
A Tree in a Tree: Measuring Biases of
Partial DNS Tree Exploration

Florian Steurer1,2[0009−0003−7767−7386], Anja Feldmann1[0000−0002−5530−699],
and Tobias Fiebig1[0000−0002−0163−5134]

1 Max Planck Institute for Informatics, Saarbruecken, Germany
{fsteurer,anja,tfiebig}@mpi-inf.mpg.de

2 Saarland University, Saarbruecken, Germany

Abstract. The Domain Name System (DNS) is a cornerstone of the In-
ternet. As such, it is often the subject or the means of network measure-
ment studies. Over the past decades, the Internet measurement commu-
nity gathered many lessons-learned and captured them in widely avail-
able measurement toolchains such as ZDNS and OpenINTEL as well as
many papers. However, for feasibility, these tools often restrict DNS tree
exploration, use caching, and other intricate methods for reducing query
load. This potentially hides many corner cases and unforeseen problems.
In this paper, we present a system capable of exploring the full DNS
tree. We gather 87 TB of DNS data covering 812M domains with over
85B queries over 40 days. Using this data, we replicate four earlier stud-
ies that used feasibility and time-optimized DNS datasets. Our results
demonstrate the need for care in selecting which limitations regarding
the perspective on DNS can be accepted for a given research question
and which may alter findings and conclusions.

1 Introduction

The Domain Name System (DNS) was introduced in the late 1980s to replace
the host file [35] for mapping names to numbers. Today, it has become one of
the cornerstones of the Internet. DNS is continuously evolving. It has seen a
multitude of additions, e.g., to enhance its security [5], or to facilitate additional
use-cases [37, 71, 69]. This resulted in almost 300 RFCs related to DNS [64],
making it a canonical example of a complex protocol. Not surprisingly, this
complexity facilitates misconfigurations and corner cases. Hereby, part of the
complexity arises from the fact that DNS is a hierarchical distributed database,
a tree, where different name servers (NSs) are responsible for different branches.

In the past, DNS has been involved in many network studies, either as subject
or as means, i.e., for studying other aspects of the Internet with help of the DNS.
Studies about DNS include those on authoritative DNS (e.g., [11, 55]), recursive
DNS (e.g., [38, 12, 31]), and those on DNS features (e.g., [13, 43]). Studies
leveraging DNS data include questions regarding cloud deployments [28], IPv6
scans [26, 8], or email [16, 48, 47]. Yet, DNS is a notoriously difficult protocol to
measure efficiently and without (accidentally) causing harm [25] due to its sheer
size, complexity, and abundance of corner cases.

l.root-servers.net. m.root-servers.net. g.root-servers.net. h.root-servers.net. k.root-servers.net.f.root-servers.net. b.root-servers.net. e.root-servers.net. j.root-servers.net. c.root-servers.net. d.root-servers.net.i.root-servers.net.

g.gtld-servers.net. f.gtld-servers.net.b.gtld-servers.net.h.gtld-servers.net.d.gtld-servers.net. j.gtld-servers.net.i.gtld-servers.net. m.gtld-servers.net. k.gtld-servers.net. l.gtld-servers.net.c.gtld-servers.net. e.gtld-servers.net.

org.

b2.org.afilias-nst.org. b0.org.afilias-nst.org. d0.org.afilias-nst.org. a2.org.afilias-nst.info.c0.org.afilias-nst.info. a0.org.afilias-nst.info.

info.

b0.info.afilias-nst.org.d0.info.afilias-nst.org. b2.info.afilias-nst.org. a0.info.afilias-nst.info. a2.info.afilias-nst.info.c0.info.afilias-nst.info.

b.iana-servers.net. c.iana-servers.net. ns.icann.org. a.icann-servers.net.b.icann-servers.net. c.icann-servers.net.

icann-servers.net. icann.org.

org.afilias-nst.org.

afilias-nst.org.

info.afilias-nst.org.org.afilias-nst.info.

afilias-nst.info.

info.afilias-nst.info.

b0.dig.afilias-nst.info.d0.dig.afilias-nst.info.c0.dig.afilias-nst.info. a0.dig.afilias-nst.info.

dig.afilias-nst.info.

root-servers.net. nstld.com.

av3.nstld.com. av1.nstld.com. av2.nstld.com. av4.nstld.com.

gtld-servers.net.

a.iana-servers.net.

iana-servers.net.

net. com.

a.root-servers.net.

.

example.com.

a.gtld-servers.net.

(a) Full DNS resolution graph for A example.com.

1. Query NS com. 2. Query NS example.com.

a.root-servers.net. a.gtld-servers.net.

3. Query NS net. 4. Query NS iana-servers.net.

a.iana-servers.net.

5. Query A example.com.

The rootserver IPs are known from the root hints file of the recursive resolver.

(b) Minimal set of queries for resolving A example.com.

Fig. 1: DNS tree for querying A example.com., including all zones (round) and
NSs (square) that may be involved in a resolution (Figure 1a). The minimal
set of queries, five, for the best case is shown in Figure 1b. It assumes that
glue for resolving example.com can be trusted. The corresponding zones and
authoritative servers of Figure 1a are highlighted in red. ZDNS would explore a
sub-tree close to this subset, while our system explores all possible paths (gray).

Past efforts have led to methodological insights and measurement toolchains
for conducting DNS studies. Among the lessons learned are that DNS replies may
depend on the probe’s vantage point [68] and that caching can reduce scan dura-
tion as well as measurement overhead/impact [41]. Hereby, ZDNS [41]–a tool for
performing active DNS queries—has made large-scale DNS measurements feasi-
ble. ZDNS leverages adaptive caching, external DNS-resolution services, and–by
default3–opportunistic traversal of the DNS tree, i.e., not all possible paths in the
DNS tree are evaluated (see also Section 3.4). OpenINTEL [68] uses Unbound for
DNS resolution, which will terminate name resolution when an answer is found
without exploring additional paths, i.e., also performs opportunistic traversal.
This is in line with OpenINTEL’s objective of creating a historical dataset by
daily querying as many records as possible.

To visualize how these optimizations inflict on the gathered data’s complete-
ness, Figure 1 shows the minimally necessary DNS queries to resolve the A record
for example.com as seen by optimized measurements in comparison to the full
tree that may be involved in DNS resolution for that name. While the optimiza-
tions of ZDNS and, to a degree, OpenINTEL reduce overhead and runtime, they
miss major parts of the DNS tree and may hide corner cases or inconsistencies,
potentially biasing results.

The biases induced by such partial tree exploration may be reasonable trade-
offs in comparison to an overall better runtime of measurements. Still, biases and
trade-offs have not been systematically explored. Thus, in this paper, we answer:
What is the impact of partial tree exploration on DNS measurements?

3 Even though an iterative and ‘all-nameservers’ mode is available, its implementation
is incomplete, see Section 3.4.

To capture the extent of the existing limitations, we start by discussing the
methodological impact of exploring subsets of the DNS tree. Next, we discuss
how to realize a DNS measurement system, YoDNS, that can potentially capture
the full DNS tree. Among the important differences is that YoDNS gathers re-
sponses from all authoritative NSs of a DNS zone and chases all emerging paths
even if they are inconsistent with prior responses. We use YoDNS to gather an
extensive dataset using over 812M input names from various public and non-
public sources, sending 85B queries over 40 days. Finally, we utilize the collected
data to assess the impact of partial DNS tree exploration on four earlier studies,
reproducing their results and quantifying biases induced by opportunistic DNS
traversal. Our results show that some research questions, e.g., inconsistency be-
tween NSs, are prone to biases of limited tree exploration, while others are not.
Contributions: All active DNS measurement studies need to accept limitations
in DNS tree exploration to remain feasible. A common limitation is opportunistic
traversal, where only a subset of possible DNS resolution paths is explored.
However, the impact of this choice has not been systematically assessed. We
address this crucial methodological gap with our contributions:

– We present and publish YoDNS, an open-source framework for exhaustive
DNS-tree exploration and measurements.

– We collect and share a large DNS dataset, containing full resolutions for
over 812M names, spanning over 85B queries and 87 TB of compressed DNS
data, enabling researchers to reproduce further studies based on our data.

– We evaluate the impact of limiting DNS tree exploration in four earlier
studies and derive recommendations to balance exploration vs. efficiency for
a given research question in order to not impact results, or–at least–to make
the impact quantifiable.

2 Reliably Measuring DNS: A Primer

In this section, we first revisit how DNS in general and DNS resolution specifi-
cally, work. Subsequently, we review techniques for accelerating DNS resolution
often used during DNS measurements and their impact on the results.

2.1 DNS Resolution Revisited

DNS was first introduced in RFC1032-RFC1035 [76, 51, 54, 53]. RFC8499 [36]
gives a contemporary overview of DNS terminology and developments since then.
DNS Abstraction and Terminology: DNS is a tree, where each node (‘label’)
is connected via dots as delimiters (‘.’) to the root. The root is an empty label
behind a single dot ‘.’, and a path in the DNS tree from a leaf to the root is a
‘Fully Qualified Domain Name’ (FQDN). ‘Zones’ are sub-trees, often operated by
a different authority than their parents. Such ‘delegations’ take place at vertices
referred to as ‘zone cuts’. Nodes in the DNS tree can have values (‘Resource
Records’, or ‘RR’) of a type (‘RRtype’) assigned to them, whereby multiple RRs
of the same type form an ‘RRset’.

DNS Implementation: Each zone, including the root, is hosted by at least one
(ideally multiple [22]) ‘name server’ (NS) providing authoritative answers for the
zone. These are ‘authoritative NSs’. To delegate a zone, a parent contains an NS

RRset for the child’s name, listing the FQDNs of authoritative NS for the child
zone. For authoritative NSs whose names are in or below the child, the parent
zones’ operator must add additional ‘glue records’, which explicitly list the NS’
IP address(es). The child zone should contain corresponding RRsets.
DNS Resolution: DNS queries resolve a FQDN to an RRset given an RRType.
To reply to a query, a recursive resolver needs to traverse the DNS tree to
find the authoritative NS for a name’s zone. A recursive resolver first checks
the FQDN with the root servers or the label closest to the root, if QNAME
minimization [10] is used. Since the root servers are typically not authoritative
for the requested name, they respond with a referral, i.e., the NS records plus
potential glue records of the NS authoritative below the next zone-cut in the
FQDN. Next, the resolver repeats this process with one of the new NSs until an
NS returns an authoritative answer instead of a referral.

