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Abstract: This study investigates the complex interaction of biophysical and meteorological
factors that drive evapotranspiration (ET) in saline environments. Leveraging a total of
182 cloud-free Landsat 5/8 time-series data from 1988 to 2019, we employed the Surface
Energy Balance System (SEBS) model to quantify ET and investigate its relationships with
soil salinity, vegetation cover, groundwater depth, and landscape metrics. We validated the
predicted ET at two experimental sites using ET observation calculated by a water balance
model. The result shows an R? of 0.78 and RMSE of 0.91 mm for the SEBS predicted ET,
indicating high accuracy of the ET estimation. We detected abandoned saline farmland
patches across Hetao and extracted the normalized difference vegetation index (NDVI),
salinization index (SI), and the predicted ET for analysis. The results indicate that ET is
negatively correlated with SI with a Pearson correlation coefficient () up to —0.7, while ET
is positively correlated with NDVI (r = 0.4). In addition, we designed a control-variable
experiment in the Yichang subdistrict to investigate the effects of groundwater depth, land
aggregation index, soil salinity index, and the area of abandoned saline farmland patches on
ET. The results indicate that increased NDVI could significantly enhance ET, while smaller
saline farmland patches exhibited greater sensitivity to groundwater recharge, with higher
averaged ET than larger patches. Moreover, we analyzed factor importance using Lasso
regression and Random Forest (RF) regression. The result shows that the ranking of the
importance of the features is consistent for both methods and for all the features, with NDVI
being the most important (with an RF importance score of 0.4), followed by groundwater
table depth (GWTD), and the influence of the surface area of abandoned saline farmland
being the weakest. We found that smaller patches of abandoned saline farmland were
more sensitive to changes in groundwater levels induced by nearby irrigation, affecting
their averaged ET more dynamically than larger patches. Decreasing patch size over
time indicates ongoing changes in land management and ecological conditions. This
study, through a multifactor analysis of ET in abandoned saline farmland and its intrinsic
factors, provides a reference for evaluating the dry drainage efficiency of abandoned saline
farmland in a dry drainage system.

Keywords: evapotranspiration; abandoned saline farmland; Hetao Irrigation District;
Landsat; soil salinity; vegetation cover; aggregation index; dry drainage system
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1. Introduction

In arid and semi-arid regions with shallow groundwater tables, secondary salinization
induced by human/land interactions is a prominent process of agricultural land degrada-
tion [1-3]. As soil salinization increases, the salinity level of the soil in salinized farmland
may exceed the salt tolerance of crops, rendering the land unsuitable for agricultural use
if no interventions are made [4,5]. This kind of saline area is called abandoned saline
farmland (Figure 1). Many such abandoned saline farmland may emerge in large irrigation
districts with shallow groundwater levels in arid and semi-arid regions [6].

Figure 1. Abandoned saline farmland (a) and its surface (b), photographed in the Hetao Irrigation
District of Inner Mongolia, China.

In a landscape configuration comprising both abandoned saline farmland and farm-
land (Figure 2), the groundwater table in abandoned saline farmland is often lower than
that in surrounding farmland. This results in soil moisture from the farmland converging
toward the abandoned saline farmland, forming a dry drainage system [7-9]. Abandoned
saline farmlands act as evaporation sinks, receiving water and salts from adjacent farmlands,
thereby playing a crucial role in sustainable agriculture. In such dry drainage systems,
evapotranspiration (ET) from abandoned saline farmland serves as a critical driving force,
directly determining their capacity for salt drainage.

Irrigation Irrigation

Irrigated cropland Abandoned Saline farmland Irrigated cropland

Figure 2. Schematic diagram of a dry drainage system, where the abandoned farmland acts as an
evaporation sink with a lower groundwater table. The groundwater and dissolved salts move from
the surrounding crop field to the abandoned farmland, which provides a natural-based solution for
sustainable farming.
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Previous studies investigated dry drainage systems and the factors influencing the salt
drainage capacity of abandoned saline farmland. In California’s San Joaquin Valley, a higher
ratio of cultivated-to-abandoned land gradually decreased the effectiveness of dry salt
drainage [10]. However, when the elevation difference of abandoned land exceeded 0.3 m,
this decrease became less prominent. Additionally, when the cultivated-to-abandoned land
ratio was below 2, the drainage needs of cultivated land were generally met. In the Indus
River Basin of Pakistan, the cultivated-to-abandoned land ratio required to maintain salt
balance increased from 0.83 to 1.60 as the groundwater depth decreased from 2.0 m to
1.0 m [7]. However, considering the needs of crop growth and soil leaching, the optimal
groundwater depth should be below 1.5 m, and the cultivated-to-abandoned land ratio
should be around 1 [7,11]. These studies indicate that in arid or semi-arid regions, rational
allocation of cultivated and abandoned land, coupled with the use of natural or artificial
lowlands for dry salt drainage, can effectively maintain the water/salt balance of cultivated
land, mitigate the hazards of salinization, reduce the impact on the surrounding ecological
environment, and promote the sustainable development of irrigated agriculture.

Previous studies on dry salt drainage systems have mostly focused on the size and
spatial distribution of abandoned saline farmland, neglecting surface characteristics such
as vegetation cover and surface salinization. ET drives the functioning of dry salt drainage
systems and can be used as an indicator to evaluate their effectiveness. Therefore, this
study uses the ET of abandoned saline farmland as the evaluation indicator to assess
its dry salt drainage capacity and to analyze the influence of various factors on its dry
drainage function.

Whether in dry salt drainage systems or in regular agricultural water cycling systems,
ET plays a critical role in the water, energy, and soil cycles by facilitating the transfer of
water from the land surface to the atmosphere, significantly influencing soil moisture,
groundwater recharge, and local climatic conditions. In the agricultural context, ET deter-
mines crop water requirements, affects irrigation efficiency, and helps maintain soil salinity
balance, thereby contributing to sustainable agricultural practices [12]. In addition, ET is a
key driver in the surface energy balance, regulating energy exchange processes and influ-
encing ecosystem functioning. Studies highlight the need for accurate ET quantification
to optimize water resource management and address environmental challenges in arid
and semi-arid regions, where water scarcity and salinity pose considerable risks to agricul-
tural sustainability [13-18]. Accurate quantification of land surface ET is paramount for
optimizing agricultural practices such as irrigation and planting, managing groundwater
resources, and modeling hydrological processes [19], all of which are necessary to manage
saline regions. The application of remote sensing technology, with its spatiotemporal data
advantages, enables effective monitoring of ET in abandoned saline farmland. Optical and
microwave remote sensing data facilitate the analysis of factors influencing the ET potential
of abandoned saline farmland, such as soil salinization, vegetation greenness, patch area,
spatial configuration, and groundwater table depth [20-24].

Methods for remote sensing-based estimation of ET can be broadly categorized into
three types: (1) the crop coefficient method based on reference crop evapotranspiration
(ETp) [25], (2) the surface conductance method relying on the Penman-Monteith equa-
tion [26], and (3) the land surface temperature (LST)-based approach [27]. The first method
is relatively straightforward, requiring only meteorological data and empirical crop coeffi-
cients to calculate actual ET. However, accurately estimating crop coefficients at the regional
level is often challenging due to their dependence on crop varieties, growth stages, and
fertilization practices [28]. The accuracy of the second method hinges on precise surface
conductance estimation, which relates to stomatal conductance, scales up to the canopy
level, and is linked not only to leaf photosynthetic capacity and canopy structure but also
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to soil characteristics [29]. Empirical methods employing the Jarvis formula are commonly
used for remote sensing based on estimating surface conductance [30]. Due to current
gaps in the understanding of vegetation/water/carbon interactions, vertical light use
(light regime), and the spatial distribution of atmospheric carbon dioxide, non-empirical
estimation of surface conductance at the regional scale remains challenging.

The LST-based method relies on remote sensing observations and has gained popular-
ity for estimating regional ET [22,31,32]. There are two theoretical approaches: the feature
space method and the energy balance method. The feature space method assumes that
the scatter plot of LST and vegetation index (e.g., NDVI) forms a distinctive triangular or
trapezoidal feature space. The upper boundary of this feature space is referred to as the
dry edge, indicating that crops are experiencing water stress, resulting in stomatal closure
and the highest canopy temperature. In contrast, the lower boundary of the feature space
is known as the wet edge and represents potential evaporation. Consequently, actual ET
can be calculated based on potential evaporation and the distance between the LST and the
dry and wet edges [20]. In contrast, the energy balance method calculates various energy
components (net radiation and sensible heat flux) to estimate ET (latent heat flux) by using
the land surface energy balance equation, making it a more theoretically based approach.

