dashed line represents the Bonferroni-corrected GWAS threshold 5.4 × 10−6. The blue dots

represent the SNPs from the GWAS, while the orange diamond indicates the physical position of the SNP identified at the QTL peak from the QTL

mapping analysis. The lower panel displays the genes identified within a 300 kb window upstream and downstream of the SNP rs2P2759433 identified by

GWAS and the SNP rs2P2760409 identified by QTL Mapping.

https://doi.org/10.1371/journal.pone.0318154.g003
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Calcium-binding Mitochondrial Carrier Protein SCaMC-2 and ATP-binding Cassette Subfamily
F Member 2 genes S2 Table. Furthermore, the Developmentally-regulated GTP-binding Protein
2 gene was identified adjacent to SNP rs2P2759433 and rs2P2760409. These SNPs were co-

located by GWAS and QTL Mapping analyses Fig 3. In the region of SNP rs2P3779183, 30

characterised genes were identified, including the Voltage-dependent T-type Calcium Channel
Subunit Alpha-1G gene. In the same way, 38 characterised genes were found in the window of

SNP rs2P6931787, of which the Phospholipid-transporting ATPase ABCA1 and Phospholipid-
transporting ATPase ABCA3 are strong candidates for the high survival of field population

S2 Table. Of the 36 characterised genes identified within the SNP window of rs13P4171996,

the Multidrug Resistance-associated Protein 1 gene is the most likely to be associated with the

high survival rate of the field population. Similarly, the Cytochrome C Oxidase Assembly Pro-
tein COX20 gene, identified among the 18 characterised genes within the SNP region of

rs13P6678940, is also a strong candidate. Both markers are located on chromosome 13 S2

Table.

Discussion

We have identified a single major effect locus influencing resistance to flubendiamide in Bra-

zilian H. armigera, supported by independent QTL and GWAS analyses. In addition, there is

evidence for five additional loci with more minor phenotypic effects. Previous studies have

identified monogenic inheritance of diamide resistance in agricultural pests, mainly associated

with mutations in the T2 to T6 transmembrane domains of the C-terminal region of RyR

[18, 28, 36, 37, 39, 40]. Our previous work characterising resistance of the Flub-R strain to the

insecticide flubendiamide did not reveal any non-synonymous mutations in the RyR, nor did

it show any changes in the mortality of individuals exposed to flubendiamide combined with

the synergists PBO, DEM, and DEF [34]. This absence suggests the involvement of an alterna-

tive resistance mechanism in H. armigera.

We confirm this result here, as our GWAS and QTL Mapping did not identify any associa-

tions on chromosome 28 associated with RyR. We have identified a new resistance locus and

highlighted the contribution of additional minor effect genes influencing the survival of H.
armigera to flubendiamide.

The GWAS analysis identified genetic loci with a major effect on chromosome 2 and loci

with a minor effect on chromosomes Z and 13. Together, these loci are responsible for much,

but not all, phenotypic variation. These loci had high statistical support and somewhat over-

came the limitations of traditional laboratory assays with field populations, which may not

effectively estimate the minor effect alleles found in field populations [4, 13, 56]. Using a

GWAS approach with a field population increased the probability of the allele(s), with the

major effect being sampled and identified [57].

In parallel, we identified one major effect QTL associated with H. armigera resistance to flu-

bendiamide from a laboratory-selected strain. This QTL on chromosome 2 explained part of

the phenotypic variance, showing that the flubendiamide-resistant strain (Flub-R) has an oli-

gogenic genetic architecture, underscoring the complexity of flubendiamide resistance. This

contrasts with previous studies, which have demonstrated monogenic resistance, often linked

to mutations in RyR or differential expression of detoxification enzymes [36]. The statistical

significance of the QTL and narrow confidence intervals supports the robustness of our

findings.

Furthermore, the concordance between GWAS and QTL analysis in identifying the same

locus on chromosome 2 provides strong support for the importance of this genomic region for

H. armigera resistance to flubendiamide. The SNPs rs2P2759433 and rs2P2760409 are
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promising for developing PCR-based markers to complement traditional phenotypic labora-

tory assays in resistance monitoring. This should significantly enhance the sensitivity and

accuracy of these assessments [12, 13], offering a more refined strategy for resistance manage-

ment. The combined use of GWAS and QTL mapping has been extensively employed in stud-

ies of complex phenotypic traits in plant breeding [20, 58–60]. Still, it has been less commonly

used in insect resistance research. Our work demonstrated that this is a powerful approach to

studying complex traits in insect populations, such as insecticide resistance in crop pests.