2.2 DNS Measurement Trade-Offs

DNS measurements can be active or passive [68]. Passive measurements, e.g.,
rely on traces captured at authoritative NSs or DNS resolvers. Thus, they only
capture those parts of the DNS tree that the NS is responsible for or that the re-
solver queries to answer user queries. In contrast, active DNS measurements, the
focus of this paper, explore the DNS tree in a structured manner. Still, travers-
ing the full DNS tree without any optimizations is practically impossible due to
the size of the tree and abundance of parameters. Below, we summarize possible
optimizations. See also Table 2 for how related-work handles these limitations.
Limiting exploration depth: Here, the measurement considers only zones
higher up in the tree, e.g., by including only second level domains in the tar-
get list or stopping resolution at a certain depth. This may bias results towards
zones which are likely to receive more scrutiny from delegating authorities.
Limiting exploration width: By limiting the number of input zones, or not
chasing all out-of-zone records, one may bias the results towards specific TLDs,
DNS operators, or popular sites. Similarly, one may restrict the number of fol-
lowed paths, e.g., by considering only one resolution path (just like a resolver)
rather than all possible paths, potentially hiding inconsistencies.
Vantage point selection: DNS responses differ by vantage point, e.g., due to
load balancing [78] or anycast [1].
Caching: Using caches of previous DNS responses speeds up DNS lookups [29].
However, it can hide short-lived effects and inconsistencies between NSs. For ex-
ample, when records are cached based solely on the tuple (RRName, Type, Class),
as done by some resolvers, inconsistencies become invisible.
Using external recursive resolvers: Using professionally operated, well-pro-
visioned resolvers, e.g., Google or PCH, can speed up resolution but hides many
details, such as caching strategy, needed to analyze results. Moreover, anycasted
resolvers may respond from different nodes having different (cache) states.
Dynamic resources:DNS trees of arbitrary depth [26], e.g., via LUA records [65],

and responses that are unique per request need to be pruned carefully.
Transport protocol: DNS supports UDP/TCP and requires handling ICMP/
ICMPv6. Missing any of these may lead to biases in observed NS reachability or
loss of responses due to packet fragmentation [57].
Internet protocol: Not considering IPv6 reduces measurement overhead, but
may bias results with respect to IPv6-only and dual-stack resolvability.
Relying on RFC compliance: Presuming RFC compliance can lead to un-
explored parts of the DNS tree when encountering corner cases. For example,
CNAMEs should not be used in certain RRs (e.g. NS records [23]) or responses
should be consistent, regardless of whether a FQDN or minimized query name is
asked. However, Internet reality does not adhere to this. Thus, relying on RFCs
compliance may limit the ability to study the effect of such misconfigurations.

2.3 Impact of Challenges on Query Load

DNS resolution in practice, i.e., using the optimizations above, requires signif-
icantly fewer queries than a full exploration of the tree, see Figure 1. But how
many more queries are actually necessary? We can calculate a lower bound on
the number of queries for the full resolution of example.com as follows:
– For all zones, ask all authoritative NSs for the zones’ NS records.
– For all zones, ask all of its parents’ authoritative NSs for referrals to the zone.
– For all NS names, ask all NS authoritative for them for the A/ AAAA records.

For example, the zone icann-servers.net has four authoritative NSs. Thus,
we need to ask for NS icann-servers.net four times. We need to ask for a
referral to icann-servers.net at all 13 nameservers of the net-zone. Finally,
there are three NSs names in the zone, namely {a,b,c}.icann-servers.net.
Asking the four authoritative NSs for the three A records requires 12 queries.
Thus summing the queries for each zone from Figure 1, leaves us with 637 queries,
over 100 times more than the minimal resolution shown in Figure 1.

We see, that full tree exploration entails more than simply identifying the
answer to a specific query. However, certain measurements (IPv4 vs. IPv6, TCP
and UDP, etc.) effectively double the number of queries again, see Table 1.
Requesting DNSSEC or using small EDNS0 buffer sizes may cause truncated
responses, so to accurately capture UDP-only behavior, queries have to be sent
with/without DNSSEC requested, yet again doubling the number of queries.
Adding more RRtypes adds queries linear to the number of discovered names
and servers, similar to adding more vantage points.

This combinatorial explosion of queries inevitably forces measurements to
accept some trade-offs. However, these trade-offs need to be chosen carefully
and w.r.t. the research question. This work, for example, limits itself to using
QNAME minimization, relies on a single vantage point and uses TCP only as a
fallback mechanism. We discuss these limitations in detail in Section 3.

3 Related Work
Here, we discuss related work using a selection of publications representing the
state of the art. We cluster them into three categories: (i) Work performing

Exploration #VPs RR types Transp. #IPv4 Q. #IPv6 Q.
∑

Minimal 1 NS, A UDP 5 - 5
Full 1 NS, A UDP 637 - 637
Full 1 NS, AAAA UDP - 637 637
Full 1 NS, A, AAAA UDP 980 980 1,960
Full 1 NS, A, AAAA UDP+TCP 1,960 1,960 3,920
Full 10 NS, A, AAAA UDP+TCP 19,600 19,600 39,200

Table 1: Minimal queries needed for resolving example.com for selected mea-
surement parameters, when only retrieving NS, A, AAAA records for all discovered
names and involved zones, all using QNAME minimization. It is clear, that
a truly exhaustive exploration of the parameter space is infeasible for a large
number of domains. Note that the resolution paths for example.com are full
dual-stack, i.e., IPv4 and IPv6 resolution require the same number of queries.

measurements of the DNS, (ii) Work performing measurements with the DNS,
i.e., work where DNS is the means rather than the main subject being studied,
(iii) Work describing DNS measurement methods and frameworks. Passive DNS
measurements, e.g., work using traces collected at resolvers or NSs, are out of
scope. We map challenges from Section 2 to related work in Table 2.

3.1 Measurements of DNS

With DNS being over 30 years old, there has been an abundance of DNS-related
work. Initially, this work was industry-focused, e.g., Thompson et al. [81] noted
the volume of DNS traffic on the Internet in a broader passive study. Darst &
Ramanathan [17] discussed active DNS measurements to assess network perfor-
mance in 1999, Huitema & Weerahandi [38] discussed the impact of DNS on
active measurements in 2000. Last, in 2002 Liston et al. [49] conducted one of
the first studies focusing on measuring DNS itself. Moreover, a study using data
from 2003 by Pappas et al. [63] connects earlier work on DNS measurements to
current times, measuring DNS misconfigurations and their impact on the DNS.
Since 2002, there has been an explosion in DNS measurement work.

Focussing on transitive DNS dependencies, Ramasubramanian & Sirer [66]
show that the number of NSs that may be involved in DNS resolution can
be surprisingly large (>400). Further formalizing the dependency graph model,
Deccio et al. [19] find that transitive dependencies can lead to additional lookups
and false redundancy.

Other notable examples of DNS measurements include Nosyk et al. [62], who
used RFC8914 [44] extended DNS errors for DNS measurements, Streibelt et
al. [79], who measured IPv6 support in the DNS, and Fukuda et al. [30], who
characterized DNS query response sizes. Similarly, Yajima et al. [89] measured
the adoption of DNS security measures.

Akiwate et al. [3] measured ‘Lame Delegations’, taking a more general, yet
IPv4-centric, approach to DNS. Furthermore, work by Rijswijk-Deij et al. [67]
from 2014 assessed the potential of DNSSEC for DDoS attacks.

3.2 Measurements Using DNS

DNS is not a purpose unto itself but enables other services and applications.
Hence, in addition to measurements of DNS, researchers regularly leverage active
DNS measurements to infer information about other protocols and services.

For example, Gojmerac et al. [33] used active DNS measurements to assess
the deployment state of email security mechanics. This research track is continu-
ing, with recent work investigating specific–often new–email security mechanics
like DMARC [6], SPF [16], and TLSA/DANE [47, 48].

Zirngibl et al. [91] used active measurements to study domain parking, finding
that artifacts produced by it are often overlooked in measurement studies. Other
use-cases for active DNS measurements are identifying IPv6 hosts [26, 9, 27], re-
assessing and probing targets [8] or asset discovery [85, 28].

3.3 DNS Measurement Frameworks

DNS measurement frameworks only became prevalent in the recent past. Early
DNS measurements often used commodity utilities such as dig [50] which was
possible as they were often only used for scanning top lists, e.g., the now dis-
continued Alexa list. However, with larger and more abundant domain sources,
such as ICANN CZDS [39] (≈220M names) and Certificate Transparency (CT)
logs (≈589M in our dataset), DNS measurement frameworks became necessary.

The first example of an elaborate DNS measurement framework is Open-
INTEL [68], which has performed daily measurements of the DNS since 2015,
claiming coverage of around 60% of the DNS. Due to the availability of the
gathered historical data, OpenINTEL is also frequently used in other studies
(e.g. [72, 73, 75, 84, 83, 82, 91]). Subsequently, in 2023, ZDNS was published as
open-source software, providing a framework that allows researchers to perform
their own active DNS measurement studies [41]. Both frameworks focus on re-
solvability, i.e., the red part of Figure 1a, rather than extensive exploration of
the DNS tree. Furthermore, MassDNS [7], a high performance stub resolver, can
query resolvers at scale. However, it does not support internal recursion, and
thus, cannot easily be used for studies that rely on the resolution path. Both
Streibelt et al. [79] and Naab et al. [59] report to have implemented their own
frameworks and utilized them to measure 476k and 1M domains (note that our
target list contains 812M). However, the tool of Streibelt et al. lacks scalability
for Internet-scale studies (running 4 days for 476k zones [79]) and the tool of
Naab et al. is not fully feature-ready, e.g. is missing features related to CNAME

handling. As of Oct. 2024, neither tool is publicly available.
Finally, there is DNSViz [18], which was created for troubleshooting (DNSSEC-

related) misconfigurations and is a well-known resource for DNS operators.
DNSViz is able to query records from all NSs of a zone (and its parents) and, nec-
essarily, resolves all direct dependencies of a zone. Contrary to YoDNS, transitive
dependencies are learned through normal resolution. Given that DNSViz is not
primarily designed for large scale measurement, features such as rate-limiting
or a storage-efficient output format are also not natively integrated in the tool.

However, it does provide similar (though not the same) functionality to YoDNS,
albeit for a different use-case.

Example Packet Traces: To further highlight the practical differences
between YoDNS, OpenINTEL, DNSViz, ZDNS v1.0.0, and ZDNS v1.1.0,
we included packet captures for a resolution of example.com with these
tools in our published dataset [77].

When it comes to existing DNS measurement frameworks, the natural choice
for a study like ours would have been OpenINTEL. However, OpenINTEL’s focus
is the efficient resolution of as many different names and RRsets as possible
during a day to collect a historical dataset. For that, it leverages commodity
Unbound resolvers. It does not attempt to find all possible resolution paths for
a single name or RRset, making it not suitable for our objective.

