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Automated optimization and uncertainty
quantification of convergence parameters
in plane wave density functional theory
calculations
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First principles approaches have revolutionized our ability in using computers to predict, explore, and
designmaterials. Amajor advantage commonly associatedwith these approaches is that they are fully
parameter-free. However, numerically solving the underlying equations requires to choose a set of
convergence parameters. With the advent of high-throughput calculations, it becomes exceedingly
important to achieve a truly parameter-free approach. Utilizing uncertainty quantification (UQ) and
linear decomposition we derive a numerically highly efficient representation of the statistical and
systematic error in themultidimensional space of the convergence parameters for plane wave density
functional theory (DFT) calculations. Based on this formalism we implement a fully automated
approach that requires as input the target precision rather than convergence parameters. The
performance and robustness of the approach are shown by applying it to a large set of elements
crystallizing in a cubic fcc lattice.

Density functional theory (DFT) has evolved as work-horse method to
routinely compute essentially all known materials their properties. While
DFT is parameter-free in the sense that no materials specific input para-
meters are needed, it is not free of numerical convergence parameters.
Carefully selecting these parameters is critical: Setting them too low may
sacrifice the predictive power, selecting them too high may waste valuable
computational resources. Since DFT-based calculations consume huge
amounts of supercomputer resources worldwide1 being able to reduce the
cost for such calculations, without having to sacrifice their precision, would
open large opportunities in saving computational resources.

Until recently, the selection of these parameters was based on a few
guidelines and manual benchmarks. However, exciting new applications
such as e.g. the fitting of highly precise machine learning potentials that
routinely achieve mean errors in the order of a fewmeV/atom require DFT
inputdata setswith aprecision that iswell below thexc-potential error.2Also
predicting finite temperature materials properties reliably requires a preci-
sion inDFT energies on the order of 1meV/atom.3 The precisionneeded for
such applications goes well beyond previous criteria. To guarantee this level
of precision a detailed uncertainty quantification as well as an automated
approach to determine the optimum set of convergence parameters that
guarantee a predefined target error is needed.

DFT input parameters can be roughly classified into two categories:
Those, that cannot be systematically controlled and improved.Aprominent
example is the xc-correlation functional and to some extend the choice of
the pseudopotential. The other category contains controllable parameters,
which can be systematically improved. The most important parameters in
the second category are the number of basis functions and the k-point
sampling. These reflect the need to approximate an infinite basis set such as
e.g. plane waves (PW) or a continuous set of k-points in the Brillouin zone
by discretized finite sets that can be represented on the computer. The
controllable parameters behind these approximations can often be descri-
bed by a single scalar such as the energy cutoff ϵ or the number of symmetry
inequivalent k-points κtot.

The total energy surface EtotðfRI
!

;ZIg; κtot; ϵ; . . . Þ is thus not only a
function of atom coordinates RI

!
and species ZI, but also of the convergence

parameters κtot, ϵ, etc. Since the total energy surface is the key quantity to
derivematerials properties, any derived quantity f[Etot] thus depends on the
choice of the convergence parameters as well.

Numerically accurate, i.e. converged, results would be obtained when
the convergence parameters approach infinity. In practice, this strategy is
not feasible since the required computational resources also scale with the
convergence parameters. Therefore, from the beginning of DFT
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calculations, a judicious choice of the convergence parameters was
mandatory4–7. To optimally use computational resources the convergence
parameters have to be chosen such that (i) the actual error Δf (ϵ, κ,… ) is
smaller than the target error Δftarget of the quantity of interest and (ii) the
required computational resources are minimized. Since the required com-
putational resources scale monotonically with the convergence parameters
the latter condition translates in keeping the convergence parameters as
small as possible without violating (i).

Extensive convergence checks have been mainly reported for simple
bulk systems by computing the total potential energy surface (PES) as a
function of the volume per unit cell8–11. Knowing the energy-volume PES
allows for adirect computationof importantmaterials properties such as the
equilibrium lattice structure, and mechanical response such as the bulk
modulus or the cohesive energy12–14. For more complex quantities derived
from the PES such as phonon spectra, surface energies, or free energies
routine benchmarks such as by how much a target quantity changes when
increasing a specific convergence parameter are common. However, sys-
tematic convergence checks are rarely reported, e.g.3,15 for phonons or16 for
finite temperature-free energies.

To address the challenge of identifying the computationally most
efficient convergence parameters (ϵ, κ) to achieve a given convergence goal,
we derive the asymptotic behavior of the systematic and statistical errors.
For this purpose we consider the energy-volume dependence and derived
quantities such as the equilibrium lattice constant and the bulk modulus of
cubic materials. The proposed approach can be straightforwardly extended
to additional convergence parameters aswell as to othermaterial properties,
with the energy-volumedependence being awidely-used example to test the
convergence of more complex materials properties or the performance of
DFT codes (see e.g.17). We start by computing an extensive set of DFT data
E(V, ϵ, κ) spanning the full range of physical (i.e. volume V) as well as
convergence parameters (i.e., ϵ, κ).

By carefully analysing these we show in a first step that the three-
dimensional array can be decomposed into four two-dimensional arrays
(seeFig. 3)with full control on systematic and statistical errors. In the second
step, we develop an efficient decomposition approach also for derived
quantities such as the equilibriumbulkmodulusBeq(ϵ, κ). The availability of
these extensive and easy-to-compute (via linear decomposition into lower
dimensional arrays or vectors) data sets reveals surprising and hitherto not
reported correlations between these critical DFT parameters. The derived
formalism also allows us to construct and implement a computationally
efficient algorithm that in a fully automated fashion predicts optimum
convergence parameters that minimize computational effort while simul-
taneously guaranteeing convergence below a user-given target error.

