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The escalating magnitude, frequency, and duration of harmful algal blooms (HABs) pose significant
challenges to freshwater ecosystems worldwide. However, the mechanisms driving HABs remain poorly
understood, in part due to the strong regional specificity of algal processes and the uneven data avail-
ability. These complexities make it difficult to generalize HAB dynamics and effectively predict their
occurrence using traditional models. To address these challenges, we developed an explainable deep
learning approach using long short-term memory (LSTM) models combined with explanation techniques
that can capture complex patterns and provide explainable insights into key HAB drivers. We applied this
approach for algal density modeling at 102 sites in China's lakes and reservoirs over three years. LSTMs
effectively captured daily algal dynamics, achieving mean and maximum Nash-Sutcliffe efficiency co-
efficients of 0.48 and 0.95 during testing phase. Moreover, water temperature emerged as the primary
driver of HABs both nationally and in over 30% of localities, with stronger water temperature sensitivity
observed in mid-to low-latitudes. We also identified regional similarities that allow for the successful
transferability in modeling algal dynamics. Specifically, using fine-tuned transfer learning, we improved
the prediction accuracy in over 75% of poorly gauged areas. Overall, LSTM-based explainable deep
learning approach effectively addresses key challenges in HAB modeling by tackling both regional
specificity and data limitations. By accurately predicting algal dynamics and identifying critical drivers,
this approach provides actionable insights into the mechanisms of HABs, ultimately aids in the imple-
mentation of effective mitigation measures for nationwide and regional freshwater ecosystems.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction hypoxic zones that directly or indirectly affect aquatic ecosystems

[6]. Importantly, cyanotoxins produced by HABs threaten the health

The magnitude, frequency, and duration of harmful algal blooms
(HABs) have escalated globally across freshwater ecosystems in
recent years [1,2]. This phenomenon is particularly pronounced in
regions heavily impacted by climate change and anthropological
activities [3], making it one of the most serious environmental is-
sues worldwide [4,5]. Excessive algal proliferation due to eutro-
phication, as evidenced by dense surface scum, can create large
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of aquatic animals and humans who use surface water for drinking
and recreational activities, leading to significant negative envi-
ronmental and socioeconomic impacts [7]. According to Wang et al.
[8], 63.1% of the 2,058 inland water bodies surveyed worldwide are
eutrophic. In China, lake eutrophication and HAB events have
increased in frequency over the past decade [9]. The most recent
nationwide assessment showed that 27.3% of the 205 lakes and
reservoirs surveyed in 2023 exhibited varying degrees of eutro-
phication (http://www.cnemc.cn/jcbg/). Adequate characterization
of algal dynamics in lakes and reservoirs is required to address the
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growing threat of HABs to water security [10,11].

With increasing data availability and computational power in
the big-data era, artificial intelligence (Al)-based machine learning
(ML) and deep learning (DL) models have increasingly been used to
provide predictive insights into the environmental behavior of
pollutants [12,13], including HABs [9]. These data-driven models
flexibly effectively capture dynamic patterns of objects in pre-
dictions and offer insights into data that complement our current
understanding of the underlying mechanisms for relationships
between inputs and outputs [14,15]. Among the available ML/DL
models, a specific recurrent neural network (RNN) with a unique
internal structure—long short-term memory (LSTM)—has become
an extremely popular DL model for prediction tasks [16]. Recent
studies have demonstrated the unrivaled popularity and robust-
ness of LSTM for capturing streamflow [17], nutrient [18], and algal
cell density [19] dynamics at different scales. Nevertheless,
numerous DL-based applications improve prediction accuracy by
minimizing discrepancies between predictions and observations,
while largely overlooking the processes underpinning the pre-
dicted variables [20]. Using the first n steps of a predicted variable
as the input to predict its next k steps is a common modeling
strategy to time-series prediction in many studies [21,22]. Due to
strong temporal autocorrelations among predicted variables, this
modeling strategy can typically achieve high predictive perfor-
mance while failing to learn the essential relationships with envi-
ronmental factors that drive the variables, limiting mechanical
understanding and the potential of applications such as scenario
simulation.