With Streibelt et al. [79] and Naab et al. [59] not yet having published their
frameworks, this only leaves ZDNS as a viable option. However, when evaluating
ZDNS, we noted that the implementation of iterative resolution across all NSs
is incomplete4 and uses cached responses from one NS to synthesize responses
for other NSs of the same zone. Furthermore, ZDNS does not use QNAME
minimization, preventing the evaluation of zone-cuts. When evaluating ZDNS
against common misconfigurations like parent-child NS mismatches5, and RFC
violations like the use of CNAMEs in NS records, it did not provide reliable results.
Finally, ZDNS does not track ICMP responses and lacks methods for effective
rate-limiting when running in iterative mode due to its parallelization approach
which relies on a large number of parallel sockets instead of asynchronous I/O.

As addressing these challenges in ZDNS would require significant architec-
tural changes, we decided to use a clean-slate approach, see Section 4.

3.4 Reflections on Related Work

Earlier studies made methodological choices around the challenges we summarize
in Section 2, see Table 2. Oftentimes, this includes relying on opportunistic DNS
resolution, i.e. following a single resolution path instead of exploring all possible
paths. In this section, we argue why this might influence results and how an open
measurement framework for full DNS tree traversal can be helpful. However, we
do not argue that all these studies should have used full tree traversal, rather
that a systematic quantification of these biases is necessary.

Studies using OpenINTEL rely on opportunistic resolution. While this al-
lows to take a longitudinal perspective, problematic resolution paths and NS
inconsistencies may remain undiscovered and can bias results.

For example, van der Toorn et al. [84] identified private keys in TXT records
as a security concern. However, exposing a private key has security implications,
regardless of whether it was exposed via all or only a single authoritative NS. Yet,

4 https://github.com/zmap/zdns/issues/362
5 https://github.com/zmap/zdns/issues/352

20
09

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

P
ap
pa
s
et

al
.
[6
3]

R
ij
sw
ij
k-
D
ei
j
et

al
.
[6
7]

G
oj
m
er
ac

et
al
.
[3
3]

O
p
en
In
te
l
&
re
l.
[6
8]

a

F
ie
bi
g
et

al
.
[2
7]

Sc
he
it
le
et

al
.
[7
0]

b

M
ou
ra

et
al
.
[5
6]

A
ki
w
at
e
et

al
.
[3
]

Y
aj
im
a
et

al
.
[8
9]

Fu
ku
da

et
al
.
[3
0]

Z
ir
ng
ib
l
et

al
.
[9
1]

b

Iz
hi
ke
vi
ch

et
al
.
[4
1]

St
re
ib
el
t
et

al
.
[7
9]

N
aa
b
et

al
.
[5
9]

A
sh
iq

et
al
.
[6
]

N
os
yk

et
al
.
[6
2]

d

Z
ha
ng

et
al
.
[9
0]

T
hi
s
P
ap
er

Full Tree Depth

Below SLD ∼ - ∼ - ∼
No Pruning ? - ? ? ? ? ? ? ? ? ? ? ? ?

Full Tree Width

All NS ? ∼ ∼ ? -
Targets ∼ ∼c ∼ ∼

Res. Strategy

Contr. Recursion ? ? - ? ? ? -
QMIN - ? ? ? ? ? ? ? ? ? -
Traditional ? ? ? ? ? ? ? ? ? -

Multi-Vantage Pts. ? ? ∼ ? ? ? ?
No Over-Caching ? ? ? ? ? ? ? -
Parallelization ? ∼ ? ? ? ? ? ? ?
Enum. Dynamic R. ? - ? ? ? ? ? ? ? ? ? ? ? - ?
CNAME Misconf. ? ∼ ? ? ? ? ? ? ? ? ? -
TCP/ICMP ? ? ∼ ? ? ? ? ? ? ∼ ∼ ? ? ? ∼
IPv6 ? ? ? e ? ?

Legend: : Addressed a Used in various studies, e.g.: [72, 73, 75, 84, 83, 82, 91]

∼: Part. addr. b Also uses OpenIntel data.

: Not addr. c Claims ≈60% coverage, input is zonefiles/toplists/rDNS.

-: Not rel. d Resolver study: some fields are not applicable.

?: No inform. e IPv6-support added after the paper was presented.

Table 2: Overview of related active DNS studies

the latter is easily missed by opportunistic traversal. Similar considerations apply
to issues such as very large response sizes that allow for DDoS amplification [75]
or stale glue records that might redirect clients to malicious IP addresses [72].

For a study of delegation inconsistency by Sommese et al. [73] using Open-
INTEL, we explore the effects of such partial tree exploration in Section 6. We
find that inconsistencies can amplify, especially for domains below second level.

A study from Akiwate et al. [3], investigating unresponsive NSs, limits prob-
ing to five authoritative NSs per domain, thus providing a lower bound on the
actual unresponsiveness. Furthermore, they do not consider IPv6.

Studies that focus on public resolvers, such as that by Nosyk et al. [62], ex-
ploring extended DNS error codes [44] in resolver responses, might have used an
exhaustive measurement framework to obtain ground-truth for certain miscon-
figurations and to verify results obtained from public resolvers even further.

In a recent study, Zhang et al. [90] measure the dependencies involved in
DNS resolution using ZDNS [41], focusing on the implications for security and
robustness, yet, they limit tree exploration by focussing on IPv4 and UDP. We
discuss some of their findings in detail in Section 6.

Overall, we note that many prior studies are susceptible to biases introduced
from partial tree exploration and NS inconsistencies. A flexible DNS measure-
ment framework for full tree exploration would have allowed for better quantifi-
cation of measurement errors, e.g., through supplemental measurements.

2. Create
Resolver

1. ReadTarget
List

Job
JobResolution

StrategyJob
6. Push

Output
(binary/

json)

Request
Worker

Retry
Strategy

DNS
Cache

Infra-
Cache

Client
3. Enqueue

5. Dequeue

Zone
Model

7. Update
8. Result

9. Serialize

TCP
Pool

UDP
Pool

4. Enqueue

Writer

Fig. 2: YoDNS architecture.

4 YoDNS Design

Here, we present the architecture of YoDNS. It allows for more extensive explo-
ration of the DNS tree than previous tools, and therefore, to better quantify
effects induced by partial tree exploration.

YoDNS is configurable regarding DNS exploration depth and width, caching
strategy, and rate limits. It remains robust to RFC incompliance and miscon-
figurations – following an ‘accept liberal, send conservative’ approach – and en-
suring that all failures are recorded. Furthermore, our system supports standard
quality-of-life features including monitoring integration and restart capabilities.

4.1 Architecture

To enable scale-out, YoDNS consists of multiple independent components, i.e., we
decided against a monolithic architecture. See Figure 2 for an overview.

Overview We implement YoDNS in Go. Go’s concurrency model maps indepen-
dent units of work to separate virtual threads called Go-routines and commu-
nication is handled by passing messages via channels, allowing to easily scale
components horizontally with more workers.

To execute a measurement, a target list with domain names to be scanned
and a configuration specifying how to scan are supplied to the system. The
target list is processed by the resolver which creates several independent,
parallel resolution jobs based on the specification.

A resolution job entails resolving one or multiple names sharing a path
towards the root. Jobs use asynchronous I/O to handle DNS requests and mit-
igate wait times from, e.g., transport delays. Jobs are parameterized with a
resolution strategy, defaulting to QNAME minimization [10].

Queries are processed by the RequestWorker, which is responsible for cache-
lookup, enqueueing wire queries, and retrying failed queries. Responses are stored
in the infrastructure cache. Additionally, an ICMP worker (not shown) updates
the cache when receiving ICMP unreachable messages.

Upon receiving DNS answers, the resolution job uses callbacks to the se-
lected resolution strategy. During processing of the answer, the resolution
strategy updates the domain model and enqueues new requests as necessary.
The domain model also provides callback capabilities enabling us to ‘go back in
time’ and enqueue more requests, e.g. when new NSs/IPs are discovered.

Queries are forwarded to the DNS client, which is based on Miekg DNS [32]
but offers additional features including asynchronous I/O, rate limiting, UDP
port reuse, and TCP connection reuse.

Termination is ensured by using a been-there-map to prevent duplicate
queries from being asked (per NS address). Whenever a resolution job finishes,
the results are written to offset-encoded protobuf messages and compressed. In
addition, YoDNS provides JSON output for debugging purposes.

Extensibility and Versatility The configuration is used to adjust YoDNS’s
base properties, including which queries to ask, rate limits, backoff-strategy and
various other settings. Changes to the resolution strategy, e.g., not minimizing
QNAMEs or not iterating over all NSs, are possible through a plugin interface.
Modules allow intercepting the program flow whenever NSs, IPs, or zones are
modified or responses are received. Data adapters can adjust data persistence,
e.g., to use a database instead of files. This allows researchers to adapt YoDNS to
their demands without having to reimplement a full DNS resolver.

Caching and Ordering The order of the target list greatly impacts per-
formance and cacheability. If domain names which share a common suffix are
scanned in temporal proximity on the same machine, more queries can be an-
swered from the local cache. However, when too many related names are grouped
together, this creates activity hotspots, putting strain on authoritative NSs.

To strike a balance between cacheability and randomization, we first group
our input targets by their first non-public suffix, as determined using Mozillas
Public Suffix list [58]. For our input (see Section 6), 99.71% of these groups
have 20 or less domains, whereas the remaining 0.29% contain 27.78% of all
domains–potentially causing activity hotspots for shared nameservers. Thus, we
order domains in these groups by number of common labels, split them into
subgroups of 20 and distribute them randomly within the target list. In test
runs, this strategy resulted in a 280% speedup and reduced the actual queries
by 50% compared to a randomized target list.

Given this pre-processing, YoDNS can use standard DNS caching, i.e., limiting
the cache time to the TTL set by the authoritative servers, while being able to
scale-out the measurements to multiple machines with dedicated caches.

To limit memory used by the cache, YoDNS supports a least-recently-used evic-
tion policy. Lastly, while QNAME minimization may require more queries [88],
it boosts cacheability, as more queries are common between FQDNs.

Performance To fully take advantage of parallelism we cannot afford to halt
resolutions while waiting for a response, especially, given the per-IP rate lim-
its, see Section 4.1. Instead, YoDNS advances resolution as far as possible and
handles delayed responses and new resolution paths asynchronously. We use
asynchronous UDP port reuse so each socket can have multiple outstanding
queries, limiting each socket to 216 active queries per remote IP (size of the ID

field). However, to account for misconfigured servers responding from a different
IP than the one queried, YoDNS does not reuse ID field values for outstanding
queries for a cool-down period of 5 seconds. Under the rate limits of our mea-
surement, our scans need less than 100 UDP ports per machine. YoDNS also pools
TCP connections, supporting connection-reuse [20], and keep-alive [10], increas-
ing performance and reducing the number of connections to remote servers [20].