Results and Discussion
We developed an automated tool to compute error surface and optimized
convergence parameters for a wide range of chemical elements and pseu-
dopotentials reducing the computational costs by more than an order of
magnitude. Figure 1 shows the convergence behavior for 9 elements using as
target quantity the bulk modulus. Next to these fcc metals we have also
tested the approach for other crystallographic structures (bcc W) as well as
for semiconductors (Si). The results for the latter two are given in Supple-
mentary Figs. 1 and 2. For each calculation the PBE-GGA pseudopotential
recommended by theVASPmanual18 is chosen (VASPPAW5.4). These are
also the same pseudopotentials used in the Delta project17. To visualize the
convergence contour lines at target errors of 0.1 to 5 GPa are shown on the
error surface. Some of the elements such as e.g. Ca allow a convergence
down to 0.1 GPa even for rather modest convergence parameters. Others,
such as e.g. Cu achieve this lower limit barely at the maximum set of
convergence parameters studied here. In general, systematic convergence
trends that would allow to extract some simple rules for finding optimum
convergence parameters are lacking. This emphasizes the importance to

Fig. 1 | Comparison of convergence for nine FCC
metals. The red lines mark iso-contours of constant
error (see legend in a). The blue squares mark the
parameter set recommended by VASP. The orange
and magenta filled squares mark values used in the
Materials Project19–21 and the delta project17,
respectively. Some elements like Ca (a), Al (b), Pb
(d), Ir (g), Pt (h) and Au (i) achieve a precision of up
to 0.1 GPa. Others like Cu (c), Pd (e) and Ag (f) are
limited to 0.5 GPa in the considered parameter
space. Above each contour plot the element and its
determined (ϵmax, κmax) bulk modulus are given.
The grey line denotes the boundary where the sys-
tematic and statistical error are equal.
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provide automatized tools for this task and the challenge to reduce the
computational cost for sampling the full convergence parameter space.

For our minimum parameter set the statistical error, caused by chan-
ging the number of plane waves (basis set) when varying the cell volume7,
dominates for all elements except for Al, Ca and Pb as indicated by the grey
line in Fig. 1, which marks the boundary where the statistical error and
systematic error are equal. Going to errors below1GPa the systematic error,
caused by the finite basis set, becomes the dominating contribution except
for elements with a very high bulk modulus such as Ir and Pt. In the region
dominated by the systematic error the cutoff and k-point related error
contribution are additive (Eq. (7)). As a consequence, the contour lines in
Fig. 1 are either parallel to the κ-axis (i.e. the dominating error is due to the
energy cutoff ϵ) or to the ϵ-axis (with κ causing the leading error). The
difference in convergence of the bulk modulus for elements like Al and Au
which have similar equilibrium volumes highlights the need to determine
element-specific convergence parameters. Simple scaling relations, e.g.,
using the volume do not capture the complexity of the underlying electronic
structure.

To ‘benchmark’ the choices made by our automated tool against the
choicesmade byhuman expertswe include the parameters used in two large
and well-established high-throughput studies: The Materials Project19–21

(orange squares) and the delta project17 (magenta squares). The delta pro-
ject, which aims at high precision to allow a comparison between different
DFT codes, systematically shows an error between 1 and 5GPa, with a clear
tendency towards the 1 GPa limit. TheMaterials Project, where the focus is
on computational efficiency and not the highest precision the error is close
to the 5 GPa limit, for several elements (e.g. Ir, Pt, Au) the error becomes 10
GPa or larger.

By analyzing the dependence of the total energy not only as a
function of a single convergence parameter, as commonly done, but as a
function of a physical parameter (in the present study the volume) as
well as multiple convergence parameters (energy cutoff and k-point
sampling) simultaneously we identified powerful relations to compute
both the statistical and systematic error of the total energy and derived
quantities. The identified relations summarized in Eqs. (7) and (8)
provide an accurate and computationally efficient approach (Fig. 3),
thus allowing to describe error surfaces of multiple convergence para-
meters for important materials quantities such as e.g. the bulk modulus.
This allows DFT practitioners to construct such energy surfaces for
both the systematic and statistical error with amodest number of simple
DFT calculations opened the way to construct error phase diagrams that
tell whether for any given parameter set one or the other error type
dominates. They also provide direct insight of how multiple con-
vergence parameters together affect the errors and allowed us to con-
struct contour lines of constant error. Having this detailed insight is
helpful for DFT practitioners to choose and validate accurate yet
computationally efficient convergence parameters. It also allowed us to
develop and implement a robust and computationally efficient algo-
rithm. The resulting fully automated tool, implemented in pyiron22,
predicts an optimum set of convergence parameters with minimum
user input, i.e. choice of pseudopotential, desired target error, and
quantity of interest (e.g. bulk modulus). We expect that this approach
where explicit convergence parameters are replaced by a user-selected
target error will be particularly important for applications where for a
large number of DFT calculations a systematically high accuracy is
crucial, e.g. for high-throughput studies and for constructing data sets
to be used in machine learning23.

Analysis of the DFT convergence parameters
As a first step towards an automated uncertainty quantification of the total
energy surface and derived quantities we start with an analysis of DFT
convergence. As a model system we consider the energy-volume curve of
bulk fcc-Al constructed by changing the lattice constant alat of the cubic cell
at T = 0 K. Due to crystal symmetry all atomic forces exactly vanish, so that
the only degree of freedom is the lattice constant or equivalently the volume

of the primitive cell (V ¼ a3lat=4). The actual calculations are performed
using VASP24–26. The results and conclusions are not limited to this specific
code but can be directly transferred to any plane wave pseudpotential
DFT code.

In this study, we focus on the two most relevant convergence para-
meters of a plane wave (PW) DFT code: the PW energy cutoff ϵ and the k-
point sampling κ. While these two convergence parameters are the most
prominent ones, in an actual DFT plane wave pseudopotential code many
more exist, describing e.g. the size of the various numerical meshes to
perform the Fast Fourier Transformations (FFT), describe the electronic
density to compute exchange correlation, etc. All these parameters scale in a
DFT code with the energy cutoff, i.e., converging the energy cutoff will
automatically also converge these convergence parameters. We will there-
fore consider these parameters not explicitly in this study, but rather fix the
Fouriermesh for the plane waves at 2 ×Gcut and themesh for the charges at
double the number of grid points in each direction compared to the Fourier
mesh. We note, however, that optimizing them separately would open
additional savings in computational resources. Furthermore, we set the
electronic convergence to 10−9 eV to guarantee the resulting fluctuations are
always lower than the convergence error.