The genes near the SNPs co-located in the GWAS and QTL mapping imply a different

resistance mechanism to flubendiamide. The developmentally-regulated GTP-binding protein 2
gene identified in that region may be associated with insect resistance by insecticide detoxifica-

tion. This association was observed in a differential expression study involving Mythimna
separata (Walker) (Lepidoptera: Noctuidae) treated with chlorantraniliprole [61]. On the

other hand, the Voltage-dependent T-type Calcium Channel Subunit Alpha-1G close to the

SNPs rs2P3779183 on chromosome 2, identified only by GWAS analysis, is associated with the

calcium homeostasis pathways [62, 63].

Genes related to metabolic detoxification were observed in the region of the higher peak

SNP (rs2P6931787) on chromosome 2, identified only by GWAS analysis. In this region, we

found four possible ABC transporter genes that act in phase III of metabolic detoxification.

Many studies have reported the involvement of ABC transporter in chlorantraniliprole and flu-

bendiamide detoxification in other species such as Chilo suppressalis (Walker) (Lepidoptera:

Crambidae) [64], P. xylostella [65], S. frugiperda [66] and Leptinotarsa decemlineata (Say)

(Coleoptera: Chrysomelidae) [67]. The Multidrug resistance-associated protein 1 (MDR1), also

known as P-glycoprotein (P-gp), is encoded by ATP-binding cassette subfamily B member 1
(ABCB1) [68, 69]. P-gp, a component of the ABC superfamily, is a membrane-spanning pro-

tein that pumps molecules out of the cell through an ATP-dependent mechanism [70, 71].

Studies have shown that some insecticides act as substrates, increasing the P-gp expression

and enhancing ABC transporter activity. This enables the insecticide to be transported out of

the cell, contributing to resistance [68, 72–75]. The study by Zuo et al. (2017) involving P-gp

knockout in S. exigua showed no increases in chlorantraniliprole susceptibility [73]. Thus, the

expression of P-gp might be more closely associated with phthalic insecticides than with

anthranilic insecticides. This could explain the difference observed between the insecticides

chlorantraniliprole and flubendiamide susceptibility in field populations from the state of

Bahia in our previous study [33].

In summary, our results indicate that Flub-R strain resistance to flubendiamide is oligo-

genic and that a major effect locus on chromosome 2 contributes to resistance and could be

the target for genetic monitoring of resistance in field populations. Furthermore, genes from

the ATP-binding cassette family may also play significant roles in H. armigera resistance to flu-

bendiamide insecticide. However, it is important to note that the study was limited to a single

field population and that functional validation of the identified genes will be necessary. Future

research should focus on validating these genes and assessing their frequency in different field

populations. These findings contribute to developing more effective IRM strategies, helping

mitigate the devastating ecological and economic impacts of insecticide resistance.

Supporting information

S1 Fig. QTL mapping cross-design. The backcross population originated from the cross

between the Helicoverpa armigera strains Flub-R (Resistant) and TWBS (Susceptible). The lar-

vae represent the individuals used for DNA sequencing using the GBS method. The AA code

PLOS ONE The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera

PLOS ONE | https://doi.org/10.1371/journal.pone.0318154 January 29, 2025 10 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0318154.s001
https://doi.org/10.1371/journal.pone.0318154


denotes the homozygous susceptible, the BB homozygous resistant and AB the heterozygous.

(TIF)

S2 Fig. The pedigree design used in the linkage map construction by LepMap3. Grandpar-

ents 1 and 2, shown as semi-transparent, represent dummy grandparents that were added to

the pedigree file of the BC1 population, as indicated by the LepMap3 manual. The values rep-

resent the genotype codes used by the programme, where 11 and 22 denote male homozygotes

and female homozygotes, respectively. The codes 12 and 21 represent heterozygotes. The first

number originates from the paternal side, and the second is from the maternal side. These

numeric codes were converted to AA and AB codes used by the rQTL programme, represent-

ing susceptible homozygotes and heterozygotes, respectively.

(TIF)

S3 Fig. Two-dimensional discriminant principal component analysis of Helicoverpa armi-
gera field population. The colours represent the sample clusters identified by PCA analysis,

indicating K = 3. The circles denote the Euclidean distance from the centre of each cluster, cor-

responding to the 95% confidence ellipse.

(TIF)

S4 Fig. The Quantile-Quantile plot indicates the fitness of the Blink model for survival

association analysis. The light grey line shows the −log10(p- values) expected. The dashed

lines represent the upper and lower limits of the 95% confidence interval. The black unfilled

circles show the −log10(p- values) observed.

(TIF)

S5 Fig. Linkage map of a Helicoverpa armigera backcross population, derived from the

cross between the susceptible strain (TWBS) and the flubendiamide-resistant strain (Flub-

R). Each line in a linkage group denotes the position of a marker, with its respective name

beside it. The y-axis shows the markers’ genetic positions and the linkage groups’ total size in

centiMorgans (cM).