Explainability has recently become a crucial aspect of DL model
development, focusing on enhancing transparency and under-
standing by clarifying how these black-box models generate out-
puts from inputs [23]. In this context, explainable DL models offer
useful and practical tools for understanding the complex nonlinear
relationships between variables that traditional analyses often
struggle to address [24]. Explainable DL models would, therefore,
help identify the potential drivers of and underlie processes un-
derpinning the temporal dynamics of HABs, which is particularly
important for addressing the increasing risk of HABs. Effective
characterization of the prevalence of individual mechanisms and
interregional differences at larger spatial scales is vital for devel-
oping effective regional HAB control strategies [9,25]. Despite the
prevalence of watershed hydrology and biogeochemistry studies
[26], few researchers have explored the potential drivers of algal
dynamics at large spatial scales using explainable DL modeling.
Therefore, developing explainable LSTM models to characterize
HAB dynamics on a large scale (e.g., national level) represents a
meaningful and innovative attempt.

A significant challenge to deploying deep learning (DL) appli-
cations in lakes and reservoirs globally is the limited availability of
training data, driven by the high costs of continuous, high-
frequency in-situ algal monitoring [27,28]. A promising solution is
to leverage comparable algal information from different adequately
monitored areas (source domains) to support DL modeling in data-
scarce areas (target domains). Transfer learning (TL)—an important
ML concept and paradigm—which involves transferring and
retraining models based on information from different or related
source domains to improve predictions in a target domain, has
recently received increasing attention in scientific research [29,30].
This technique helps alleviate the dependence of ML/DL on large
amounts of target domain data and has great advantages for small
sample modeling [31,32]. Recent studies have reported the broad
and creative use of TL-based DL modeling in various fields, such as
biomedicine [33], remote sensing [34], and energy systems [35]. In
water environment field, TL-based modeling can improve local
predictions in areas where water temperature (WT) [36], dissolved
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oxygen (DO) [37], and ammonium nitrogen (NHs-N) [38] data are
lacking. However, few researchers have evaluated the efficacy of TL
for algal prediction under data limitation conditions. Peng et al. [39]
demonstrated the advantages of a TL-based transformer model for
predicting four water quality indicators in 120 rivers and lakes in
China. Ma et al. [40] demonstrated that the transferability of TL-
based LSTM models across continents could benefit streamflow
simulations in data-scarce areas. It remains to be seen whether the
observed similarity and transferability between regions can be
extended to improve predictions of algal dynamics, which exhibit
more complex biogeochemical mechanisms.

This study aims to characterize daily algal density dynamics in
China's lakes and reservoirs, despite varying degrees of data scar-
city based on water environmental and meteorological variables,
with the goal of exploring the complex processes typically associ-
ated with HABs and proposing solutions to the current dilemma of
inadequate algal monitoring. Specific research questions to be
addressed include: (1) What are the key potential drivers of pre-
dictability of algal density dynamics in lakes and reservoirs, and
how sensitive are algal dynamics to their changes? (2) Are there
consistent or similar patterns of algal dynamics among lakes and
reservoirs, and how could DL models utilize these potential com-
mon patterns to transfer knowledge from data-rich areas and
improve algal density prediction in data-scarce areas? Overall, re-
sults of this study may provide promising insights into the use-
fulness of data-driven models for revealing algal dynamic processes
and controlling HABs in lakes and reservoirs.

2. Materials and methods
2.1. Study area and datasets

In 2019, in China, there were 3,051 lakes (with surface areas
larger than 1 km?) covering approximately 73.38 x 10° km?, 2,194
large reservoirs covering around 16.35 x 103 km?, and numerous
smaller lakes and reservoirs [41]. For this study, we compiled two
national datasets: (1) a lake and reservoir water environmental
dataset and (2) a meteorological dataset.