A key step in anyDFT codewith periodic boundary conditions such as
a plane wave approach is the integration over the occupied states in the
Brillouin zone.Here, the k-point sampling defines the size of the integration
mesh. The convergence of this integration is largely affected by the presence
of a steep jump in occupations at the Fermi surface. To improve con-
vergence, two main schemes have been developed: Smearing methods that
replace the sharp step at the Fermi surface by a smooth function and tet-
rahedron methods. The first type requires a convergence parameter -
commonly called smearing parameter. Large values for this parameter
improve the k-point convergence rate but can show substantial deviations
from the converged result at zero smearing, i.e., for the sharp Fermi surface.
In contrast, the tetrahedron method requires no additional convergence
parameter. Figure 2 illustrates the convergence behavior of the two schemes.
To avoid additional complexity due to an additional convergence parameter
we use here the tetrahedron method with Blöchl corrections27. For the
generation of the k-point mesh various approaches have been developed. A
widely used approach is theMonkhorst-Packmesh, which requires as input
the grid-dimensions (κ×κ×κ)withκ an integer value andnooffset fromthe
original Brillouin zone. Since this scheme is available in practically all DFT
codeswewill use it in thepresent study.Wenotehowever, that alternativek-
point generation schemes28 could be tested and employed to enhance k-
point convergence.

To discuss and derive our approach we first compute and analyze
the total energy surfaceE(V, ϵ, κ) of a primitive cubic cell as a function of
volumeV, energy cutoff ϵ, and k-point sampling. The k-point sampling
is given by κ the number of k-points in one dimension. If needed the
number of symmetry inequivalent k-points κtot can be

Fig. 2 | Comparison of the convergence of the bulk modulus for copper at an
energy cutoff of 1200 eV over k-points in one direction for different smearing
methods. TheMethfessel-Paxton method colored based on the smearing parameter
sigma σ and the tetrahedron method with Blöchl corrections27 as dashed line in
black (TB).
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straightforwardly translated into k-point density, which is the more
convenient description when studying a wide variety of differently sized
and shaped supercells. Wemap the energy surface on an equidistant set
of nV volumesVi ranging over an interval ± 10% around the equilibrium
volume Veq (see Section “Analysis and fit of the energy-volume
curve”), nϵ energy cutoffs ϵ and nκk-point samplings κ (see Fig. 3). The
generated shifted k-point mesh starts at a minimal k-point sampling of
3 × 3 × 3(κmin = 3) and goes up to amaximum of 91 × 91 × 91(κmax = 91)
and an energy cutoff of ϵmin = 200 eV up to ϵmax = 1200 eV. The k-point
sampling is increased in equidistant steps ofΔκ = 2 to always include the
Gamma point. The energy cutoff is increased in equidistant steps of Δϵ
= 20 eV. For the following analysis we focus on fcc bulk aluminum.
Extensive tests for other elements and pseudopotentials show qualita-
tively the same behavior and as discussed in the beginning of Section
“Results and Discussion for fcc elements” and in Supplementary
Information 2 for non-fcc elements. In total nV× nϵ× nκ= 21 × 51 × 45 =
48195 DFT calculations have been performed for a single pseudopo-
tential. We note already here that such a large number of DFT calcu-
lations is not required for the final algorithm. The complete mapping of
cutoff and k-point-sampling is used here only to derive and benchmark
the asymptotic behavior for E(V, ϵ, κ) and Bxðϵi; κjÞjVeq

when going
towards large (i.e. extremelywell converged) parameters. To analyze the
energy surface E(V, ϵ, κ) we define the convergence error with respect to
the maximum energy cutoff ϵmax and k-point sampling κmax, respec-
tively:

ΔEϵðV; ϵ; κÞ ¼ EðV; ϵ; κÞ � EðV; ϵmax; κÞ ð1Þ

ΔEκðV; ϵ; κÞ ¼ EðV ; ϵ; κÞ � EðV; ϵ; κmaxÞ: ð2Þ

This formal decomposition is motivated by the fact that the two
parameters affect the convergence of two very different physical phenom-
ena. Increasing the energy cutoff primarily improves the description near
the nuclei, whereas increased k-point sampling improves the description of
bonding, Fermi surface etc. In Section “Physical origin”we analyse inmore
detail the individual energy contributions of the total energy to explain the
physical origin. Before that, we will first analyze the dependence of the
energy over volume of these quantities since this dependence directly
impacts the convergence of equilibrium quantities such as bulk modulus,
lattice constant etc. The energy volume dependence of the energy cutoff
convergence ΔEϵ is shown in Fig. 4b for a fixed κ. As can be seen, using a
non-converged energy cutoff ϵmin= 260 eVgives rise to a convergence error
in the energy that strongly depends on the volume. In the shown example
the error is largest for small volumes and monotonously decreases with
increasing volume.As a consequence, the equilibriumvolumewill be shifted
to a smaller value compared to the fully converged one.

Figure 4b also reveals a remarkable and highly useful behavior of the
energy cutoff convergenceΔEϵ: It is in first order independent of thek-point
sampling. Taking the difference

ΔΔEnoise ¼ ΔEϵðV; ϵ; κ2Þ � ΔEϵðV ; ϵ; κ1Þ ð3Þ

between any two k-point samplings κ1 and κ2 for a fixed energy cutoff ϵ
results in a volume dependence that resembles randomnoise. This is shown
exemplary in Fig. 4d when computing ΔΔE setting κ1 and κ2 to the mini-
mumandmaximumcutoff value: Theaverage hΔΔEðVÞiV is approximately
zero. We validated that the distribution is Gauss-like and any smooth
volume dependence is absent. Due to these characteristics we can therefore
regard the variance of this contribution

ΔΔEðϵ; κÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔΔEnoiseðVÞÞ2iV

q
ð4Þ

as a statistical error. Its origin are discretization errors arising from dis-
continuous (discrete) jumps whenever a continuous change in κ or ϵ results
in a discontinuous change in the integer number of k-vectors or planewaves
(see e.g. ref. 7). The physical origin of this statistical error is explained in
Section “Physical origin”.