(TIF)

S1 Table. Linkage map summary.

(PDF)

S2 Table. List of genes within a 300 Kb downstream and upstream from the markers iden-

tified by GWAS and QTL mapping, linked to Helicoverpa armigera survival to flubendia-

mide.

(PDF)

Acknowledgments

We thank the Brazilian Insecticide Resistance Action Committee (IRAC-BR) for providing

Helicoverpa armigera populations for this research. We also thank the Statistical Genetics

Laboratory—ESALQ/USP and the Insect Evolution and Genomics Group—University of

Cambridge team for all support.

Author Contributions

Conceptualization: Douglas Amado, Erick M. G. Cordeiro, Antonio A. F. Garcia, Celso

Omoto.

Data curation: Douglas Amado, Wellingson A. Araújo.
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sons from lepidopteran pests. Journal of Pest Science. 2020; 93:911–928. https://doi.org/10.1007/

s10340-020-01220-y

37. Okuma DM, Cuenca A, Nauen R, Omoto C. Large-Scale Monitoring of the Frequency of Ryanodine

Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall

Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2022; 13:626. https://doi.org/10.

3390/insects13070626 PMID: 35886802

38. Zuo Y, Ma H, Lu W, Wang X, Wu S, Nauen R, et al. Identification of the ryanodine receptor mutation

I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera:

Noctuidae). Insect Science. 2020; 27:791–800. https://doi.org/10.1111/1744-7917.12695 PMID:

31140744

39. Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, et al. Resistance to diamide insecti-

cides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in

the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology.

2012; 42:873–880. https://doi.org/10.1016/j.ibmb.2012.09.001 PMID: 22982600

40. Roditakis E, Steinbach D, Moritz G, Vasakis E, Stavrakaki M, Ilias A, et al. Ryanodine receptor point

mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gele-

chiidae). Insect Biochemistry and Molecular Biology. 2017; 80:11–20. https://doi.org/10.1016/j.ibmb.

2016.11.003 PMID: 27845250

41. Campos MR, Silva TB, Silva WM, Silva JE, Siqueira HA. Susceptibility of Tuta absoluta (Lepidoptera:

Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Management Science. 2015;

71:537–544. https://doi.org/10.1002/ps.3835 PMID: 24863675

42. Li X, Li R, Zhu B, Gao X, Liang P. Overexpression of cytochrome P450 CYP6BG1 may contribute to

chlorantraniliprole resistance in Plutella xylostella (L.). Pest Management Science. 2018; 74:1386–

1393. https://doi.org/10.1002/ps.4816 PMID: 29194968

43. Greene GL, Leppla NC, Dickerson WA. Velvetbean Caterpillar: A Rearing Procedure and Artificial

Medium123. Journal of Economic Entomology. 1976; 69:487–488. https://doi.org/10.1093/jee/69.4.487

44. Boyce TM, Zwick ME, Aquadro CF. Mitochondrial DNA in the bark weevils: Size, structure and het-

eroplasmy. Genetics. 1989; 123:825–836. https://doi.org/10.1093/genetics/123.4.825 PMID:

2612897

45. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A Robust, Simple Genotyp-

ing-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE. 2011; 6:e19379. https://

doi.org/10.1371/journal.pone.0019379 PMID: 21573248

46. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: An analysis tool set for popula-

tion genomics. Molecular Ecology. 2013; 22:3124–3140. https://doi.org/10.1111/mec.12354 PMID:

23701397

47. Vasimuddin M, Misra S, Li H, Aluru S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multi-

core Systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

IEEE; 2019. p. 314–324.

48. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

49. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: A new method for the

analysis of genetically structured populations. BMC Genetics. 2010; 11:94. https://doi.org/10.1186/

1471-2156-11-94 PMID: 20950446

50. R Core Team. R: A Language and Environment for Statistical Computing; 2022. Available from: https://

www.R-project.org/.

51. Wang J, Zhang Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Pre-

diction. Genomics, Proteomics & Bioinformatics. 2021; 19:629–640. https://doi.org/10.1016/j.gpb.2021.