When estimating land surface ET using remote sensing data, there is a higher degree
of uncertainty and complexity in estimating ET for saline agricultural land and abandoned
saline farmland than for non-saline agricultural land [33,34]. In particular, an increase in
soil salinity results in higher soil matric suction, while excessive salinity can lead to soil
compaction, reducing the soil’s ability to conduct water. In addition, during the spring
season, the return of salt (crystallization) in saline agricultural land and abandoned saline
farmland increases the albedo of the land surface, which affects the energy balance [35].
In the Hetao Irrigation District, existing literature often relies on a relatively simple crop
coefficient method to estimate ET and often lacks an analysis of how the degree of salin-
ization, planting patterns, and spatial distribution of abandoned saline farmland affect
ET. This study integrates the spatial structure information of abandoned saline farmland
in the Hetao Irrigation District and employs the Surface Energy Balance System (SEBS)
model to estimate ET in these areas. By analyzing the effects of different salinization levels
and vegetation coverage on ET, the study reveals the relationships between abandoned
saline farmland ET and factors such as salinity and vegetation conditions. Additionally,
ecological landscape indices are utilized to explore the interactions between the spatial
configuration of abandoned saline farmland and ET, further enhancing the understanding
and predictive capability of abandoned saline farmland ET processes. The aim is to provide
a reference for evaluating the drainage efficiency of the abandoned saline farmland in the
dry drainage system.

2. Methodology
2.1. Study Area

The Hetao Irrigation District, located in the Inner Mongolia Autonomous Region
of China (40.1°—41.4° N, 106.1°-109.4° E) (Figure 3a), is an important agricultural area.
Situated along the southern edge of the Yellow River, its unique geographical position
and topography turn the Hetao Irrigation District into an oasis in the middle of the desert.
The Hetao Irrigation District is characterized by a typical arid and semi-arid climate with
low precipitation, high evaporation, and abundant sunshine. According to meteorological
records from 1999 to 2013 (http://data.cma.cn, accessed on 26 December 2024), the mean
annual temperature is 8.2 °C. Winter temperatures are relatively low, with a prolonged
period of soil freezing lasting up to 180 days from November to April, and a maximum
frozen soil depth of 1.32 m. July is the hottest month, with an average temperature of
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24.62 °C. The mean annual precipitation is only 180 mm, 89% of which is concentrated
between May and September, with the highest monthly precipitation of 41 mm occurring in
July. Evaporation significantly exceeds precipitation, with a mean annual pan evaporation
of 2176 mm, peaking at 347.3 mm in May. Summer has the longest sunshine duration,
exceeding 10 h per day, while winter has the shortest, with around 6 h per day.
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Figure 3. Location of land cover cases and five sub-irrigation districts of the Hetao Irrigation
District (a); Location of the experimental site and well locations of the Yichang subdistrict (b).

The high evaporative demand and limited precipitation make agriculture highly
dependent on irrigation while exacerbating the risk of soil salinization. In 2023, the agri-
cultural water consumption in the Hetao Irrigation District was 4.21 billion m3. Irrigation
water is mainly sourced from the Yellow River, with a small amount from groundwa-
ter in well-irrigated areas (https://www.stats.gov.cn/sj/ndsj/, accessed on 26 December
2024). The soil is predominantly alluvial with a silt/loam texture. The Hetao Irrigation
District is predominantly composed of agricultural lands, with spring wheat, maize, and
sunflower being the main crops. Beyond the agricultural fields, the landscape includes
woodlands, grasslands, sand dunes, lakes, residential areas, and saline wastelands. The
saline wastelands, with a total area of approximately 190 km? in 2019 [5], are interspersed
throughout the agricultural areas. While some of these wastelands are barren and devoid
of vegetation, others support halophytic plants such as tamarisk (Tamarix), alkali grass
(Puccinellia), and reed grass (Phragmites) [36]. Due to high evaporation, low precipitation,
and shallow groundwater levels, the Hetao Irrigation District is highly susceptible to sec-
ondary salinization. Research has shown that most areas are currently characterized by
mild or no salinization in the Hetao Irrigation District; certain regions exhibit high levels of
salinization, typically identified as abandoned saline farmlands. In the subsequent analysis,
these regions are referred to as “patches”.
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The impact of abandoned saline farmland patches on ET was analyzed using five land
cover cases, each covering 5765 ha in four different sub-irrigation districts located in the
Hetao Irrigation District. These cases were selected based on the maps in Figure 3, ensuring
that there was sufficient distance between them. The land cover of the five cases is shown in
Figure 4a—e and is based on the land cover classification results from [5], with the location
of the five cases shown in Figure 3a. For the land cover map, a total of 150 verification
points were used to assess the performance of the land cover classification and, in particular,
the detection of abandoned farmland [5]. All evaluation metrics exceeded 0.70, indicating
satisfactory accuracy. Exceptional results were obtained for wheat and water bodies, with
metrics exceeding 0.93, closely followed by high metrics for abandoned farmland and other
crops. Similar to [37,38], the distinctive VI time series facilitated the classification of these
classes. In contrast, residential areas were frequently misclassified due to their complex
composition and high spatial variability. Overall, the land cover map achieved a robust
performance, with a kappa coefficient of 0.876.

Farmland

Abandoned saline farmland
B Water
Il Forest

Dune

City & Road

Figure 4. Land cover of five cases with a surface area of 5765 ha. The location of the cases is shown in
Figure 3a, where (a) Case in Yichang sub-irrigation district, (b) Case in Yichang sub-irrigation district,
(c) Case in Urat sub-irrigation district, (d) Case in Jiefangzha sub-irrigation district, and (e) Case in
Waulanbuhe sub-irrigation district.

2.2. Data Processing

Vegetation coverage (fc), Normalized Difference Vegetation Index (NDVI), and LST
were derived from the Landsat satellite imagery (Landsat-5 TM and Landsat-8 OLI/TIRS),
downloaded from the United States Geological Survey (USGS) (https:/ /earthexplorer.usgs.
gov/, accessed on 26 December 2024). The area of interest was the Hetao Irrigation District,
and both level-1 and level-2 were acquired for the selected period. Level-1 data were used
to calculate brightness temperature for LST, while level-2 surface reflectance data, already
radiometrically calibrated, were used to estimate surface reflectance, NDVI, and SI. To
ensure good data quality, we only selected Landsat satellite imageries with cloud cover of
less than 20% to download. The date information is in Supplementary Table S1.
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2.2.1. Vegetation Density
Vegetation cover is determined using the following empirical formula, which relies on
the NDVI for calculation [39].

fo NDVI — NDV I,
¢ NDVIyax — NDV1,,

1)

where NDVI,,,;;, and NDV I ;5 are the upper and lower limits of NDVI.
In this study NDV1,,;;, = 0.05and NDV Iy = 0.7. If NDVI > NDV Ly, fo = 1;if
NDVI < NDV1,,, fc =0.

2.2.2. Surface Emissivity

The surface emissivity ¢ is determined using the equation provided by Qin [39].

£ = foRyey + (1 — Py)Ryes + de )

Ry = 0.9332 4 0.0585NDVI 3)

Rs = 0.9902 + 0.106NDVI 4)
0.00381, f. <05

de = £ 0.0038(1— f.), fo>05 (5)
0.0019, fo=05

where R, and R; are the temperature ratios of vegetation and bare soil, ¢, and €, represent
the emissivity of vegetation and bare soil in the TM6 band interval. de corresponds to the
gradient component of the surface emissivity and is calculated using Equation (5).

2.2.3. Land Surface Temperature

The brightness temperature is derived from Landsat’s level-1 data using ENVI 5.3
software. The calculation of land surface temperature (LST) is accomplished using a single-
window algorithm [40]. This algorithm relies on the thermal radiative transfer equation
and offers a straightforward and efficient approach to computing LST using only one of the
Landsat thermal bands.

{a(1—C—D)+[p(1-C—D)+C+D|T, — DT,}

Ts = Cs (6)
C=e1 )
D=(1-1)1+(1-¢)1] (8)

where Tj is the effective mean atmospheric temperature, T} is the brightness temperature,
T is the atmospheric transmittance, 2 and b are reference coefficients. When the surface
temperature ranges from 0 °C to 70 °C, a = 67.355351, b = 0.458606.