2.1.1. Lake and reservoir water environmental dataset

Since 2021, the Chinese National Environmental Monitoring
Centre introduced four-hourly water environment monitoring for
lakes and reservoirs across China (https://www.cnemc.cn/). By
2023, the program covered over 170 identified lakes and reservoirs.
Monitored indicators, as specified in China's Environmental Quality
Standards for Surface Waters (GB 3838—2002), include algal den-
sity, chlorophyll-a (Chl-a), and nine water quality variables: WT,
DO, pH, electrical conductivity (EC), turbidity, permanganate
(CODwp), total nitrogen (TN), total phosphorus (TP), and NH3-N. We
averaged the four-hourly data to obtain daily values for each site
after removing erroneous records (e.g., algal densities below
10,000 cells L~! or TN concentrations below NH3-N levels. Addi-
tionally, we excluded outliers, defined as values below the first
quartile minus 1.5 x interquartile range (IQR) or above the third
quartile plus 1.5 x IQR. The compiled dataset covered January
2021—December 2023 and included 161 lakes and reservoirs with
precise geographic coordinates (Fig. 1). Most of the monitoring sites
were in the southern region of the Hu Huanyong Line (90.1%). Based
on the HAB threshold (15 x 10° cells L~!) proposed by Ma et al. [42],
20.5% of the sites with three-year average algal density exceeded
this threshold, underscoring the pressing need for HAB
management.

2.1.2. Meteorological dataset
To investigate the main meteorological conditions at each site,
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Fig. 1. Spatial patterns of 161 monitored lakes and reservoirs in China during 2021—-2023. The scatters with black borders indicate sites selected for model development. The darker
and larger scatter indicates higher mean algal density. The black dashed line is the Hu Huanyong Line.

we processed five variables: air pressure, evaporation, precipita-
tion, solar radiation, and wind speed (calculated using

wind,? + wind,?), from the European Centre of Medium-range
Weather Forecasts Reanalysis 5th Generation (ERA5) product [43]
with a spatial resolution of 0.25°. Due to the strong positive cor-
relation between air temperature and WT (Pearson's correlation
coefficient, r > 0.93), air temperature was excluded from the sub-
sequent modeling. We characterized the meteorological conditions
of each site using ERAS5 grid data corresponding to the center of site.

2.2. Development of LSTM and baseline models

The DL neural network LSTM is a special form of RNN that ad-
dresses the shortcomings of traditional RNNs [44], including
gradient explosion, vanishing during the computation of time-
series tasks, and the inability to learn long-term dependencies
[45]. The LSTM layer consists of recurrently connected memory
blocks that store and transfer sequential information. Each memory
block has three gates (i.e., the input, forget, and output gates) and
two states (i.e., the block and hidden states) to control the details of
inflow, forgetting, and memorization across time steps [46]. Such a
special structure makes LSTM suitable for processing and predict-
ing important events in a time series with long intervals and delays
(i.e., streamflow). Given its generality, LSTM was used to

characterize HAB dynamics. Additionally, we also selected eight
conventional and widely used ML models—adaptive boosting
(AdaBoost), artificial neural network (ANN), Bayesian ridge
regression (Bayesian), decision tree (DT), gradient boosting deci-
sion tree (GBDT), K-nearest neighbor (KNN), random forest (RF),
and support vector machine (SVM) models—as baseline models for
comparative evaluation. We developed the LSTM and ANN models
in this study using the PyTorch framework [47] and implemented
the other seven MLs using the Scikit-Learn framework [48]. De-
scriptions and hyperparameter values for these ML models are
presented in Supplementary Material Text S1.