Figure 4c shows for the k-point convergenceΔEκ(V, ϵ, κ) an analogous
behavior: It is in first order independent of ϵ. The difference ΔΔE, is shown
in Fig. 4d and by construction (see Supplementary Information 1) identical
to the one obtained from the cutoff convergence ΔEϵ(V, ϵ, κ). We can
therefore conclude that the energy cutoff and k-point convergence can be
separately considered, i.e.,

ΔEϵðV ; ϵ; κÞ � ΔEϵðV; ϵ; κmaxÞ±ΔΔEðϵ; κÞ ð5Þ
and

ΔEκðV; ϵ; κÞ � ΔEκðV; ϵmax; κÞ±ΔΔEðϵ; κÞ: ð6Þ

Fig. 3 | Schematic representation of the 3-dimensional discrete mesh of physical
and convergence parameters used to map the energy surface E(V, ϵ, κ) (left side)
and graphical representation of the proposed linear decomposition into
2-dimensional matrices (right side). The upper/lower part represents the sys-
tematic/statistical error contributions given by Eqs. (7) and (8), respectively. To
reconstruct the full 3-dimensional array on the left only DFT data computed on the
orange and blue colored 2-dimensional planes is required.

Fig. 4 | Decomposition of the energy surface E(V, ϵ, κ) into smooth (systematic)
and fluctuating (statistic) contributions. a Energy-volume curves for a set of
minimum and maximum convergence parameters ϵmin = 260 eV to ϵmax = 1200 eV
and κmin=7 to κmax=91.b, c show the ϵ and κ convergenceΔEϵ(V, ϵ, κ) andΔEκ(V, ϵ,
κ) as defined in Eqs. (1) and (2) for a fixed k-point sampling κ and cutoff ϵ,
respectively. d Residual (statistical) error according to Eq. (4).
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The above equations can be summarized in the following expression of the
total energy surface:

EðV; ϵ; κÞ � EðV; ϵmax; κmaxÞ
þΔEϵðV; ϵ; κmaxÞ þ ΔEκðV; ϵmax; κÞ
±ΔΔEðϵ; κÞ:

ð7Þ

The above equation decomposes the original three dimensional array,
whichwould require to performnV×nϵ×nκDFTcalculations into four two
dimensional arrays. The first two require only nV × (nϵ + nκ) DFT calcu-
lation. The last contribution,ΔΔE(ϵ, κ) requires for each pair of ϵ, κ also the
computation at all volumes, i.e., nV × nϵ × nκ DFT calculations. In the
following Section we will analyze the statistical error and derive a compu-
tationally efficient approach to compute this error.

Analysis of the statistical error
Having the full dataset of DFT energies as function of V, ϵ and κ allows us to
directly compute the statistical error as defined in Eq. (4). The results are
summarized in Fig. 5a. In the double-logarithmic plot the k-point con-
vergence shows an almost linear dependence, with a vertical shift when
changing the energy cutoff (color coded). The fact that the slope remains
unchanged when changing the energy cutoff indicates that the k-point
convergenceof the statistical error is independent of the energy cutoff except
for a proportionality factor. To verify this independence we plot the nor-
malized statistical error σE(ϵ, κ)/σE(ϵ, κmin) in Fig. 5b. Having this insight we
consider the normalized statistical error along the energy cutoff, σE(ϵ, κ)/
σE(ϵmin, κ). The fact that all curves coincide clearly shows that except for a
proportionality factor the cutoff dependence is identical.

Using the above identified empirical relations we can approximate the
statistical error by:

σEðϵ; κÞ � σEðϵ; κminÞ � σEðϵmin; κÞ
σEðϵmin; κminÞ

: ð8Þ

The computation of σE(ϵ, κmin) and σ
E(ϵmin, κ) requires nV × (nϵ+ nκ)

additional DFT calculations. To obtain a sufficiently large magnitude of the
statistical error these calculations are performed at the minimum of the
convergence parameter set where the statistical noise is largest. As a con-
sequence these extra calculations are computationally inexpensive. To
compute the statistical error a second reference next to ϵminor κmin is needed
(see Eq. (3)).Wefind that ϵmax and κmaxprovide an accurate estimate. These
values do not require any additional DFT calculations since they are iden-
tical to the ones used to construct the systematic convergence errorsΔEϵ and
ΔEκ in Eq. (7). The above formulation allows a highly efficient computation
of the statistical error by reducing the computational effort from (nV × nϵ ×
nκ) DFT calculations to 2nV(nϵ + nκ).

Analysis and fit of the energy-volume curve
In contrast to the conventional approach of validating the level of con-
vergence for a given point E(V, ϵ, κ) of the total energy surface by varying ϵ
and κ independently (see e.g. refs. 3,9,18), Eq. (7) together with Eq. (8)
provide a powerful and computationally highly efficient approach to
interpolate energy-volume curves E(V, ϵ, κ) for any set of convergence
parameters ϵmin < ϵ< ϵmax and κmin < κ< κmax. They also form the basis for
the automated approach to derive optimum convergence parameters to
achieve a given level of precision at theminimal computational cost, thatwill
be derived in the following. The underlying relations and assumption have
been carefully validated by computing and analysing an extensive set of
pseudopotentials and chemical elements, as presented below.

Figure 6 shows the computed energy-volume curves E(V, ϵ, κ) for two
sets of convergence parameters: One with parameters as recommended by
the VASP-manual18 (i.e. ϵmin = 240 eV and κmin = 11), the other one for an
extremelywell convergedparameter set (i.e. ϵmax=1000 eVand κmax=101).
Looking at the results over a large volume range (± 5%; Fig. 6a) the two
curves appear to be smooth andwell behaved. Thismay give the impression
that the main impact of the convergence parameters is on the absolute
energy scale resulting only in a vertical shift. However, going to a 5 times
smaller volume range (Fig. 6b) the surface with the recommended con-
vergence parameters shows discontinuities that divide the curve. While the
segments between two neighboring discontinuities are smooth and analy-
tically well-behaved their boundaries to the neighboring segments are dis-
continuous in absolute values and derivatives. As a consequence, even a
well-defined energy minimum with zero first derivative, which is the defi-
nition of the T = 0 K ground state, does not exist.

The discontinuous behaviour is a well-known artifact of PW-
pseudopotential total energy calculations7. The origin is that when chan-
ging the volume the number of basis functions (plane waves) changes. Since
the number of plane waves is an integer, changing the volume continuously
results in discontinuous changes in the number of PWs. Improving the
convergence parameters reduces the magnitude of the discontinuity (see
line marked by red and green dots in middle figure) but does not remove it
(see Fig. 6cwhere the volume range has been reduced to ± 0.05%).Note also
that in this interval the lower converged curve (straight line marked by blue
dots) has no resemblance at all to the expected close to parabolic energy
minimum.