2.3. Evapotranspiration Calculation
2.3.1. The Instantaneous Evapotranspiration Calculation

The Surface Energy Balance System (SEBS) model was selected because of its ability to
estimate spatially distributed ET using remote sensing data. Unlike empirical models, SEBS
is based on physical principles and calculates ET as the residual of surface energy fluxes [41].
Its integration with satellite-derived parameters, such as surface temperature and albedo,
allows for reliable ET estimates across heterogeneous landscapes, including abandoned
saline farmland. Compared to the Penman—Monteith method, which requires extensive
ground-based inputs, SEBS provides a scalable solution for regional studies by using
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satellite data [42]. Furthermore, the model’s ability to account for atmospheric stability
makes it particularly suitable for semi-arid and saline environments where ET dynamics
are complex. The 16-day temporal resolution of the Landsat archive, coupled with frequent
cloud cover, can limit the ability to capture short-term intra-seasonal variations in ET. In
addition, the SEBS model relies on assumptions of surface homogeneity and atmospheric
similarity. Despite these limitations, the advantages of using Landsat data for ET estimation
generally outweigh the disadvantages.

The SEBS model is a computational framework for estimating ET using a single-source
energy balance approach. Its key strength lies in its ability to effectively differentiate
the roughness variations in heat and momentum transfer between the vegetation canopy
and Earth’s surface by introducing the concept of residual resistance. The SEBS model
comprises four primary modules: (1) retrieval of surface physical parameters using remote
sensing data, (2) estimation of the roughness length for heat transfer, (3) calculation of
sensible heat flux, and (4) calculation of latent heat flux. SEBS, based on the energy balance
of Earth’s surface, can be expressed by the following equation:

Ry, =Go+H+AE (9)

where R, is net radiation, Gy is soil heat flux, H is sensible heat flux, AE represents the
latent heat flux, A is the latent heat of vaporization, and E is the actual ET.
The R, is calculated as:

Ry = (1 —a)-Rypg + & Rppg — e:0-Tgy (10)

where « is the surface albedo, Ry,,; and R, are the downward shortwave and downward

longwave radiation, respectively, ¢ is the surface emissivity, Tj is the surface temperature,

and o is the Stefan-Boltzmann constant, which has a value of 5.670367 x 10~8 W-m~2.K 4.
The Gy is calculated as follows,

Go = Rp.[Te + (1 — £).(Ts — T)] (11)

where I'; is the relationship between soil heat flux and net radiation in the presence of
vegetation and I's is the relationship between soil heat flux and net radiation in bare soil;
when f. equals 0, I's equals 0.315; conversely, when f; equals 1, I's equals 0.05.

The instantaneous ET is calculated using the ET fraction-based method,

H — Huypet
Ah=1— ———— 12
' Hdry — Hyet ( )
/\E = Ar)\Ewet (13)

where A, is the ET fraction. Hy; and Hy,, are the dry and wet limits of H. AE is the
actual ET.

2.3.2. Daily and Monthly Evapotranspiration Calculation

We upscale the instantaneous ET to a daily scale by assuming that the ET/(R, — G)
fraction is a constant throughout the day. As a result, the daily ET can be calculated

as follows,
(A X Rnd)

A
Due to the absence of daily Landsat imagery, monthly scale ET is derived by using

E— (14)

the Penman—Monteith formula [26] to calculate the potential ET pattern. The calculation
model inversely estimates the potential ET for a given day and calculates the ratio between



Land 2025, 14, 283

9 of 28

the potential ET values for each day of the month. Using these ratio coefficients, the ET
for each day of the month is determined sequentially and then summed cumulatively to
obtain the monthly ET. The ET values from April to October can be obtained by adding up
the ET value for the non-freezing period (April to October).

2.3.3. Evapotranspiration Validation

The root zone water balance model [43] was used to validate the ET calculation results.
This model takes into account the effects of groundwater leakage and recharge. By applying
the root zone water balance, the ET amount can be calculated as follows:

ET; = W; — Wiy_1 + P, + ; + CR; — DP; (15)

where i is the day number, W; is the soil moisture content in the root zone, W;_ is the soil
moisture content on the previous day, P; represents the effective rainfall, I; is the irrigation,
CR; is the groundwater recharge, DP; is the root zone percolation. The calculation detail
for each component in Equation (15) can be found in [43].

To validate the ET results derived from remote sensing, two experimental sites in the
Hetao Irrigation District (Figure 3b) were selected in 2019. One site is a fallow field, and the
other site is a sunflower field. The experiments included data collection on groundwater
table levels, soil moisture content, precipitation, and irrigation. Daily ET was calculated
using a water balance model, and the results were compared with the ET calculated from
remote sensing in 2019 for analysis. Soil moisture content was monitored using Hydra
soil moisture sensors, with sampling depths of up to 1.4 m. The depth intervals were
configured as follows: 0 cm-10 cm, 10 cm-30 cm, 30 cm-50 cm, 50 cm~70 cm, 70 cm—-100 cm,
and 100 cm-140 cm, with one sensor installed at each depth, resulting in a total of six
sensors per sampling site (Figure 3b). With two sampling sites, a total of 12 monitoring
sensors were installed. At each sampling site, groundwater levels were measured using
wells equipped with HOBO water level loggers. Data were collected at daily intervals, and
daily averages were recorded.

2.4. Abandoned Saline Farmland Spatial Information

The extraction of abandoned saline farmland (Figure 5) is based on the method devel-
oped by Zhao et al. [5]. Based on the idea of “elimination” to detect abandoned saline land
step by step, more details can be found in [5].

This study uses the vector files of abandoned saline farmland and the ET values
calculated for the non-freezing period. By extracting the ET values corresponding to each
saline farmland patch using the boundary files, the ET values for each patch representing
the unit-area ET of each abandoned saline farmland patch were obtained. This serves as
the data foundation for analyzing the influence of various factors on the ET of abandoned
saline farmland. In the analysis of influencing factors, the ET refers to the unit-area ET of
abandoned saline farmland.
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(a)

(d)

I Abandoned saline farmland

010 20 40Km

Figure 5. Distribution of abandoned saline farmland in the Hetao Irrigation District, (a) 1988, (b) 1998,
(c) 2008, (d) 2018.

2.5. Factors Influencing Evapotranspiration
2.5.1. The Characteristic Index of Influencing Factors

To investigate the effects of vegetation, soil salinity, groundwater, and landscape layout
on ET, we selected various indicators to represent these influences and quantify the effects
of multiple factors on ET. Groundwater table depth (GWTD) and the area size of abandoned
saline farmland are directly derived from observations. The GWTD was measured every
five days. Vegetation coverage of abandoned saline farmland is represented using NDVI,
the salinization level is characterized by the Salinization Index (SI), and spatial structure
is described using the Aggregation Index (AI). A detailed introduction to SI and Al is
provided below.

Salinization Index

In previous studies, the analysis of the effect of salinization on ET mostly involved
measuring ET at different salinity levels and then analyzing its variation [44]. A systematic
analysis was conducted using remote sensing methods, and the SI was used to represent
the degree of salinization in the region. Applying the conversion formula for SI and soil
salinity could achieve the conversion between SI and soil salinity, and more details can be
found in [5].

SI = \/Potue Ored (16)

where py;,,. is the surface reflectance of blue band, p,,, is the surface reflectance of red band.

The SI was validated against measurements of electrical conductivity (EC). Soil sam-
ples (0-5 cm depth) were collected at 33 sites (133 samples) from May 2018 to October
2019 [5]. Sampling coordinates were recorded using a GPS with 41.45 m accuracy. A strong
exponential relationship between SI and EC was derived (EC = 0.94 exp(10.51 SI) — 1.20) [5],
enabling salinity classification into 0—4 dS/m (slight/no salinity), 4-8 dS/m (moderate),
8-16 dS/m (high), and >16 dS/m (extreme). Pixel counts per salinity class were used for
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area estimation. Only cloud-free March-April imagery was used for salinity classification
to avoid cropping effects.

Aggregation Index

We use landscape indices commonly used in landscape ecology to analyze the spatial
configuration information of abandoned saline farmland for quantitative research. These
landscape indices are examined at three different scales: patch scale (individual patches),
patch type scale (combinations of several individual patches forming patch types), and
landscape scale (the overall composition of different patch types in the landscape). Some
frequently used landscape indices include the Patch Shape Index and the Landscape
Aggregation Index.