Restart-Capabilities We combine target list state-keeping and the use of
atomic groups to allow for graceful restarts. Even facing a sudden power loss,
YoDNS can restart in-flight groups without having to re-resolve completed groups.

Rate Limiting While ethical measurements entail questions unique to each in-
dividual study, it is imperative that a general instrument supports measurement
best practices necessary for ethical measurements, e.g., rate limiting of requests,
opt-out [42], as well as curbing bandwidth requirements [46]. To realize rate lim-
iting, YoDNS implements both, a query-per-second and a queries-in-flight limit
per DNS server IP per measurement instance.

Both are needed. The first one limits how many queries have to be handled by
well-provisioned servers. The latter limits how many queries have to be handled
by low-resource or busy servers. Using only an in-flight limit may impose an
undue burden on well-provisioned servers. For example, servers able to handle
a single query in less than 10ms would receive up to 5,000 queries per second
despite using a modest queries-in-flight limit of 50. Still, the in-flight limit avoids
overloading slow servers that cannot keep up with the query-per-second rate.

In addition, YoDNS uses a time-slotted N -strike rule. If it receives no reply
N times in a row the server is marked unreachable for 5 minutes. The same
applies upon receiving an ICMP(v6) unreachable message. For opt-out, YoDNS
implements a block list for IPs, NSs (by name), or queries for specific names.

RFC-compliant but resilient to incompliance To account for remote servers
deviating from DNS best practices, YoDNS is resilient to various non-standard be-
haviors. Specifically, it gracefully re-attempts resolution when the remote closes
TCP connections when pipelining is attempted. Similarly, YoDNS accepts CNAMEs
at apex and NS records pointing at CNAMEs interpreting them based on the likely,
yet non-standard, intention, as well as multiple CNAMEs at the same name. Fi-
nally, it allows for out-of-zone glue and responses with invalid or incomplete flags,
e.g., lacking the AA bit. Moreover, YoDNS always records such incompliance.

Monitoring For monitoring, YoDNS can be instrumented with a Prometheus [80]
metrics endpoint. This allows for easy integration with off-the-shelf visualization
and alerting solutions such as Grafana [34]. Current metrics include resolved
domains per second, number of TCP connections, query response codes, rate
limiting statistics, cache size, queries in-flight, RTTs, memory, and CPU usage.

5 Data Collection & Dataset

Here, we discuss the dataset we collected using YoDNS. For applicable ethical
considerations, please see Appendix A.

5.1 Domain Name Input Datasets

As active DNS measurements need a list of target domains, we utilize the su-
perset of all lists commonly used in the literature for YoDNS, Table 3. The corre-
sponding lists have been retrieved on 5th December 2023. (1) ct: Names from
unexpired certificates from Certificate Transparency logs: Argon, Xenon, Oak,
Sectico Sabre, CloudFlare Nimbus, DigiCert Nessie, DigiCert Yeti, and TrustA-
sia. (2) zf: Zone files from ICANN’s Centralized Zone Data Service (CZDS) [39]
and available TLDs (.se, .nu, .ee, .ch, and .li). (3) opendata: Names from the
open-data efforts of AFNIC [2] and SK-NIC [60]. (4) tranco [45], majestic [52],
radar [15], umbrella [14]: Names from the corresponding domain top-list.

In total, we find almost 813M different names, of which 319M names are
second level domains (SLD) and 494M are below. Of the 319M SLDs, 280M
resolve in our scan6, indicating a coverage of ∼78% of an estimated 360M total
registrations for 2023 [21].

589M names are unique to CT logs, including 104M AWS-related domains
and domains from many ccTLDs [74] not available via ICANN CZDS.

From zone files we gather another 217M (113M unique) names, including 23K
names below the second level from the .name TLD (such as john.doe.name).
The open data efforts contribute roughly 4.6M domains (2.5M unique).

By including names from the popular top list (Radar [15], Umbrella [14],
Majestic [52], Tranco [45]) we add more than 4M domains. Yet, only the Cisco
Umbrella list adds a notable set of new names. Among the top-level domains
com with ≈56% is by far the largest contributor. It is followed by net (41M),
org (23M), de (18M), io (13M), uk (12M) and ru (10M). Finally, we see that
most names under a TLD are obtained through a single source only, for example,
377M out of 455M domains in .com are unique to a source.

5.2 YoDNS Configuration

Even though technically engineering-focused, documenting the exact configu-
ration and design parameters for YoDNS is essential for reproducibility, and to
avoid the presence of implicit limitations. Hence, we document our exact settings
during data collection and applicable considerations here.
DNS tree exploration strategy: YoDNS is configured to query all encountered
NSs, i.e., those listed in a parent zone as well as those in a zone apex (root level
of that domain) and to follow CNAMEs up to a depth of 64. It uses all discov-
ered IPv4 and IPv6 addresses (encountered either as Glue or as authoritative
response). This would cause significant load on the NSs for root and top-level

6 Please note that these 319M SLDs include a full year of CT logs, i.e., also a high
number of SLDs that have been unregistered in the meantime.

#Domains #Unique to source #Below SLD

ct 696,487,135 589,186,623 492,898,606
zf 217,438,044 112,862,815 23,341
opendata 4,626,781 2,489,116 72
tranco 1,000,000 18,203 0
majestic 1,000,000 45,760 921
radar 1,000,488 18,169 345B

y
S
o
u
r
c
e

umbrella 1,000,000 602,276 790,167

SumbySource 922,552,448 705,222,962 493,509,151

com 454,938,301 377,277,850 276,016,574
net 41,284,999 36,081,396 26,418,624
org 22,798,581 17,671,810 11,033,936
de 17,569,119 17,522,361 10,866,642
io 12,770,554 12,750,067 11,456,784
uk 11,503,887 11,468,806 7,062,585
ru 9,767,399 9,694,778 7,323,877

B
y

T
L
D

rest 242,113,140 222,755,894 143,330,129

SumbyTLD 812,745,980 705,222,962 493,509,151

Table 3: Target list composition. #Domains for SumbySource includes duplicates.

zones, e.g., com with its 13 authoritative NSs would receive almost 12B queries
for the second-level domains of our input set. Thus, similar to Naab et al. [59],
YoDNS only queries one of the authoritative NSs (selected at random) for root,
root-servers.net, com, net, and org. Hereby, it includes the IPv4 as well as the
IPv6 addresses of the chosen NSs. We assess the impact of this choice on the
completeness of our results in Section 6.5.
Queried Records: YoDNS uses QNAME minimization by default and, thus, is-
sues queries for all full and partial names of the target list as well as dependencies
encountered during resolution. For names from the target list, YoDNS queries for
A, AAAA, and TXT records of all of its private suffix parents as well as www. of the
first private parent. At zone cuts, YoDNS queries for DS, DNSKEY, CDS, CDNSKEY,
CAA, TXT, MX, SOA, plus the TXT records for the name dmarc. in that zone. Also,
every NS is asked for version.bind.

If the referral is bogus, i.e. the referred-to-zone is not the queried name or a
parent thereof, we ask for the SOA, NS, A, AAAA, TXT, SOA, DNSKEY, DS, MX of the
bogus name, but do not chase this path further. If a parent NS does not serve
required glue, YoDNS asks it for the A and AAAA of the child NS directly.
Query Parameters: YoDNS announces a EDNS0 buffer size of 1232 and requests
DNSSEC records (DO=1) in initial queries, but disables EDNS0 if the server
responds with FormErr (RCode=1) or truncation (TC=1) even though TCP was
used. Queries are retried up to 6 times with increasing back-offs and TCP being
used at least once. The DNSSEC chain is not evaluated during the scan, but can
be reconstructed from the results.

5.3 Measurement Platform

We ran the data collection from 4 virtual machines within a dedicated IPv4/IPv6
network segment. Each machine has 16 cores, 128 GB of RAM, and a 10 GBit/s
network connection. Memory use averaged around 30GB per machine. CPU
use averaged 13 fully utilized cores. Bandwidth utilization averaged around 15
MBit/s outbound (60MBit/s inbound), following our rate limits, see Section 4.1.

5.4 Scanning and Dataset

The data collection lasted for 40 days from 7th Dec 2023 09:13 UTC to 16th
Jan 2024 11:40 2023. During the measurements, multiple events briefly impacted
network connectivity. First, from 8th Jan 2024 15:30 UTC to 16:05 UTC and
from 9th Jan 2024 17:50 UTC to 18:05 UTC one of the upstreams encountered
connectivity problems due to anomalies in their peering relationships. Next, from
11th Jan 2024 18:10 UTC to 21:55 UTC one of the upstreams was impacted
by a denial-of-service attack, which reduced throughput and caused timeouts.
Finally, from 15th Jan 2024 00:06 UTC to 00:20 UTC and from 15th Jan 2024
03:00 UTC to 07:00 UTC, another one of the upstreams encountered a denial-
of-service attack. All in-flight domains were remeasured after these events.

Our final dataset consists of 85B individual queries collected during these 40
days. Its compressed size on-disk is 87TB and spans over 812M input names.

5.5 Notable Events

During dataset collection, we encountered multiple domains with unexpected
behavior which may have impacted YoDNS if we had sized it smaller. The first
group of domains have an unusual parent-child inconsistency. While the parent
lists four authoritative NSs, the zone apex contains 300 authoritative NSs with
glue for IPv4 and IPv6. The latter implies sending queries to these 600 addresses
(for 300 names and 5 record types). This leads to notable spikes in memory usage.
Just the raw message bytes already need 18GB of memory. Another domain
created an infinite, non-repeating chain of zone delegations. Here, YoDNS chases
this sub-tree up to the maximum allowed length of 255 labels or until a 3M query
limit per target list domain is reached. Finally, 3,384 domains in the Tranco top
million list (3 in the top 10K) are linked to the socks5systemz malware. While
this did not impact the measurement itself, we were contacted by the National
CSIRT regarding a possible infection of the vantage point.

6 Evaluation

In this section, we evaluate the impact of limiting DNS tree exploration in various
ways by revisiting four prior studies using our dataset. As the raw datasets from
prior work are not available, we focus on comparing the published results and
inferred metrics. The four studies we selected for our comparison are:
– Delegation Inconsistency (OpenINTEL) by Sommese et al. [73], as they

only query a single NS per zone, thus limiting the explored DNS tree width.
– A-Record Inconsistency (ZDNS) by Izhikevich et al. [41], as the study

identifies significant differences to prior work and requires querying all NSs.
– Dependency Complexity (ZDNS) by Zhang et al. [90], as the study de-

pends on full dependency resolution but limits exploration to IPv4 and UDP.
– DNS IPv6 Resolvability by Streibelt et al. [79], as they run comparable

active measurements, but limit their (active) tree exploration to 1M domains.
Most of their analysis is based on a passive approach which does not provide
full visibility into the DNS tree.