A common strategy to overcome the discontinuous behaviour is to fit
the energy-volume points obtained from the DFT-calculations to a smooth
fitting function6. Alternatively, Francis and Payne7 described an analytical
correction schema to remove these discontinuities. We first describe and
analyze fitting approaches. In Section “Physical origin” we analyze and
compare the performance of the fitting approaches with the Francis and
Payne correction7.

Fig. 5 | Convergence of the statistical error (Eq. (4)) for Cu. aConvergence over k-
point mesh with the different colors denoting the different energy cutoffs.
bNormalized k-point convergence (σE(ϵ, κ)/σE(ϵ, κmin)). The red solid line illustrates
the mean. Finally the inset in b relates the statistical error in energy σE to an error in
the bulk modulus σB0 using bootstrapping (s. Section “Uncertainty quantification
of derived physical quantities”).

Fig. 6 | Comparison of two energy-volume curves for fcc-bulk Al. The first one
(marked by the blue and orange dots) has been computed using the recommended18

set of convergence parameters for energy cutoff ϵ = 240 eV and k-point sampling κ =
11. The second one (marked by the red and green dots) has been obtained using an
extremely high (i.e. well converged) set of parameters (ϵ = 1000 eV and κ = 101).
Three different volume ranges are shown: a vrange = ± 5% to compare the absolute
energies, followed by b vrange = ± 1% to compare the energy changes in reference to
the minimum energy and finally c vrange = ± 0.05% again the energy changes. The
graphs are coloured based on the number of plane waves, with the color changing
whenever the total number of plane waves changes.
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Two main categories for fitting the energy-volume curve exist: First,
using a physics-based fit function e.g. Birch-Murnaghan expressions for the
equation of state that describes the relation between the volume of a body
and the pressure applied to it12–14. From this set we chose the Birch-
Murnaghan equation of state, since it is the most popular choice in fitting
such energy-volume curves. The second approach is to use polynomial fits.

In contrast to the discontinuous energy surface, having a smooth fit to
the energy-volume data points allows one to obtain theminimum as well as
higher order derivatives around it. Particularly important in this respect are
the energy minimum (related to the cohesive energy), the volume at which
the energybecomesminimum(equilibriumvolumeVeq atT=0K), aswell as
the second and third derivative (related to the bulk modulus Beq and its
derivative B0

eq). These quantities can be measured experimentally and thus
allow a direct comparison with the theoretical predictions.

Fitting the data points using either analytical or polynomial functions
introduces next to DFT related convergence parameters (e.g. ϵ and κ)
additional parameters that need to be carefully chosen. For the energy-
volume curve these are (i) the number of energy-volume pairs and (ii) the
volume range. For a polynomial fit, in addition, also (iii) the maximum
polynomial degree is a parameter that needs to be tested. Since these
parameters are related to the fit and not to theDFT calculationwe call them
in the following hyper-parameters.

Similarly to the DFT convergence parameters the fit-related hyper-
parameters have to be chosen such that (i) the error related to them is
smaller than the target error in the physical quantity of interest and (ii)
minimize the computational effort (number and computational expense of
the necessary DFT calculations). To construct a suitable set of hyper-
parameters we consider the bulk modulus:

Beq ¼ V ∂2EðVÞ
∂2V

jV¼Veq
: ð9Þ

The reason for choosing this parameter is that quantities related to
higher derivatives in the total energy surface are more sensitive to fitting/
convergence errors. Thus, identifying a set of hyper-parameters for this
quantitywill guarantee that it works also for less sensitive quantities. Indeed,
we checked and validated this hypothesis for quantities related to lower
orders in the total energy surface such as equilibrium volume Veq or
minimum energy Eeq.

We first study the dependence of the bulk modulus with respect to the
volume range. As input we use the DFT data set E(V, ϵ, κ) constructed in
Section “Analysis of the DFT convergence parameters”, i.e., 21 energy-
volume data points equidistantly distributed over the considered volume
range. For polynomial fits we also tested the impact of the polynomial
degree. The accuracy of the fit increases until a maximum degree of d = 11,
i.e., a degreewhich roughly corresponds to 1/2 of the number of data points.
Going to higher degrees does not reduce the fitting error.

The results are summarized in Fig. 7. Next to a polynomial fit we
also show the results using a physics based analytical expression (Birch-
Murnaghan equation of state13). As minimum limit for the target error
we chose 0.1GPa.Wewill later show that this target ismuch smaller than
theDFT error related to the exchange-correlation functional, which is on
the order of 10 GPa and the one related to typical DFT convergence
parameters (≈ 1…5 GPa).

Figure 7 shows that the performance of the two fitting approaches
depends on whether low or high convergence parameters are used. For low
convergenceparameters the analyticalfit based onBirch-Murnaghan (blue)
is rather insensitive to the exact choice of the volume interval—it remains
almost unchanged for intervals between 2 and 10%.Onlywhen going above
10% the underlying analytical model with its four free parameters becomes
too unflexible giving rise to an increasing model error. For the commonly
recommended interval of ±10%18 the polynomial fit (orange) shows a
similar performance but deteriorates both for smaller and larger volume
ranges.

For very high convergence parameters, however, the polynomial
approach (red) clearly outperforms the analytical one (green). The

polynomial fit is highly robust and largely independent on the chosen
volume interval that ranges between 0.1% and 30%. Also, the number of
21 energy-volume points is sufficient to achieve the targeted error of 0.1
GPa. In this high-convergence regime the analytical Birch-Murnaghan
fit provides precise predictions only for small volume ranges up to 2%.
The reason is that the analytical expression, which contains only four
free fitting parameters is no longer able to adjust to the actual shape of
the DFT energy surface.

Based on this discussion we will use in the following a volume interval
of ±10%and21 sample points.With this set of hyper-parameterswe verified
that the errors arising from the polynomialfit are below the target of 0.1GPa
for both the systematic and the statistical error.

Physical origin
Asmentioned in Section “Analysis of the DFT convergence parameters”,
DFT practitioners commonly assess the convergence of an individual set of
convergence parameters (ϵ, κ) by testing their convergence separately. This
involves keeping one parameter constant (e.g., ϵ) and then increasing the
other parameter (e.g., κ), or vice versa. The rationale behind this approach
lies in the distinct impact of these parameters on different properties:
increasing the energy cutoff ϵ primarily improves the description near the
nuclei, while augmenting k-point sampling κ enhances the description of
bonding, Fermi surface, and related characteristics. In the later part of this
section, a concise qualitative analysis is presented to explainwhy the various
total energy contributions exhibit markedly different convergence
behaviors.