The general mathematical expression for the Landscape Aggregation Index C [45] is
as follows: 0

C= Cmax + 2 2 Pij ln(Pi]') (17)
i=1j=1
where Cj;y is the maximum value of the aggregation index (2 In(n)), n is the total number
of patch types in the landscape, and P;; is the probability of the patch types, i and j are
adjacent. In a gridded landscape, P;; is generally calculated as:
P = PP, (18)
where P; is the probability that a randomly selected grid cell belongs to patch type i
(estimated by the area proportion of patch type i in the entire landscape), and P;/; is the
conditional probability that patch type j is adjacent to i,
Tfl,‘j
P =— 19
% m; ( )
where m;; is the number of grid sides where patches i and j are adjacent, and m; is the
total number of sites for patch type i. When comparing different landscapes, the relative
aggregation index C’ is more appropriate and calculated as:

C _  TalLb In(P;;)

C =
Cinax 21n(n)

(20)

AI [46] is an indicator based on the length of the ordinary boundaries between pixels
of the same patch type. It can be calculated at both the class and landscape levels. Al ranges
from 0 to 1, with 0 representing the lowest aggregation and 1 representing the highest
aggregation. Al can be used to assess the degree of aggregation of different landscape types
and their relationships to ecological processes.

Al = {gii} 1)

max — gij

where g;; is the number of similar adjacent patches of the corresponding landscape type.

Al has several advantages in quantifying landscape spatial patterns. It is category-
specific and independent of landscape composition, making it more accurate than other
indices that measure overall landscape aggregation. Therefore, in this study, Al is used as
an aggregation indicator for abandoned saline farmland.
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2.5.2. Lasso Multivariate Regression Analysis

Lasso regression (Least Absolute Shrinkage and Selection Operator regression), com-
monly used in statistics and machine learning, is a regression analysis method that improves
upon traditional multivariate linear regression by adding a penalty term to the loss func-
tion [47]. This penalty term is the sum of the absolute values of the coefficients and aims to
impose certain constraints on the model to prevent overfitting and potentially reduce some
regression coefficients to zero. As a result, Lasso regression predicts data and performs
feature selection, automatically filtering out variables that significantly affect the target
variable. The main difference between Lasso regression and ordinary multivariate regres-
sion (Ordinary Least Squares, OLS) lies in the coefficient constraints. Ordinary multivariate
regression aims to minimize the sum of squares of the residuals with no direct restrictions
on the size of the coefficients. In contrast, Lasso regression introduces an L1 penalty (the
sum of the absolute values of the coefficients) to limit the size of the coefficients, which
may result in some coefficients becoming zero, thereby achieving variable selection and di-
mensionality reduction. The cost function of the Lasso regression is shown in the following

1 2
Loss = - Z?:l (]/i - Zf_l xij,Bj) +A 2;)_1 |/3]| (22)

where 1 is the number of samples; p is the number of features (or predictor variables); y; is

formula:

the response variable for the i-th observation; xjj is the j-th feature of the i-th observation;
Bj is the coefficient of the j-th feature; A is the regularization parameter that controls the
strength of the penalty term.

Lasso regression is particularly effective in dealing with datasets that have multi-
collinearity or more features than samples. Therefore, Lasso regression is superior to ordi-
nary multivariate regression in terms of feature selection and handling high-dimensional
data. Feature importance analysis is performed using the regression coefficients obtained
from the Lasso regression as the importance indices for each feature. The input data are first
standardized to eliminate scale differences between the inputs before performing Lasso
regression analysis.

2.5.3. Feature Importance Analysis Based on Random Forest

Random Forest (RF) is an ensemble learning method that makes predictions by con-
structing multiple decision trees and aggregating their results [48]. Each decision tree
is trained on a random subset of the dataset during the RF training process. Suppose a
particular input feature is frequently used in the decision trees of RF to partition data and
significantly reduce Gini impurity. In this case, this feature is considered essential.

G(S) = i pr(1— pk) (23)
=

where G(S) represents the Gini impurity and py is the selection probability for each deci-
sion tree.

Feature importance in Random Forests is typically determined by calculating the
average reduction in impurity (Mean Decrease in Impurity, MDI) for each feature across all

the trees.

Nieft Nyignt

G(left) +

parent parent

AG = G(parent) — ( G(right)) (24)
where Al represents the average reduction in Gini impurity, G(parent), G(left), and
G(right) are the impurities of the parent node, left child node, and right child node,
respectively. Nparent, Nieft, and Ny are the number of samples in the respective nodes.
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2.5.4. Shapley Feature Importance Analysis Method

The Shapley feature importance analysis method, which originated from cooperative
game theory [49], is a technique for evaluating and interpreting machine learning models. In
recent years, this method has been widely applied to quantify and explain the contribution
of each feature in machine learning models to the prediction results. Its principle is based on
cooperative game theory, considering all possible combinations of features and calculating
the impact on model predictions when a particular feature is added or removed from
these combinations. The advantage of this method is that it provides a comprehensive
and balanced perspective on the importance of features, ensuring that the evaluation of
feature contributions is neither biased toward frequently occurring features nor toward
rare features. The calculation process of the Shapley method is as follows:

M

f(x)=g(x') = ¢o+ ) ¢ix’ (25)

i=1

where f(x) is the model to be evaluated; g(x) is the explanatory model; x = hy(x'),
x € {0, 1}M ; M represents the number of input features; ¢; is the feature contribution
of feature i (i.e., the Shapley value). The explanatory model g(x) has a unique solution,
which can be calculated by the following equation:

o) = ¥ BEMEELED s ) ) @6)
f(x') = f(he(2)) = E[f(2)|Zs] (27)

where |2'| is the number of non-empty subsets z’ of features used in the model; S is the
index of the subsets z’. The Shapley contribution value of each input feature is calcu-
lated separately for each sample point in the sample set, which yields the contribution
distribution of each input feature.

Suppose a feature has a positive Shapley value. In this case, the feature positively
contributes to the model’s predictive output (e.g., increasing the predicted outcome or
probability). Conversely, if a feature’s Shapley value is negative, it indicates that it is
reducing or inhibiting a particular prediction. Therefore, it can be understood that the
larger the absolute value of a feature’s Shapley value (regardless of its sign), the more
significant its contribution to the model’s predictions.

3. Results

3.1. Estimated Evapotranspiration Maps
3.1.1. Different Time Scale of Evapotranspiration Maps

Using the above method, a total of 182 images from 1988 to 2019 were obtained, and
ET was calculated for those dates. Due to space limitations, only the results for 2019 are
presented here (Figure 6). As shown in Figure 6, daily ET in June, July, and August 2019
reached approximately 10 mm, while in April, it was around 6 mm. In September and
October, daily ET generally remained below 5 mm. During the non-freezing period, the
regional average ET (Figure 7) ranges mostly between 200 mm and 600 mm.
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Figure 6. Daily ET map for 2019: (a) 21 April, (b) 8 June, (c) 10 July, (d) 27 August, (e) 28 September,
(f) 30 October.

3.1.2. Validation of Evapotranspiration Estimates

The daily ET calculated based on the daily-scale water balance model was compared
with the result by the remote sensing method SEBS. As shown in Figure 8, the coefficient of
determination (R?) was 0.78, and the root mean square error (RMSE) was 0.91 mm/day.
There are a total of six cloud-free Landsat imageries available at Hetao during the non-
freezing season of 2019, which are 21 April, 8 June, 10 July, 27 August, 28 September, and
30 October. As a result, Figure 8 shows twelve validation data points calculated based on
the six daily ET maps (Figure 6) at two sites (Figure 3a) using the water balance model. The
result shows an R? of 0.78 and RMSE of 0.91 for the SEBS predicted ET, indicating high
accuracy of the ET estimation.
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Figure 7. Non-freezing period ET inversion values from 1988 to 2019: (a) 1988, (b) 1993, (c) 1998,
(d) 2006, (e) 2011, (f) 2016, (g) 2018, (h) 2019.
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Figure 8. Scatterplot of ET estimated from field-scale water balance and remote sensing- based SEBS.

3.2. Factors Affecting Evapotranspiration in Abandoned Saline Farmland
3.2.1. Degree of Salinization

From the scatter density plot of SI and ET (Figure 9), it can be observed that the annual
average SI values of abandoned saline farmland patches are mostly concentrated around
0.2, indicating that most abandoned saline farmland is moderately or highly salinized. The
ET of abandoned saline farmland patches was primarily concentrated between 400 mm
and 500 mm in 1990, 350 mm and 450 mm in 1999, 400 mm and 500 mm in 2010, and
340 mm and 430 mm in 2019. The Pearson correlation coefficients (r) in Figure 9 indicate
a negative relationship between ET and SI across all years, suggesting that higher salin-
ization levels correspond to lower evapotranspiration. The correlation strengthened from
1990 (r = —0.46) to 2010 (r = —0.7), implying an increasing impact of salinization on ET,
likely due to prolonged salt accumulation and vegetation degradation. However, in 2019
(r = —0.45), the correlation weakened, suggesting potential ecological recovery, improved
water management, or climate variations mitigating the effects of salinization on ET.