6.1 Delegation Inconsistency

Study Description: To delegate a zone, two conditions must be met: (i) the
parent zone must serve NS records for the child, and, (ii) the child must author-
itatively serve the same NS records from the zone apex. A delegation inconsis-
tency is, when different record sets are served from zone apex and parent NSs.
This may result in unresponsiveness, longer resolution times or security risks [3].

Sommese et al. [73] study the prevalence of delegation inconsistencies below
three large TLDs, finding up to 8.2% of inconsistent delegations below net.

The study acknowledges that inconsistencies in authoritative NSs can impact
the observed delegation inconsistency when only a single NS is queried. Moreover,
inconsistencies between parent NSs can affect results, too.

Original Dataset: The original study uses OpenINTEL [68]. Since OpenINTEL
only queries a single authoritative NS for the parent and the child zone, it is
susceptible to biases induced by partial tree exploration. Thus, the study offers
a lower bound on the actual prevalence of delegation inconsistency.

Reproduction Setup: We reproduce the original study with our dataset, recall
Section 5, which considers all possible resolution paths. Furthermore, our dataset
covers roughly 3 times more domains than used in the original study, and features
domains below the second level. Note, that our data is from late 2023/early 2024,
while the original data is from 2020.

Result Comparison: Table 4 summarizes the results. To quantify biases that
may occur due to partial tree exploration, we simulate three perspectives using
our comprehensive data: A ‘best case’, where we always select the consistent
resolution path (if such a path exists), a ‘worst case’ where we always select the
path with inconsistency, and a ‘randomized’ one, simulating the behavior of a
normal DNS resolver—similar to the OpenINTEL approach.

Like Sommese et al., we categorize domains as unresponsive, if no authori-
tative answer can be obtained from the nameservers of the delegated zone. We
classify retrieved NS sets as either consistent (P=C) or inconsistent (P ̸=C).
Here, P denotes the set of NS records served from a NS of the parent zone and C
denotes the NS records served from a child NS. Assessing the set intersections of
‘P ̸=C’ we find the majority of inconsistent NS sets to be disjoint, with around
1.61% of all zones having an NS set at the child that is a superset of the one
from the parent. 0.73% have a parent set that is a superset of the child’s NS set.
Our results roughly match those of Sommese et al. for .com, .org, and .net. As
expected, the random strategy is between best- and worst-case.

Looking beyond .com, .org, and .net, we find inconsistencies between two
NSs of the same level (serving the parent or the child) differ considerably based
on the type of zone investigated. For zones below second level, we find far fewer
inconsistencies between parent and child 2.47%, likely because parent and child
are often operated by the same organization. However, the inconsistency among
children and parents is larger (5.99% for C−C and 7.67% for P−P). Due to this,
a single delegation path may see up to 9 times fewer inconsistent NS sets than
our approach (0.28% in the best-case vs 2.47% in the worst-case). Similarly, we

∑
Unr

es
p.

P
=

C

P
̸= C

Disj
oi
nt

P
⊃ C

P
⊂ C

Res
t

C-C
in
co

n

P-P
in
co

n

Best 10.38 83.67 5.95 3.72 0.41 1.60 0.22
Wst. 10.43 80.44 9.14 6.44 0.69 1.72 0.28156M
Rnd. 9.35 82.61 8.04 5.52 0.58 1.69 0.25

1.04 -

.c
o
m

142M [73] 14.0 78.0 8.0 4.64 0.48 2.47 0.41 - -

Best 8.97 85.23 5.80 3.50 0.38 1.63 0.29
Wst. 9.70 83.42 6.88 4.16 0.59 1.74 0.3911M
Rnd. 8.96 84.61 6.43 3.89 0.50 1.70 0.34

0.30 -

.o
r
g

10M [73] 9.5 82.9 7.6 4.20 0.64 2.37 0.39 -a -

Best 11.84 82.46 5.52 3.18 0.38 1.73 0.22
Wst. 11.93 80.09 7.97 5.10 0.68 1.89 0.3013M
Rnd. 11.09 81.79 7.11 4.40 0.60 1.84 0.27

0.74 -

.n
e
t

13M [73] 12.6 79.2 8.2 4.18 0.75 2.82 0.45 - -

Best 16.76 76.17 7.06 3.38 0.13 3.54 0.01
Wst. 15.89 70.74 13.37 9.27 0.35 3.66 0.09

.t
o
p

3M
Rnd. 13.95 74.75 11.27 7.32 0.30 3.63 0.05

0.35 0.55

Best 2.03 97.68 0.28 0.18 0.01 0.09 0.00
Wst. 10.23 87.29 2.47 1.84 0.28 0.21 0.15

>
S
L
D

37M
Rnd. 6.17 92.58 1.24 0.84 0.16 0.16 0.09

5.99b 7.67

Best 8.14 86.75 5.11 3.05 0.38 1.49 0.18
Wst. 9.72 82.76 7.52 4.91 0.73 1.61 0.27A

ll 316M
Rnd. 8.13 85.24 6.63 4.23 0.60 1.57 0.23

1.70 0.96

a Though not directly C-C inconsistency, [73] report ∼2% of P-C inconsistent
cases in .org, also have C-C inconsistency on a sample of 10k domains.
b While a higher C-C than P-C inconsistency may seem odd, it is an artifact
of DNS and only visible when doing a full tree traversal, see Appendix B.

Table 4: Delegation Inconsistency. C denotes the set of all NS records served from
the zone apex, whereas P is the NS records as served by the zones’ parents.

find more inconsistencies for some TLDs, e.g., .top shows a P−C inconsistency
of 13.37%, of which 52% are due to a recurring combination of two DNS hosters.
Conclusion: We can reproduce the results of Sommese et al., especially given
their goal of providing a lower bound for the number of inconsistent delegations.

However, due to our extensive exploration of the DNS tree and larger input
set, we find zones below second level and TLDs exhibiting different behaviors.
Especially below second level, C−C and P−P inconsistencies, which are not cap-
tured by OpenINTEL, have comparable impact to P−C inconsistencies. Hence,
we argue that measurements of domains below second level, should consider full
tree exploration to avoid biases induced by NS inconsistencies.

6.2 A-Record Inconsistency

Study Description: For a given RRset, all authoritative NS should always
return the entire set of resource records [23], and be in sync, i.e., provide the
same data [87]. Returning inconsistent records can lead to seemingly random
problems that only affect a subset of clients. For example, out-of-sync A/AAAA
records may direct traffic to unresponsive or, in the worst case, malicious IPs [8].

Izhikevich et al. [41] studied A record inconsistency as a case study for ZDNS.
The study focusses on IPv4 only. By comparing our results, we can also compare
the different DNS exploration strategies of ZDNS and YoDNS.
Original Dataset: The dataset used by Izhikevich et al. was gathered using
ZDNS with names from CT logs. It used an input set of 234M FQDNs in 93M
base domains. ZDNS successfully resolves 70% of these names. The paper notes
a 99.99% consistency for authoritative A RRsets over its input dataset.

Y
es (89.6%

)

A Inconsistency Has AAAA
Record

LevelHas A
Record

N
o (86.8%

)

Y
es

N
o (90.1%

)

N
o (69.9%

)

N
o

Yes

Yes

2nd Level (99.9%
)Below 2nd

AAAA Inconsistency

(a) Tranco Top 1M.

Has A
Record

A Inconsistency Has AAAA
Record

LevelAAAA Inconsistency

N
o (50.8%

)

N
o (96.2%

)

Y
es

N
o (97.5%

)

N
o (91.0%

)

Yes (49.2%
) Yes

Yes

2nd Level (80.8%
)

Below 3rd
3rd

(b) All names incl. dependencies (1072M).

Fig. 3: Inconsistencies in A and AAAA records. Each flow (by color) corresponds
to a unique combination of parameters. Its height corresponds to its share of
unique domains. For example, the large light-blue flow in Figure 3a contains
domain which have an A Record, show no inconsistency, and are lacking an AAAA

record. Flows which exhibit A/AAAA record inconsistency are colored red and
flows which have no A record are colored yellow.

Reproduction Setup: We mirror Izhikevich et al.’s analysis on our data and
the Tranco subset, i.e., comparing the returned A record sets from all authorita-
tive NSs of a name, extending the analysis to AAAA records. In total, we evaluate
1072M names, including names from our target list and resolved dependencies.

We present a Sankey plot of the following parameters in Figure 3:

– Has A/AAAA: domains with an A/AAAA record.

– A/AAAA-Inc: with a mismatch for A/AAAA between NSs.

– Level: Level 2 for PSL private suffixes, Level 3 below.

Result Comparison:We find significantly higher inconsistencies for A and AAAA

records than previous work. Recall that they found 99.99% consistency. For the
Tranco list, 89.6% have an A record and 13.2% have an A record inconsistency
across NSs. Notably, most of these records do also have an AAAA record, which
also shows inconsistency across different NSs.

Looking at all names, we find 49.2% have an A record and 3.8% have an A

record inconsistency across NSs. Again, we find a notable stream of A record
inconsistencies for names that also have an AAAA record inconsistency. Due to
our target list, a large number of third-level domains (dark yellow flow) lack A

and AAAA records. This is due to the AWS domains (14.9% of all names) in our
target list, which often have no associated records.

Next, we determine the DNS hosters for names with inconsistent A records.
For this, we inspect the name of the authoritative NSs which might result in
Akamai being underrepresented as they often use in-domain NS. Figure 4 shows
that a large portion of domains with inconsistency is hosted by Cloudflare, likely
due to CloudFlare’s dynamic IP assignment at query time [24]. In this case
however, adverse effects are unlikely as services are reachable on all served IPs.

Conclusion: In conclusion, we find notably more A record inconsistencies be-
tween NSs than the 0.01% reported by Izhikevich et al. when using ZDNS [41].
With a restricted dataset, which closely matches the one used by Izhikevich
et al.–including only records served from IPv4 addresses and names from CT
logs–we find that 50.2% have an A record, of which 5.15% have inconsistent A

cloudflare
knt9 registrar-servers

zeit-world
awsdns

nso keenetic;knt9;omni

dns-parking
dan akam

0

20

40

60 All : 26700 K
Cert : 18000 K
Tranco : 62.3 K
Zonefiles : 5930 K

%
 o

f i
nc

on
si

st
en

ci
es

Fig. 4: Hosters of domains with inconsistent A records.

records. Given our observations for CloudFlare, it is unlikely that a difference
in the used domain samples cause this disparity. A review of the source code of
ZDNS indicates that over-caching in all-nameserver mode, i.e., reuse of prior
responses from other authoritative NS, may be responsible. The resulting limited
tree exploration, may have introduced a bias towards consistency.