08.005 PMID: 34492338

52. Knaus BJ, Grünwald NJ. vcfr: A package to manipulate and visualize variant call format data in R.

Molecular Ecology Resources. 2017; 17:44–53. https://doi.org/10.1111/1755-0998.12549 PMID:

27401132

PLOS ONE The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera

PLOS ONE | https://doi.org/10.1371/journal.pone.0318154 January 29, 2025 14 / 16

https://doi.org/10.3390/agronomy12071664
https://doi.org/10.3390/agronomy12071664
https://doi.org/10.3390/ijms20051064
http://www.ncbi.nlm.nih.gov/pubmed/30823656
https://doi.org/10.1007/s10340-020-01220-y
https://doi.org/10.1007/s10340-020-01220-y
https://doi.org/10.3390/insects13070626
https://doi.org/10.3390/insects13070626
http://www.ncbi.nlm.nih.gov/pubmed/35886802
https://doi.org/10.1111/1744-7917.12695
http://www.ncbi.nlm.nih.gov/pubmed/31140744
https://doi.org/10.1016/j.ibmb.2012.09.001
http://www.ncbi.nlm.nih.gov/pubmed/22982600
https://doi.org/10.1016/j.ibmb.2016.11.003
https://doi.org/10.1016/j.ibmb.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/27845250
https://doi.org/10.1002/ps.3835
http://www.ncbi.nlm.nih.gov/pubmed/24863675
https://doi.org/10.1002/ps.4816
http://www.ncbi.nlm.nih.gov/pubmed/29194968
https://doi.org/10.1093/jee/69.4.487
https://doi.org/10.1093/genetics/123.4.825
http://www.ncbi.nlm.nih.gov/pubmed/2612897
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379
http://www.ncbi.nlm.nih.gov/pubmed/21573248
https://doi.org/10.1111/mec.12354
http://www.ncbi.nlm.nih.gov/pubmed/23701397
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1186/1471-2156-11-94
https://doi.org/10.1186/1471-2156-11-94
http://www.ncbi.nlm.nih.gov/pubmed/20950446
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.gpb.2021.08.005
https://doi.org/10.1016/j.gpb.2021.08.005
http://www.ncbi.nlm.nih.gov/pubmed/34492338
https://doi.org/10.1111/1755-0998.12549
http://www.ncbi.nlm.nih.gov/pubmed/27401132
https://doi.org/10.1371/journal.pone.0318154


53. Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data.

Bioinformatics. 2017; 33:3726–3732. https://doi.org/10.1093/bioinformatics/btx494 PMID: 29036272

54. Broman KW, Wu H, Sen Śaunak, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinfor-

matics. 2003; 19:889–890. https://doi.org/10.1093/bioinformatics/btg112 PMID: 12724300

55. Anderson CJ, Oakeshott JG, Tay WT, Gordon KHJ, Zwick A, Walsh TK. Hybridization and gene flow in

the mega-pest lineage of moth, Helicoverpa. Proceedings of the National Academy of Sciences. 2018;

115:5034–5039. https://doi.org/10.1073/pnas.1718831115 PMID: 29610329

56. Weetman D, Donnelly MJ. Evolution of insecticide resistance diagnostics in malaria vectors. Transac-

tions of the Royal Society of Tropical Medicine and Hygiene. 2015; 109:291–293. https://doi.org/10.

1093/trstmh/trv017 PMID: 25740955

57. Groeters FR, Tabashnik BE. Roles of Selection Intensity, Major Genes, and Minor Genes in Evolution

of Insecticide Resistance. Journal of Economic Entomology. 2000; 93:1580–1587. https://doi.org/10.

1603/0022-0493-93.6.1580 PMID: 11142284

58. He G, Traore SM, Binagwa PH, Bonsi C, Prakash CS. 8. In: Al-Khayri JM, Jain SM, Johnson DV, edi-

tors. Date Palm Quantitative Trait Loci. Cham: Springer International Publishing; 2021. p. 155–168.

Available from: https://doi.org/10.1007/978-3-030-73750-4_8.

59. Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, et al. Identification of QTLs con-

trolling harvest time and fruit skin color in Japanese pear Pyrus pyrifolia (Nakai). Breeding Science.

2014; 64:351–361. https://doi.org/10.1270/jsbbs.64.351 PMID: 25914590

60. Cevik V, Ryder CD, Popovich A, Manning K, King GJ, Seymour GB. A Fruitfull-like gene is associated

with genetic variation for fruit flesh firmness in apple Malus domestica (Borkh.). Tree Genetics &

Genomes. 2010; 6:271–279. https://doi.org/10.1007/s11295-009-0247-4

61. Zhang BZ, Hu GL, Su X, Ma KS, Dong WY, Chen XL, et al. Differentially expressed genes in Mythimna

separata under chlorantraniliprole exposure and functional identification. International Journal of Pest

Management. 2022; p. 1–11. https://doi.org/10.1080/09670874.2022.2055196

62. Costas-Ferreira C, Faro LRF. Systematic Review of Calcium Channels and Intracellular Calcium Sig-

naling: Relevance to Pesticide Neurotoxicity. International Journal of Molecular Sciences. 2021;

22:13376. https://doi.org/10.3390/ijms222413376 PMID: 34948173
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