(2) (b)
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500

400

0 . r=-045 030
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Figure 9. Scatter density plots of ET versus SI for abandoned saline farmland patches in Hetao in
(a) 1990, (b) 1999, (c) 2010, and (d) 2019.
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3.2.2. Salt-Tolerant Vegetation Coverage

From the scatter density plot of NDVI and ET of abandoned saline farmland patches
(Figure 10), it can be observed that the NDVI values of abandoned saline farmland patches
were primarily concentrated between 0.07 and 0.18 in 1990, 0.06 and 0.15 in 1999, 0.08
and 0.16 in 2010, and 0.10 and 0.22 in 2019. Over the years, there has been an increasing
trend in the NDVI values of saline farmland patches. The correlation remained relatively
weak in 1990 (r = 0.27) and 1999 (r = 0.26), slightly weakened in 2010 (r = 0.1), and became
stronger in 2019 (r = 0.4). Additionally, the NDVI of saline farmland patches is generally
positively correlated with ET, indicating that increasing vegetation cover can enhance the
ET of abandoned saline farmland patches, thereby improving their dry drainage capacity.
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Figure 10. Scatter density plots of ET versus NDVI for abandoned saline farmland patches in Hetao
in (a) 1990, (b) 1999, (c) 2010, and (d) 2019.

3.2.3. Influence of the Groundwater Table Depth

An analysis was conducted using the 2019 ET results of abandoned saline farmland
patches, combined with the average GWTD of abandoned saline farmland patches during
the non-freezing period of 2019. As shown in Figure 11, the GWTD of abandoned saline
farmland during the non-freezing period spans a wide range, from 1.6 m to 3.0 m, with
the majority concentrated between 1.6 m and 2.2 m. Additionally, r is —0.46 in Figure 11
indicates a moderate negative correlation between ET and GWTD in abandoned saline
farmland patches. This suggests that as GWTD increases, ET tends to decrease, likely due
to reduced capillary water supply to the surface, limiting ET.
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Figure 11. Scatter density plot of annual average groundwater depth (m) and ET (mm) for abandoned
saline farmland patches in 2019.

3.2.4. The Area of Abandoned Saline Agricultural Land

The number of abandoned saline farmland (patches) in the Hetao Irrigation District
decreased from 9719 in 1988 to 6153 in 2019, indicating a general decline (Figure 12a).
After 2010, it shows a plateau in the number of patches, which could be the result of
the failure of attempts to reclaim and improve some of the abandoned saline farmland
patches. Due to ineffective outcomes or high costs, these reclaimed fields were eventually
left uncultivated again. This phenomenon is closely related to the management of water
resources in agriculture and the control of salinity in agricultural land.

Among many patches, each one differs in size. For instance, if we look at the 2019
abandoned saline farmland patches and categorize them by their area (Figure 12b), we can
see that the majority of these patches (i.e., 90%) fall within the size range of 0 to 5 hectares.
This suggests that abandoned saline farmland is predominantly found in a fragmented
state within agricultural areas.

Figure 13 illustrates the ET distribution of pixels within abandoned saline farmland
patches from 1990 to 2019. The ET of abandoned saline farmlands generally ranges between
200 mm and 600 mm. Notably, in 2001 and 2002, ET was lower due to drought conditions.
It can also be observed that the variance in the distribution of abandoned saline farmland
ET shows an increasing trend. This is attributed to the progress of desalinization in the
Hetao region, which has led to reduced soil salinity in more abandoned saline farmlands.
The growth or cultivation of salt-tolerant plants on abandoned saline farmlands has fur-
ther contributed to the increasing variability in averaged ET across the abandoned saline
farmland patches.

Figure 14 illustrates the relationship between abandoned saline farmland area and
non-freezing season ET for the years 1990, 1999, 2010, and 2019. The ET is mostly con-
centrated between 200 mm and 600 mm for abandoned saline farmlands across different
area intervals. Due to sufficient lateral groundwater recharge, these smaller abandoned
saline farmlands may generate higher ET values. However, variations between years are
noticeable, primarily influenced by meteorological factors.
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Figure 12. Number of patches in 1988-2019 (a), number distribution of abandoned saline farmland
(patches) in 2019 (b).

Abandoned saline farmlands with areas exceeding 100 hectares generally show lower
ET. This could be attributed to higher salinization levels and deeper groundwater tables
in larger patches. Due to their extensive size, irrigation in surrounding farmland has
minimal impact on altering the overall groundwater table. In contrast, smaller abandoned
saline farmland patches with narrower diameters are more susceptible to surrounding
farmland irrigation, which can significantly raise their groundwater table. As a result,
smaller abandoned saline farmland patches tend to perform better as dry drainage systems
for salt removal.

Additionally, abandoned saline farmland of the same size may exhibit differences in
ET potential due to various factors, such as salinization levels, vegetation coverage, and
groundwater table depth, which collectively influence their ET dynamics.

3.2.5. Spatial Distribution

For the Hetao Irrigation District, the Al was calculated for five landscape units
(Figure 4), with the locations of these five units (Figure 3a). As shown in Figure 15, ET
reaches its maximum value when the Al is approximately 70% across the five landscape
units. However, since ET may also be influenced by other factors, such as groundwater
table depth and vegetation conditions within the landscape units, a direct correlation
between aggregation and ET cannot be established.
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Figure 13. Distribution of averaged ET (mm) over multiple years (1988-2011, 2013-2019) for different
abandoned saline area patches.
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Figure 14. Non-freezing season ET (mm) for different area ranges of abandoned saline farmland in
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Figure 15. The relationship between Al and ET is based on five landscape cases in the Hetao Irrigation
District. The blue dashed line shows the quadratic regression fit.
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3.3. Importance of Features in Evapotranspiration in Abandoned Saline Farmland

The correlation matrix of ET in abandoned saline farmland with GWTD, AI, NDVI,
SI, and the surface area of abandoned saline farmland is shown in the following table
(Table 1). According to the table, ET has a slightly negative correlation with GWTD
(r = —0.121), suggesting an increase in groundwater depth could slightly reduce ET. The
relationship with the Al of abandoned saline farmland is also slightly negative (r = —0.123),
indicating that an increase in aggregation could slightly reduce ET. In contrast, ET shows
a stronger positive correlation with the NDVI (r = 0.218), meaning increasing vegetation
density could increase ET. The relationship between ET and the SI is weakly negative
(r = —0.098), suggesting that an increase in salinity could slightly reduce ET. Finally, the
relationship between ET and the surface area of abandoned saline farmland is slightly
negative (r = —0.096), indicating that an increase in the area could slightly reduce ET. These
data reveal the complex relationships between ET in abandoned saline farmland and
several environmental factors, with the positive correlation between NDVI and ET being
the most significant.

Table 1. Pearson correlation coefficients between different factors with ET in abandoned saline farmland.

ET GWTD Al NDVI SI Area
ET 1.000 —0.121 **  —0.123***  0.218 **  —0.098 ***  —0.096 ***
GWTD —0.121 ** 1.000 —0.012 0.015 —0.069 ***  —0.049 *
Al —0.123 *** —0.012 1.000 —0.122 = 0.280 *** 0.218 ***
NDVI 0.218 *** 0.015 —0.122 *** 1.000 0.043 * —0.097 ***
SI —0.098 **  —0.069 ***  0.280 *** 0.043 * 1.000 0.156 ***
Area —0.096 ***  —0.049 * 0.218 **  —0.097 ***  0.156 *** 1.000

Note: Statistical significance is indicated with a p-value where *** p < 0.001 (highly significant), * 0.01 < p <0.05
(moderately significant), and no star p > 0.05 (not significant).

Figure 16 shows the importance of the indices calculated using the Lasso multivariate
linear regression and those calculated using the Random Forest regression. The ranking of
the importance of the features is consistent for both methods and for all the features, with
NDVI being the most important, followed by GWTD, and the influence of the surface area
of abandoned saline farmland being the weakest. The differences in the importance of each
feature obtained by Lasso regression are smaller. This is because Lasso regression is a linear
model and does not capture the high-dimensional interactions between features. In contrast,
Random Forest, which is a nonlinear model, includes the high-dimensional interactions
between features in its calculation of feature importance. However, both methods only
provide a consolidated importance index and cannot determine the uncertainty in the
importance of each feature.