From the compiled dataset, we selected a core group of 102 sites
(Fig. 1) for the model performance evaluation. The number of
samples available for modeling at these sites ranged from 154 to
960, with a mean of 587. Based on a previous study, we unified the
structure of the LSTM developed for each site to combine an LSTM
layer and a fully connected layer based on a previous study [22].
Model inputs included 11 water environment variables (WT, DO,
pH, EC, turbidity, CODpp, TN, TP, N/P, NH3-N, and Chl-a) and five
meteorological variables (air pressure, evaporation, precipitation,
solar radiation, and wind speed) and we defined the output as algal
density. Prior to the model training, we conducted Pearson's cor-
relation analysis on the inputs and outputs for each site. The
analysis revealed significant variability in r values across sites,
indicating the varying complexity of algal dynamics
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(Supplementary Material Fig. S1). For each site, we divided the first
75% of the dataset into a training set to iteratively optimize the
model weights and the remaining 25% into a testing set to evaluate
the final performance beyond the training samples. We applied
min-max normalization to the training and testing sets using the
statistics of the training set (equation (1)) to eliminate unit differ-
ences and accelerate convergence. We used a randomly selected
20% of the training set as a validation set during each training epoch
to evaluate loss convergence. We used a trial-and-error approach to
determine the optimal combination of LSTM hyperparameters that
minimized the validation set loss across all sites. Specifically, the
selected hyperparameters included a learning rate of 0.001, 32
neurons, a dropout rate of 0.2, an epoch of 100, and a sequence
length of 16 (i.e., we used the variables for the current day and the
previous 15 days as inputs). Additionally, we employed a learning
rate dynamics strategy (i.e., warmup—cosine annealing) to enhance
the model convergence to an optimal solution. We saved the LSTM
weights whenever the validation loss was lower than that of the
previous epochs during training. We used the mean squared error
(MSE, equation (2)) as the loss function to update the LSTM weights
and biases during training and the Nash—Sutcliffe efficiency coef-
ficient (NSE, equation (3)) to evaluate the model performance.

X! — Xi — min (Xl)
! max(X;) — min (X;)

(1)

where X; and X; are the normalized and original variable i,
respectively; and max (X;) and min (X;) are the maximum and
minimum values of variable i in the training set, respectively.

MSE:%Z:?:] (0; — P;)? (2)
3 (05— P’

NSE=1-EL (3)
Y. (0,-0)

where n is the sample amount, and O; and P; are the observed and
predicted sample i, respectively. O represents the mean observed
value. An MSE close to 0 and an NSE close to 1 indicate better
optimized model convergence and performance.

2.3. Model explanation and sensitivity analysis

Explaining a complex DL model aims to make the black box
model more transparent and provide useful insights into the un-
derlying mechanisms for relationships between inputs and out-
puts. In this study, we employed Shapley additive explanations
(SHAP) to quantify the contribution of individual input features in
the developed LSTM model to predicted algal density [49]. The
SHAP method, grounded in game theory, calculates the Shapley
value of each feature based on its marginal contribution to the
model output, offering flexibility in interpreting ML/DL models
[18]. Larger absolute Shapley values indicate greater predictive
importance (contributions) of the corresponding features. Accord-
ingly, we calculated the global importance (GI, %, averaged absolute
Shapley value of a feature divided by the sum of all features) for
individual features at each site.

b WW‘U_V#V(SU{”) () )

S<N\{i}
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where ¢; , I; , and GI; are the Shapley value of feature i for a given
sample j, the averaged absolute Shapley value of feature i, and the
global importance of feature i, respectively. N is the total number of
input features, n is the sample size of feature i, S is a subset of N that
does not contain feature i, and f(Su{i}) —f(S) is the marginal
contribution of feature i.

Subsequently, we analyzed the sensitivity of algal density dy-
namics to key potential drivers based on SHAP results. Specifically,
for each site, we constructed simple linear regression models for
the values of particular drivers and their corresponding SHAP
values [50] and then evaluated the spatial variability in the linear
slopes across sites and regions. We considered the slope to be an
indicator of the response pattern of algal density dynamics to a
potential driver, with the positive/negative sign of the slope rep-
resenting the direction of the effect of that driver on algal density,
and a larger absolute value indicating greater sensitivity to the
driver.