In summary, we are unable to reproduce the results of Izhikevich et al. [41].
Their conclusion that A record inconsistencies are rare due to the ongoing cen-
tralization of the Internet cannot be supported by our dataset.

6.3 Dependency Complexity

Study Description: In order to resolve a zone, resolvers need to resolve the
zones’ parent zones as well as the zones of their nameservers.

However, a large number of transitive dependencies can negatively affect
resolution times, make zones appear more redundant than they actually are [19],
or even pose security risks, as compromised domains can affect the resolution of
dependent domains [66, 86]. A recent study by Zhang et al. [90] measures effects
of dependencies on robustness and security of DNS resolution for 217M domains.
Original Dataset: The dataset from Zhang et al. [90] consists of zones obtained
via ICANN CZDS and the Tranco and Umbrella top lists. The measurement is
conducted using ZDNS on 8 distributed vantage points. For their study, Zhang
et al. implemented a custom caching strategy for ZDNS, ensuring requests are
cached per NS IP. However, they conduct their study using IPv4 and UDP only.
Reproduction Setup: Our dataset contains full-dependency resolutions for
each encountered domain, enabling us to quantify the number of dependencies.
In addition to the original study, our measurement features IPv6 and a TCP
fallback mechanism. Furthermore, our target list contains a considerable number
of additional domains from certificate transparency logs and open data efforts.

Like Zhang et al., we define the set of dependencies of a zone as all zones
that are encountered during the resolution. This transitively includes the zone
itself, its parents, and the zones of its nameservers.
Result Comparison: We present the number of zone dependencies as CDFs
in Figure 5. Contrary to Zhang et al., we consider root-servers.net to be a
dependency of the root zone, which is why we observe a minimum of 6 dependen-
cies (root, root-servers.net, gtld-servers.net, nstld.com, net and com)
for all zones. This minimum is marked by the vertical line. The first notable
increase in zones is at 7 dependencies for in-domain hosted SLD zones.

Like Zhang et al., we find that popular Tranco zones exhibit slightly more
dependencies. For Umbrella, we find only slightly more dependencies when look-

10
0

10
1

10
2

10
3

10
4

#Dependencies

0.00

0.25

0.50

0.75

1.00

C
D

F

PSL
SLD
3rd Level
>3rd Level

(a) All by PSL-depth

10
0

10
1

10
2

10
3

10
4

#Dependencies

0.00

0.25

0.50

0.75

1.00

C
D

F

top 1K
top 10K
top 100K
top 1M

(b) Tranco by popularity

10
0

10
1

10
2

10
3

10
4

#Dependencies

0.00

0.25

0.50

0.75

1.00

C
D

F PSL
SLD
FQDN

(c) Umbrella by PSL-depth

All CZDS Tranco Umb
10

0

10
1

10
2

#D
ep

en
de

nc
ie

s

Dual-Stack
v4-only

v6-only
Mean

(d) By source and IP version

Fig. 5: Zone Resolution Dependencies

ing at the fully qualified domain names as compared to the SLDs in the list.
However, we observe a long tail of zones with over 9,000 dependencies. Upon
closer inspection, this tail is caused by related domains (sharing the same SLD),
generating endless delegation chains. However, these domains were not present
in the version of Umbrella used by Zhang et al. (25th of April, 2024). In total, we
find 150K out of 316M (0.05%) zones with more than 100 dependencies. Again,
all of these appear misconfigured to automatically generate delegations.

To quantify biases induced by scanning via IPv4 only, we consider the de-
pendencies of resolvable zones in Figure 5d. IPv4-only and dual-stack resolution
show almost identical numbers of (resolvable) dependencies. For IPv6-only, we
see slightly more dependencies, indicating that those zones that are IPv6-only
resolvable, have slightly more dependencies than those that are not. However,
less zones overall are IPv6-only resolvable, see Section 6.4.

Conclusion: Our results match those of Zhang et al. qualitatively, although
we count more dependencies due to different handling of the root-servers.net
dependency. Additionally, dependencies in the original study may be missed
due to the lack of TCP support. However, we show that the number of zone
dependencies is only marginally biased by the lack of IPv6 in the measurement.

6.4 DNS IPv6 Resolvability

Study Description: The complexity of DNS results in a plethora of potential
misconfigurations that can impair resolvability and redundancy of a zone. In
case of IPv6, this is especially difficult, as redundancy and fallback mechanisms
can make zones appear to be resolving even though misconfigurations do not
allow resolution in an IPv6-only scenario. This was first studied by Streibelt et
al. [79], using passively collected traces and a small scale active measurement.

In their study, Streibelt et al. find that 55.1% of zones are IPv6 resolvable
as of August 2022 and that IPv6 adoption steadily increased since 2015. Fur-
thermore, they note that zones deeper in the DNS tree are less likely to be IPv6

Parent
resolving

NS dele-
gated

NS not
in apex

No miss-
ing GLUE

NS zone
resolving

NS has
AAAA

NS is
CNAME

Respon-
sive

Zone re-
solving

Y
es (92.6%

)
N

o

All (91.4%
)

All (62.1%
)

All (99.9%
)

All (82.2%
)

All (58.6%
)

N
one (99.6%

)

All (96.2%
)

All (51.7%
)

Y
es (56.2%

)

N
one (43.6%

)

N
one (38.3%

)

N
o (43.8%

)

N
one (36.4%

)

N
one

NS re-
solving

Some

Some

Some Some

Some

Some

1 2 3 4 5 6 7 8 9 10

Fig. 6: IPv6-resolvability problems (316M zones). Each flow (by color) corre-
sponds to a unique value combination of parameters. Its height corresponds to
its share of unique domains. IPv6-only-resolving domains are colored in shades of
blue, while non-IPv6-resolving domains are colored in shades of red. At each col-
umn, blue indicates that all NSs of that domain are ok and red (yellow) indicates
that all (some) NSs exhibit a specific problem.

resolvable and that individual operators can have significant impact on global
IPv6 resolvability if they host a large number of zones. They find that IPv6
resolution problems are often due to NSs in the parent zone not resolving, i.e.,
because the parent zone or the zone of the NSs does not resolve via IPv6.

Using our active approach, we can re-evaluate and extend their study by
providing reasons for unresolvability from the perspective of a resolver.
Original Dataset: The original study relies on passively collected traces that
are collected on globally distributed DNS resolvers. The dataset contains only the
recorded and aggregated cache misses of the resolvers. Naturally, this might limit
visibility of the DNS tree, as records that are never requested cannot appear.
The passive approach is verified using a small scale active measurement.
Reproduction Setup: Given that the work by Streibelt et al. is based on
passive DNS data, we leverage data from all zones we measured in our study.
However, we extend the categories of unresolvability reasons. The results are
shown as Sankey plot, in Figure 6.

Specifically, we say a zone is resolvable (column 10 in Figure 6) if its parent
zone is resolvable (column 1) and if at least one of its NSs is resolvable (col. 9)
and authoritatively responds (col. 8), i.e., has none of these issues:
– Missing Delegation (col. 2): If an NS is not in the delegation for the zone,

i.e., only returned from the apex, the NS cannot be used to resolve the zone.
– NS record not in zone (col. 3): If an NS is delegated but not returned from

the zone apex. Some resolvers require this to harden glue, e.g. Unbound [61].
– No AAAA glue (col. 4): As with IPv4, in-domain NSs need glue [4].
– Unresolvable NS zone (col. 5): If an out-of-domain NS’s name is in an

unresolvable zone the NS cannot be used.
– No AAAA records for NS (col. 6): An NS needs a resolvable authoritative

AAAA record, as some resolvers are hardening glue, e.g., Unbound [61].
– NS CNAME (col. 7): RFC2181 [23] prohibits CNAMEs as NS names. Thus,

resolvers often do not support this [40].

1

10
50

other
dom

aincontrol

cloudflare
googledom

ains

registrar-servers

nam
ebrightdns

w
ixdns

ui-dns
dan
aw

sdns
dns-parking
hichina
gnam

e;share-dns

dns
ovh
afterni
nam

efind
sedoparking
parklogi

other
com.
net.
org.
de.

xyz.
fr.

co.uk.
io.

info.
tk.

online.
nl.

top.
com.br.

ru.
shop.

site.
it.

1 10 50

75-100%
50-75%
25-50%
10-25%
5-10%
1-5%
0.5-1%
0.1-0.5%
0.05-0.1%
0.01-0.05%
< 0.01%
none

%

%

(a) IPv6-resolvability per PSL / provider

1

10
50

other
dom

aincontrol

cloudflare
googledom

ains

registrar-servers

nam
ebrightdns

w
ixdns

ui-dns
dan
aw

sdns
dns-parking
hichina
gnam

e;share-dns

dns
ovh
afterni
nam

efind
sedoparking
parklogi

other
com.
net.
org.
de.
xyz.
fr.

co.uk.
io.

info.
tk.

online.
nl.

top.
com.br.

ru.
shop.
site.
it.

1 10 50

none
1-10
10-100
100-1K
1K-10K
10K-100K
100K-1M
1M-10M
>10M

%

%

(b) Total zones per PSL / provider

Fig. 7: Connection between public suffixes, DNS hosters, and IPv6-resolvability.

Result Comparison: Overall, we find 56.2% of 316M zones are IPv6-only re-
solvable, which is well-aligned with the 55.1% from Streibelt et al. [79]. 8.6% of
zones have non-delegated NSs, i.e., NSs not listed in the parent, which only pre-
vents resolution in 0.16% of cases, e.g., when the NSs only listed in the child are
IPv6 resolvable, while the ones in the parent are not. Only a fraction of 0.005%
of zones is unresolvable due to missing glue. However, like Streibelt et al., we
find non-resolving NS zones to be a major problem for resolvability, with 16%
of zones being unresolvable and 1.8% of zones being partially affected by this.
Furthermore, CNAMEs in NS records are not frequent, with only 0.01% of domains
being unresolvable (0.4% affected) due to CNAMEs being entered as NS names.
Finally, 2.7/1.2% of domains are unresolvable/affected because the listed NSs
are not (authoritatively) replying. In summary, we find 51.7% of domains have
only correctly configured NSs, whereas 4.8% have some NSs with problems.

Next, we revisit the correlation between public suffixes, DNS hosters, and
IPv6 resolvability. Figure 7 shows heatmaps of (a) percentage not IPv6-resolving
zones (b) the number of zones for the top 18 public suffixes vs. the top 18 largest
hosters. Note, we may again underestimate Akamai-hosted domains. The impact
of individual hosters on IPv6 resolvability is clearly visible in Figure 7a, with,
e.g., WixDNS (wix.com, a SaaS web hoster) being completely IPv6 unresolvable.
Interestingly, for DomainControl (GoDaddy), IPv6 resolvability is overall good,
except for some European zones, most notably .fr and .it, where essentially all
zones are not IPv6-resolvable. Investigating further, we find that GoDaddy uses
different NSs for these two TLDs, and, while they added IPv6 glue for most of
their authoritative servers in the past, this was not done for these NSs, leaving
these zones still not IPv6 resolvable. Similarly, we see the positive impact of
CloudFlare on IPv6 resolvability, hosting a major portion of domains.