In contrast, feature importance analysis based on the Shapley method can determine
the importance of features for individual sample points, thus allowing the determination of
the importance distribution of each input feature. The Shapley feature importance analysis
results using the Lasso multivariate regression model and the Random Forest (RF) model
are shown in Figures 17 and 18, respectively.
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Figure 18. SHAP feature importance for the Random Forest (RF) model.

According to Figures 17 and 18, the distribution of Shapley feature importance gen-
erated by Lasso shows substantial irregularities except for NDVI, suggesting that linear
models may not capture high-dimensional interactions between variables (features). The
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distribution of Shapley feature importance generated by RF is more consistent with a
Gaussian distribution, suggesting a highly nonlinear relationship between abandoned
saline farmland ET and various features and that RF can explain some of this nonlinearity.
Groundwater depth is the second most important feature after NDVI. This is because the
crop transpiration process requires the roots to take up water from the soil in the root zone,
and groundwater, which replenishes the unsaturated soil moisture by capillary rise, is an
essential source of crop water uptake. The Al of abandoned saline farmland is the third
most important feature affecting ET, as the distribution of different landscapes can affect
groundwater levels and microclimates, indirectly affecting ET. For example, if the Al of
abandoned saline farmland is high, groundwater levels will drop, indirectly reducing ET.
The area of abandoned saline farmland does not significantly influence the average ET of
these abandoned saline farmland, possible reasons being: (1) training sample imbalance,
with a lack of samples from large abandoned saline farmlands; (2) substantial spatial vari-
ability in the study area; (3) groundwater levels in abandoned saline farmlands were below
the critical depth, where groundwater could not produce capillary rise, leading to ET being
mainly controlled by rainfall.

4. Discussion

The results reveal a complex interplay between salinization levels, vegetation patterns,
and spatial configurations in shaping ET dynamics in abandoned saline farmland. Increased
soil salinization was found to be negatively correlated with ET, as higher salinity levels
reduce soil hydraulic conductivity through compaction and increased albedo, reducing
the energy available for latent heat flux [50]. These results are consistent with previous
studies that highlight the inhibitory effects of salinity on water evaporation and plant
transpiration. On the other hand, vegetation greenness, represented by NDVI, showed a
significant positive correlation with ET, highlighting the role of salt-tolerant vegetation in
enhancing ET. This finding corroborates the work of Glenn [51], who reported similar trends
in saline ecosystems. The ability of salt-tolerant vegetation to enhance the dry drainage
function of saline farmlands is critical for their ecological and hydrological management.
Additionally, the spatial configuration of abandoned saline farmland, as indicated by Al,
was shown to indirectly influence ET by altering groundwater exchange and microclimatic
conditions. Patches with higher aggregation generally exhibited lower ET values, likely
due to reduced edge effects and limited groundwater recharge from surrounding areas.
Conversely, smaller, fragmented patches exhibited higher ET variability, driven by lateral
groundwater recharge from adjacent farmland, which has implications for the effectiveness
of abandoned saline farmland as a dry drainage system [7]. These results emphasize the
importance of landscape-scale planning in the management of abandoned saline farmlands.

Forman [52] introduced a landscape ecological planning pattern known as “combining
concentration and dispersion”, which is widely regarded as the most ecologically optimal
landscape pattern. This pattern encompasses seven key landscape ecological attributes,
including large natural vegetation patches for water conservation and the support of
crucial species, a mix of patch sizes to enhance both overall landscape diversity and local
diversity, consideration of risk dispersion during disturbances, preservation of genetic
diversity, reduction in boundary resistance through interlocking zones, small natural
vegetation patches serving as temporary habitats or refuges, and the incorporation of
corridors for species dispersion and the flow of matter and energy. We applied the concept
of “combining concentration and dispersion” to saline agricultural land and abandoned
saline farmland and found that the spatial distribution of saline patches in the landscape
influenced ET processes. Using Landsat imagery to elucidate vegetation greenness, land
surface temperature, and land cover, we observed that larger, aggregated saline patches
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had higher surface temperatures and lower ET rates, possibly due to increased surface
albedo [53] and reduced energy available for latent heat flux. Conversely, smaller, dispersed
saline patches often exhibited lower surface temperatures and higher ET rates, possibly
due to increased edge effects and enhanced energy exchange between saline and non-saline
areas. These results suggest that landscape patterns significantly influence microclimatic
conditions and hydrological processes within saline regions. Strategic management of the
size and distribution of abandoned saline farmlands can help optimize water use efficiency,
mitigate salinity impacts and enhance ecosystem resilience.

Accurately quantifying soil salinity is crucial for understanding its impact on ET
and agricultural productivity. Traditional methods of measuring soil salinity, such as
electrical conductivity, often require laborious sampling and laboratory analysis. However,
Hien [54] demonstrates the potential of Fourier transform infrared spectroscopy (FTIR)
as a rapid and non-destructive method for estimating soil salinity. By identifying specific
spectral regions sensitive to salt content, this technique offers a promising avenue for
developing remote sensing-based salinity maps [55]. Further research is needed to explore
the applicability of FTIR to regional scales with a wider range of soil types and salinity
levels. Additionally, combining FTIR with other remote sensing methods and indices [56],
including thermal infrared [57], could enhance the accuracy and spatial resolution of
salinity mapping, ultimately improving our ability to monitor and manage salt-affected
soils and patches of abandoned saline farmland.

In this study, a control variate method was used to investigate the correlation between
selected factors and ET. By aggregating ET and the investigated factors to the non-freezing
period scale and focusing on the Yichang subdistrict, we assumed that meteorological condi-
tions were consistent across all sampling sites, rendering the actual ET of the sampling sites
invariant to the reference ET(. Although the correlations between the investigated factors
and ET were relatively low, the high significance levels for all factors can be attributed to
the large number of samples analyzed (2458 abandoned saline farmland patches). However,
we acknowledge that the factors investigated may not account for all potential influences,
such as heterogeneous soil moisture levels, even in areas with similar meteorological condi-
tions. This limitation highlights the need for future research to comprehensively investigate
additional factors that may influence ET in saline environments. Addressing these gaps will
improve the robustness of ET modeling and its application to saline farmland management.

5. Conclusions

In addition to meteorological factors, the ET in abandoned saline farmland is also
affected by several other factors, such as the depth of groundwater in abandoned saline
farmland, the coverage of salt-tolerant vegetation, the degree of salinization, the spatial
arrangement of abandoned saline farmland, and the area size of abandoned saline farmland
patches. The existing literature does not analyze the effects of salinization levels, vegetation
cover, and spatial layout of abandoned saline farmland on ET. This study addressed this
gap by investigating the influence of the above-mentioned factors on ET of abandoned
saline farmland in the Hetao Irrigation District. This research employs the SEBS energy
balance model to estimate ET in the Hetao Irrigation District remotely. Combined with
the spatial information of abandoned saline farmland [5], the averaged ET of abandoned
saline farmland patches was obtained. Subsequently, Shapley, Lasso, and Random Forest
feature importance analysis methods were used to evaluate the impacts of factors such as
vegetation coverage, soil salinity, groundwater table depth, and landscape indices on the
patch-level ET of abandoned saline farmland. Our findings reveal that the ET of abandoned
saline farmland is influenced not only by common factors such as vegetation greenness
and groundwater table depth but also significantly by soil salinity and the landscape aggre-
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gation of abandoned saline farmland. The fragmented distribution of abandoned saline
farmland within farmland leads to significant variability in ET. For smaller abandoned
saline farmland, lateral groundwater recharge results in higher ET variability. Conversely,
larger abandoned saline farmland exhibits more stable ET, enabling them to perform their
dry drainage function better. Abiotic factors such as shallower groundwater table depth,
lower soil salinity, and lower abandoned saline farmland aggregation positively influence
ET. The results from the Random Forest model reveal highly nonlinear relationships be-
tween ET and these factors. Among them, groundwater recharge to the unsaturated zone
is identified as a key driver of ET, while abandoned saline farmland aggregation influences
ET indirectly by affecting groundwater exchange and regional microclimatic conditions.
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/ /www.mdpi.com/article/10.3390/land 14020283 /51, Figure S1: Field Photos of Experimental Sites;
Table S1: Date Information of Downloaded Landsat Images.

Author Contributions: Conceptualization, L.Z.; methodology, L.Z. and Q.Y.; software, L.Z. and
Q.Y;; validation, L.Z.; formal analysis, L.Z. and Q.Y.; investigation, L.Z., ] M., H.Z., Z.Y. and Y.L.;
resources, ] W. and A.G.; data curation, L.Z. and Q.Y.; writing—original draft preparation, L.Z. and
Q.Y.; writing—review and editing, ].W. and A.G; visualization, L.Z.; supervision, JW. and A.G.;
project administration, J.W. and A.G.; funding acquisition, ].W. and A.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation of China (Grants No.
52379047, 52209067) and the KU Leuven internal funding STG/21/027.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to restrictions imposed by the funding organization.