The anticipateddecoupling of the convergenceof the twoparameters is
reflected by the systematic error contribution in Eq.(7) (middle term). This
contribution is expressed as a linear superposition of the errors obtained
when converging a single parameter (ϵ or κ) while keeping the other one
fixed. The explicit analytical formulation derived here not only allows the
specification of absolute error bars but also enables the correction of sys-
tematic errors.

While the expression of the systematic error is in line with the
strategies employed by DFT practitioners the expression identified for
the statistical error has no direct relation to these strategies. Having a
product rather than a sum of the individual error contributions (see last
term in Eq. (7)) implies a strong coupling between them, in obvious
contrast to the systematic error contributions. The origin of the sta-
tistical error are discretization errors that arise when replacing integrals
over the DFT supercell or Brillouin zone by a summation over a finite
mesh or when truncating the infinite PW basis to a finite set of G
vectors. This error gives rise to discontinuous jumps in DFT quantities
such as e.g. total energies or forces and occurs when changing the size
and shape of the supercell. These discontinuities pose a challenge
whenever energy differences are needed, e.g. to compute derivatives
such as the bulk modulus as discussed here or when computing

Fig. 7 | Comparison of the volume range dependence of the bulk modulus for a
primitive aluminium supercell with the convergence parameters low (ϵ = 240 eV, κ=
11)/high (ϵ = 1040 eV and κ = 91) for the Birch Murnaghan (BM.) equation in blue/
green in comparison to a polynomial fit (Poly.) in orange/red, each with N = 21
energy-volume pairs.
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formation energies. Such energies are routinely computed to describe
e.g. the thermodynamic stability of bulk, surface or defect structures
which have widely varying supercells.

A prominent example where the determination of derivatives is
hamperedby these discontinuities is the here studied example of the energy-
volume curve and the determination of the minimum (equilibrium) or of
the second derivative (related to the bulk modulus - Eq. (9)). These chal-
lenges and their origin have been early on recognized and corrections have
been proposed. For the energy volume curve Franics and Payne suggested
already more than 30 years ago an elegant correction that replaces the
discontinuous change in the number of plane waves and k-points by
introducing a smooth scaling factor7.

While this approach can be straightforwardly extended to multiple
continuous variables (not only the cubic lattice constant) an approach to
handle differences between systems that are not connected by a continuous
transformation, which is the case when computing energy differences
between vastly different systems as needed for formation energies, is
missing. Since the convergence checks performed on the energy-volume
curve are in most practical cases meant to serve as a surrogate model for
estimating the convergence error of more complex calculations it is not a
good idea to apply a correction on the surrogate model that is not available
for the actual calculation, e.g., for computing formation energies. We
therefore will refrain from applying this correction when discussing and
applying our approach.

There is also a second reason why we will not apply this correction in
the following: Applying the Francis and Payne correction to our computed
energy-volume curves we find a very different performance. Two extreme
examples are shown in Fig. 8. As shown there the correction is doing an
excellent job for bulkAl but shows no improvement for bulkCu. The reason
for this very different performance are discussed in the next subsection.

In order to understand this rather puzzling behavior we analyze in the
following the nature of the statistical error in the various energy contribu-
tions. The DFT total energy can be expressed as:

Etot ¼ EBS þ EDC: ð10Þ

The first term in the above expression is the bandstructure energy

EBS ¼
X

ik

f ikϵik ð11Þ

with the indices i and k running over the electronic bands and k-points. εik
are the Kohn Sham single particle energies and fik the occupation numbers.
The second part accounts for the double counting corrections and contains

the Hartree potential and the exchange correlation energy. To understand
the convergence of the various contributions we use that the wavefunctions
in a PW approach are described by Bloch’s theorem, i.e.,

ΨikðrÞ ¼ eik:ruikðrÞ ð12Þ

with the Bloch factor eikr and the envelope function u(r). The latter is per-
iodic to the supercell anddepends onlyweakly onk29,30. Thek-dependence is
almost exclusively in the Bloch factor.

A key quantity in DFT is the charge density

ρðrÞ ¼
X

ik

f ikjΨikðrÞj2 ð13Þ

¼
X

ik

f ikuikðrÞ2: ð14Þ

Since in the above expression, the strongly k-dependent Bloch vector
drops the charge density becomes only weakly k-dependent (see e.g.29,30).
Since the Hartree and exchange correlation energy depend only on the
charge density these contributions show only a weak dependence on k.

For the following discussionwe therefore focus on contributionswhich
are non-local in real space and where thus the Bloch factor does not cancel.
One such contribution is the kinetic energy,with the kinetic energy operator
in Fourier space reading (G+k)2 with G the plane wave reciprocal vector.
The kinetic energy enters the one-particle energies and thus the band-
structure energy but not the double counting contributions. In contrast to
the charge density the kinetic energy shows a strong k-dependence. The
second non-local contribution are the PAW pseudopotential projectors
containingmatrix elements of the form <G+ k∣r > which enter the double
counting contributions.

In both contributions G and k do not occur separately but exclusively
as sumG+ k. This is in contrast to contributions such as the charge density.
The specific form G+ k provides an intuitive explanation of why the total
statistical error Eq. (8) is the product rather than the sum of the individual
variances. We therefore note that the resulting discretization error can be
asymptotically reduced to zero when increasing the k-point sampling:With
increasing number of k-points the weight per k-point decreases, giving rise
to smaller and smaller discontinuous jumps in the energy. The statistical
error can be also eliminated when keeping the k-point sampling fixed and
increasing the planewave basis set, i.e., the number ofG vectors. The reason
here is that the planewave coefficients c(G+ k) converge to zero forG→ 0.
This convergence behavior is inconsistent to a sum of the two statistical
errors but is naturally explained by the product expression (Eq. (8)).

Based on the above discussionwe can also explain why the Francis and
Payne correction works well for the noise in the kinetic energy but fails for
the one in the double counting contribution. The kinetic energy operator (G
+k)2 is computed solely in reciprocal space. In contrast, the non-local PAW
operator <G+ k∣r > has in addition also a spatial component described by
the real space meshes. Since the Francis and Payne approach corrects only
thePWdiscretization errorbutnot theone in the real spacemeshes it cannot
correct them.