Conclusion: Overall, we can reproduce the results of Streibelt et al., while we
also find additional corner cases missed by their analysis. The relatively small
number of zones with unresponsive NSs (3.8%) indicates that–especially for long-
term perspectives–the use of passive DNS data is a viable option for IPv6 resolv-
ability assessments, despite not having full tree visibility. However, such studies
should reconstruct the resolution path, to distinguish failing IPv6 resolution due

to parent zones and zones hosting out-of-zone NS, not IPv6 resolving. Overall,
active measurements allow a more fine-grained classification of the reasons for
lacking IPv6 resolution, see Figure 6. Finally, we recommend contacting major
hosters contributing large portions of non-IPv6 resolving zones directly to rectify
these. We reached out to GoDaddy, but a conclusive reply is still pending.

6.5 Result Sensitivity

To reduce the load on Internet core infrastructure, we configured YoDNS to only
query a single authoritative NS via IPv4 and IPv6 for the root, root-servers.net,
com, net, and org zones, assuming consistency between NSs.

To estimate the impact of this choice on our results, we conduct a measure-
ment on a random sample of 1M zones from com, net, and org each on March,
27th 2024, querying all the NSs of these zones.

We observe no cases where the authoritative nameservers of trusted zones
disagree. To further ensure no results have been influenced, we run all our anal-
yses twice. For the first run, we analyze the data considering all the responses
from the TLD NSs. For the second run, we only consider the responses of a
single TLD NS, emulating the behavior of our large-scale measurement. For the
delegation inconsistency analysis that involves random sampling, results deviate
only by 0.02%. For all other analyses, the results remain unchanged.
Conclusion: We cannot discard the possibility that the resolution of individual
domains would have differed, had we queried all NSs of our five trusted zones.
However, an analysis of 3M domains shows no such incident. We conclude that
not querying all NSs for selected zones had no notable influence on our results.

7 Concluding Discussion

In this paper, we present YoDNS, a DNS measurement framework for full zone
exploration. We employ this framework to replicate four studies, finding that
incomplete explorations of the DNS tree can impact results.

For a study on delegation inconsistencies, by Sommese et al. [73], we show
that the inconsistency measured by full exploration can be up to 9 times higher
than with opportunistic traversal for domains below second level (0.28% in the
best-case vs. 2.47% in the worst-case). Similarly, for a study on IPv6-readiness
by Streibelt et al. [79], our approach provides richer data and improves classi-
fication compared to their passive measurements. It is on par with their active
measurements, yet using a significantly larger sample.

However, for both studies, our results also highlight the trade-offs, and–most
importantly–that the selected data sources of these two studies are reasonable
choices for their research questions. Even though our results indicate the need
for full tree traversal for zones below second level, for Sommese et al.’s selection
of second level zones, a full-tree traversal only marginally improves accuracy.
Similarly, passive data enabled Streibelt et al. to take an eight-year perspective,
which is impossible with full-tree data. Even though having limited visibility
into the tree, their numbers are well-aligned with ours.

For other studies, our full tree exploration shows differences in results. For
a study Zhang et al. [90], we find more dependencies. However, we also show,
that the number of zone dependencies is only marginally influenced by the lack
of IPv6. We cannot reproduce a study of A record inconsistencies by Izhikevich
et al. [41], finding over two orders of magnitude more inconsistencies.

Recommendations: Our evaluation shows that the DNS tree is not homoge-
neous, while DNS is notoriously complex. Subsets, e.g., specific TLDs, limited
zone depth, or resolution path exploration may hide or amplify effects, making
measurements challenging. Hence, we have the following recommendations:

– Consider full-tree traversal for zones below second level: We have seen
that inconsistencies can have severe effects deeper in the tree. Therefore, we
argue that measurements of zones below second level, should strongly consider
full tree exploration to avoid or quantify the induced uncertainty.

– Find qualitative explanations and cross-check results: In our evalua-
tion, studies that cross-checked results with supplemental measurements have
shown to be less prone to biases of partial tree exploration. When identifying
differences from prior work, it is important to find qualitative explanations and
verify conclusions, for example, by using longitudinal data and/or identifying
potential root causes.

– Accept and Document Limitations: Given the complexity of the DNS,
it is infeasible for a single study to cover all (possible) aspects of DNS that
may influence results. For example, full tree traversal uses significant time and
resources, while mitigating some, but not all, limitations. Hence, researchers
should carefully assess if their research question is amendable to optimizations
(see Section 2) and transparently document these optimizations.

Limitations:While exploring the full DNS tree, the YoDNS configuration used in
our measurements only uses (a) TCP fallbacks instead of always forcing TCP and
UDP queries, (b) one vantage point, (c) QNAMEminimization, and (d) naturally
does not know all possible zones. We decided to accept these limitations since
the gathered dataset is sufficient to reach our objective of evaluating whether
incomplete DNS tree exploration can bias results. However, YoDNS could easily
be run from multiple vantage points given available measurement systems.
Artifact Availability: Our measurement instrument is available at https:

//github.com/DNS-MSMT-INET/yodns. The collected data [77] is available at
https://doi.org/10.17617/3.UBPZXP.

References

1. Abley, J. et al.: Operation of Anycast Services. RFC 4786,
2. afnic, Données partagées : l’open-data du .fr, (2023). https://www.afnic.fr/

produits-services/services-associes/donnees-partagees/.
3. Akiwate, G. et al.: Unresolved Issues: Prevalence, Persistence, and Perils of Lame

Delegations. In: IMC (2020)
4. Andrews, M. et al.: DNS Glue Requirements in Referral Responses. RFC 9471,
5. Arends, R. et al.: DNS Security Introduction and Requirements. RFC 4033,
6. Ashiq, M.I. et al.: You’ve Got Report: Measurement and Security Implications of

DMARC Reporting. In: USENIXSEC (2023)
7. Blechschmidt, B.: MassDNS, (2024). http://github.com/blechschmidt/massdns.
8. Borgolte, K. et al.: Cloud Strife: Mitigating the Security Risks of Domain-Validated

Certificates. In: ANRW (2018)
9. Borgolte, K. et al.: Enumerating active IPv6 hosts for large-scale security scans via

DNSSEC-signed reverse zones. In: SP (2018)
10. Bortzmeyer, S.: DNS Query Name Minimisation to Improve Privacy. RFC 7816,
11. Brownlee, N. et al.: DNS measurements at a Root server. In: GLOBECOM (2001)
12. Callejo, P. et al.: Measuring the Global Recursive DNS Infrastructure: A View

From the Edge. IEEE Access (2019)
13. Chung, T. et al.: Understanding the Role of Registrars in DNSSEC Deployment.

In: IMC (2017)
14. Cisco, Umbrella List, (2023). https://s3-us-west-1.amazonaws.com/umbrella-

static/index.html.
15. CloudFlare, Cloudflare Radar List, (2023). https://radar.cloudflare.com/.
16. Czybik, S. et al.: Lazy Gatekeepers: A Large-Scale Study on SPF Configuration in

the Wild. In: IMC (2023)
17. Darst, C. et al.: Measurement and Management of Internet Services. In: IM (1999)
18. Deccio, C.: DNSViz, https://dnsviz.net/.
19. Deccio, C. et al.: Measuring Availability in the Domain Name System. In: INFO-

COM (2010)
20. Dickinson, J. et al.: DNS Transport over TCP - Implementation Requirements.

RFC 7766,
21. DNIB Quarterly Report Q4 2023, https://dnib.com/articles/the-domain-

name-industry-brief-q4-2023.
22. Durand, A. et al.: DNS IPv6 Transport Operational Guidelines. RFC 3901,
23. Elz, R. et al.: Clarifications to the DNS Specification. RFC 2181,
24. Fayed, M. et al.: The ties that un-Bind: Decoupling IP from web services and

sockets for robust addressing agility at CDN-scale. In: SIGCOMM (2021)
25. Fiebig, T.: Crisis, Ethics, Reliability & a measurement.network. In: ANRW (2023)
26. Fiebig, T. et al.: Something from Nothing (There): Collecting Global IPv6 Datasets

from DNS. In: PAM (2017)
27. Fiebig, T. et al.: In rDNS We Trust: Revisiting a Common Data-Source’s Reliabil-

ity. In: PAM (2018)
28. Fiebig, T. et al.: Heads in the Clouds? Measuring Universities’ Migration to Public

Clouds: Implications for Privacy & Academic Freedom. In: PETS (2023)
29. Fujiwara, K. et al.: Aggressive Use of DNSSEC-Validated Cache. RFC 8198,
30. Fukuda, K. et al.: Characterizing DNS query response sizes through active and

passive measurements. In: NOMS (2022)

31. Gao, H. et al.: Reexamining DNS From a Global Recursive Resolver Perspective.
TON (2014)

32. Gieben, M.: MiekgDNS Git, (2023). https://github.com/miekg/dns.
33. Gojmerac, I. et al.: Large-Scale Active Measurements of DNS Entries Related to

E-Mail System Security. In: ICC (2015)
34. Grafana Labs, Grafana, (2024). https://grafana.com/.
35. Harrenstien, K. et al.: DoD Internet host table specification. RFC 952,
36. Hoffman, P. et al.: DNS Terminology. RFC 8499,
37. Hoffman, P. et al.: The DNS-Based Authentication of Named Entities (DANE)

Transport Layer Security (TLS) Protocol: TLSA. RFC 6698,
38. Huitema, C. et al.: Internet Measurements: the Rising Tide and the DNS Snag. In:

ITC Specialist Seminar on Internet Traffic Measurement and Modelling (2000)
39. ICANN, ICANN CZDS, (2023). https://czds.icann.org/home.
40. Internet Systems Consortium, Can an NS record refer to a CNAME?, https:

//kb.isc.org/docs/aa-00203.
41. Izhikevich, L. et al.: ZDNS: a Fast DNS Toolkit for Internet Measurement. In: IMC

(2022)
42. Kenneally, E. et al.: The Menlo Report: Ethical Principles Guiding Information

and Communication Technology Research. SSRN Electronic Journal (2012)
43. Kosek, M. et al.: Measuring DNS over TCP in the Era of Increasing DNS Response

Sizes: A View from the Edge. ACM SIGCOMM Computer Communication Review
(2022)