Acknowledgments: We are grateful to the editor and anonymous reviewers for their valuable
comments and others who contributed to this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.
11.

Thomas, D.S.G.; Middleton, N.J. Salinization: New Perspectives on a Major Desertification Issue. J. Arid Environ. 1993, 24, 95-105.
[CrossRef]

Aslam, M.; Prathapar, S.A.; Aslam, M.; Prathapar, S.A. Strategies to Mitigate Secondary Salinization in the Indus Basin of Pakistan: A
Selective Review; International Water Management Institute IWMI): Colombo, Sri Lanka, 2006.

Kitamura, Y.; Yano, T.; Honna, T.; Yamamoto, S.; Inosako, K. Causes of Farmland Salinization and Remedial Measures in the Aral
Sea Basin—Research on Water Management to Prevent Secondary Salinization in Rice-Based Cropping System in Arid Land.
Agric. Water Manag. 2006, 85, 1-14. [CrossRef]

Yang, H.; Zhang, F; Chen, Y.; Xu, T.; Cheng, Z.; Liang, ]. Assessment of Reclamation Treatments of Abandoned Farmland in an
Arid Region of China. Sustainability 2016, 8, 1183. [CrossRef]

Zhao, L.; Yang, Q.; Zhao, Q.; Wu, J. Assessing the Long-Term Evolution of Abandoned Salinized Farmland via Temporal Remote
Sensing Data. Remote Sens. 2021, 13, 4057. [CrossRef]

Romero-Diaz, A.; Pérez-Morales, A.; Marin-Sanleandro, P. Prevalence, Causes, and Consequences of Agricultural Land Abandon-
ment: A Case Study in the Region of Murcia, Spain. CATENA 2024, 241, 108071. [CrossRef]

Konukcu, F.; Gowing, ].W.; Rose, D.A. Dry Drainage: A Sustainable Solution to Waterlogging and Salinity Problems in Irrigation
Areas? Agric. Water Manag. 2006, 83, 1-12. [CrossRef]

Wu, J.; Zhao, L.; Huang, |.; Yang, J.; Vincent, B.; Bouarfa, S.; Vidal, A. On the Effectiveness of Dry Drainage in Soil Salinity Control.
Sci. China Ser. E-Technol. Sci. 2009, 52, 3328-3334. [CrossRef]

Yu, B.; Jiang, L.; Shang, S. Dry Drainage Effect of Hetao Irrigation District Based on Remote Sensing Evapotranspiration. Trans.
Chin. Soc. Agric. Eng. 2016, 32, 1-8.

Khouri, N. Potential of Dry Drainage for Controlling Soil Salinity. Can. J. Civ. Eng. 1998, 25, 195-205. [CrossRef]

Gowing, J.W.; Wyseure, G.C.L. Dry-Drainage a Sustainable and Cost-Effective Solution to Waterlogging and Salinisation.
Proceedings of the 5th International Drainage Workshop, Lahore, Pakistan, 8-15 February 1992; Volume 3, pp. 6-26.


https://www.mdpi.com/article/10.3390/land14020283/s1
https://www.mdpi.com/article/10.3390/land14020283/s1
https://doi.org/10.1006/jare.1993.1008
https://doi.org/10.1016/j.agwat.2006.03.007
https://doi.org/10.3390/su8111183
https://doi.org/10.3390/rs13204057
https://doi.org/10.1016/j.catena.2024.108071
https://doi.org/10.1016/j.agwat.2005.09.003
https://doi.org/10.1007/s11431-009-0341-8
https://doi.org/10.1139/l97-076

Land 2025, 14, 283 27 of 28

12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Raza, A.; Hu, Y,; Acharki, S.; Buttar, N.A.; Ray, R.L.; Khaliq, A.; Zubair, N.; Zubair, M.; Syed, N.R,; Elbeltagi, A. Evapotranspiration
Importance in Water Resources Management Through Cutting-Edge Approaches of Remote Sensing and Machine Learning
Algorithms. In Surface and Groundwater Resources Development and Management in Semi-arid Region: Strategies and Solutions
for Sustainable Water Management; Pande, C.B., Kumar, M., Kushwaha, N.L., Eds.; Springer International Publishing: Cham,
Switzerland, 2023; pp. 1-20. ISBN 978-3-031-29394-8.

Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water
Manag. 2015, 147, 4-20. [CrossRef]

Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Concepts and Future Trends. J. Irrig. Drain Eng. 1999, 125,
45-51. [CrossRef]

Van Wijk, WR,; De Vries, D.A. Evapotranspiration. Neth. ]. Agric. Sci. 1954, 2, 105-119.

Tanner, C.B. Measurement of Evapotranspiration. In Agronomy Monographs; Hagan, R M., Haise, H.R., Edminster, T.W.,, Eds.;
American Society of Agronomy: Madison, WI, USA, 2015; pp. 534-574. ISBN 978-0-89118-206-1.

Rijtema, P.E. An Analysis of Actual Evapotranspiration. Ph.D. Thesis, Pudoc, San Vicente, Philippines, 1965.

Mondal, S.; Mishra, A. Quantifying the Precipitation, Evapotranspiration, and Soil Moisture Network’s Interaction Over Global
Land Surface Hydrological Cycle. Water Resour. Res. 2024, 60, €2023WR034861. [CrossRef]

Gowda, PH.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, ].A. ET Mapping for Agricultural Water Management:
Present Status and Challenges. Irrig Sci 2008, 26, 223-237. [CrossRef]

Jiang, L.; Islam, S. A Methodology for Estimation of Surface Evapotranspiration over Large Areas Using Remote Sensing
Observations. Geophys. Res. Lett. 1999, 26, 2773-2776. [CrossRef]

Zhang, K.; Kimball, J.S.; Running, S.W. A Review of Remote Sensing Based Actual Evapotranspiration Estimation. WIREs Water
2016, 3, 834-853. [CrossRef]

Taheri, M.; Mohammadian, A.; Ganji, F.; Bigdeli, M.; Nasseri, M. Energy-Based Approaches in Estimating Actual Evapotran-
spiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges. Energies 2022, 15, 1264.
[CrossRef]

Senay, G.B.; Leake, S.; Nagler, PL.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P. Estimating Basin Scale Evapotranspiration
(ET) by Water Balance and Remote Sensing Methods. Hydrol. Process. 2011, 25, 4037-4049. [CrossRef]

Liu, J.; Chen, ].M.; Cihlar, J]. Mapping Evapotranspiration Based on Remote Sensing: An Application to Canada’s Landmass.
Water Resour. Res. 2003, 39, 2002WR001680. [CrossRef]

Wright, ].L. New Evapotranspiration Crop Coefficients. J. Irrig. Drain. Div. 1982, 108, 57-74. [CrossRef]

Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205-234. [PubMed]

Chen, J.M,; Liu, J. Evolution of Evapotranspiration Models Using Thermal and Shortwave Remote Sensing Data. Remote Sens.
Environ. 2020, 237, 111594. [CrossRef]

Glenn, E.P,; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation Index-Based Crop Coefficients to Estimate Evapotranspiration
by Remote Sensing in Agricultural and Natural Ecosystems. Hydrol. Process. 2011, 25, 4050-4062. [CrossRef]

Hu, X,; Shi, L.; Lin, L.; Zhang, B.; Zha, Y. Optical-Based and Thermal-Based Surface Conductance and Actual Evapotranspiration
Estimation, an Evaluation Study in the North China Plain. Agric. For. Meteorol. 2018, 263, 449-464. [CrossRef]

Jarvis, P.G.; Monteith, J.L.; Weatherley, P.E. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance
Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 273, 593-610. [CrossRef]

Meng, C.L.; Li, Z.-L.; Zhan, X,; Shi, ].C.; Liu, C.Y. Land Surface Temperature Data Assimilation and Its Impact on Evapotranspira-
tion Estimates from the Common Land Model. Water Resour. Res. 2009, 45, 2008 WR006971. [CrossRef]

Xiong, Y.J.; Qiu, G.Y. Estimation of Evapotranspiration Using Remotely Sensed Land Surface Temperature and the Revised
Three-Temperature Model. Int. ]. Remote Sens. 2011, 32, 5853-5874. [CrossRef]