2.4. Transferring knowledge across lakes and reservoirs

Building on the research question of whether consistent algal
dynamics patterns exist across lakes and reservoirs, we hypothe-
sized that at least one data-rich site (potential source domain)
would exhibit patterns similar to those of the target site. This
similarity would enable knowledge transfer from data-rich to data-
scarce areas, enhancing DL-based algal density predictions. For
each site in the core group, it was designated as the target domain,
while the remaining sites served as potential source domains to
cross-validate the hypothesis. We kept the last 25% of the target
domain dataset as the testing set, assuming the front 20% would be
the scarce available data. We also designed a new source domain
selection approach that employed the available algal density record
for the target domain to match the records from potential source
domains during the same period. Among the matched records, we
selected the site with the optimal fit to the target domain as the
source domain using r as a criterion (Supplementary Material
Fig. S2). The rationale for selecting r over NSE was that it would
be more consistent with above hypothesis since a high r value could
indicate a high degree of similarity in algal dynamics between the
target and source domains, regardless of a large magnitude differ-
ence. We selected the most appropriate source domain for each
target domain using the above approach, and the fitted r for the
matching data from both domains ranged from 0.27 to 0.95, with a
mean of 0.75. The spatial distances between the target and source
domains within the core group were inversely proportional to the
magnitude of the similarity (r = —0.24, p < 0.05). We pretrained the
LSTM model with the complete dataset for the source domain and
then transferred it to the target domain. We conducted the control
experiments in three groups, as follows:

(1) Based on the fine-tuned TL strategy, we froze the weights of
the LSTM layer in the pretrained model to prevent them from
changing during the TL process and retrained the fully con-
nected layer using the available data for the target domain.
The fine-tuning strategy maximized the retention of
knowledge learned from the source domain, reducing the
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Fig. 2. Model performances. a—b, The Nash-Sutcliffe efficiency coefficient (NSE) values (a) and empirical cumulative distribution function (ECDF, b) of long short-term memory
(LSTM) and eight baseline models during the testing phase. KNN, k-nearest neighbor; DT, decision tree; ANN, artificial neural network; Bayesian, bayesian ridge regression; SVM,
support vector machine; RF, random forest; Adaboost, adaptive boosting; GBDT, gradient boosting decision tree. Significance (**) between LSTM and GBDT in panel an indicates
**p < 0.01. ¢, Spatial performance of the LSTM model for the core group. d—g, Scatter plots of observations and predictions for four representative sites: Yuqgiao Reservoir Center (d),
Honghu Lake Center (e), Wuchang Lake (f), and Shanmei Reservoir Center (g). The top-left and bottom-right corners of the plots for representative sites show the sample amounts
and NSE values during the training and testing phases, respectively. h, Percentages of three NSE intervals using LSTM. The percentage represents the ratio of the corresponding
interval of NSE value. The black dots in panels a and h indicate mean values, and the black whiskers indicate the standard deviation.

amount of data needed for fine-tuning while decreasing the
likelihood of overfitting [40].

(2) We used the pretrained LSTM model to directly predict algal
density for the target domain without retraining.

(3) We trained a new LSTM model using locally available
samples.

3. Results and discussion
3.1. Performance of ML and DL models

We evaluated the predictive performance of the LSTM and
baseline ML models for the core group of 102 sites (Fig. 2a and b).
During the testing phase, the LSTM model showed significantly
superior performance, ranking first with a mean, median, and
highest NSE of 0.48, 0.52, and 0.95. The three ensemble models (the
GBDT, AdaBoost, and RF models) ranked second to fourth in overall
performance, with close mean NSEs of 0.39, 0.37, and 0.36,
respectively. The SVM and ANN models ranked fifth and sixth, with
mean NSEs of 0.26 and 0.21, respectively. The mean NSEs for the
Bayesian, DT, and KNN models were below 0.2, with the KNN model