44. Kumari, W. et al.: Extended DNS Errors. RFC 8914,
45. Le Pochat, V. et al.: Tranco List, (2023). https://tranco-list.eu/.
46. Learmonth, I.R. et al.: RFC Guidelines for Performing Safe Measurement on the

Internet. Tech. rep., (2023). https://datatracker.ietf.org/doc/draft-irtf-
pearg-safe-internet-measurement

47. Lee, H. et al.: A Longitudinal and Comprehensive Study of the DANE Ecosystem
in Email. In: USENIXSEC (2020)

48. Lee, H. et al.: Under the Hood of DANEMismanagement in SMTP. In: USENIXSEC
(2022)

49. Liston, R. et al.: Diversity in DNS Performance Measures. In: SIGCOMM Work-
shop on Internet Measurement (2002)

50. Liu, C. et al.: DNS and Bind. ” O’Reilly Media, Inc.” (2006)
51. Lottor, M.: Domain Administrators Operations Guide. RFC 1033,
52. Majestic, Majestic List, (2023). https://majestic.com/reports/majestic-

million.
53. Mockapetris, P.: Domain names - Implementation and Specification. RFC 1035,
54. Mockapetris, P.: Domain names: Concepts and facilities. RFC 1034,
55. Moura, G.C.M. et al.: Anycast vs. DDoS: Evaluating the November 2015 root DNS

event. In: IMC (2016)
56. Moura, G.C.M. et al.: Cache Me If You Can: Effects of DNS Time-to-Live. In: IMC

(2019)
57. Moura, G.C.M. et al.: Fragmentation, Truncation, and Timeouts: Are Large DNS

Messages Falling to Bits? In: PAM (2021)
58. Mozilla Foundation, Public Suffix List, (2022). https://publicsuffix.org/.
59. Naab, J. et al.: Gotta Query ’Em All, Again! Repeatable Name Resolution with

Full Dependency Provenance. In: ANRW (2023)
60. sk-nic, sk-nic OpenData, (2023). https://sk-nic.sk/subory/domains.txt.
61. NLnet Labs, Unbound, (2023). https://unbound.docs.nlnetlabs.nl.

62. Nosyk, Y. et al.: Extended DNS Errors: Unlocking the Full Potential of DNS Trou-
bleshooting. In: IMC (2023)

63. Pappas, V. et al.: Impact of Configuration Errors on DNS Robustness. In: SIG-
COMM (2004)

64. PowerDNS, DNS Camel, (2024). https://powerdns.org/dns-camel/.
65. PowerDNS B.V., Lua Records, (2024). https://doc.powerdns.com/authoritati

ve/lua-records/

66. Ramasubramanian, V. et al.: Perils of Transitive Trust in the Domain Name Sys-
tem. In: IMC (2005)

67. van Rijswijk-Deij, R. et al.: DNSSEC and Its Potential for DDoS Attacks. In: IMC
(2014)

68. van Rijswijk-Deij, R. et al.: A High-Performance, Scalable Infrastructure for Large-
Scale Active DNS Measurements. JSAC (2016)

69. Rosenbaum, R.: Using the Domain Name System To Store Arbitrary String At-
tributes. RFC 1464,

70. Scheitle, Q. et al.: A First Look at Certification Authority Authorization (CAA).
CCR (2018)

71. Schlyter, J. et al.: Using DNS to Securely Publish Secure Shell (SSH) Key Finger-
prints. RFC 4255,

72. Sommese, R. et al.: The Forgotten Side of DNS: Orphan and Abandoned Records.
In: EuroS&P Workshop (2020)

73. Sommese, R. et al.: When Parents and Children Disagree: Diving into DNS Dele-
gation Inconsistency. In: PAM (2020)

74. Sommese, R. et al.: This Is a Local Domain: On Amassing Country-Code Top-Level
Domains from Public Data, (2023).

75. Sperotto, A. et al.: TIDE: Threat Identification Using Active DNS Measurements.
In: SIGCOMM Posters and Demos (2017)

76. Stahl, M.: Domain administrators guide. RFC 1032,
77. Steurer, F. et al.: A Tree in a Tree: Measuring Biases of Partial DNS Tree Explo-

ration, version 1.0 (2024). https://doi.org/10.17617/3.UBPZXP.
78. Streibelt, F. et al.: Exploring EDNS-client-subnet adopters in your free time. In:

IMC (2013)
79. Streibelt, F. et al.: How Ready is DNS for an IPv6-Only World? In: PAM (2023)
80. The Linux Foundation, Prometheus - Monitoring system & time series database,

(2024). https://prometheus.io/.
81. Thompson, K. et al.: Wide-area Internet traffic patterns and characteristics. IEEE

network (1997)
82. van der Toorn, O. et al.: Melting the Snow: Using Active DNS Measurements to

Detect Snowshoe Spam Domains. In: NOMS (2018)
83. van der Toorn, O. et al.: Saving Brian’s privacy: the perils of privacy exposure

through reverse DNS. In: IMC (2022)
84. der Toorn, O.v. et al.: TXTing 101: Finding Security Issues in the Long Tail of

DNS TXT Records. In: EuroS&PW (2020)
85. Vermeer, M. et al.: SoK: A Framework for Asset Discovery: Systematizing Advances

in Network Measurements for Protecting Organizations. In: EuroS&P (2021)
86. Vissers, T. et al.: The Wolf of Name Street: Hijacking Domains Through Their

Nameservers. In: SIGSAC (2017)
87. Vixie, P.: A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY).

RFC 1996,

88. de Vries, W.B. et al.: A First Look at QNAME Minimization in the Domain Name
System. In: PAM (2019)

89. Yajima, M. et al.: Measuring Adoption of DNS Security Mechanisms with Cross-
Sectional Approach. In: GLOBECOM (2021)

90. Zhang, S. et al.: Robust or Risky: Measurement and Analysis of Domain Resolution
Dependency. INFOCOM (2024)

91. Zirngibl, J. et al.: Domain Parking: Largely Present, Rarely Considered! In: TMA
(2022)

A Ethical Considerations

Before starting our measurement, we considered ethical implications, following
our institution’s guidelines and the Menlo Report [42]. Given that we collect gen-
erally public data, and analyze only technical aspects, we consider rate-limiting
and reducing harm towards other networks as the main ethical objective.

As our measurements may exceed the query load of normal DNS resolu-
tion, we took precautions not to concentrate load on individual authoritative
nameservers, i.e., by limiting query rates and queries in-flight, reusing TCP con-
nections, not sending malformed DNS packets, and not querying unresponsive
servers, see Section 4.1. We seed our measurements from public sources or receive
them under an agreement that allows their use for measurements (zone files).

We ensure that our measurements can be attributed to us by (a) hosting a
Web page with a project description and contact details on all scan machines; (b)
using informative reverse DNS entries; (c) dedicating a network segment to the
scans, with associated WHOIS information describing the project and contact
details; (d) YoDNS enables opt-out; yet we received no requests for this.

In addition, we submit our study design to our institution’s ethical review
board, which attested no concerns in response to our application No. 23-09-2.

B Hidden Child-Child Inconsistency

Seemingly, the number of child-child inconsistencies in Table 4 is “inconsistent”
with the number of worst-case parent-child inconsistencies. Intuitively, one would
assume that the number of child-child inconsistencies should always be lesser or
equal to the number of parent-child inconsistencies. However, we find that some
child-child inconsistencies cannot be detected by following a resolution path, if,
at the same time, a parent-parent inconsistency exists, see Figure 8.

Here, we have two authoritative NS for a parent zone, ns0.example.com
and ns1.example.com, delegating s.example.com. We have a parent-parent in-
consistency since they both return different NS sets. Here, ns0.example.com
could return an NS set for s.example.com, containing a-ns0.s.example.com

and a-ns1.s.example.com, along with valid glue for both. At the same time,
ns1.example.com could return an NS set for s.example.com, containing b-ns0

and b-ns1.s.example.com, again, along with glue for both.

a-ns1.s.example.com.a-ns0.s.example.com.

ns0.example.com.

b-ns0.s.example.com. b-ns1.s.example.com.

ns1.example.com.

$ORIGIN com.

example.com. IN NS ns0.example.com

example.com. IN NS ns1.example.com

$ORIGIN s.example.com.

s.example.com. IN NS a-ns0.s.example.com

s.example.com. IN NS a-ns1.s.example.com

$ORIGIN example.com.

s.example.com. IN NS b-ns0.s.example.com

s.example.com. IN NS b-ns1.s.example.com

$ORIGIN s.example.com.

s.example.com. IN NS a-ns0.s.example.com

s.example.com. IN NS a-ns1.s.example.com

$ORIGIN example.com.

s.example.com. IN NS a-ns0.s.example.com

s.example.com. IN NS a-ns1.s.example.com

$ORIGIN s.example.com.

s.example.com. IN NS b-ns0.s.example.com

s.example.com. IN NS b-ns1.s.example.com

$ORIGIN s.example.com.

s.example.com. IN NS b-ns0.s.example.com

s.example.com. IN NS b-ns1.s.example.com

Parent-Child Consistent:

ns0.example.com -> a-ns0.s.example.com, a-ns1.s.example.com

Parent-Parent Inconsistent:

ns0.example.com,

 ns1.example.com

Child-Child Inconsistent: a-ns0.s.example.com, a-ns1.s.example.com, b-ns0.s.example.com, b-ns1.s.example.com

Parent-Child Consistent:

ns1.example.com -> b-ns0.s.example.com, b-ns1.s.example.com

Fig. 8: Example of a zone with two auth. NSs serving different NS sets, leading to
parent-parent and child-child mismatches. The latter only become visible when
all parts of the DNS tree are resolved, i.e., all four children are detected.

If we now query the NS set for s.example.com on a-ns0 and a-ns1.s.ex-

ample.com, we receive two consistent NS sets containing only a-ns0 and a--

ns1.s.example.com. Similarly, if we query b-ns0 and b-ns1.s.example.com,
we would receive an NS set containing only b-ns0 and b-ns1.s.example.com.

However, when we evaluate the complete zone tree, there is not only an ob-
vious inconsistency between the parents but also between the NSs authoritative
for s.example.com, the child. All four children are inconsistent.

However, our three synthesized perspectives follow a DNS resolution path:
If we traverse the tree, regardless of whether we do it randomly (rnd.), or in an
attempt to minimize (resp. maximize) paths with parent-child mismatches, there
is no path down the tree that lets us receive the parent NS set from ns0.ex-

ample.com while also receiving responses from b-ns0 or b-ns1. We can only
evaluate the NS sets from a-ns0 and a-ns1, that are consistent to each other.

Hence, numbers in Table 4 may look odd but are correct, as no standard
DNS resolution strategy for zones would identify inconsistent parents returning
internally-consistent NS sets. Only exploring the full DNS tree will find such
cases, which are especially prevalent in >2nd level zones.