Jin, Y;; He, R.; Marino, G.; Whiting, M.; Kent, E.; Sanden, B.L.; Culumber, M.; Ferguson, L.; Little, C.; Grattan, S. Spatially Variable
Evapotranspiration over Salt Affected Pistachio Orchards Analyzed with Satellite Remote Sensing Estimates. Agric. For. Meteorol.
2018, 262, 178-191. [CrossRef]

Aboelsoud, H-M.; Habib, A.; Engel, B.; Hashem, A.A.; Abou El-Hassan, W.; Govind, A.; Elnashar, A.; Eid, M.; Kheir, A M. The
Combined Impact of Shallow Groundwater and Soil Salinity on Evapotranspiration Using Remote Sensing in an Agricultural
Alluvial Setting. J. Hydrol. Reg. Stud. 2023, 47,101372. [CrossRef]

Lai, Y.; Wu, D.; Zhang, M. Crystallization Deformation of a Saline Soil during Freezing and Thawing Processes. Appl. Therm. Eng.
2017, 120, 463-473. [CrossRef]

Ren, D.; Xu, X.; Engel, B.; Huang, G. Growth Responses of Crops and Natural Vegetation to Irrigation and Water Table Changes
in an Agro-Ecosystem of Hetao, Upper Yellow River Basin: Scenario Analysis on Maize, Sunflower, Watermelon and Tamarisk.
Agric. Water Manag. 2018, 199, 93-104. [CrossRef]

Gobin, A,; Sallah, A.-H.M.; Curnel, Y.; Delvoye, C.; Weiss, M.; Wellens, J.; Piccard, I.; Planchon, V.; Tychon, B.; Goffart, ].-P; et al.
Crop Phenology Modelling Using Proximal and Satellite Sensor Data. Remote Sens. 2023, 15, 2090. [CrossRef]


https://doi.org/10.1016/j.agwat.2014.07.031
https://doi.org/10.1061/(ASCE)0733-9437(1999)125:2(45)
https://doi.org/10.1029/2023WR034861
https://doi.org/10.1007/s00271-007-0088-6
https://doi.org/10.1029/1999GL006049
https://doi.org/10.1002/wat2.1168
https://doi.org/10.3390/en15041264
https://doi.org/10.1002/hyp.8379
https://doi.org/10.1029/2002WR001680
https://doi.org/10.1061/JRCEA4.0001372
https://www.ncbi.nlm.nih.gov/pubmed/5321565
https://doi.org/10.1016/j.rse.2019.111594
https://doi.org/10.1002/hyp.8392
https://doi.org/10.1016/j.agrformet.2018.09.015
https://doi.org/10.1098/rstb.1976.0035
https://doi.org/10.1029/2008WR006971
https://doi.org/10.1080/01431161.2010.507791
https://doi.org/10.1016/j.agrformet.2018.07.004
https://doi.org/10.1016/j.ejrh.2023.101372
https://doi.org/10.1016/j.applthermaleng.2017.04.011
https://doi.org/10.1016/j.agwat.2017.12.021
https://doi.org/10.3390/rs15082090

Land 2025, 14, 283 28 of 28

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

Durgun, Y.O.; Gobin, A.; Van De Kerchove, R.; Tychon, B. Crop Area Mapping Using 100-m Proba-V Time Series. Remote Sens.
2016, 8, 585. [CrossRef]

Qin, Z.H.; Li, W].; Xu, B.; Chen, Z.; Liu, ]. The Estimation of Land Surface Emissivity for Landsat TM6. Remote Sens. Land Resour.
2004, 3, 28-32.

Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data
and Its Application to the Israel-Egypt Border Region. Int. ]. Remote Sens. 2001, 22, 3719-3746. [CrossRef]

Su, Z. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85-100.
[CrossRef]

Tang, R.; Li, Z.-L.; Sun, X. Temporal Upscaling of Instantaneous Evapotranspiration: An Intercomparison of Four Methods Using
Eddy Covariance Measurements and MODIS Data. Remote Sens. Environ. 2013, 138, 102-118. [CrossRef]

Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the Bottom Boundary of the Root Zone in Silty Soils: Parametric Approaches
to Estimate Groundwater Contribution and Percolation. Agric. Water Manag. 2006, 84, 27—40. [CrossRef]

Peng, Z.; Guo, H.; Wu, J.; Huang, J. Contribution of Osmotic Potential on Bare Soil Evaporation Rate. Adv. Water Sci. 2013, 24,
235-242.

O’Neill, R.V,; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.;
Christensen, S.W.; et al. Indices of Landscape Pattern. Landsc. Ecol 1988, 1, 153-162. [CrossRef]

He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An Aggregation Index (Al) to Quantify Spatial Patterns of Landscapes. Landsc. Ecol. 2000,
15,591-601. [CrossRef]

Tibshirani, R. Regression Shrinkage and Selection via the Lasso. . R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267-288. [CrossRef]
Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing
Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30.

Adeyemo, T.; Kramer, I; Levy, G.J.; Mau, Y. Salinity and Sodicity Can Cause Hysteresis in Soil Hydraulic Conductivity. Geoderma
2022, 413, 115765. [CrossRef]

Glenn, E.P; Nagler, P.L.; Huete, A.R. Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing. Surv.
Geophys. 2010, 31, 531-555. [CrossRef]

Forman, R.T.T. Some General Principles of Landscape and Regional Ecology. Landsc. Ecol. 1995, 10, 133-142. [CrossRef]

Zhang, X.; Jiao, Z.; Zhao, C.; Qu, Y; Liu, Q.; Zhang, H.; Tong, Y.; Wang, C.; Li, S.; Guo, ]. Review of Land Surface Albedo: Variance
Characteristics, Climate Effect and Management Strategy. Remote Sens. 2022, 14, 1382. [CrossRef]

Hien, L.T.T.; Gobin, A; Lim, D.T.; Quan, D.T.; Hue, N.T.; Thang, N.N.; Binh, N.T.; Dung, V.T.K,; Linh, P.H. Soil Moisture Influence
on the FTIR Spectrum of Salt-Affected Soils. Remote Sens. 2022, 14, 2380. [CrossRef]

Mohamed, S.A.; Metwaly, M.M.; Metwalli, M.R.; AbdelRahman, M.A.; Badreldin, N. Integrating Active and Passive Remote
Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions. Remote Sens.
2023, 15, 1751. [CrossRef]

AbdelRahman, M.A.; Afifi, A.A.; D’Antonio, P.; Gabr, S.S.; Scopa, A. Detecting and Mapping Salt-Affected Soil with Arid
Integrated Indices in Feature Space Using Multi-Temporal Landsat Imagery. Remote Sens. 2022, 14, 2599. [CrossRef]

Tian, F; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity Stress Effects on Transpiration and Plant Growth under Different Salinity
Soil Levels Based on Thermal Infrared Remote (TIR) Technique. Geoderma 2020, 357, 113961. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/rs8070585
https://doi.org/10.1080/01431160010006971
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.1016/j.rse.2013.07.001
https://doi.org/10.1016/j.agwat.2006.01.018
https://doi.org/10.1007/BF00162741
https://doi.org/10.1023/A:1008102521322
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.geoderma.2022.115765
https://doi.org/10.1007/s10712-010-9102-2
https://doi.org/10.1007/BF00133027
https://doi.org/10.3390/rs14061382
https://doi.org/10.3390/rs14102380
https://doi.org/10.3390/rs15071751
https://doi.org/10.3390/rs14112599
https://doi.org/10.1016/j.geoderma.2019.113961

	Introduction 
	Methodology 
	Study Area 
	Data Processing 
	Vegetation Density 
	Surface Emissivity 
	Land Surface Temperature 

	Evapotranspiration Calculation 
	The Instantaneous Evapotranspiration Calculation 
	Daily and Monthly Evapotranspiration Calculation 
	Evapotranspiration Validation 

	Abandoned Saline Farmland Spatial Information 
	Factors Influencing Evapotranspiration 
	The Characteristic Index of Influencing Factors 
	Lasso Multivariate Regression Analysis 
	Feature Importance Analysis Based on Random Forest 
	Shapley Feature Importance Analysis Method 


	Results 
	Estimated Evapotranspiration Maps 
	Different Time Scale of Evapotranspiration Maps 
	Validation of Evapotranspiration Estimates 

	Factors Affecting Evapotranspiration in Abandoned Saline Farmland 
	Degree of Salinization 
	Salt-Tolerant Vegetation Coverage 
	Influence of the Groundwater Table Depth 
	The Area of Abandoned Saline Agricultural Land 
	Spatial Distribution 

	Importance of Features in Evapotranspiration in Abandoned Saline Farmland 

	Discussion 
	Conclusions 
	References