The above analysis provides a consistent and intuitive explanation of
the origin of the numerical noise and explains why Francis and Payne are
unable to remove noise in the plane wave double counting (PAW). For the
following analysis, we therefore do not apply the Francis and Payne
correction.

Uncertainty quantification of derived physical quantities
The compact representation of the energy surface E(V, ϵ, κ) as function of
both physical and materials parameters (i.e. volume V) and DFT con-
vergence parameters (ϵ, κ) by Eq. (7) together with the set of converged
hyper-parameters derived inSection “Analysis andfit of theenergy-volume
curve“ allows us to interpolate the convergence of important materials
parameters such as equilibrium bulk modulus, lattice constant, cohesive

Fig. 8 | Comparison of the effectiveness of the Francis and Payne7 correction for
aluminium (left) and copper (right). The plots show the change of energy over
lattice constant for the convergence parameters recommended by the VASP
manual18 (ϵAl = 240eV, ϵCu = 400eV and κAl = κCu = 5). For aluminium the Francis
and Payne correction largely reduces the noise in the energy. Only the small noise
from the planewave double counting remains. In contrast, for copper the noise of the
plane wave double counting is dominant from the beginning, so the Francis and
Payne correction has no effect.
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energy etc.Applying this approachprovides an efficient route to identify a set
of convergence parameters (ϵ, κ) that guarantee a given level of convergence
with a very modest number of DFT calculations and thus at minimal
computational cost. To test the accuracy and predictive power of the
approximate energy surface Eq. (7) we first compute the physical quantity
from the full set (i.e. Vi, ϵj, κk) of DFT data. Like in the previous section we
focus on the bulk modulus, which is highly sensitive to even small errors.

The deviation between the bulk modulus and its converged value
B0(ϵmax, κmax) as a function of the convergence parameters is shown in
Fig. 9a. The color code shows the magnitude of the convergence error in
a logarithmic scale. As expected, the error shows a general decreasewhen
going towards higher convergence parameters. The actual dependence,
however, is surprisingly complex showing a non-monotonous behavior
and several local minima. Performing the same fitting approach on the
approximate energy surface Eq. (7) (see Fig. 9c) gives a convergence
behavior that shows the same complexity and is virtually indis-
tinguishable from the one shown in Fig. 9a. Thus, Eq. (7) provides a
highly accurate and computationally efficient approach for uncertainty
quantification of DFT convergence parameters.

It may be tempting to identify the local minima in the error surface as
optimum convergence parameters that combine low error with low com-
putational effort. Unfortunately, these local minima are a spurious product
of an oscillatory convergence behavior, where at the nodal points the value
becomes close to the converged result. Since DFT convergence parameters
should be robust against perturbations caused e.g. by changing the shape of
the cell, by atomic displacements etc. the local minima are likely to shift,
merge or disappear. Thus, selecting parameters based on such local minima
wouldmake these parameters suitable only for the exact structure for which
the uncertainty quantification has been performed. We therefore construct
in the following an envelope function that connects the local maxima. The
envelope represents the amplitude of the oscillatory convergence behavior
and is roughly independent on the exact position of the nodes (phase shifts).

Figure 9b shows the resulting envelope function. It is much smoother
than the original error surface (Fig. 9a and c), decreasesmonotonicallywhen
increasing any of the convergence parameters and is free of any spurious
local minima. For the further discussion and interpretation of convergence
behavior and errors we will exclusively use the envelope function.

The energy expression given by Eq. (7) consists of two systematic
contributions (Δϵ and Δκ) that smoothly change with the convergence
parameters and provide an absolute value. It also includes a statistical
contribution ΔΔE, which quantifies the magnitude of the fluctuations
around this value. This decomposition into systematic and statistical
contributions can be directly transferred to the physical quantities
derived from the energy surface. To get the systematic contribution only
the systematic part of the energy (i.e. the first three terms in Eq. (7)) are
used as input for the fit. The statistical contribution is obtained using a
MonteCarlo bootstrapping approach: The last term in Eq. (7) is replaced
by a normal distribution N(μ, σ2 = ΔΔE). The fitting is performed over a
large number of such distributions. In practice, we found sets of 100
random samples for the energy-volume curve sufficient. As a reference
for the normal distribution the best converged surface E(V, ϵmax , κmax)
+ N(μ = 0, σ2 = ΔΔE(ϵ, κ)) has been used. The inset in Fig. 5b shows the
computed propagation of the statistical error in total energy E to the
statistical error in the bulk modulus. One can observe a linear relation
between the error in the bulk modulus and the magnitude of the noise in
the energy-volume curve. This is because the bulkmodulus is obtained as
the second derivative of the polynomial fitted to the DFT-computed
energy-volume curve. Because both fitting and taking the second deri-
vative are linear operations, the resulting bulk modulus is a linear
functional of the energy values. Hence, the noise in the bulk modulus
scales linearly with the simulated noise in the energy-volume curve.

Figure 9 shows the error surface for the statistical error (Fig. 9a and
d), the systematic error (Fig. 9b and e) as well as the total convergence
error (Fig. 9c and f) for Al and Cu. The two elements have been chosen

Fig. 9 | Construction and reconstruction of the
error surface. a calculated (raw) error, b applying
the convex hull construction described in the text
and c the reconstruction using Eq. (7). The middle
and bottom row show the convex hull of the sys-
tematic error, the statistical error and the total error
for Al (d–f) and Cu (g–i). The solid red line in i is the
(phase) boundary separating regions (lower-left
part) where the statistical error dominates from
regions (upper-right) where the systematic one
is large.
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since they represent the two most different cases that we observe for all
investigated potentials.

Before using the computed error surfaces to derive optimum con-
vergence parameters we briefly recap existing strategies and recommen-
dations for choosing them. There is a broad consensus in the DFT
community that energy cutoff and k-point convergence are largely decou-
pled (for a recent study see e.g.31). This assumption is intensively used in
routine convergence checks: Rather than having to check for k-point and
cutoff convergence simultaneously DFT practitioners commonly rely on
performing convergence checks separately for the two parameters. This
strategy is recommended in many DFT forums and has been implemented
e.g. in automated tools to find suitable convergence parameters31,32.