performing the worst among the ML models, with a mean NSE of
only 0.09. These results are consistent with previous studies
showing that LSTM offers advantages over baseline ML, while
ensemble models are the leading choice among conventional ML
models [51,52]. Compared to the optimal performance of the LSTM
model (NSE = 0.95), the highest NSEs of the baseline ML models
ranged from 0.74 to 0.94, showing that conventional ML models can
sometimes match the LSTM model. However, the LSTM model
outperformed others at sites where baseline ML models failed,
demonstrating its overall robustness. This comparison confirms the
LSTM model's superior suitability for predicting algal dynamics.
The LSTM model performed effectively in lakes and reservoirs
across central, northern, and southern China; more intensive well-
performing sites were observed in the Hubei and Anhui provinces
in the middle and lower reaches of the Yangtze River Basin (Fig. 2b).
The percentages of sites where model performance was classified
as excellent (NSE > 0.7), fair (0.7 > NSE > 0.3), and poor (NSE < 0.3)
in the core group were 29.4%, 40.2%, and 30.4%, respectively. The
mean NSE values for these categories were 0.80, 0.51, and 0.14,
respectively. We found that the LSTM model's performance during
the testing phase across sites showed an increasing and flattening
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speed.

pattern as the amount of local training data increased
(Supplementary Material Fig. S3a), similar to the power function
curve [22]. Although many studies have indicated that larger
training datasets generally improve model performance [53—55],
the model performed equally well at certain sites with limited
training data, such as the representative site shown in Fig. 2d—f.
Differences in model performance between sites may have
depended on the distributional similarity between the local
training and testing sets (Supplementary Material Fig. S3b); the
more similar the distributions, the better the model performance.
Further comparison with other studies on HAB prediction based on
ML/DLs (Supplementary Material Table S1) demonstrated the
excellent potential of the LSTM model to accurately capture large-
scale, high-frequency algal dynamics.

3.2. Potential drivers of algal dynamics in China's lakes and
reservoirs

We evaluated the importance of the input variables in predicting
algal density using the LSTM model and the SHAP approach. The
most important factors influencing algal dynamics varied between
lakes and reservoirs (Fig. 3a). We identified 13 variables as the
factors that most influenced algal dynamics for more than one site
(Fig. 3b). Among these, WT was the top potential driver at 31 sites,
with GI values ranging from 0.7% to 31.9%. Except for WT, Chl-a, EC,
turbidity, TP, and CODy, were the top potential drivers for at least
five sites. The five most important variables in the national context
were WT, Chl-a, turbidity, EC, and CODyy,, which collectively
accounted for 44.2% of algal density dynamics (Fig. 3c). Among
these, the most important potential driver, WT, had a GI value of
11.7%, its Gl values ranging from 6.3% to 17.4% across the six selected
lakes (Supplementary Material, Fig. S4). The SHAP analysis,
considering seasonality, revealed WT as the most critical potential
driver of HABs in all seasons except spring (where Chl-a

dominated), with the strongest effect occurring during the coldest
winter (Supplementary Material Fig. S5). In addition, the order of
magnitude of WT's importance for HABs within different climate
zones was subtropical > temperate > tropical (Supplementary
Material Fig. S6). The SHAP-based explanations revealed strong
relationships between HABs and temperature, indirectly explaining
why severe HABs, especially toxic cyanobacterial blooms, tend to
occur in the summer when temperatures are high. These results
align with those of previous studies reporting the adaptation and
maximum growth rates of cyanobacteria under high temperature
conditions [56,57]. As global warming intensifies, the frequency
and severity of harmful algal blooms (HABs) are likely to rise,
making HAB monitoring and control a priority [1].

