Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Electric-Field Driven Nuclear Dynamics of Liquids and Solids from a Multi-Valued Machine-Learned Dipolar Model

MPG-Autoren
/persons/resource/persons298515

Stocco,  E.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.       
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2502.02413.pdf
(Preprint), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stocco, E., Carbogno, C., & Rossi, M. (2025). Electric-Field Driven Nuclear Dynamics of Liquids and Solids from a Multi-Valued Machine-Learned Dipolar Model.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-926E-E
Zusammenfassung
The driving of vibrational motion by external electric fields is a topic of continued interest, due to the possibility of assessing new or metastable material phases with desirable properties. Here, we combine ab initio molecular dynamics within the electric-dipole approximation with machine-learning neural networks (NNs) to develop a general, efficient and accurate method to perform electric-field-driven nuclear dynamics for molecules, solids, and liquids. We train equivariant and autodifferentiable NNs for the interatomic potential and the dipole, modifying the prediction target to account for the multi-valued nature of the latter in periodic systems. We showcase the method by addressing property modifications induced by electric field interactions in a polar liquid and a polar solid from nanosecond-long molecular dynamics simulations with quantum-mechanical accuracy. For liquid water, we present a calculation of the dielectric function in the GHz to THz range and the electrofreezing transition, showing that nuclear quantum effects enhance this phenomenon. For the ferroelectric perovskite LiNbO3, we simulate the ferroelectric to paraelectric phase transition and the non-equilibrium dynamics of driven phonon modes related to the polarization switching mechanisms, showing that a full polarization switch is not achieved in the simulations.