Having an explicit expression for the systematic and the statistical error
allows us to solve the inverse challenge of identifying the minimal con-
vergence parameters to achieve a given level of convergence at minimal
computational cost. We note that the systematic error formulated in the
second term in Eq. (7) is the mathematical equivalent of the decoupling
assumption: The total systematic error decomposes into the sum of the
individual systematic errors. Our explicit error formulation, however,
provides important additional insight. Since we explicitly know the sys-
tematic error, we can use it to not only estimate the magnitude of the error
but also its sign, i.e., by how much a given set of convergence parameters
over or underestimates the predicted quantity.

It also allows one to find the domain of convergence parameters where
the decoupling works and where it breaks down. We thereto note that the
statistical error, which is the product of the individual statistical errors (Eq.
(8)), does not decouple cutoff and k-point convergence. To utilize this
insight it is important to identify the regions in the error surface where the
statistical error dominates over the systematic error and vice versa. In the
following we therefore discuss the behavior of the two error contributions.

Generally, the statistical error becomes dominant for low convergence
parameters (in the bottom-left region) while the systematic error dominates
for medium and high convergence parameters. The red solid line in Fig. 9i
shows the boundarywhere themagnitude of both errors becomes equal. For
Al (Fig. 9c) this line is absent since the systematic error dominates over the
entire region, i.e., even for the lowest considered convergence parameters.
Since we have chosen the minimum at or only slightly below the VASP
recommended settings the region captures convergence parameters that are
commonly chosen. For Cu, in contrast, the statistical error dominates even
when using convergence parameters that are well above the recommended
ones, i.e., at lower k-point sampling even for an energy cutoff of more
than 600 eV.

The boundary (red line in Fig. 9i) that separates the regions where
either the statistical or the systematic error dominates can be interpreted like
a boundary in a phase diagram: It directly provides information about the
dominating error (phase) for any given set of convergence parameters (state
variables). Suchdiagrams canbe thus regarded as error phase diagrams. The
knowledge of the error type has direct practical consequences. If the sys-
tematic error dominates, the convergence error becomes a simple linear
superposition of each individual convergence error (see Eq. (7)). (Strictly
speakingEq. (7) applies only for the total energy. For derivedquantities such
as the bulk modulus we observe sizeable deviations. The reason is that next
to an explicit dependence of e.g. the bulk modulus on the convergence
parameters also an implicit one via the equilibrium volume occurs, i.e. B0(ϵ,
κ, V0(ϵ, κ))) It thus allows us for any set of (κ, ϵ) values to determine the
deviation from the converged result including its sign. Due to its additive
nature the total systematic error will be always dominated by the least
converged parameter.

In contrast, the total statistical error can be reduced to any target by just
converging a single convergenceparameter,which is a direct consequenceof
itsmultiplicative rather than additivenature (seeEq. (8)). It also is the reason
why the statistical error decays faster than the systematic error when
increasing both convergence parameters simultaneously.

Knowledge of the above introduced and constructed error phase dia-
gram can be directly used to find convergence parameters that minimize

computational resources for a given target accuracy. In the regionwhere the
statistical error dominates, the multiplicative nature, i.e., where the targeted
accuracy can be achieved by converging only a single parameter, which in
practice will be the computationally less expensive one. In typical cases, this
will be the k-point sampling since the necessary computational time scales
linearly with the number of k-points and the number of k-points decreases
with increasing system size. In contrast, if highly converged calculations are
desired one will be in the region of the error phase diagram where the
systematic error dominates. Since in this region the errors of the individual
convergence parameters are additive, converging one parameter better than
the other would be a waste of computational time. Thus, the availability of
such error phase diagrams will allow us to provide a highly systematic and
intuitiveway of identifying optimumsets ofDFTparameters. In away, error
phase diagrams may become what thermodynamic phase diagrams are for
materials engineers today: Roadmaps for identifying optimum paths
(convergence parameters) in materials design (DFT calculations).

Methods
Automated Approach
Using the concepts outlined in the previous sections allows us to construct
an easy-to-implement automated approach. This approach computes for a
given chemical element and its pseudopotential a set of optimum con-
vergence parameters. These optimized parameters guarantee that the error
for a user-selected quantity (e.g. bulkmodulus, lattice constant etc.) is below
a user-defined target error. In the present implementation, the developed
tool accepts only cubic structures where the unit cell can be fully described
by the lattice constant as single variable.

The key steps of the automated approach are as follows:
• Determine the approximate lattice constant at ϵmax and κmax using the

experimental lattice constant, 21 volume points, a volume interval of ±
10%, and a polynomial fit of order d = 11.

• Perform DFT calculations around the computed equilibrium lattice
constant using again 21 volume points and a volume interval ± 10%.
Compute on each of the volume points the energies along (ϵmin, κi),
(ϵmax, κi), (ϵi, κmin) and (ϵi, κmax).

• Use Eq. (7) to compute the total energy E on the full 3d mesh (V,ϵ, κ).
No extra DFT calculations are needed.

• Compute the systematic and the statistical error of the target quantityA
(e.g. bulkmodulus) following the discussion given in Section “Analysis
and fit of the energy-volume curve”. Construct the envelope function
of the combined error.

• Determine on the error surfaceA(ϵ, κ) the lineΔA(ϵopt, κopt) =ΔAtarget,
i.e., sets of convergenceparameterswhere thepredicted error equals the
target error.

• Take the set where the curvature of the line ismaximum (i.e., close to a
90o angle. At this point the required computational resources for both
convergence parameters are minimal.

The above algorithmhasbeen implemented in thePyiron framework22.
The Pyiron-based module requires as input only the pseudopotential and
the selection of the target quantity and error. The setup of the DFT jobs,
submission on a compute cluster, analysis etc. is done fully automatically
without any user intervention.

Data availability
In addition to the Jupyter Notebooks also the corresponding data will be
provided on our freely accessible pyiron repository (https://github.com/
pyiron/pyiron-dft-uncertainty).

Code availability
The JupyterNotebooks developed to run the calculations and to analyze the
data will be provided on our freely accessible Pyiron repository (https://
github.com/pyiron/pyiron-dft-uncertainty). The fully interactive Jupyter
Notebooks togetherwith our Pyiron framework contain the entire code and
allow to easily reproduce all calculations and the analysis.
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