Previous studies have demonstrated the relatively high impor-
tance of Chl-a, CODy, and turbidity for HAB prediction [19,58]. All
meteorological variables had lower GI values than water quality
variables. The most important meteorological variable was solar
radiation, with a GI value of 5.2%, whereas precipitation ranked last.
Research has shown the negative and positive effects of air pressure
and solar radiation on HABs [59,60], which are supported by the
Pearson's correlations shown in Supplementary Material Fig. S1.
Notably, because it is relatively easy to measure compared to algal
density, Chl-a has been used as a surrogate variable to indirectly
characterize HABs in certain studies [21,61—63]. High Chl-a is one of
the main symptoms of eutrophication, which closely correlates
with the presence of blooms [9,64,65]. Nevertheless, this study
showed that the frequency of the top potential driver and the GI
value for Chl-a were lower than for WT (Fig. 3), and the mean
correlation between Chl-a and algal density was lower than that
between WT and CODy, (Supplementary Material Fig. S1). A pre-
vious study also showed that Chl-a has a relatively weak linear
correlation with algal density owing to the presence of an inflection
point in the pattern of algal density responses to Chl-a (i.e., a clear
positive correlation at lower Chl-a magnitudes with a less
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the average level of the inflection point of WT.

pronounced trend of increasing algal density at higher Chl-a
magnitudes) [19]. These findings suggest that Chl-a is a vital fac-
tor influencing algal density, but it does not fully reflect its
magnitude. Therefore, we believe that algal density is a more direct
and manifest indicator of the magnitude of HABs in freshwater [66].
Overall, LSTM combined with SHAP adequately quantified the po-
tential water environment and meteorological drivers of algal
density dynamics at the local and national scales, providing in-
sights for the management of HABs.

3.3. Sensitivity of HABs to WT

We evaluated the sensitivities of HABs to WT variations, as WT
is a key response indicator of climate warming and the most
essential potential driver of HABs in the national context. The algal
density dynamics responded positively to WT, but the magnitude of
sensitivity (represented by the linear slope between the feature
series and the corresponding SHAP series) varied within sites in the
core group. GI and sensitivity were strongly positively correlated
(Fig. 4a), indicating that the high importance of WT for algal dy-
namics is usually, but not necessarily, accompanied by a high
sensitivity of algal responses to WT. Sensitivity to WT was weakly
negatively correlated with latitude, with high WT sensitivity being
more common at mid—low latitude sites (Fig. 4b and c). Notably,
the order of WT sensitivity within different climate zones was
tropical > subtropical > temperate. This pattern was not consistent
with the GI pattern (Supplementary Material Fig. S6), suggesting
that the HAB magnitude in low-latitude lakes and reservoirs may
be more susceptible to climate warming. Additionally, the SHAP
value inflection point for WT varied considerably across sites,
ranging from 9.5 to 27.1 °C, with a mean of 20.9 °C. WT higher than
the inflection point corresponded with a positive SHAP value (i.e.,
WT promotes HABs; conversely, it inhibits HABs). Sensitivity

analyses based on the constraints of existing observations com-
plemented the SHAP-based exploration of potential drivers,
revealing further insights into the sensitivity of regional HABs to
climate change. Although our study did not directly address the
long-term effects of climate change, the lessons learned about the
sensitivity of HABs to WT under current conditions remain highly
relevant. Our results clearly indicate that WT is a key driver of HAB
dynamics, which is critical as climate change continues to increase
global temperatures. These findings can guide the development of
more targeted and effective HAB management strategies. For
example, water management agencies could use this information
to identify which water bodies are most at risk under future climate
scenarios and prioritize monitoring and mitigation efforts
accordingly.

3.4. Model transferability and uncertainty in data-scarce areas

The application of fine-tuned TL proved to be an effective
strategy for significantly (p < 0.001) improving the prediction of
algal dynamics in data-scarce areas, with an NSE of 0.20 higher than
that achieved by using locally limited data to train new LSTMs
(Fig. 5a). However, the pretrained LSTM used for direct prediction
without retraining showed similar performance to the locally
trained new LSTM, with an average NSE reduction of only 0.04. This
finding contrasts with previous studies on streamflow simulation
in ungauged watersheds [67]. There are two potential reasons for
this discrepancy: (1) the drivers of algal dynamics in different lakes
and reservoirs are complex and unique (compared to streamflow,
which is primarily driven by precipitation), making interregional
similarity relatively difficult to capture, and (2) the source domain
selection process prior to TL in this study was conducted on a na-
tional scale, further amplifying interregional differences in algal
dynamics. A major advantage of TL is that it allows the LSTM to
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learn basic knowledge about algal dynamics from areas with
abundant information, specifically the patterns of algal density
responses to water environmental and meteorological variables.
However, this knowledge may differ from or even conflict with the
available information from a target domain. Following local fine-
tuning with a limited amount of data for the target domain, the
LSTM model significantly reduced errors and uncertainties due to
differences in algal dynamics between the source and target do-
mains, making it suitable for predicting the target domain. Fine-
tuned TL could practically improve the prediction accuracy (ANSE
> 0) for algal density in the context of local data scarcity compared
to training a new LSTM model (Fig. 5b). Furthermore, 60.8% of the
sites exhibited increased NSE values of 0.0—0.5, while 16.7% of the
sites had increased NSE values above 0.5. However, 22.5% of the
sites produced varying degrees of “negative transfer” after fine-
tuning and local optimization, resulting in decreased accuracy.
This phenomenon has rarely been reported in water environment
modeling studies compared to studies on remote sensing and en-
ergy [35,68]. Due to the very limited data available for the target
domain (assumed to be 20% of the samples in the entire dataset,
ranging from 31 to 192 samples, with an average of 120 in this
study), even a fine-tuned TL strategy suitable for small-sample
modeling could not optimize the pretrained LSTM model to a
state that fully captured the dynamics of local algal density.
Regardless, the benefits of a fine-tuned TL strategy for prediction in
data-scarce regions warrant the attention of modelers.

We also assessed the uncertainty of TL and found that the high
similarity of algal series between the source and target domains
enhanced the transfer prediction of the LSTM model. However,
differences in potential algal drivers between the source and target
domains hindered transfer, and accounting for differences in
additional potential drivers led to more pronounced negative

correlations (Fig. 5¢). High ANSEs occurred more frequently, with
smaller differences in potential driver patterns (Fig. 5d). Uncer-
tainty analysis helped explain the emergence of “negative transfer.”
We accounted for the similarities in algal density between source
and target domains in our source domain selection approach.
However, differences in environmental variables between the two
domains may undermine the effectiveness of the pretrained LSTM
model, making the established input-output relationships either
ineffective or counterproductive. Therefore, similar input and
output variables between source and target domains should be
considered when selecting suitable source domains for more robust
TL-based modeling. Despite a small number of conflicting results,
we affirmed that there are varying degrees of similarity in algal
dynamics between China's lakes and reservoirs, and fine-tuned TL
can effectively benefit prediction in data-scarce areas.

4. Conclusions and prospects

Characterizing HABs for the maintenance of aquatic ecosystem
functioning is essential but challenging. In this study, we developed
an explainable LSTM model for lakes and reservoirs with varying
degrees of data scarcity in a national context to comprehensively
identify the complex relationships between algal densities and
multiple environmental factors. Explainable LSTM quantified the
importance and sensitivity of potential environmental drivers
while providing accurate predictions. For instance, WT was the
most important potential driver of HABs, although patterns
regarding its importance and sensitivity were inconsistent across
climate zones. We also calculated the WT inflection points on HABs
based on explainable LSTM, offering specific tipping point reference
data for decision-makers. In addition, explainable LSTM helped us
analyze the uncertainty in transferring the model to data-scarce
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areas, which provided insights for creative approaches to solving
“negative transfer” due to the selection of an appropriate source
domain from many potential domains and consideration of the
similarities among potential driving patterns. Explainable LSTM
facilitated the acquisition of evidence for the prevalence of HAB
mechanisms and interregional differences, and their explanation
could be further improved by incorporating hydrological attributes,
such as water-level dynamics and hydraulic residence time, into the
input features. Furthermore, explainable DLs can be extended to
larger scales to achieve synergistic predictions of continental and
even global algal dynamics and to reveal the underlying complex
ecological patterns. Nevertheless, before this can be achieved, there
is an urgent need to expand algal monitoring networks, especially
in poorly gauged waterbodies, to meet the requirements of HAB
control and modeling.
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